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Abstract

We present in this report an account of the theory of complex multiplication of elliptic curves and

its relation to the class field theory of imaginary quadratic number fields. By analyzing the relationship

between the arithmetic of these fields and their associated elliptic curves, we attain a complete description

of their maximal abelian extensions.

Sections 0 − 2 of the report will consist of the necessary prerequisite knowledge, namely Galois theory,

class field theory, and the complex theory of elliptic curves. The remainder will consist of an explanation

of the basic theory of complex multiplication of elliptic curves and how it relates to the class field theory of

the associated imaginary quadratics. Our primary reference for complex multiplication and its impact in

class field theory is [Silverman, Ch. II]. Most of the proofs will be omitted, and they can be found there.

Acknowledgment. I’d like to thank my friend Ken Willyard for his very helpful feedback.

0 Galois theory

We present here an introduction to the necessary Galois theory for the remainder of the report.

Many texts exist covering this subject. We point the reader, for instance, to [Lang] – a general

reference book for the fundamentals of algebra. A wonderful little book dedicated to Galois theory

itself is [Artin]. We will also need some infinite Galois theory, which is typically covered in algebraic

number theory texts. For instance, one can see [Neukirch], [Lang – ANT], or [CF].

Definition 0.1. A number field is a field K which contains the rational numbers Q in such a way

that K is finite dimensional over Q. We denote by [K : Q] the dimension of K as a Q vector space.

This is often called the degree of the extension.

Definition 0.2. An imaginary quadratic number field is a number field of degree 2 over Q which has

no maps into the field of real numbers R. Equivalently, it is a field of the form Q(
√
−d) for d a positive

squarefree integer.

Elements of number fields are referred to as algebraic numbers. It is a fundamental question in

algebraic number theory to understand and classify the algebraic numbers. A key tool along these lines

is Galois theory, which allows us to study field extensions in terms of their group of automorphisms.

Definition 0.3. Let K/F be a finite field extension, meaning that F is a subfield of K and [K : F ]

is finite. The automorphism group of K/F is

Aut(K/F ) = {σ : K −! K | σ is a field isomorphism with σ|F = idF }

For a subgroup H of Aut(K/F ), we let the fixed field of H be

KH = {a ∈ K | h(a) = a for all h ∈ H}

If KAut(K/F ) = F , we say that the extension K/F is Galois. It is then customary to refer to Aut(K/F )

as the Galois group G(K/F ).

A laboriously proven but incredible fact is the Galois correspondence between the subgroup lattice

of the Galois group of K/F and the lattice of intermediate field extensions in K/F .
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Theorem 0.1 (The Galois correspondence). Let K/F be a finite Galois extension. Then for any

intermediate field K/E/F we have that K/E is a (finite) Galois extension. Notice also that G(K/E)

is then a subgroup of G(K/F ).

There is an order reversing bijection

{intermediate fields in K/F} {subgroups of G(K/F )}

E G(K/E)

KH H

Furthermore, an intermediate field extension K/E/F has that E/F is Galois if and only if G(K/E)

is a normal subgroup of G(K/F ). If so, there is a surjective restriction map

G(K/F ) G(E/F )

σ σ|E

with kernel equal to G(K/E).

Finally, we record some relationships between the index of subgroups and the degree of extensions.

|H| = [K : KH ]

[G(K/F ) : H] = [KH : F ]

The Galois correspondence allows us to translate the problem of understanding number fields to

understanding certain groups and how they act. We would now like to extend this idea to infinite

extensions, specifically the algebraic closure Q/Q. However, näıvely replacing all the extensions above

with infinite ones does not quite work. For instance, it can be the case in an infinite Galois extension

that there is a greater cardinality of subgroups than of intermediate fields.

Infinite Galois theory becomes topological in nature. For instance, consider the fixed point

condition KH = {a ∈ K | h(a) = a for all h ∈ H}. This is a closed condition in H (although

we have not yet given ourselves a topology), which is vacuous if the groups are finite, but potentially

meaningful if they are infinite.

Definition 0.4. Let K/F be a possibly infinite extension of fields. We say that K/F is Galois if it is

algebraic and if KAut(K/F ) = F . We again will write G(K/F ) = Aut(K/F ).

In this case, we can determine that K is the union of all of the finite intermediate extensions

K/E/F with E/F Galois. As such, we have natural restriction maps G(K/F ) −! G(E/F ) for all

such E. We then assemble all these restriction maps together into a product.

Theorem 0.2. The map

G(K/F ) −!
∏

K/E/F
E/F finite Galois

G(E/F )

is an injection of groups. Furthermore, we give each finite group G(E/F ) the discrete topology and

then endow the codomain with the product topology. Then the image of this map is closed. Via this,

we define a topology on G(K/F ).

Remark. Those familiar with category theory will recognize that G(K/F ) is an inverse limit over
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the finite intermediate Galois extensions E of G(E/F ). As such, we are taking this inverse limit in

the category of topological groups.

Notice by the way that for K/F finite Galois, the Galois group is discrete. This topology has a

number of other properties we cannot explore in depth right now.

Theorem 0.3 (The infinite Galois correspondence). Let K/F be a Galois extension. There is an

order reversing bijection

{intermediate fields in K/F} {closed subgroups of G(K/F )}

E G(K/E)

KH H

Furthermore, if H is closed and finite index then [KH : F ] = [G(K/F ) : H]

The fundamental application of this result in algebraic number theory is for the extension K/K of

a number field K, which is always Galois. Then the finite extensions of K are in correspondence with

the finite index closed subgroups of G(K/K) In particular, number fields correspond to closed finite

index subgroups of G(Q/Q), which is called the absolute Galois group of Q. This reduces the question

of understanding number fields to understanding the structure of this topological group. This is easier

said than done, so in the course of this report we will focus instead on abelian extensions.

Definition 0.5. A Galois extension K/F is called abelian if G(K/F ) is an abelian group. The union

of all intermediate abelian extensions in K/K is denoted Kab.

By the Galois correspondence, we have that G(Kab/K) is the abelianization of the absolute Galois

group G(K/K).

Remark. A careful reader might wonder if the commutator subgroup is closed. In general, this need

not be the case. The abelianization is happening in the category of profinite groups, not just groups.

Concretely, when abelianizing, we are quotienting by the closure of the commutator subgroup.

The abelian extensions of a number field K therefore correspond to closed subgroups of G(Kab/K).

Unlike studying all extensions, studying abelian extensions of a number field is tractable and known

classically via class field theory.

1 Class field theory

To state the main theorems of class field theory we will use in this report, we must first introduce

some essential notions from algebraic number theory. These can be found more in depth in most

algebraic number theory references, such as [Lang – ANT], [Neukirch], [CF]. These texts will each

cover class field theory as well. Our primary reference [Silverman] provides a description of the results

and definitions needed for class field theory of imaginary quadratic number fields in chapter II §3.

Each of these references for class field theory cover the more modern and technical idèlic approach,

whereas we only use the ideal theoretic approach. A fleshed out introduction to the ideal theoretic

approach to class field theory can be found in [Janusz].

Definition 1.1. Let K be a number field. The ring of integers in K is

OK = {a ∈ K | a is the root of an integer polynomial with leading coefficient 1}
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We’ll collect here a few fundamental properties of the ring of integers.

Proposition 1.1. (i) OK is a ring which contains Z as a subring.

(ii) OK is, as an underlying additive group, free of rank [K : Q].

(iii) Every nonzero ideal of OK factors uniquely into a product of nonzero prime ideals of OK .

(iv) OK is an integral domain with quotient field K.

(v) The nonzero primes p of OK are maximal, and the quotients OK/p are finite.

The third part of this proposition is an approximation to the unique factorization property of the

integers – that is, the fundamental theorem of arithmetic. The ring of integers of a number field

needn’t satisfy unique factorization on the level of elements, but it will satisfy it on the level of ideals.

As a result, we adopt arithmetic sounding language when discussing ideals. For instance, we will say

a prime p divides an ideal I if it appears in the factorization of I.

We can measure the failure of element – wise unique factorization by a group called the class group

of K.

Definition 1.2. A fractional ideal of K is a finitely generated OK submodule of K. In particular,

the ideals of OK are fractional ideals. We call these integral ideals, as they are contained in the ring

of integers. A fractional ideal is called principal if it is generated as an OK module by some a ∈ K.

This is denoted (a).

The unique factorization property of nonzero ideals ensures that the set of nonzero fractional ideals

of K is an abelian group under ideal multiplication, and is in fact a free abelian group generated by

the nonzero primes of OK . The nonzero principal ideals are a subgroup of this.

Definition 1.3. The class group Cl(OK) is the quotient of the group of nonzero fractional ideals by

the subgroup of nonzero principal ideals.

The class group measures how far away the ring OK is from having unique factorization on its

elements. That is, Cl(OK) is trivial if and only if OK is a unique factorization domain. Amazingly,

we have the following:

Proposition 1.2. The class group Cl(OK) is finite. Its order is called the class number and is denoted

hK .

We now use the unique factorization of ideals to discuss ramification of primes.

Definition 1.4. Let L/K be an extension of number fields. Let p be a nonzero prime ideal of OK .

Then pOL is a nonzero ideal of OL and therefore admits a factorization pOL =
∏g
i=1 P

ei
i . The number

ei is referred to as the ramification index of Pi/p. We say that p is unramified in L if all the ei are 1.

Furthermore, L/K is said to be unramified if every nonzero prime of OK is unramified in L.

Proposition 1.3. Only finitely many primes in K are ramified in L.

From now on, we will insist that K be an imaginary quadratic. Class field theory extends far

beyond this narrow scope, but for the sake of brevity we will focus our attention here. Experts, for

instance, will notice that this affords us the ability to completely neglect a conversation about infinite

places.
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Proposition 1.4. Let L/K be a finite abelian extension with K an imaginary quadratic. Let p be an

unramified prime of K and let P be some prime appearing in the factorization of pOL. Then OL/P
is a finite Galois extension of the finite field OK/p. There is an isomorphism

{σ ∈ G(L/K) | σ[P] = P} −! G(OL/P/OK/p)

given by reduction mod P.

The Galois group of the extension of finite fields is generated by the Frobenius element x 7! x|OK/p|.

As L/K is abelian and unramified at p, there is a unique lift φ(p) ∈ G(L/K) which reduces to the

Frobenius element on the quotient by P. We also refer to φ(p) as the Frobenius element.

Recalling that the nonzero primes form free generators for the group of nonzero fractional ideals,

we are led to believe that we can extend φ from the proposition to a group homomorphism. This is

almost correct, but we have to omit the primes that ramify.

Definition 1.5. For a nonzero integral ideal I of OK we let Ψ(I) be the subgroup of the group of

nonzero fractional ideals consisting of those which are coprime to I. That is, those which contain no

primes appearing in the factorization of I. This is a free abelian group on the primes not dividing I.

Then we have a group homomorphism Ψ(I) −! G(L/K) sending p 7! φ(p) for any ideal I divisible

by all the primes ramified in L. We refer to this as the Artin map and denote it as (·, L/K).

Definition 1.6. For a nonzero integral ideal I of OK . Let P (I) = {(a) | a ∈ K∗ and a ≡ 1 (mod I)}.
This is a subgroup of Ψ(I).

Theorem 1.1 (Artin reciprocity). Let L/K be finite abelian. There is an nonzero integral ideal I of

OK so that P (I) is contained in the kernel of the Artin map. Furthermore, I is divisible precisely by

the primes ramifying in L. There is in fact a maximal such integral ideal I, which we write as IL/K
and call the conductor of L/K.

Definition 1.7. Let I be a nonzero integral ideal of OK for K an imaginary quadratic. A ray class

field for K modulo I is a finite abelian extension KI/K so that for any abelian extension L/K with

I ⊆ IL/K we have L ⊆ KI .

Theorem 1.2 (Some statements of class field theory). Let K be an imaginary quadratic number field

and L/K be finite abelian.

(i) The Artin map (·, L/K) : Ψ(IL/K) −! G(L/K) is onto with kernel containing P (IL/K).

(ii) A ray class field of modulus I exists for all nonzero integral ideals I of OK . Furthermore, the

ray class field is unique.

If we take the particular case of I = (1) the unit ideal, the corresponding ray class field is called

the Hilbert class field. We denote this by H/K. We’ll also record some properties of the Hilbert class

field.

Corollary 1.2.1. The Hilbert class field H/K is the maximal extension of K which is abelian and

unramified. We have an isomorphism (·, H/K) : Cl(OK) −! G(H/K).
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2 Complex elliptic curves

Our main reference for the theory of elliptic curves in general is [AEC]. In this text, elliptic curves

are covered over general base fields. We are interested primarily in elliptic curves over C, though we

will later need the theory of elliptic curves over Q. For the complex analytic theory, especially with

respect to lattices, a nice reference is [Serre, Ch. VII].

Elliptic curves form a basic object in algebraic geometry and algebraic number theory. For those

familiar with algebraic geometry, the following is a good intrinsic definition.

Definition 2.1. A (complex) elliptic curve is a nonsingular curve of genus 1 over C with a designated

base point O.

More explicitly, elliptic curves are known to have Weierstrass equations, which affords us the

following more concrete (if less intrinsic) definition.

Definition 2.2. An elliptic curve is a curve in CP2 given by an equation of the form y2z = x3 +

axz2 + bz3 for some a, b ∈ C so that ∆ = −16(4a3 + 27b2) 6= 0.

The value ∆ is called the discriminant of the curve, and its nonvanishing ensures smoothness.

Notice that in the affine open neighborhood {z 6= 0} this equation becomes y2 = x3 + ax + b.

Furthermore, this curve intersects the line at infinity, i.e. the curve {z = 0} in CP2, at exactly one

point, which we take as our base point O = [0 : 1 : 0].

With whatever definition we take, an elliptic curve has a group structure on it by setting the

designated based point O as the identity element and insisting that the sum of three colinear points

(counting multiplicity) is O.

Definition 2.3. A map between elliptic curves is a holomorphic group homomorphism, which we call

an isogeny.

The above definitions work equally well for any algebraically closed field of characteristic not equal

to 2 or 3. But when the ground field is C, we are afforded the use of complex analysis. This will lead

us to a powerful classification of complex elliptic curves.

Definition 2.4. A lattice Λ in C is a free abelian group generated by some basis for C as an R vector

space.

Definition 2.5. Given a lattice Λ we define the following

(i) The Weierstrass ℘ function with respect to Λ is given by

℘(z) =
1

z2
+

∑
λ∈Λ−{0}

1

(z − λ)2
− 1

λ2

This is a meromorphic function which descends to the quotient C/Λ.

(ii) We let

Gk(Λ) =
∑

λ∈Λ−{0}

λ−k

for k a natural number. This is called the Eisenstein series of weight k. Note that the series is

0 if we were to take k odd by symmetry about λ 7! −λ.
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(iii) g2 = 60G4

(iv) g3 = 140G6

Proposition 2.1. Let Λ be a lattice. There is a map C/Λ −! CP2 given in the affine open coordinate

patch {z 6= 0} as t 7! (℘(t), ℘′(t)). This extends to CP2 by sending the poles to [0 : 1 : 0]. In turn,

this map becomes an isomorphism onto the curve defined by y2z = 4x3 − g2xz
2 − g3z

3. This is an

isomorphism of groups and of Riemann surfaces. We denote this elliptic curve by EΛ. Furthermore,

all elliptic curves arise in this fashion.

This proposition is the beginning of a classification of complex elliptic curves. We would like

to consider the issue of uniqueness as well. For one, we are only interested in elliptic curves up to

isomorphism. As elliptic curves all arise from lattices, we are led to consider a condition on lattices

which classifies isomorphism. Indeed, we have the following.

Proposition 2.2. EΛ and EΛ′ are isomorphic if and only if Λ = cΛ′ for some nonzero constant

c ∈ C∗.

Definition 2.6. We refer to lattices Λ and Λ′ so that Λ = cΛ′ as homothetic.

We therefore have the equivalence

{lattices}/homothety ∼= {elliptic curves}/isomorphism

We can go further by classifying the collection of lattices themselves. Notice that a lattice is

specified by a GL2(Z) orbit of an R basis of C. If we insist that our bases are positively oriented, we

can focus on SL2(Z) orbits of positively oriented R bases of C. Furthermore, any positively oriented

R basis of C can be dilated to be of the form (1, ω) for some ω in the upper half plane H. Carrying

forward this reasoning eventually leads us to the action of SL2(Z) on H via(
a b

c d

)
ω =

az + b

cz + d

and the equivalence

SL2(Z)\H {lattices}/homothety

ω Z + ωZ

∼

This has the impressive feature of endowing the set of elliptic curves up to isomorphism with a

holomorphic structure via the bijection to SL2(Z)\H. To analyze what precisely this structure is, we

use the j invariant.

Definition 2.7. Let Λ be a lattice. The discriminant is given as

∆ = g3
2 − 27g2

3

and the j invariant is

j =
1728g3

2

∆

It is the case that ∆(Λ) is never zero. Furthermore, j deserves the name “invariant” due to the

following.
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Proposition 2.3. j : {lattices}/homothety −! C is a bijection. Furthermore, when composed with

the bijection to SL2(Z)\H, we get a biholomorphism SL2(Z)\H −! C.

We have therefore determined that the collection of elliptic curves up to isomorphism goes under

a variety of names, and in fact has the structure of a Riemann surface. One of these names is very

familiar – C itself. To summarize, we have the following result.

Theorem 2.1 (Classification of complex elliptic curves). We have equivalances

{elliptic curves}/isomorphism ∼= {lattices}/homothety ∼= SL2(Z)\H ∼= C

with the various maps as described above.

Note that we provided the fewest number of maps necessary to understand these equivalences.

There are other maps between these sets which are notable. For instance, we can go from an elliptic

curve to a lattice using a homology group (see [AEC, VI.§5.6]). These connections are not necessary,

so we won’t discuss them any further.

We will use j informally as defined on any of the first three spaces via the given bijections between

them. For instance, we will refer to j of a lattice, an element of H, and of an elliptic curve. By

the way, the j invariant exists over any algebraically closed field of characteristic not 2 or 3 and still

uniquely parameterizes elliptic curves up to isomorphism over said base field. So as powerful as this

classification by j is, it is not the unique feature of complex elliptic curves. It’s really the two sets in

between, i.e. lattices and SL2(Z)\H, that are unique to the complex analytic theory.

3 Introduction to complex multiplication

Here we begin the exploration of complex multiplication. We appeal mostly to our primary

reference [Silverman], where one can find the omitted proofs. One can also refer to [Cox].

3.1 Definition

To begin our investigation of complex multiplication, we have to understand the endomorphism

ring of an elliptic curve.

Proposition 3.1. Let Λ be a lattice. The endomorphism ring of EΛ, i.e. the ring of isogenies EΛ to

itself, is described via the following isomorphism:

{a ∈ C | aΛ ⊆ Λ} End(EΛ)

a ([x] 7! [ax])

∼

We see here that the complex analytic description of elliptic curves as complex torii C/Λ has

afforded us a unique understanding of their structure. Indeed, the proof of this result bases itself

fundamentally on the covering map C −! C/Λ. It will continue to be fruitful to understand elliptic

curves in terms of a defining lattice. For instance, the above proposition shows in particular that

End(E) is isomorphic to a subring of C, and is hence an integral domain. We take this further with

the following key result.

Proposition 3.2. If E = EΛ for Λ = Z+ωZ then K = Q(ω) is an imaginary quadratic number field

and End(E) is isomorphic to a subring of the ring of integers OK .
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Definition 3.1. Let E be an elliptic curve so that End(E) is isomorphic to a subring R ⊆ OK for an

imaginary quadratic number field K. Suppose that End(E) properly contains Z. We say then that E

has complex multiplication by R.

Typically, the only endomorphisms of an elliptic curve will be given by multiplication by some

integer. In the case of complex multiplication, there are additional complex numbers we can multiply

our elliptic curve by. In turn, there are additional symmetries of the curve, or equivalently, additional

symmetries of the lattice. A more technical way to phrase this is that elliptic curves with complex

multiplication by R become R modules rather than mere abelian groups.

Examples. (i) Consider the lattice Λ = Z + iZ. Notice that iΛ = Λ. It follows then that i ∈
End(EΛ). We know the ring of integers of Q(i) to be Z[i], so End(EΛ) = Z[i]. Thus, EΛ has

complex multiplication by Z[i]. This ring is called the Gaussian integers.

(ii) Consider the lattice Λ = Z + ζZ for ζ = eπi/3. One may compute ζΛ = Λ. As in the case of

the Gaussian integers, we may conclude End(EΛ) = Z[ζ]. This is called the ring of Eisenstein

integers.

A common feature in both of these examples is that the lattices themselves were rings. Indeed,

Z + iZ = Z[i] and Z + ζZ = Z[ζ]. This will inform our attempt to understand these special highly

symmetric elliptic curves.

Recall the classification of elliptic curves

{elliptic curves}/isomorphism ∼= {lattices}/homothety ∼= SL2(Z)\H ∼= C

A natural way to further understand these correspondences is to determine how certain special classes

of objects behave under them. For instance, there are special lattices which arise from rings, as in

the above examples. Furthermore, within C there are the algebraic numbers, and even the algebraic

integers. And of course, within the class of elliptic curves, there are those which admit complex

multiplication. We will come to explore the relationship between these various special classes of

objects under these correspondences.

3.2 First principles

We first fix some notation. The set of all elliptic curves up to isomorphism with complex multiplication

by R is denoted Ell(R).

Now we will perform a large generalization of the previous two examples. Take an imaginary

quadratic number field K and a nonzero fractional ideal I in the ring of integers OK . Then I is a

lattice in C and hence defines an elliptic curve EI = C/I. EI has complex multiplication by OK .

Indeed,

End(EI) = {a ∈ C | aI ⊆ I}
= {a ∈ K | aI ⊆ I}
= OK

In this way, we have found a myriad of examples of elliptic curves with complex multiplication

by OK . We can go further. Fractional ideals have additional structure on them – they form a group
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under ideal multiplication. Our next step is to understand how this group structure on the ideal side

affects the elliptic curve side.

Lemma 3.1. Let EΛ be an elliptic curve with complex multiplication by OK . Also let I be a nonzero

fractional ideal of OK . Then IΛ is a lattice and EIΛ has complex multiplication by OK . We thus

define a group action from the group of fractional ideals of OK on Ell(OK) via IEΛ = EI−1Λ. This is

a transitive action.

Remark. That we twist this action by I−1 is solely to make the connection with class field theory

cleaner. It has no deep importance beyond this nicety.

In fact, as we are interested in elliptic curves up to isomorphism, we are free to replace lattices by

homothetic replacements. For instance, we can scale our lattices by elements of K∗ without affecting

this group action. Thus, the action descends to the quotient and yields an action of Cl(OK) on

Ell(OK).

Theorem 3.2. There is an action of the ideal class group Cl(OK) on Ell(OK) via [I]EΛ = EI−1Λ.

This action is free and transitive.

In effect, we have determined all the elliptic curves with complex multiplication by OK , modulo

our understanding of the class group of K. This is by no means a trivial obstruction. But a coarser

invariant than the class group is the class number hK = |Cl(OK)|. This yields a coarser result about

elliptic curves – a count.

Corollary 3.2.1. There are exactly hK isomorphism classes of elliptic curves with complex multiplication

by OK .

We have found already quite a remarkable result. Casting aside even the specificity of what the

class number is, this means that Ell(OK) is a finite set. This was not at all obvious a priori.

We turn now to another player in the classification of elliptic curves: C and the j invariant. What

does the j invariant of an elliptic curve with complex multiplication look like? The finiteness just

proven will show that it is actually an algebraic number.

Definition 3.2. For σ ∈ Aut(C) and E an elliptic curve given by a Weierstrass equation y2 =

x3 + ax+ b. Then we denote by Eσ the elliptic curve given by y2 = x3 + σ(a)x+ σ(b).

We see readily that End(E) ∼= End(Eσ), so this leads to an action of Aut(C) on the finite set

|Ell(OK)|.

Corollary 3.2.2. j(E) is an algebraic number for E ∈ Ell(OK). In fact, [Q(j(E)) : Q] ≤ hK .

Proof. The j invariant of an elliptic curve is a rational function of the coefficients of a Weierstrass

equation for said curve. As such, j(Eσ) = σ(j(E)). There are only hK many elements in Ell(OK), so

σ(j(E)) ranges over hK many values as σ ranges in Aut(C). This shows that [Q(j(E)) : Q] ≤ hK .

Corollary 3.2.3. If K has class number 1, i.e. if OK has unique factorization, then j(E) is a rational

number for any elliptic curve E with complex multiplication by K.

For instance, j(i) and j(eπi/3) are rational numbers. One can actually compute these values

explicitly as 1728 and 0 respectively. Notably, these are integers. And in fact, a stronger fact than

what we just described is true. The j invariant of an elliptic curve with complex multiplication by

OK is an algebraic integer. One can see [Silverman, II.§6] for multiple proofs of integrality.
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4 Applications of complex multiplication to class field theory

We have now shown an intimate connection between the ideal class group of an imaginary quadratic

number field K and the set of elliptic curves with complex multiplication by OK , as well as their j

invariants. By class field theory, we therefore expect these elliptic curves to tell us something about

the Hilbert class field of K. Indeed, it will turn out to be the case that K(j(E)) is exactly the Hilbert

class field of K. We will furthermore be able to understand the entire extension Kab/K using the

torsion of some E ∈ Ell(OK).

4.1 The Hilbert class field of an imaginary quadratic

To make such a connection, we will first need to explain the Galois action on Ell(OK). When

discussing algebraicity of the j invariant of an elliptic curve with complex multiplication by OK ,

we used the action of Aut(C). This is a group even more unwieldy than the absolute Galois group

G(Q/Q). We’d like to have this group act on Ell(OK) instead. This is a reasonable request, as the j

invariants therein were proven to be algebraic. So there is a Galois action (meaning an action of the

absolute Galois group) on the j invariants of the elements of Ell(OK). We can use this to pull back a

Galois action on Ell(OK), but this is a hacky approach. Our goal now is to describe a more intrinsic

Galois action on these elliptic curves.

The problem is that our elliptic curves are insofar defined over C, so there is no current way to

define an action of the absolute Galois group. However, if E ∈ Ell(OK) then j(E) is algebraic over Q.

If j 6= 0, 1728 then consider the curve

y2 + xy = x3 − 36

j(E)− 1728
x− 1

j(E)− 1728

which has j invariant equal to j(E), and is hence isomorphic to E. For j(E) = 1728 we have the

equation y2 = x3 + x, and for j(E) = 0 we have y2 + y = x3. We can therefore represent all elements

of Ell(OK) by elliptic curves defined over Q.

Elements of Ell(OK) are isomorphism classes of elliptic curves. By taking representatives defined

over Q, we’d like to replace “isomorphism classes” with “Q isomorphism classes”. This reduction too

is possible, as the classification of elliptic curves by their j invariant holds over any algebraically closed

field of characteristic not 2 or 3.

In summary, we can replace Ell(OK) with the set of Q isomorphism classes of elliptic curves E

defined over Q so that End(E) ∼= OK . In doing so, we define a Galois action on Ell(OK) as follows.

Take an elliptic curve E with Weierstrass equation y2 = x3 + ax+ b with a, b ∈ Q. For σ ∈ G(Q/Q),

we let Eσ be defined by y2 = x3 + σ(a)x+ σ(b).

As such, we have a Galois action on Ell(OK). Understanding this action will afford us understanding

of the extensions of K via Galois theory. For instance, we compare the Galois action with the action

of the ideal class group Cl(OK) on Ell(OK).

Proposition 4.1. There is a group homomorphism F : G(K/K) −! Cl(OK) so that Eσ = F (σ)E

for any E ∈ Ell(OK).

Proof. We have described a Galois action on Ell(OK). Let σ ∈ G(K/K). As the action of Cl(OK) on

(OK) is free and transitive, E and Eσ are off by a unique ideal class. That is, there is some unique

F (σ) ∈ Cl(OK) so that Eσ = F (σ)E. Verifying that F is a group homomorphism is routine, and can

be found in [Silverman, II.§2.4].
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By analyzing this function F , we will connect elliptic curves with complex multiplication by OK
with the Hilbert class field of K. First off, to connect it to the j invariant of some E ∈ Ell(OK), let’s

compute its kernel.

Lemma 4.1. ker(F ) = G(K/K(j(E))).

Proof. Suppose F (σ) = 1. As the action of Cl(OK) on Ell(OK) is free, this is the same as saying that

F (σ)E = E for any particular E ∈ Ell(OK). By definition of F , we have F (σ)E = Eσ. Equality in

Ell(OK) is a question of isomorphism of elliptic curves, which is controlled by the j invariant. So this

is equivalent to saying j(Eσ) = j(E). And j(Eσ) = σ(j(E)). Thus, we have shown

ker(F ) = {σ ∈ G(K/K) | σ(j(E)) = j(E)}

which is precisely G(K/K(j(E))).

It follows from this lemma that F is in fact continuous when Cl(OK) is given the discrete topology,

as G(K/K(j(E))) is closed in G(K/K).

Now, to make our connection with class field theory, consider another important map with the

same domain and codomain. That is, the composition:

F ′ : G(K/K) −! G(H/K)
∼−−! Cl(OK)

Here H is the Hilbert class field of K, the first map is restriction, and the second map is the inverse of

the Artin map (·, H/K). We seek to show that K(j(E)) = H. In fact, we will show that F and F ′ are

actually the very same map. The latter result is more powerful, as it implies ker(F ) = ker(F ′) whence

H = K(j(E)) by infinite Galois theory. So not only is F is independent of the choice of elliptic curve

E, the class field theoretically defined F ′ can be interpreted and understood using elliptic curves.

Remark. If we defined the action of Cl(OK) on Ell(OK) without the inverse, it’d rear its ugly head

here so that F and F ′ would be off by the inversion map [I] 7! [I]−1.

Theorem 4.2. Let L = K(j(E)) and H/K be the Hilbert class field. Then L = H and F = F ′.

The proof of this result is too long and technical to include, so we will present a summary of the

method.

Proof sketch. First, the map F is computed on a certain class of primes p in OK . Specifically, on

those p which lie above a prime p ∈ Z which splits into two distinct prime factors pOK = pp′. This

class is known by the Chebotarev density theorem to consist of half the primes of K.

The computation is to first view F as a mapG(Kab/K) −! Cl(OK), which is possible by continuity

of F and commutativity of the ideal class group. Consider then a Frobenius element φ(p) for such a

prime p. Note that these elements do exist in an infinite extension, but by ramification they are only

well defined modulo a subgroup of G(Kab/K) called the inertia subgroup of p. In any case, this abuse

of notation will not be problematic to us.

One shows that F (φ(p)) = [p], meaning the class of p in the class group Cl(OK). This is precisely

how F ′ acts on the Frobenius elements too.

Using this result for primes, we can furthermore show upon factoring F through G(L/K) that

F ((I, L/K)) = [I] for any I ∈ Ψ(IL/K).

12



From this, F (((a), L/K)) = 1 for all principal ideals (a) ∈ Ψ(IL/K). Because ker(F ) = G(K/L),

the factorization of F through G(L/K) is injective. Thus, ((a), L/K) = id within G(L/K) for all such

principal ideals (a). By definition, this means that the conductor IL/K is the unit ideal.

It follows then by class field theory that L is contained in the Hilbert class field H. Furthermore,

the above will also show that G(L/K) is carried isomorphically onto Cl(OK) via F . We also know

that G(H/K) ∼= Cl(OK). As such, by counting, we conclude equality L = H.

We’ve therefore also shown that F can be factored as G(Kab/K) −! G(L/K) −! Cl(OK). This

is exactly how F ′ was defined.

We have therefore found an explicit description of the Hilbert class field of an imaginary quadratic

number field, as well as a description of the inverse to the Artin map, using the theory of complex

multiplication of elliptic curves.

4.2 Torsion and the ray class fields

Before we proceed with analyzing the remainder of the maximal abelian extension Kab of an

imaginary quadratic number field, let’s briefly recall the theory from Q.

Theorem 4.3 (The Kronecker – Weber theorem). Every finite abelian extension of Q is contained in

a cycloctomic extension Q(ζn) for some primitive nth root of unity n.

Proof sketch. One can show that the ray class group of modulus n∞ is exactly Q(ζn). The result

follows from class field theory.

We can phrase this by saying that the maximal abelian extension of Q comes from adjoining all

roots of unity. The roots of unity are parameterized by special values of the exponential function e2πix,

namely those x in Q/Z. Furthermore, the roots of unity can be thought of as the torsion points of the

unit group C∗. Algebraic geometers refer to C∗ as Gm(C) – the C points of the multiplicative group

scheme Gm. So the maximal abelian extension of Q arises from adjoining torsion points of Gm(C),

which are parameterized by special values of a transcendental function exp.

The same story will hold for understanding Kab where K is an imaginary quadratic number field.

The group Gm is replaced by the E, and the exponential function is replaced by what we will soon call

a Weber function. A notable difference here is that the Kronecker – Weber theorem didn’t mention

the Hilbert class field of Q at all. That’s because the Hilbert class field of Q is just Q itself. Indeed,

Z has unique factorization by the fundamental theorem of arithmetic so the class number of Q is 1.

Our understanding of Kab is summarized in the following theorem.

Theorem 4.4. Let K be an imaginary quadratic number field and E ∈ Ell(OK). The maximal abelian

extension Kab is described as

Kab = K(j(E), h[Etors])

for a Weber function h : E −! P1, meaning a finite map invariant under the action of Aut(E) which

is defined over the Hilbert class field.

In fact, for a nonzero integral ideal I of OK , we have that the ray class field of modulus I is given

by

KI = K(j(E), h[E[I]])

where E[I] is the elements of E which are annihilated by I.
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The proof of this result is more technical than can be presented here, as it heavily uses properties

of reducing an elliptic curve to a finite field. The key is to understand the action of the Frobenius

elements to prove that the ray class fields are as we describe. We will not explain much more, but a

definition of a Weber function h is in order.

Definition 4.1. One definition of a Weber function h : E −! P1 is to take a Weierstrass equation

y2 = x3 + ax+ b where a, b are in K(j(E)). As discussed above, K(j(E)) = H the Hilbert class field.

We then define

h(x, y) =


x3 j = 0

x2 j = 1728

x otherwise

So in almost all cases, h is simply the x coordinate on E.

A more analytic definition, which follows the same cases, is as follows:.

Let f : C/Λ ∼−−! E be given by (℘, ℘′).

h ◦ f =


g3
∆℘

3 j = 0
g22
∆℘

2 j = 1728
g2g3
∆ ℘ otherwise

We therefore have a complete description of the maximal abelian extension of an imaginary

quadratic number field K using complex multiplication of elliptic curves.

5 Conclusion

Class field theory provides us with a description of the maximal abelian extension of a number field.

In the specific cases of Q and imaginary quadratic number fields, a much more explicit description can

be given. Over Q, the abelian extensions are controlled by adjoining torsion points of Gm(C) = C∗,
i.e. roots of unity. These are parameterized by an analytic function exp. For imaginary quadratics, we

have discussed that a wholly analogous story arises. The abelian extensions of an imaginary quadratic

number field are controlled by the j invariant, which is an analytic function, and torsion points of an

elliptic curve E with complex multiplication. Said torsion points are parameterized by an analytic

function called a Weber function. A similar story is known to occur in local class field theory, where

the maximal abelian extension of a local field is given in terms of the torsion points of a formal group

law. See, for instance, [CF, VI.§3] for this case.

The similarity in all of these class field theories led number theorists to wonder if the same sort

of scenario holds for all number fields. Are abelian extensions of a number field always determined

by special values of some analytic function? Do they always arise in terms of torsion points of some

group scheme like Gm or C? This is Hilbert’s 12th problem. It is also referred to as Kronecker’s

Jugendtraum – a German word translating to “boyhood dream”. A more detailed historical account

of complex multiplication and the Jugendtraum can be found in [Vladut].

Additionally, complex multiplication has seen a vast generalization to abelian varieties, an essential

object of algebraic geometry. One can see [ST] for an account of complex multiplication in this

generality and its impact in number theory.
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