1 Extension of Scalars

Let R be a commutative ring. Recall briefly the notion of an R-algebra

Definition 1.1. An R-algebra is a map f : R — S where S is a commutative ring. This means
that S is a commutative ring with the structure of an R-module via the formula

rs:= f(r)s
forr € Rand s € S.

Since S is an R-module it may be tensored (over R) by other R-modules, which will yield for us
extension of scalars. Before we get into that, we first define the pullback or restriction of scalars.

Definition 1.2. Let S be an R-algebra via f : R — S. Let M be an S-module. We define an
R-module f*M which is the same underlying abelian group as M equipped with the R-action

using the existing S-module structure on M. Often, we will be lazy and suppress the f* from the
notation, and simultaneously refer to M as an S-module and as an R-module via this formula.

For example, let V' be a vector space over C. Consider the inclusion map ¢ : R — C. This makes
C into an R-algebra, so we can restrict scalars from C to R to get a vector space i*V over R. This is
the complex vector space V' viewed as a real vector space in the usual way. Hence, we have restricted
the scalars from C to R. This works the same way for any field extension.

Now we go the other way, which requires the tensor product.

Definition 1.3. Let f : R — S be an R-algebra and M be an R-module. We consider the R-module
S ®r M, sometimes called f,M, and equip it with an S-module structure via

s(s @m) = (ss') @m

To be a bit more formal, fix s € S and define the R-bilinear map S x M — S ®g M via (s, m) —
(ss’) ® m. Then use the universal property of the tensor product to define the map as above.

Now there is an induced R-linear map M — S ®r M via m — 1 ®m. We claim that this is the
“most efficient” way to transform M from an R-module into an S-module. Formally, we assert the
following universal property.

Theorem 1.1. Let S be an R-algebra via f: R — S and let N be an S-module and suppose there
is an R-linear map ¢ : M — N. Then there is a unique S-linear map ® : S g M — N so that

the following diagram commutes

M—2 N

-1
l o7 e

S®r M

Remarks. (i) We said N was an S-module and then asserted that ¢ : M — N was R-linear.
This is meant to be read as saying that N is an R-module from the restriction of scalars via
f:R— 5. So we could have said let ¢ : M — f*N be R-linear, but this is cumbersome so
we choose to suppress it.



(ii) This is remarkably close to the universal property of localization! This is not an accident
philosophically or literally. On a philosophical level, this sort of universal property is what
we expect from the “most efficient” way to perform a construction. Both universal properties
are examples of an “adjunction” in category theory. On a literal level, we will show later that
localization of modules is an example of extension of scalars.

Proof. We construct the map ®. Indeed, we define it via the universal property of the tensor product
by sending
s®m i sp(m)

where, as usual, we mean to take the R-bilinear map S x M — N via
(s,m) — sp(m)

and induce the map ® : S ® g M — N by universal property.

Let’s check that this is R-bilinear. By ¢ being a group homomorphism and distributivity of
multiplication, it is surely biadditive (aka Z-bilinear). So we check that this map respects R scalars.
First of all,

The second line is by definition of the R-module structure on S via f, and the last line is by definition
of the R-module structure on N via restriction of scalars along f. On the other hand, we have

Hence, this map is R-bilinear so ® is R-linear by universal property of the tensor product.
Furthermore, we see that ®(1 ® m) = 1¢(m) = ¢(m), so the diagram does indeed commute.
Now, we have constructed an R-linear map ® : S ® g M — N which commutes in the diagram,

so we now want to prove that it is in fact S-linear. Indeed, we check this on simple tensors, which

are generators, so we compute

so we have shown S-linearity of ®.
Finally, we show that ® is unique. Suppose there was an S-linear map ¥ : S ® g M — N which
commuted in this diagram, i.e.
U(l®m)=¢(m)
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Then for any s € S, we have by S-linearity that

U(s@m)="Y(s(l®@m))=sV(1l®m)=-sp(m)=>(s®m)

So as simple tensors generate S ®r M, we have shown ¥ = &, proving uniqueness. O

Remark. Extension of scalars is “functorial”. That is, given an R-linear map f : M — N we have
the induced map id®f : S ®r M — S ®r N which is S-linear.

Examples. (i) Let V' be a vector space over R. As before, the inclusion i : R — C makes C into

an R-algebra. Then C ®g V is the extension of scalars of V' to C. If V has basis {f; }ics then
we may write
vV=]]Rs

iel

We have that the tensor product commutes with the coproduct, so
CerV=][CarRs

icl

and C ®r Rp; is a one dimensional C vector space with basis 1 ® ;. Thus, we conclude that

C ®g V is the complex vector space with basis {1 ® f;}ic;. Essentially, we have just replaced
R with C.

Suppose we have an R-module with an explicit presentation like M = R{x,x5|2x1 = z3).
Formally, this means that there is an exact sequence
R > R? y M > 0

11— (2,-1)
e —— I;

Now, let R — S be an R-algebra. We tensor this sequence by S to get a presentation of
S ®r M. Indeed, by right exactness of the tensor product, the following is an exact sequence
of S-modules.

SrR —— S@rR? —— S®@rM —— 0

We have isomorphisms S®zr R — S and S®@gR?* — S? via s®r +— sr and s®(a, b) — (sa, sb).
We can thus form

S@RR—>S®RR2 — S@RM—>O
S s 52
We compute the image of 1 in S — S? via commutativity of this square. Indeed,
1l — 1®(2,-1)
1 (2,-1)

so this is given by 1 — (2,—1). Similarly, S? — S ®p M is given by ¢; — 1 ® z;. Write
¥ = 1® ;.

We conclude that we have the presentation
S®@r M = S(y1, 92|21 = vo)

Thus, when given a presentation of a module, we extend scalars by just replacing R with S.
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2 Localization

As discussed previously, there is a close relationship between localization and extension of scalars,
which we now explore. For one, both localization and extension of scalars are ways to turn R-modules
into S~!R-modules. Let’s first recall localization of modules.

Let R be a commutative ring with a multiplicative subset S. For an R-module M we define an
S71R module S™'M with underlying set

STIM =M x S/~

where (m, s) ~ (m/,s) if there is a t € S so that ¢(s'm — sm’) = 0. The operations are defined (and
proven to be well-defined and satisfy all the module axioms) exactly as in the case of S™'R itself.

This satisfies the following universal property. Let N be an R-module with a map M — N.
Suppose that for all s € S we have that N — N via n +— sn is an isomorphism of R-modules. We
refer to this as saying that “S acts on N by isomorphisms”. Then there is a unique map S™'M — N
so that the following diagram commutes

M —— N

S—1M

where M — S~ M is defined by m — 7. The proof is exactly like the case of localizing commutative
rings.
We connect this to extension of scalars as follows.

Theorem 2.1. Let R — S™'R be the usual map r 7, making SR into an R-algebra. Let M
be an R-module. Then there is an isomorphism

ay :STIM 5 SR M

In fact, this is “natural” in M in the sense that for any R-linear map ¢ : M — N the following
diagram commutes

-1 S71¢ —1
S™M ——— SN

o Jon

SR XR S 1d—®¢> SR ®r N

Remark. That this isomorphism is natural means that we can essentially freely replace any instance
of ST'M with S™'R ®r M. If it were not natural, we could run into issues casually making this
replacement. For instance, you can run into issues in linear algebra by casually replacing a finite
dimensional vector space with its dual. Using Emily Riehl’s analogy of objects in category theory as
nouns and morphisms as verbs, this isomorphism provides a means of translation between S~—!(—)
and ST!R®p (—) which respects the “grammar” rather than just being a “discrete translation” which
doesn’t understand the relationship between the nouns.

Proof. The philosophy is that these two objects have the same universal property, as an R-module
by which S acts via isomorphisms is the same as an S~!R-module. This is essentially a proof, but it
requires some work to make rigorous. We will at least define the necessary maps.



For one, the S™!R-linear map S™'M — S™'R ®pr M exists by universal property of S™1M, as
S acts by isomorphisms on ST'R ®g M due to it being an S~!R-module and S mapping to units in
S™'R. Explicitly, it takes 2 — 1 @ m.

On the other hand, S~*M is an S~!R-module with a map M — S~'M, so the universal property
of extension of scalars yields an S~'R-linear map S™'R ®pr M — S™'M via L @ m — Zm.

One can check that these are inverse to one another. Naturality can be checked as well, and

intuitively it follows as aj; was constructed with no choices whatsoever. O
I now state some useful facts about localization.

Theorem 2.2 (Exactness of localization). Let0 — A — B — C' — 0 be a shrot exact sequence
of R-modules, and let S C R be a multiplicative subset. Then 0 —s S7'A — S™1B — S~1C — 0
18 ezact.

Proof. Right exactness follows from right exactness of the tensor product and the natural isomorphism
above. The naturality is critical here!

All that remains then is to show that S~*A — S~!B is injective, which can be shown by direct
computation. Let £ — 0... O]

This result essentially says that localization and quotients commute with each other. There is a
partial converse to this exactness.

Theorem 2.3 (Exactness is a local property). The following are equivalent for modules A, B, C' over

R.
(i) 0 — A — B — C — 0 is ezact.

(1) 0 — A, — B, — C, — 0 is ezact for all prime ideals p C R, where A, is the localization
of A by R—p.
(iii) 0 — Ay — By — Cyy — 0 is exact for all maximal ideals m C R.
Proof. Exactness of a sequence ... — A; LN i1 EiEN Ajyo — ... means ker(f;11)/im(f;) =0

for all i. Use that localization commutes with quotients, via the exactness above, and the fact
that an R-module M is 0 iff M, is 0 for all maximal ideals m. Apply this to the R-module M =

ker(fir1)/im(fs). u
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