
(1) I don’t have anything to say in terms of common errors. I’ll say that the connection between
irreducibility between R[t] and F [t] for R a UFD and F its quotient field is especially close
when R is a local PID, also known as a discrete valuation ring (DVR). In that case, for a
generator π of the maximal ideal of R, we can write every element of R as uπk for a unique
unit u ∈ R∗ and k ∈ N. So here, it’s only powers of π (which is often called a uniformizer) in
the denominator which could be a concern. Examples of DVRs include Z(p), Zp, k[t](f), and
k[[t]] where k is a field and f is an irreducible element of k[t].

(2) Not many errors here.

For one, this exact statement (and likely, your exact proof) is the same for any UFD replacing
Z.

Also one might notice that the hypotheses on a and b (being nonzero and coprime) are
symmetric, so perhaps there is a hidden symmetry in this problem which swaps a and b so
that we only have to prove one of the divisibilities. If so, swapping a and b would also have to
swap a0 and an.

Let f =
∑n

i=0 ait
i with coefficients in some domain R. Suppose a0 and an are nonzero. Let

g(t) = tnf(1/t). Then g ∈ R[t] and g =
∑n

i=0 an−it
i. That is, we have swapped the order of

the coefficients of f . Furthermore, the roots of g are precisely the reciprocals of the roots of f ,
including multiplicity. You can see this directly via the formula g(t) = tnf(1/t) or by applying
Viète’s formulas to g(t) =

∑n
i=0 an−it

i and to f itself.

The reciprocal of a/b is b/a, so f(a/b) = 0 iff g(b/a) = 0. Thus, only one divisibility needs
to be proven. Of course, this is probably more work than just proving both divisibilities, but
symmetry is always fun.

(3) The biggest mistake was in conflating between elements of F [t] and elements of F [t]/(f). This
is a reasinably common abuse of notation, but it is an abuse of notation and it’s worth being
cautious. For instance, it was common to write the nilradical as a subset of F [t], but it has to
be a subset of F [t]/(f).

Another remark, somewhat along the same vein, is that I think it’s best to write ideals of a
quotient ring like F [t[/(f) as I/(f) for (f) ⊆ I ⊆ F [t] an ideal. Such I exists and is unique by
the correspondence principle. This is nice, for instance, as it allows computation with the third
isomorphism quite easily. In this problem, if f =

∏
peii where the pi are distinct irreducibles,

then I = (
∏
pi). That is,

nil(F [t]/(f)) =
(∏

pi

)
/(f)

By the way, the unique J ⊆ I ⊆ R for which nil(R/J) = I/J is the radical of J , so I =
√
J .

Here, we have √(∏
peii

)
=
(∏

pi

)
This whole story works for any PID rather than just F [t] or Z. In fact, it works for R/(f) for
any UFD R and f ∈ R. Try the proof in this generality to ensure you see why the translation
is so direct. When doing so, ensure you don’t conflate elements of R and R/(f), and try to
write the final answer using the notation of the correspondence principle I/(f).

(4) Not many errors here.
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I’ll remark that it is exceedingly rare to understand all of the irreducible polynomials over a
field. In this case, we have a uniform bound (of 2) on the degrees of irreducible polynomials.
We have a uniform bound on degrees of irreducible polynomials over a field F if and only if F
is algebraically closed, whence the bound is 1, or F is “real closed”, whence the bound is 2.

A real closed field is one is which every element is a square or the negative of a square and so
that all odd degree polynomials have roots. We can then justifiably call the nonzero squares
positive and define an ordering on F . It turns out that F then satisfies the intermediate value
theorem for polynomials, and more strongly is “elementarily equivalent” to R in the “langauge
of ordered fields” which admits “quantifier elimination”. I won’t define any of these model
theoretic terms, but essentially all real closed fields looks like the reals in some sense. Another
example of a real closed fields are the real algebraic numbers, i.e. Q ∩ R.

For a real closed field F , we have the exact same characterization of irreducible polynomials as
in this problem. This shows that F [

√
−1] is algebraically closed, by the quadratic formula.

The statement that there is a uniform bound on degrees of irreducible polynomials over F is
equivalent to saying that F/F is a finite degree extension of fields, where F is the algebraic
closure of F . What I said above then means that, miraculously, F/F is finite iff F was already
algebraically closed or F is real closed, in which case F = F [

√
−1]. So somehow it never occurs

that F/F is a degree 3 extension. This is all proven in Elman’s book in the chapter on formally
real fields. You can also read model theory books, such as Marker, for more on real closed
fields.

(5) Not many errors here.

One thing I’ll mention is that the same criterion holds for any domain R (so not a UFD) but
you replace p with a prime ideal p, and the conclusion is that f cannot factor into nonconstant
polynomials in R[t]. It’s best used in UFDs, but it’s still nice to have something in rings like
Z[
√
−5].

Also, this is again especially useful in DVRs (see (1) above), as then you only have one prime
to try. In “complete” DVRs (which I won’t define) like Zp and k[[t]], this is especially powerful
and has a generalization to Newton polygons, which are a very powerful computational tool
when studying complete DVRs. These come up all the time in number theory to closely analyze
how a prime p factors in some extension, as we did for Q(i), or in algebraic geometry to zoom
in and locally understand a singularity of an algebraic curve.
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