
(1) The most common mistake was in only performing one step of the algorithm. The base case of
the algorithm is when deg(f) > deg(g), whence we take q = 0 and r = g. Suppose then that
deg(f) ≤ deg(g). Let deg(f) = m and deg(g) = n. Also, let a be the leading coefficient of f ,
which we suppose to be a unit, and let b be the leading coefficient of g. The correct first step
was to consider q0 = b

a
tn−m and r0 = g − fq0. Then by construction, deg(r0) < deg(g) and

g = fq0 + r0.

It was common for people to end the construction here, but this in general only ensures that
deg(r0) = deg(g)−1, which could still be way bigger than deg(f). For instance, take g = x100−1
and f = x− 1. Then q0 = x99 and r0 = x99 − 1, which is a much higher degree than f .

The correct continuation is to do this recursively. We have g = fq0 + r0, and we now repeat
this procedure to write r0 = fq1 + r1 and then r1 = fq2 + r2, etc, with deg(ri) < deg(ri−1).
Note that we are always dividing by f here, so the hypothesis that the leading coefficient of
the denominator is a unit never changes. Plugging in bakcwards yields

g = (q0 + · · ·+ qi)f + ri

and this algorithm terminates to the base case eventually, as the degrees of the ri are strictly
decreasing natural numbers. Hence, this algorithm will yield our desired long division. This is
exactly the polynomial long division algorithm taught in, say, algebra 2.

(2) The most common mistake was in assuming that the hypothesized euclidean function on R[t]
must be the degree function. One can prove that the degree function itself being a euclidean
function implies that R is a field, but could there be some sneaky other function? The answer
is no, but it’s a priori a possibility.

In fact, a stronger statement is true - if R[t] is a PID then R is a field. A slick proof some people
gave was to consider the ideal (t). This is the kernel of the map R[t] −! R via f 7! f(0),
which is onto, so (t) is prime as R is assumed to be domain. If R[t] was a PID then nonzero
primes are maximal, so (t) is maximal. Thus, R is a field.

This argument lives in a general setting called dimension theory. Here’s a bizarre definition
(which maybe makes more sense if you think about R as the coordinate ring of a variety and
try to draw some pictures).

Definition 0.1. Let R be a commutative ring. Its (Krull) dimension is

sup {n | there is a chain p0 < · · · < pn of prime ideals in R}

For those who know set theory, n can range over the class of all ordinals rather than just N.
For instance, saying that dim(R) = 0 means that all primes are maximal, so a field is a 0
dimensional domain. A PID which is not a field has dimension 1, as all its nonzero primes are
maximal.

If R is Noetherian, dimR[x] = dimR + 1. Apparently (I have no clue why this is true) in
general, if R is not Noetherian we can only conclude dimR + 1 ≤ dimR[x] ≤ 2 dimR + 1.

Try to consider some varieties X and compute dimO(X). This sort of computation is hard in
general, so maybe just write down a chain you believe to be of maximal length and convince
yourself this notion of dimension aligns with your pictures.

My intuition for this problem was then that R[x] being euclidean means it’s one dimensional
and Noetherian, so R would be a zero dimensional domain and hence a field. This is a very
fancy way to say the proof above.
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Another common method was to consider the ideal (a, x) for a a nonzero element of R and to
consider what it means for this to be principal.

(3) (a) I’d like to present what I think is the cleanest approach. It was common to identity
elements of S−1R with elements of Q[

√
−d]. In the end, this is ok, but it must be rigorously

justified via a morphism, as elements of S−1R are equivalence classes which a priori have
no relation to elements of Q[

√
−d], even though they are written similarly. There is an

inclusion map Z[
√
−d] −! Q[

√
−d]. Furthermore, Q[

√
−d] is a field as given α ∈ Q[

√
−d]

we have that α−1 = α
N(α)

, which is in Q[
√
−d]. Hence, by universal property of the

quotient, we have an induced map S−1R −! Q[
√
−d].

We know S−1R is a field, so its only ideals are (0) and (1). The kernel of S−1R −! Q[
√
−d]

must be one of these, but the map is nonzero so the kernel is (0). Thus we are left to show
surjectivity. But the image surely contains Q and

√
−d, so the map is onto.

(b) Not many mistakes here. Interestingly, the normN(α) can be thought of as the determinant
of the Q-linear transformation Q(i) −! Q(i) sending β 7! αβ. This is a useful interpretation,
and yields the multiplicativity desired due to multiplicativity of the determinant.

(c) The fundamental idea of setting the equation a2+db2 = 1 and using positivity of a2, b2, and
d to rule out possbilities was commonly done, though there were occasional computational
errors there (such as the case d = 1). This shows that for d > 0 we have that the unit
group is finite. One can in fact show that the units are precisely the roots of unity in this
case. However, for d < 0, the unit group is more complicated. It is known to be isomorphic
to Z × A for a cyclic group A (again, the group of roots of unity). See Dirichlet’s unit
theorem for more. There are some subtleties I’m brushing under the rug here, such as the
issue of the “ring of integers” I mention in (4).

(d) A common issue was in not using the hypothesis d ≥ 3. 2 is reducible in Z[
√
−1] as it

factors as (1 + i)2 up to units. It is also reducible in Z[
√
−2] as it factors as (

√
−2)2 up

to units.

An interesting observation I’ll make is that if π ∈ Z[i] is prime, we have that |Z[i]/(π)| =
N(π), which will be either p or p2 as it is a degree at most 2 field extension of Z/pZ, where
(p) = (π)∩Z. I explain the last part a bit more in (8). As for why the norm is computed
this way, I don’t know a good elementary proof off hand, but this is a standard result in
algebraic number theory textbooks.

(e) A common issue was not showing that 2 is not prime in these rings. This was common
enough that I didn’t take off points for it, but it is a useful thing to understand. If d is

even, note that 2| − d =
√
−d2 but does not divide

√
−d itself, as if 2 | a + b

√
−d then a

and b would be even. If d is odd, 2|1 + d2 = (1 +
√
−d)(1 −

√
−d) but it fails to divide

both factors.

Another way to prove this is to compute the quotient Z[
√
−d]/(2). Indeed, this is

isomorphic to
Z[x]/(x2 + d, 2)

which in turn is isomorphic to
Z/2Z[x]/(x2 + d)

I explain this sort of computation in (8).

Now, every element of Z/2Z is a square, so let a2 = d in Z/2Z. Then x2 + d = (x+ a)2 in
Z/2[x]/(x2 + d), so this ring is not a domain and hence 2 is not prime in Z[

√
−d]. This is

essentially the same proof as the above.
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(4) There weren’t too many mistakes here, so I’ll just make a few comments. First of all, this sort
of norm won’t always work. For instance, Z[

√
−5] has the norm a+ b

√
−5 7! a2 + 5b2, but it’s

not Euclidean as it’s not a UFD. There can also be domains of the form Z[
√
d] whose Euclidean

functions do not arise from the field norm, such as Z[
√

14] which apparently has some horrid
norm found here. There’s a survey here about Euclidean norms in number theory. The relevant
section would be about quadratic number fields.

Personally, I’m more interested in when such a ring is a PID than when it’s Euclidean. By

the way, Z
[
1+
√
−19
2

]
is apparently a PID which is not Euclidean. See here. This is called the

“class number 1” problem - as attached to these rings is a group called the class group, which
measures how far your ring is from being a PID. It’s the group of nonzero (fractional) ideals
under multiplication modulo the subgroup of principal ideals. It’s known that the class group
is finite, and its order is called the class number. The class number is 1 if and only if this ring
is a PID. Determining number rings, like the Z[

√
d] we have seen, with class number 1 is a

problem due to Gauss! Of course, he used different language.

A beautiful result of Heegner, with errors corrected by Stark, completely classifies the imaginary
quadratics (i.e. d < 0) with class number 1. One subtlety, which is a bit hard to explain the

precise purpose of, is that when d ≡ 1 (mod 4) we’d rather work with Z
[
1+
√
d

2

]
than Z[

√
d].

Essentially, 1+
√
d

2
satisfies the monic integer equation x2 − 2x+ 1−d

4
when d ≡ 1 (mod 4).

Let me introduce some notation right now. For K = Q(
√
d) with d squarefree we will denote

its ring of integers

OK =

{
Z
[
1+
√
d

2

]
d ≡ 1 (mod 4)

Z[
√
d] otherwise

The set of d < 0 squarefree so that the associated quadratic ring OQ(
√
d) is a PID is

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}

First, it’s incredible that this is even finite! Furthermore, the proof involves an incredible
connection between complex multiplication of elliptic curves, class field theory, and modular
functions (namely, the j invariant). As a teaser, the fact that Z[1+

√
−163
2

] is a PID is very related
to the fact that

eπ
√
163 = 262537412640768743.9999999925007...

is super close to an integer!

As a shameless advertisement, I wrote a report for my complex analysis class last year about
complex multiplication of elliptic curves and class field theory, which only scratched the surface
of this area of math. I didn’t mention the class number 1 problem specifically, but some of the
key ideas are in there. You can find it on my website here. I’ll mention that I made a slight
notational error in these notes - namely that normally an isogeny is defined to be nonzero, but
in my report I took it to be any holomorphic group homomorphism between elliptic curves.

On the other hand, the real class number 1 problem, i.e. finding which d > 0 squarefree with
OQ(

√
d) is a PID is very open. It’s not even known if there are finitely many. It is suspected

that around 76% of primes which are 1 mod 4 have that OQ(
√
p) is a PID.

(5) Not many mistakes, so I’ll again just make some remarks. Notably, a step I saw many people
take was to take a prime p ≡ 3 (mod 4) that divides a sum of squares a2 + b2 and try to
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determine the power of p that appears in the factorization. This is done by factoring a2 + b2 =
(a + bi)(a − bi). Suppose that pe||a2 + b2. Recall that this means e is the highest power of p
dividing a2 + b2. Now, we critically use the fact that p ≡ 3 (mod 4) implies that p is a prime
element of Z[i].

Suppose pf ||a + bi and pg||a − bi, which we can make sense of by unique factorization of Z[i]
and primality of p in this ring. Then f + g = e. Furthermore, there is an automorphism
Z[i] −! Z[i] sending i 7! −i. Indeed, this is the restriction of complex conjugation C −! C.
This map takes p 7! p and a + bi 7! a− bi. Again using that Z[i] is a UFD, we have that the
factorization of a + bi is the complex conjugate of the factorization of a− bi. Hence, f = g so
e = 2f is even.

The reason I wanted to mention this proof is that it uses a critical idea in algebraic number
theory. Namely, exploit symmetries of the ring you are factoring in to conclude facts about
factorization! Here we used the symmetry of complex conjugation. Formally, we will need
Galois theory to explain this, but if you’re curious you can look up “Hilbert’s ramification
theory” or “splitting of prime ideals in Galois extensions”.

(6) There weren’t many errors here, so I’ll remark that though 6 does not have a unique prime
factorization, we can factor the ideal (6) in Z[

√
−5] as

(6) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 2 +

√
−5)

This is a factorization into prime ideals, and in fact it is unique. Explaining precisely how works
is too technical, but you can verify that it is true. You can look up the “Kummer-Dedekind
theorem” for information about how this works.

(7) Not many mistakes, so I’ll ramble again. For part (b), my preferred proof is to compute the
quotient by P. I do this via the isomorphism Z[x]/(x2 + 5) −! Z[

√
−5] via x 7!

√
−5. Then

Z[
√
−5]/P ∼=

Z[x]/(x2 + 5)

(2, x+ 1)

We rewrite the denominator as

(2, x+ 1) = (2, x+ 1, x2 + 5)/(x2 + 5)

so that we may apply the third isomorphism theorem

Z[x]/(x2 + 5)

(2, x+ 1, x2 + 5)/(x2 + 5)
∼= Z[x]/(2, x+ 1, x2 + 5)

∼= Z/2Z[x]/(x+ 1, x2 + 5)
∼= Z/2Z

which is a field.

For part (c), my preferred proof for P not being principal uses norms. Indeed, suppose P = (α).
We have that (2) = P2 so (α2) = (2). Furthermore, N(2) = 4. Thus, N(α) = 2. However, if
α = a+ b

√
−5 then N(α) = a2 + 5b2, which can never achieve the value 2 for a, b ∈ Z.

(8) This was a challenging problem, and the main error was just not rigorously proving the
hypothesized characterization, so I’ll present a (mostly) detailed proof.
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First off, recall that Z[i] is a PID, so I’ll freely use unique factorization, primality, etc.

Let’s start with the following question: which primes p ∈ Z are also primes in Z[i]? This
is equivalent to (p) being a maximal ideal, i.e. to Z[i[/(p) being a field. Critically, there is

an isomorphism Z[x]/(x2 + 1) −! Z[i] which sends x 7! i. Thus, Z[i]/(p) ∼= Z[x]/(x2+1)
(p)

. On

the right hand side, (p) is the ideal generated by p in Z[x]/(x2 + 1). To write this in terms

of the correspondence principle, we have p Z[x]
(x2+1)

= (p, x2 + 1)/(x2 + 1). Hence, by the third
isomorphism theorem,

Z[x]/(x2 + 1)

(p)
∼=

Z[x]

(p, x2 + 1)

Applying this same procedure will yield an isomorphism

Z/pZ[x]

(x2 + 1)
∼=

Z[x]

(p, x2 + 1)

Hence, we deduce

Z[i]/(p) ∼=
Z/pZ[x]

(x2 + 1)

Here’s a more rigorous (and general) proof of this sort of thing:

Theorem 0.1. Let R be a commutative ring and let f, g ∈ R. Then we have isomorphisms

R/(f)

(g + (f))
∼=

R/(g)

(f + (g))
∼=

R

(f, g)

That is, to compute R/(f, g) we can first mod out by f and then g, or by g and then f . It may
be more evocative (though perhaps less clear) to write this first isomorphism as

R/(f)

(g)
∼=
R/(g)

(f)

And if we’re allowing abuse of notation (like conflating elements of quotients with their representatives),
we could write

R/(f)

(g)
∼=
R/(g)

(f)

Proof. We define maps

R −! R/(f) −!
R/(f)

(g + (f))

R −! R/(g) −!
R/(g)

(f + (g))

via the canonical epimorphisms. That is, they take

r 7! r + (f) 7! (r + (f)) + (g + (f))

r 7! r + (g) 7! (r + (g)) + (f + (g))
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This is truly horrendous notation, but it’s the price we pay for rigor. Here, the sum (r+ (f)) +

(g + (f)) is not the sum in R/(f), but the coset represented by r + (f) in the quotient R/(f)
(g+(f))

.
We could also write this as

r 7! r 7! r

In any case, I hope it’s clear that I’m just composing two quotient maps (what Elman calls
“canonical epimorphisms”).

Both these maps are compositions of two surjections and are hence surjections themselves. We
claim that both have kernel (f, g). Let’s focus on the first composition

R −! R/(f) −!
R/(f)

(g + (f))

We want to compute the preimage of {0} in R/(f)
(g+(f))

. Under the map R/(f) −! R/(f)
(g+(f))

, the

preimage of {0} is the kernel (g + (f)). The question then is given π : R −! R/(f), what is
π−1[(g + (f))]? To deduce this, we introduce the following useful lemma.

Lemma 0.2. Let π : R −! S be a surjective map of rings. Let I ⊆ R be an ideal. Then

π−1[π[I]] = I + ker(π)

Proof. Surely I + ker(π) ⊆ π−1[π[I]]. On the other hand, let r ∈ π−1[π[I]]. Then π(r) ∈ π[I].
Hence, there is an a ∈ I so that π(r) = π(a), so that r − a ∈ ker(π). We have shown that
r ∈ I + ker(π), so π−1[π[I]] ⊆ I + ker(π).

Now, take π : R −! R/(f) as above. Then the ideal (g + (f)) is the image of (g), i.e.
(g + (f)) = π[(g)]. Thus, by the formula in the lemma, we have

π−1[(g + (f))] = (g) + ker(π)

and ker(π) = (f), so this is (f, g). In conclusion, the kernel of

R −! R/(f) −!
R/(f)

(g + (f))

is (f, g). Thus, by the first isomorphism theorem, there is an isomorphism

R/(f, g)
∼−−! R/(f)

(g + (f))

Explicitly, this takes r + (f, g) 7! (r + (f)) + (g + (f)).

A symmetric argument (swapping f and g) will show that R/(f, g) ∼= R/(g)
(f+(g))

via r + (f, g) 7!

(r + (g)) + (f + (g)). Thus, we have isomorphisms

R/(g)

(f + (g))

∼
 −− R

(f, g)

∼−−! R/(f)

(g + (f))

So we deduce our desired isomorphism, and have in fact shown that it is of the form (r+ (g)) +
(f + (g)) 7! (r + (f)) + (g + (f)). We also showed a bit more, that these two are isomorphic
not just as rings but as “R-algebras”, i.e. we have

R

R/(f)
(g+(f))

R/(g)
(f+(g))∼
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Remark. All these isomorphisms can be shown more easily and meaningfully, in my eyes, by
the “Yoneda lemma” in category theory by computing the functors CRing(S,−) for the various
rings S above. They will all be in bijection to maps out of R which vanish on f and g.

This is a critical isomorphism. The factorization of p in Z[i] will yield ring theoretic facts about
the quotient Z[i]/(p), say by the Chinese remainder theorem. Similarly, the factorization of

x2 + 1 in Z/pZ[x] will yield ring theoretic facts about the quotient Z/pZ[x]
(x2+1)

. The key then is to

parlay these factorization facts via the isomorphism Z[i]/(p) ∼= Z/pZ[x]
(x2+1)

.

Here’s a down to earth application, resolving our original question.

p is prime in Z[i] ⇐⇒ Z[i]/(p) is a field

⇐⇒ Z/pZ[x]

(x2 + 1)
is a field

⇐⇒ x2 + 1 is irreducible in Z/pZ[x]

In the last equivalence, I used that Z/pZ is a field to deduce that Z/pZ[x] is a PID.

This is already beautiful and meaningful, but we can go even farther. Indeed, x2+1 is quadratic
and Z/pZ is a field, so it’s reducible iff it factors into linear terms. oThat’s equivalent to it
having a root in Z/pZ. That is, x2 + 1 is reducible in Z/pZ[x] iff it has a root in Z/pZ.

So, what is a root of x2 + 1 in Z/pZ? It’s an element a ∈ Z/pZ so that a2 = −1. If p = 2, we
can take a = 1 = −1 and factor x2 + 1 = (x+ 1)2. So now suppose p is odd. Then −1 6= 1 so it
has order 2 in the multiplicative group (Z/pZ)∗. Thus, finding a so that a2 = −1 is equivalent
to finding an element of order 4 in (Z/pZ)∗.

Now we recall that this group is cyclic! Hence, it has an element of order 4 iff it 4 divides its
order. Its order in p − 1, so we have determined that x2 + 1 is reducible iff 4|p − 1. In other
words, iff p ≡ 1 (mod 4).

Putting this all together, we have determined that p is a prime in Z[i] iff p ≡ 3 (mod 4).

We can take this a bit farther too to reduce the possibilities of how primes factor in Z[i].
Suppose p =

∏
πeii is the factorization in Z[i] for p a prime of Z. Then by the Chinese

remainder theorem, we have

Z[i]/(p) ∼=
∏

Z[i]/(πeii )

Furthermore, as before, we have that

Z[i]/(p) ∼=
Z/pZ[x]

(x2 + 1)

The right hand side is a two dimensional vector space over the field Z/pZ generated by 1 and
x. Furthermore, each Z[i]/(πeii ) is a vector space over Z/pZ. In particular, there can be at
most two factors in this product, as we have at most two dimensions over Z/pZ to play with.
Furthermore, 1, πi, . . . , π

ei−1
i are linearly indepedent over Z/pZ, so ei ≤ 2 is needed as well. We

conclude that the only possible factorizations of p in Z[i] are p = (π2) for π a Gaussian prime
with Z[i]/(π) ∼= Z/pZ, p = π1π2 for Gaussian primes π1, π2 with Z[i]/(πi) ∼= Z/pZ, or that p
remains prime in Z[i] with Z[i]/(p) a field extension of Z/pZ of dimension 2. Essentially, the
factorization possibilities are bounded by 2 because Q[i] is a 2 dimensional vector space over
Q. This generalizes to the “efg” formula, which you can look up.
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Anyways, back to the problem itself. Take a (nonzero) prime π in Z[i]. Then (π) is a nonzero
prime ideal so (π)∩Z is also a prime ideal. Observe that ππ ∈ (π) and ππ = N(π) is a nonzero
integer. Thus, (π) ∩ Z is nonzero and is hence equal to (p) for some integral prime p. That is,
every Gaussian prime π is divisible by an integral prime p. We say π “lies over” p.

This lets us stratify the problem. Fix a prime p ∈ Z. We will classify all the primes “lying
over” p, i.e. in its factorization in Z[i]. These are the prime (π) of Z[i] which contain (p).
By the correspondence principle, we are therefore left to understand the prime ideals of the
quotient Z[i]/(p). Recall from above that this is isomorphic Z/pZ[x]

(x2+1)
. Since we want to explicitly

determine the primes, we should explicitly know this isomorphism. Indeed, elements of Z[i]/(p)

are of the form a+bi+pZ[i] and elements of Z/pZ[x]
(x2+1)

are of the form f+(x2 +1) for f ∈ Z/pZ[x].
We have an isomorphism

Z[i]/(p) −!
Z/pZ[x]

(x2 + 1)

a+ bi+ pZ[i] 7! (a+ pZ) + (b+ pZ)x+ (x2 + 1)

Apologies for the messy notation. I’m just saying to take a and b mod p and replace i with the
class of x mod x2 + 1.

We proceed as before. If p = 2, this polynomial factors as (x + 1)2 so the only prime ideal of
Z/2Z[x]/(x2 + 1) is (x + 1)/(x2 + 1). Under the isomorphism to Z[i]/(2), we have shown that
the only prime ideal of this quotient is (i+ 1)/(2). As such, the only Gaussian prime lying over
2 is i+ 1. Indeed, (i+ 1)2 = (2).

If p ≡ 3 (mod 4) then as before, p is itself a Gaussian prime so it is of course the only prime
lying over itself.

If p ≡ 1 (mod 4) then as shown above, Z[i]/(p) ∼= Z/pZ[x]/(x2 + 1) will be isomorphic to
Z/pZ×Z/pZ. Hence, the factorization of p must be of the form p = π1π2 with πi non-associate.
Furthermore,

π1π2 = p = p = π1π2

Hence, up to associates, π1 = π2 and vice versa. It follows then (as units have norm 1) that
p = N(π1), so p is a sum of squares.

This completes our classification of the Gaussian primes. They are either 1 + i, an integral
prime p which is 3 mod 4, or a Gaussian integer a + bi so that a2 + b2 is a prime, which is
necessarily 1 mod 4.
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