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1. Proof. We’ll start with the preliminary questions – namely, why do these definitions
make any sense? These are infinite sums, so we should be concerned about convergence
here. Luckily, the very definition of `2 will save us.

Let’s start with well definition of the norm ||~x|| =
√
x21 + x22 + . . .. Well the term inside

the square root is x21+x22+. . . , and by definition of `2 this converges. Furthermore, this
sum is certainly nonnegative as each v2i is nonnegative. Hence, ||~x|| is a well defined
nonnegative real number.

Now how about this infinite dimensional dot product? Why does this sum converge?
Well let’s get our hands dirty with some partial sums. Actually, to get a well behaved
theory we will actually want to show absolute convergence of the sum. Indeed, consider

sN = |x1y1|+ · · ·+ |xNyN |

We want to show that this limit exists. It suffices to bound it above, as sN is an
increasing sequence. Indeed, we use the Cauchy – Schwarz inequality to get

|x1|||y1|+ · · ·+ |xN ||yN | ≤
√
x21 + · · ·+ x2N

√
y21 + · · ·+ y2N

Now, the right side here is like a truncation of the expression for ||~x||||~y||. Indeed, we
have

(x21 + · · ·+ x2N)(y21 + · · ·+ y2N) ≤ (x21 + · · ·+ x2N + . . . )(y21 + · · ·+ y2N + . . . ) = ||~x||2||~y||2

Thus, we have the chain of inequalities

|x1|||y1|+ · · ·+ |xN ||yN | ≤
√
x21 + · · ·+ x2N

√
y21 + · · ·+ y2N ≤ ||~x||||~y||

and we showed above that this infinite dimensional norm was well defined, so we have
shown that sN is bounded above. Hence, as it’s increasing in N , it converges. So the
series for ~x · ~y is absolutely convergent.

(a) As suggested, we proceed via geometric series. Indeed, xi = 2−(i−1). Notice that
the next term in the sequence for ~x is always half the preceding term. Now, we
are interested in

||~x|| =
√
x21 + x22 + . . .

So let’s first consider the part inside the square root.

x21 + x22 + . . . =
∞∑
i=1

2−2(i−1)

=
∞∑
i=1

(1/4)−(i−1)
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This is a geometric series with first term 1 and common ration 1/4. As |1/4| < 1,
this converges. And in fact, we may compute its value as

∞∑
i=1

(1/4)−(i−1) =
1

1− 1
4

=
4

3

so we conclude that

||~x|| =
√

4/3 =
2√
3

(b) What’s an angle between these infinite sequences?????

This is in some sense defined by fiat. Recall that for nice normal finite dimensional
vectors like

~v =


v1
v2
...
vn



w =


w1

w2

wn


we have the formula

~v · ~w = ||~v||||~w|| cos(θ)

where θ is the angle between ~v and ~w (taken so that θ is between 0 and π). So
what should the “angle” between infinite dimensional vectors be? Well three out
of the four terms in the above formula make sense in infinite dimensions. We know
from above what the norm and dot product of these infinite dimensional vectors
in `2. So we will define the angle between these infinite dimensional vectors to be
the θ which makes the above formula work. That is, we take

θ = arccos

(
~x · ~y
||~x||||~y||

)
which we say takes values in [0, π].

Anyways, now we’re onto the problem itself. Let’s let ~x = (1, 1/2, 1/4, 1/8, . . . )
and ~y = (1, 0, 0, . . . ). We computed above that ||~x|| = 2/

√
3. Furthermore,

||~y|| =
√

12 + 02 + 02 + . . . = 1. We must also compute ~x · ~y. Indeed, this is

~x · ~y = x1y1 + x2y2 + . . .

= 1 ∗ 1 + (1/2) ∗ 0 + (1/4) ∗ 0 + . . .

= 1

Notice the similarity between ~y and our usual standard basis vector ~e1.
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Anyways, we now know all the terms in our formula for the angle between ~x and
~y.

~x · ~y
||~x||||~y||

=
1

(2/
√

3) ∗ 1

=

√
3

2

And we know that arccos(
√

3/2) = π/6. Hence, the angle between ~x and ~y is π/6.

(c) Note that if xn ! 0 as n!∞ then we also have x2n ! 0 as n!∞. So if we find
such an example, we will end up with a sequence x2n which tends to 0 as n !∞
but whose sum diverges. There are many examples of these, and one common
one is the harmonic series

1, 1/2, 1/3, . . . , 1/n, . . .

Certainly, its terms tend to 0 as n!∞. But its sum diverges! That is,

1 + 1/2 + 1/3 + · · ·+ 1/n+ · · · =∞

I won’t prove this here, as it’s really just calculus, but you can certainly find
arguments online if you look up “divergence of the harmonic series” or something.
Anyways, with that we are led to take x2n = 1/n. So we can set xn = 1/

√
n. This

will be our desired example.

(d) Once again, the geometry here is confusing. Projecting onto a subspace in an
infinite dimensional space is a very abstract notion. But just like we did with
the angles in (b), the geometric ideas will be defined by extending what we know
from the nice and safe finite dimensional things we’ve done so far.

If we have a line L spanned by a vector ~v in Rn, what is the orthogonal projection
of ~w onto L? We previously derived a formula

projL(~w) =
~v · ~w
~v · ~v

~v

Now, the way we derived this formula was through geometric arguments. Basically,
we drew some pictures and reasoned from there. But we certainly don’t have
access to pictures for these infinite dimensional spaces. However, we have a
definition of a dot product in our infinite dimensional space `2. As such, we
can just copy the same formula. This may seem hacky, but it’s actually quite
meaningful. The projection in the infinite dimensional case will satsify many of
the properties we’d want. For instance, its image should be L and its kernel
should be the orthogonal complement of L. And in fact, projL(~w) will end up
being the closest point in L to ~w. The proofs of these properties will be nearly
identicaly to the case of Rn. This is a deep notion – defining a dot product allows
us to define a sensible notion of geometry on immense spaces like these!
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Anyways, onto the computation. Let’s let ~x = (1, 1/2, 1/4, 1/8, . . . ) and ~y =
(1, 0, 0, . . . ) as in (b). Then the projection we seek to compute is

projL(~y) =
~x · ~y
~x · ~x

~x

We computed the norm of ~x in (a) as ||~x|| = 2/
√

3. Hence, ~x · ~x = ||~x||2 = 4/3.
And we computed the dot product of ~x and ~y in (b) as ~x ·~y = 1. We can therefore
conclude that

projL(~y) =
~x · ~y
~x · ~x

~x

=
1

(4/3)
~x

=
3

4
~x

=

(
3

4
,
3

8
,

3

16
, . . .

)
So we have computed the projection. A formula for the ith term of this is 3∗2−(i−3).

2. Proof. First of all, square roots suck and the length of a vector has a square root. Let’s
fix that. Indeed, we know that if a and b are nonnegative then a ≤ b if and only if
a2 ≤ b2. Essentially, this is because f(x) = x2 and g(x) =

√
x are both increasing

functions, but g is only defined on [0,∞). So to prove our “triangle inequality” it
suffices to prove instead that

||~v + ~w||2 ≤ (||~v||+ ||~w||)2

Now, we get the square of a length on the left hand side, which we can understand
using the dot product.

||~v + ~w||2 = (~v + ~w) · (~v + ~w)

And now we’re in luck, as the dot product distributes over addition in a very similar
fashion to usual multiplication. Indeed, we have

(~v + ~w) · (~v + ~w) = ~v · (~v + ~w) + ~w · (~v + ~w)

= ~v · ~v + ~v · ~w + ~w · (~v + ~w)

= ~v · ~v + ~v · ~w + ~w · ~v + ~w · ~w

By the way, this is remarkably similar to the “FOIL” thing from, say, precalculus.
That’t not an accident – both of them arise from the “distributivity” over addition.
Another fancy term is that both normal multiplication and the dot product are “bilinear”.

Anyways, let’s also recall that ~v · ~w = ~w · ~v. We can rewrite the above as

~v · ~v + ~v · ~w + ~w · ~v + ~w · ~w = ~v · ~v + 2~v · ~w + ~w · ~w
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Recall again that dotting a vector with itself yields the square of its length, so this
becomes

~v · ~v + 2~v · ~w + ~w · ~w = ||v||2 + 2~v · ~w + ||w||2

Putting this together, we’ve shown

||~v + ~w||2 = ||v||2 + 2~v · ~w + ||w||2

There really isn’t anything else we can do to simplify this, so now let’s consider the
other side of the inequality.

(||~v||+ ||~w||)2 = ||~v||2 + 2||~v||||~w||+ ||~w||2

Notice how many terms we have in common from before! Remember that our goal is
to show that

||~v + ~w||2 ≤ (||~v||+ ||~w||)2

We can substitute both sides of this with what we computed above. So we want to
show

||v||2 + 2~v · ~w + ||w||2 ≤ ||~v||2 + 2||~v||||~w||+ ||~w||2

Only the middle terms here are different. Hence, we will be done if we can show that

~v · ~w ≤ ||~v||||~w||

And we’re in luck, as this is exactly what the Cauchy – Schwarz inequality says!

To summarize this argument, we have

||~v + ~w||2 = (~v + ~w) · (~v + ~w)

= ||~v||2 + 2~v · ~w + ||~w||2

(∗) ≤ ||~v||2 + 2||~v||||~w||+ ||~w||2

= (||~v||+ ||~w||)2

with (∗) coming from Cauchy – Schwarz. Now take square roots on both sides to
conclude the triangle inequality

||~v + ~w|| ≤ ||~v + ~w||

The moral of the story is to approach problems like this by exploring all the different
ways we can rewrite the expressions in question. We rewrote our lengths with dot
products, and rewrote our dot products using distributivity. We finally got stuck at
showing ~v · ~w ≤ ||~v||||~w||, so we had to appeal to a known result called Cauchy –
Schwartz. We often call this exploratory approach “following your nose”.
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Anyways, here’s the picture.

~v

~w

~v+~w

Here’, I’m drawing ~v as starting from the head of ~w. This allows us to clearly see
where ~v + w lies. Now, this is a triangle, which was in the name of the inequality we’re
proving. Indeed, this said that

|| ~v + w|| ≤ ||~v||+ ||~w||

In words, the length of ~v + ~w is less than or equal to the length of ~v plus the length
of ~w. How about on our picture? That says that the black length is at most the sum
of the red and blue lengths. In other words, if I was trying to get from the bottom
left of the triangle to the top right, the black path is shorter than the blue–then–red
path. This makes sense, the fastest way to get from one point to another is to walk in
a straight line.

Here’s some food for thought: can you think of conditions of ~v and ~w so that we we
attain equality? By this, I mean so that ||~v + ~w|| = ||~v|| + ||~w|| rather than just the
inequality. Think geometrically first!

As a hint, this works for ~v =

(
1
0

)
and ~w =

(
2357

0

)
.

Can you prove that your conditions work? As a hint, look back at the proof we wrote.
Every step was an equality, except for when we used Cauchy – Schwarz, so the issue
must lie there. So when do we get equality in Cauchy – Schwarz? We’ll have to look
more closely at that proof!

3. Proof. (a) Visually, this means that if we scale a vector ~v by a factor of k then we
scale the length by a factor of |k|. The absolute value is because scaling by −1
is just reflection, which preserves length. Anyways, let’s prove this. As with
problem 2, we’ll use the dot product here. And similarly to 2 again, square roots
suck so we’ll include those at the end.

Now, we have that
||k~v||2 = (k~v) · (k~v)

Let’s expand the right hand side using the definition of the dot product. Note
that if

~v =


v1
v2
...
vn


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then

k~v =


kv1
kv2

...
kvn


So we have

(k~v) · (k~v) = (kv1)(kv1) + (kv2)(kv2) + · · ·+ (kvn)(kvn)

= k2v21 + k2v22 + · · ·+ k2v2n

We can factor out the common k2 here to get k2(v21 + · · ·+ v2n). The term in the
parentheses is exactly ||~v||2. So indeed, we have shown that

||k~v||2 = k2||~v||2

We take square roots on both sides to conclude

||k~v|| = |k|||~v||

(b) Here, we see that ~u is of the form k~v with k = 1
||~v|| . Applying part (a), we have

||~u|| =
∣∣∣∣ 1

||~v||

∣∣∣∣||~v||
=

1

||~v||
||~v||

= 1

as desired. We needed ~v to be nonzero so that we aren’t dividing by 0, by the
way.

4. Proof. The problem is to proceed algebraically, but let me first explain the geometry
a bit. Indeed, let’s recall that the geometric interpretation of the dot product led us
to the formula

~v · ~w = ||~v||||~w|| cos(θ)

where θ is the angle between ~v and ~w, taken to be between 0 and π. If we stare at this
formula for a while, we might notice something nice about the right hand side. ||~v|| is
always nonnegative, as is ||~w||. So the only term on the right hand side which could
be negative is cos(θ). This tells us that the sign of ~v · ~w is determined by the sign of
cos(θ).

So now, when is cos(θ) positive or negative? Recall that we only consider θ to be in
[0, π]. So cos(θ) is positive for θ < π/2 (i.e. if the angle is acute) and negative for
θ > π/2 (i.e. if the angle is obtuse). We get 0 precisely when θ = π/2 (i.e. when
the vectors are perpendicular). I’d encourage you now to try drawing some pictures.
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Draw a random line on a piece of paper and then draw a random vector. Draw then
the projection from that vector to the line. Is the angle obtuse? Try more lines and
more vectors and convince yourself you’ll never get an obtuse angle this way. Consider
edge cases too – what if the vector is on the line? What if it’s perpendicular?

Anyways, let’s now consider the algebraic proof. Let me write projL(~x) as ~x‖. This
is to indicate that the projection onto L is the component of ~x which lies parallel to
L. There is another component of ~x which lies perpendicular to L, which we call ~x⊥.
Indeed, we have ~x⊥ = ~x− ~x‖. Here’s a diagram of what we mean here.

~x⊥

~x‖=projL(~x)

~x
~x⊥

The point is that we can decompose ~x as the sum ~x⊥+~x‖. Now, let’s compute the dot
product given this.

~x · projL(~x) = ~x · ~x‖

= (~x⊥ + ~x‖) · ~x‖

= ~x⊥ · ~x‖ + ~x‖ · ~x‖

Now, we notice that ~x⊥ and ~x‖ are perpendicular to each other, so ~x⊥ · ~x‖ = 0. This
leaves us with

= ~x‖ · ~x‖

= ||~x‖||2

and this value cannot be negative. Hence, ~x · projL(~x) cannot be negative.
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