
33A
Discussion Worksheet 1

1. Proof. Here’s the short answer: Two matrices of the same type are(
1 0 2
0 1 3

)
and (

1 0 1.483473933332498234

0 1 πe+
√
1.7779834793

)
Two matrices of a different type are (

1 0 2
0 1 3

)
and (

1 −1 0
0 0 1

)
For this question, let’s note that the condition of “being the same type” only concerns
the leading 1s. Let’s try building up some matrices from scratch. We’ll start by
placing some random choice of leading 1s down and leaving the rest of the matrix to
be determined. For example, (

1 ∗ ∗
∗ 1 ∗

)
The askterisks ∗ are meant to be placeholders. We’ll try to fill in these placeholders
as we go along.

Remember that we are only concerned in this problem with matrices in reduced row
echelon form. One condition of reduced row echelon form is that the first nonzero entry
of each row has to be a 1. This automatically holds for the first row. For the second
row, we haven’t yet decided the entry to the left of our 1, so for this hypothetical
matrix we’re building to be in RREF, we’d need that entry to be a 0.(

1 ∗ ∗
0 1 ∗

)
Our hands were tied here. If we wrote anything but a 0 in the bottom left (aka the
(2, 1) position), the matrix wouldn’t have been in RREF.

Another condition for RREF is that in a column with a leading 1, every other entry
must be 0. The first column has a leading 1, and the other entry in this column was
forced to be 0 by what we wrote above too! The second column also has a leading 1,
so we’re forced to put a 0 everywhere else in that column. Namely, we must put a 0
in the (1, 2) position. (

1 0 ∗
0 1 ∗

)
1

How about the entries in this rightmost column? What should we put in those? Well
in this context, it doesn’t matter at all! Whatever numbers we choose to place in that
rightmost column, we’ll still get a matrix in RREF. Let’s try some numbers as a sanity
check. (

1 0 2
0 1 3

)
Yeah that’s in RREF. (

1 0 1.483473933332498234

0 1 πe+
√
1.7779834793

)
That’s also in RREF.

These two matrices we just wrote down are an answer to this problem. They’re both
in RREF, they have leading 1s in exactly the same place, and they’re distinct. In fact,
we’ve done even more. We’ve figured out what every matrix of this “type” looks like.
They’re all of the generic form (

1 0 ∗
0 1 ∗

)
with whatever choice of rightmost column we desire.

How about something of a different type? Let’s start the same way we did for the first
part of this problem, by just writing down some random leading 1s. Since we want to
find something of a different type to the above matrices, let’s choose these leadings 1s
to be placed differently than those. For example,(

1 ∗ ∗
∗ ∗ 1

)
I’ll be briefer, but if we do the same sort of analysis we’ll see our hands are similarly
tied. For instance, everything else in the first row has to be 0.(

1 ∗ ∗
0 0 1

)
And everything else in the last column has to be 0.(

1 ∗ 0
0 0 1

)
This last entry can be chosen freely, so let’s just pick anything to get something
concrete. (

1 −1 0
0 0 1

)
This is a matrix in RREF that’s of a different type to the ones we wrote above.

2. Proof. Here’s the short answer: there are 4 types of 2×2 matrices in RREF, as follows.(
1 0
0 1

)
,

(
1 ∗
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 0

)
2

where the asterisk ∗ represents a placeholder where we can put any number we want,
as in problem 1.

But how did we get here? The key is that the only relevant data when determining if
two matrices are of the same type is the position of their leading 1s. So in other words,
we need to figure out in what ways we can put leadings 1s into a 2× 2 RREF matrix.

So first off, there can be either 0, 1, or 2 leading 1s in a 2× 2 matrix. Let’s start with
the case where there are 0 leading 1s. Well, a row without a leading 1 must contain
only 0 if we want to be in RREF. So if there are no leading 1s, we can only have the
0 matrix (

0 0
0 0

)
The next simplest case is when we have 2 leading 1s. That means that each row has to
have a leading 1, as we only have 2 rows. Furthermore, the leading 1 in the second row
has to be to the right of the leading 1 of the first row. But there are only 2 columns,
so we’re very constrained here. For instance, if we have(

∗ 1
∗ ∗

)
Then there’s no way to fit another leading 1 in the second row! Hence, the leading 1
in the first row *must* be in the top left corner.(

1 ∗
∗ ∗

)
So where can the leading 1 in the second row be? It must be strictly to the right of
the leading 1 in the first row, so our only choice is the bottom right corner.(

1 ∗
∗ 1

)
When trying to write down a 2×2 matrix in RREF with 2 leading 1s, we had no choice
but to put those leading 1s in the (1, 1) and (2, 2) position. Hence, there is only 1 type
of 2× 2 matrix in RREF with 2 leading 1s. In fact, we even know precisely what the
placeholder values here can be. Everything else in a column with a leading 1 must be
0, so any RREF matrix of this type must be equal to(

1 0
0 1

)
Alright, now we just have to figure out what types exist when we have only a single
leading 1. If we only have one leading 1, then as there are two rows there must be some
row without a leading 1. And in RREF, a row without a leading 1 must contain only
zeroes. Furthermore, in RREF, the zero rows must be at the bottom. In this case,
that means that the first row has a leading 1 somewhere, and the second row must be
all zeroes. (

∗ ∗
0 0

)
3

So where can we place leading 1s in the first row? Well we have two columns, and we
can place one in either. If we place it in the first column, we get(

1 ∗
0 0

)
And this placeholder can be taken to be any number we want. On the other hand, if
we put the leading 1 in the second column, we have(

∗ 1
0 0

)
But here, to be in RREF we need the leading 1 to be the first nonzero entry of the
row. So this placeholder is forced to be 0. Then we are left with(

0 1
0 0

)
To summarize, we split our analysis into three cases - when there are 0, 1, or 2 leading
1s. In each case, we followed the constraints imposed by RREF as far as we could.
In the case of two leading 1s, we had to split into two further cases, one for each
placement of the single leading 1 we had. With this, we have determined every type
of 2× 2 matrix in RREF.

3. Proof. Here’s the short answer: there are four types of 3 × 2 matrices in RREF, as
follows. 1 0

0 1
0 0

 ,

1 ∗
0 0
0 0

 ,

0 1
0 0
0 0

 ,

0 0
0 0
0 0


where the asterisk ∗ represents a placeholder where we can put any number we want,
as in problem 1.

We could do the same sort of reasoning as in problem 2 for this problem, where we try
writing down all possible placements of leading 1s and use the constraints imposed by
RREF. If the work in problem 2 wasn’t wholly clear I encourage you to try doing the
same sort of analysis here! But rather than repeat myself, I’ll give a shortcut. We can
reduce problem 3 to problem 2!

You may indeed notice that the matrices I wrote down here are basically the same as
those from problem 2, just with an extra row of zeroes attached at the bottom. And
indeed, there’s a reason for this. We are considering here 3 × 2 matrices. How many
leading 1s can there be? Certainly, no more than 3, as there can be at most one leading
1 per row. But there can also be at most one leading 1 per column, as everything else
in a column which contains a leading 1 must be 0 in RREF. So there are in fact at
most two leading 1s. This is a general idea, we ended up with at most the minimum
of the number of rows and the number of columns.

Anyways, if we have at most two leading 1s and three rows, then there must be a row
without a leading 1. A row without a leading 1 must contain all 0s to be in RREF.

4

Also, any zero rows must be at the bottom of the matrix to be in RREF. So we see
then that whatever type of matrix in RREF we write down, they must all look like∗ ∗∗ ∗

0 0


The upper part here is just a 2× 2 matrix. For this 3× 2 matrix to be in RREF is the
same as for that upper 2× 2 matrix (the part with the asterisks) to be in RREF. This
requires some thought, and I’d encourage you to think about why that’s true! But
given this fact, we have reduced our problem to finding all the types of RREF matrices
that are 2 × 2, which is exactly what we did in problem 2. This saves us the work of
having to redo this same analysis, and gives us the answer written at the start of this
problem.

4. Proof. A full answer to this problem would basically be a proof that the Gauss Jordan
elimination algorithm. Doing this is deep detail is outside of the scope of this class.
Instead, we’ll seek a more intuitive idea of why Gauss Jordan elimination yields a
matrix in reduced row echelon form.

Let’s note that every step is Gauss – Jordan elimination brings us “closer” to RREF.
For instance, we will often begin by dividing a row until we get a leading 1. We use
this leading 1 to “kill” the remaining entries of the column. For instance, we often end
up with an intermediate step like 

1 ∗ . . . ∗
0 ∗ . . . ∗
...

... . . .
...

0 ∗ . . . ∗


When we proceed with our Gauss – Jordan elimination, we can essentially focus our
attention away from the first column now. We’ve done all we need to do with the first
column, and our further steps will preserve it. This basically means that as we move
further and further along, we can focus our attention on smaller and smaller sections
of our matrix. This process will eventually result in a matrix in RREF.

5. Proof. Indeed, the elementary row operations can all be undone. For example, let’s
say we swap rows 1 and 2 in our matrix A to get a matrix B. How can we reverse this?
We just swap rows 1 and 2 again! Here’s an example.

A =

1 2
3 4
5 6


Swapping rows 1 and 2 yields

B =

3 4
1 2
5 6


5

Swapping rows 1 and 2 again yields 1 2
3 4
5 6


In general, if we swap rows i and j to go from A to B, we can transform B back into
A by swapping rows i and j again. So this row operation can be undone.

How about scaling a row? Suppose we transform our matrix A into a new matrix B
by scalaing row i by a nonzero constant c. For example,

A =

(
1 −1 0
0 5 0

)
If we scale the first row by 2, we get the new matrix

B =

(
2 −2 0
0 5 0

)
How do we return to A? Well we divide the first row by 2! In other words, we multiply
by 1/2. Indeed, this gets right back to(

1 −1 0
0 5 0

)
So in general, when we scale row i by c 6= 0, we reverse this by scaling row i by 1/c.

Finally, we get to adding a multiple of one row to another. Say we add cRi to Rj. How
can we undo this process? Let’s go again with an example.

A =

(
1 1
0 3

)
If we add 2R1 to R2, we get

B =

(
1 1
2 5

)
So how do we get back to A? Let’s subtract away what we added! We subtract 2R1

from R2, that is, we add −2R1 to R2. This gets us back to(
1 1
0 3

)
So in general, if we get B by adding cRi to Rj (for i 6= j), we can get back to A by
adding −cRi to Rj.

Therefore, all of the elementary row operations are reversible.

There’s an interesting and important point to make here. This is closely related to
the notion of matrix invertibility! Indeed, let’s consider scaling one row by another.
Consider

A =

(
1 2
3 4

)
6

Scaling row 1 by 2 yields (
2 4
3 4

)
Let’s observe the following too:(

2 0
0 1

)(
1 2
3 4

)
=

(
2 4
3 4

)
This is the same as scaling the row! Furthermore,(

2 0
0 1

)−1
=

(
1
2

0
0 1

)
And multiplying on the left by this new matrix corresponds to multiplying the first
row by 1

2
. Hence, invertibility of this matrix corresponds precisely to the fact that we

can reverse the row operation!

It turns out that all elementary row operations we can apply to A correspond to left
multiplication by some matrix. And those matrices being invertible corresponds to
reversing these row operations. I’d encourage trying to find what these matrices are
yourself! As a hint, we get (

2 0
0 1

)
by applying the row operation R1 7! 2R2 to the identity matrix. This is precisely the
row operation multiplying on the left by this matrix corresponds to.

6. Proof. The idea for this problem can be summed up quite quickly. If we apply a
sequence of row operations, then as each row operation is reversible (via problem 5),
we can reverse the sequence. The question then is, how do we write this down a bit
more formally?

First, an example. Let’s take

A =

(
1 2
3 3

)
We’ll apply some row operations. First, multiply row 2 by 1

3
. I notate this as R2 7!

1
3
R2.

This yields (
1 2
1 1

)
Next, we subtract row 2 from row 1, i.e. R1 7! R1 −R2.(

0 1
1 1

)
Let’s do another operation, say R1 ↔ R2, by which I mean swap the rows.(

1 1
0 1

)
7

Ok, now how do we reverse this? Our path to get here was R2 7!
1
3
R2, R1 7! R1−R2,

and R2 ↔ R1. Let’s do all this in reverse.

First, we reverse the swap by swapping again, R1 ↔ R2. This gets us from(
1 1
0 1

)
to (

0 1
1 1

)
Next, we take R1 7! R1 +R2. This takes us to(

1 2
1 1

)
Finally, we scale row 2 via R2 7! 3R2. This yields(

1 2
3 3

)
which is back to where we started.

So how do we do write this in general? We can try representing a sequence of row
operations with a sequence of arrows

A A1 A2 . . . An = B

with each arrow representing a single elementary row operation. For instance, this
could be

A A1 A2 B
R2 7!

1
3
R2 R1 7!R1−R2 R1↔R2

We represent the reversal as

A A1 A2 B
R2 7!3R2 R1 7!R1+R2 R1↔R2

This notation allows us to express the intuitive idea we had above, that we just reverse
the operations step by step in the sequence.

We can also think of this in terms of the interpretation of row operations as matrix
multiplication, which was discussed in problem 5. Indeed, a sequence of row operations
applied to A results in the matrix

E1E2 . . . EnA

For whichever matrices Ei correspond to the elementary row operations, as discussed
briefly in problem 5. To reverse these, we multiply by the inverse of these Ei, which is
exactly the process of reversing their corresponding row operations.

E−1n . . . E−12 E−11 E1E2 . . . EnA = A

Note that in both interpretations, the order in which we apply the reversed operations
must be reversed as well!

8

7. Proof. We can apply a sequence of row operations to get from A to rref(A). This is
just Gauss – Jordan elimination! So how do we get from rref(A) back to A? Well, this
is exactly what we discussed in problem 6, taking B = rref(A). In short, we reverse
the sequence row operations we did to get to rref(A) in turn.

9

