Math 115A Worksheet Thursday, Nov 9 (Week 6)

- 1. Let U, V and W be vector spaces over F. Let $T: V \to W$ and $S: U \to V$ be linear transformations. Prove the following statements:
 - (a) If $T \circ S$ is one-to-one, then S is one-to-one.

) If
$$T \circ S$$
 is one-to-one, then S is one-to-one.
Suppose $S(u) = 0$, for some $u \in U$, we want to show $f(u) = 0$, $f(u) = 0$, for $f(u) = 1$, $f(u) = 0$, $f(u) = 1$, f

(b) Find an example where $T \circ S$ is one-to-one but T is not.

Let
$$U = IR$$
, $V = IR^{3}$, $W = IR$,
Let $S(x) = [x]$ and $T(y) = x$.
Then $T(S(x)) = T(x) = x$ (o Tos: $R \rightarrow IR$ is the idensity
function, which is Marchine, But $T(i) = G$ to hull(i) zo
function, which is Marchine, But $T(i) = G$ to hull(i) zo
Go T is wet instruction,
(c) If $T \circ S$ is onto, then T is onto.
Let $w \in W$. Then a To S is a to, then exists
Let $w \in W$. Then a To S is a to, then exists
Now $u \in U$ to that $(Tos)(u) = w$.
Now $u \in U$ to that $(Tos)(u) = w$.
Redefinition, $(Tos)(u) = T(S(u))$.
Thus, $T(S(u)) = w$, to $w \in R(T)$.
A winas arbitrary, this thus $R(T) = w$ to T is an to.

(d) Find an example where $T \circ S$ is onto but S is not.

(e) True or False: If $T \circ S$ is an isomorphism, then both T and S are isomorphisms.

False, In the example from (b), we had
ToS: IP
$$\sum 1R$$
 via $x \longrightarrow x$, which is
an ib morphism.
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: IP $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: No $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: No $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
However, S: No $\sum 1R^2$ via $x \longrightarrow (5)$ is hot
How isomorphism.

The above syffices to conclude the problem, but in
fact
$$T: |R^2 \rightarrow |R$$
 given via $\binom{x}{y}| \longrightarrow x$ is box
an iso provphism as it's not $1-1$. Indeed, $T\binom{0}{r} = 0$, to
 $N44(F) > 0$.

- 2. Let V and W be finite-dimensional vector spaces with ordered bases β and γ respectively. let $T: V \to W$ be an isomorphism.
 - (a) Show that $[T]^{\gamma}_{\beta}$ is an invertible matrix.

Let
$$T'' : w \to U$$
 be the More of T .
Then $i d_{V} = T' \circ T$ and $i d_{W} \in T \circ T''$.
Then $i d_{V} = T' \circ T \circ T \circ f = [T'']_{J}^{B} [T']_{J}^{B}$
 $f(u_{V}) = [T \circ T']_{J}^{B} = [T'']_{J}^{B} = [T'']_{J}^{B}$
and $E : d_{W} = [T \circ T'']_{J}^{B} = [T \circ T']_{J}^{B} = [T \circ T']_{J}^{B}$
 $(i'' \circ i)$
 (b) Sow that $[T X]_{J}^{T} = ([T]_{J}^{T})^{-1}$.
 $f = (T'']_{J}^{B}$
 $f = (T'']_{J}^{B}$
 $f = (T'']_{J}^{B}$
 $This way shown in (9)$