Math 115A Worksheet Thursday, Nov 2 (Week 5)

1. Consider the real vector space \mathbb{R}^{∞} consisting of all infinite sequences of real numbers. Define the "shift map", $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$, to be the map which maps

 $(x_1, x_2, x_3, \ldots) \mapsto (x_2, x_3, x_4, \ldots)$

(a) Show that this map T is a linear transformation.

(b) Is this map injective? Is this map surjective?

2. Find a map $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(0) = 0 but f is not a linear transformation.

The following problems are similar to Problem 5 on Homework 4:

Definition. Let V be a vector space, and let W_1 and W_2 be subspaces such that $V = W_1 \oplus W_2$. The projection of V onto W_1 along W_2 is the linear function $T: V \to V$ defined as follows: for any $\vec{x} \in V$, let $\vec{w_1}$ and $\vec{w_2}$ be the **unique** vectors in W_1 and W_2 , respectively, such that $\vec{x} = \vec{w_1} + \vec{w_2}$. Then

$$T(\vec{x}) \coloneqq \vec{w}_1$$

- 3. Let $V = \mathbb{R}^3$, and suppose
 - $W_1 = \{ (x, 0, z) \mid x, z \in \mathbb{R} \}$ (the *xz*-plane) $W_2 = \{ (0, y, 0) \mid y \in \mathbb{R} \}$ (the *y*-axis)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection of \mathbb{R}^3 onto W_1 along W_2 .

(a) How do you write any vector $(x, y, z) \in \mathbb{R}^3$ as a sum of a vector in W_1 and a vector in W_2 ? (This is really easy.)

(b) Based on your answer to part (a), and the definition of *projection* above, write down a formula for T(x, y, z).

$$T(\chi, \gamma, Z) = (\chi, \sigma, Z)$$

(Note: The above is an example of an *orthogonal projection*, which you saw in 33A.)

4. Let $V = \mathbb{R}^3$ again, and this time, let

$$W_1 = \{ (0, a, a) \mid a \in \mathbb{R} \}$$
 (the line $x = 0, y = z$)
$$W_2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \}$$
 (the plane $z = -x - y$)

Once again let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection of \mathbb{R}^3 onto W_1 along W_2 . (This example is the more general type of projection, that need *not* be orthogonal.)

(a) Now how do you write any vector $(x, y, z) \in \mathbb{R}^3$ as a sum of a vector in W_1 and a vector in W_2 ? (This is a little harder.)

We with to Tillie
$$(x_1y_1z) = (c, q, q) + (b, c, d)$$
 with $q, b, c, d \in U|z$
 $qred b+c+d = c$
Hence, $x = 0 + b$, $y = a + c$, $z = a + d$, and $b + c+d = c$
 $Ohe way to color this suskin is to row reduce to the Maltin
 $Ohe way to color this suskin is to row reduce to $y = Maltin = \frac{x + y + z}{2}$
 $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ $\gamma_{relding} = \frac{x + y + z}{2}, b = x, (a = \frac{-x + y - z}{2}, d = \frac{-x - y + z}{2}$
 $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ Thus, $\begin{pmatrix} x_1y_1z_1 = (0, \frac{x + y + z}{2}, \frac{x + y + z}{2}) + (x, \frac{-x + y - z}{2}, \frac{-x - y + z}{2}) \\ \in W$, $c = W_2$$$

(b) Based on your answer to part (a), and the definition of *projection* above, write down a formula for T(x, y, z) in this case.

$$\left(\begin{pmatrix} x_{1}y_{1}, z \end{pmatrix} \right) = \begin{pmatrix} 0, & \chi + y + z \\ & 2, & 2 \end{pmatrix}$$