Math 115A Worksheet Thursday, Oct 26 (Week 4)

1. Recall the Replacement Theorem from Week 3 lectures (§1.6 Theorem 1.10):

Theorem. Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n - m vectors such that $L \cup H$ generates V.

Prove the following results using the Replacement Theorem (These are Corollaries (c) and (d) from lecture):

(a) Let V be a vector space of dimension n. Then every linearly independent subset of V can be extended to a basis for V, i.e. if L is a linearly independent subset of V, then there is a basis β for V such that $L \subset \beta$.

(*Hint:* You may also use Corollary (a), which says that any finite generating set for V has at least n vectors, and a generating set for V with exactly n vectors is a basis for V.)

Let
$$|\mathcal{S}| = h$$
 and $|\mathcal{L}| = M$.

(b) Let V be a vector space of dimension n, and let W be a subspace of V. Then $\dim W \leq \dim V$, and if $\dim W = \dim V$, then W = V.

Let B be a basis for W. Then
$$P \leq W \leq V$$
 and B is
linearly independent, so by (a) then is some basis $P \sigma K$
 V to thus $B \leq V$. Then $|B| \leq |J|$ so $\dim W \leq \dim V$.
Suppose $\dim W = \dim V$. Then for a facility Bot W , $|B| = \dim V$. Let J be a
toris of V , c $|J| = |S| = h$. By the replacement theorem, then is a
toris of V , c $|J| = |S| = h$. By the replacement theorem, then is a
toris of V , c $|J| = |S| = h$. By the replacement V . But $|H| = 0$ means
suffer $H \leq v$ with $|H| = n - n = 0$ are $B \vee H$ spans V . But $|H| = 0$ means
 $H = V_1 r_0$ $B \vee H = B$ spans V . Thus, $W = Syan(B) = V$.

2. Consider the real vector space \mathbb{R}^{∞} consisting of all infinite sequences of real numbers. Define the "shift map", $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$, to be the map which maps

$$(x_1, x_2, x_3, \ldots) \mapsto (x_2, x_3, x_4, \ldots)$$

(a) Show that this map T is a linear transformation.

$$\begin{aligned} & \lim_{k \to \infty} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \sum_$$

(b) If this map injective? Is this map surjective?

This map injective? Is this map surjective?
T is not injective, For example,
$$T((l_1, o_1, ...)) = (o_1, ...)$$

So hull (7) to. Thus, 7 is not injective.

T is onto. Tudeed, let
$$y \in [R^{\infty}, Write y=[y_1, y_2, ...)$$

Then let $X = (0, y_1, y_2, ...) = y$
we compute $\tau(x) = (y_1, y_2, ...) = y$
Hence, $y \in R(\tau)$. As y was artimary, this shows
Hence, $y \in R(\tau)$. As y was artimary, this shows
 $R(\tau) = (R^{\infty}, \tau_0, \tau_0, \tau_1, \ldots, \tau_1)$

3. Find a map $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(0) = 0 but f is not a linear transformation.

Let
$$f(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} x^{2} \\ y^{2} \end{pmatrix}$$

Then $f(\begin{pmatrix} y \\ y \end{pmatrix}) = \begin{pmatrix} 0^{1} \\ 0^{2} \end{pmatrix} = \begin{pmatrix} c \\ y \end{pmatrix}$
However, $f(2 \begin{pmatrix} y \\ y \end{pmatrix}) = f(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} y \\ y \end{pmatrix}$
Fut $2 f(\begin{pmatrix} y \\ y \end{pmatrix}) = 2 \begin{pmatrix} x^{2} \\ y^{2} \end{pmatrix} = 2 \begin{pmatrix} y \\ y \end{pmatrix}$
Gud $\begin{pmatrix} 2 \\ y \end{pmatrix} \neq \begin{pmatrix} y \\ y \end{pmatrix}$ for $f(2 \begin{pmatrix} y \\ y \end{pmatrix}) \neq 2 f(\begin{pmatrix} y \\ y \end{pmatrix})$
Thus, fix we define $f(x)$