Math 115A Worksheet
Thursday, Oct 26 (Week 4)
1. Recall the Replacement Theorem from Week 3 lectures (§1.6 Theorem 1.10):

Theorem. Let V' be a vector space that is generated by a set G containing exactly n
vectors, and let L be a linearly independent subset of V' containing exactly m vectors.
Then m < n and there exists a subset H of G containing exactly n — m wvectors such
that L U H generates V.

Prove the following results using the Replacement Theorem (These are Corollaries (c)
and (d) from lecture):

(a) Let V be a vector space of dimension n. Then every linearly independent subset
of V' can be extended to a basis for V, i.e. if L is a linearly independent subset
of V, then there is a basis § for V such that L C .

(Hint: You may also use Corollary (a), which says that any finite generating set
for V' has at least n vectors, and a generating set for V' with exactly n vectors is

a basis for V.)
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(b) Let V' be a vector space of dimension n, and let W be a subspace of V. Then
dimW < dimV, and if dim W =dim V', then W = V.
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2. Consider the real vector space R* consisting of all infinite sequences of real numbers.
Define the “shift map”, T: R — R>, to be the map which maps

(1'1, X9, X3, .. ) — (l’z, T3, Tyq, . . )

(a) Show that this map 7T is a linear transformation. .
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(b) If this map injective? Is this map surjective?
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