Math 115A Worksheet
Thursday, October 19 (Week 3)

1. Consider the vector space V = R3 and let &1 = (1,0,0), & = (0, 1,0), and €3 = (0,0, 1).
(You might recall from Math 33A that these vectors are called the standard basis of
R3.)

(a) Let Sy = {é1, e}, and let Sy = {é5,€3}. What is span(S;)? What is span(S;)?
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(b) Using the same sets S; and Sy as in part (a), what is S; N .S37 What is span(.S;
S5)? Is this the same as span(Sy) N span(Sy)? {a( /aé//L} :f/ }75{5//3} /" . _
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(¢) Come up with a completely different set of vectors T' such that span(7") is the
same subspace as span(S7), but so that neither €; nor €3 are in 7T'. In that case,
what is span(S; N7T)7 And what is span(S;) N span(7)? (
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2. Let V be a vector space over a field F'. Suppose Z,y € V with & # ¢. If the set {Z, ¢} is
linearly dependent, what does this tell you about @ and y? Come up with a necessary
and sufficient condition, and prove it:
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3. Come up with three vectors 7, 7/, 7 € R? such that the set {Z, 1, Z} is linearly dependent,
but none of the three vectors &, ¢, and 2" is a scalar multiple of any of the other ones.
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4. Recall that for a nonnegative integer n, P, (F') denotes the subspace of P(F) consisting
of polynomials of degree at most n:

Fu(F) ={p e P(F) | deg(p) <n}
(a) Let n be any nonnegative integer. Find a basis of P,(F).

(Note: You don’t have to write up a proof that your answer is correct, but you
should think through the details.)
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(b) What is the dimension of P,(F)?
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5. Let n be a positive integer, and fix some a € R. P,(R) denotes the vector space
consisting of polynomials (with real coefficients this time) of degree at most n. Consider
the subspace

W={fehR)|[fla)=0}

(a) Find a polynomial in P,(R) \. W (that is, a polynomial that is in P, (R) that is
not in W). Conclude that W is a proper subspace of P, (R). What does this tell
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(b) Come up with a conjecture about the dimension of W. Discuss with the other
members of your group to see if you all agree.

(c) Prove your conjecture from part (b).
Hint: Come up with an actual basis for W. Of course, you must then prove it’s a
basis. If you use the result from part (a), together with results recently covered in
class, you might only need to prove one of the two conditions needed for a basis
(that it generates W, or that it’s linearly independent. .. which one?)
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