Math 115A Worksheet
Thursday, Oct 12 (Week 2)

Recall: For a field F', a vector space over F is a set V' together with two operations, addition
(V xV — V) and scalar multiplication (F x V' — V'), which satisfy all of the following
properties (axioms):

(VS O0) Forall Z,y e V, 2+ y € V. (V is closed under addition.)
and
Forallae Fand all ¥ € V, aZ € V. (V is closed under scalar multiplication.)

(VS1) Forall Z,y €V,
IT+y=y+7.
(Addition in V' is commutative.)

(VS 2) Forall Z,7,Z €V,

(Addition in V is associative.)
(VS 3) There exists an element 0 € V such that, for all Z € V,
0+7="7.
(There is an additive identity element. Furthermore, we proved it is unique.)
(VS 4) For all ¥ € V, there exists § € V' such that
i+ =0.
(Every element has an additive inverse.)
(VS 5) Forall Z € V,
17 =7
(VS 6) Foralla,be Fandall ¥ €V,
a(bZ) = (ab)Z.
(Scalar multiplication is associative.)
(VS 7) Forallae F and all 5 € V,
a(Z+y) = aZ + ay.
(Scalar multiplication is distributive on the left.)
(VS 8) Foralla,be F and all ¥ € V,
(a + b)Z = ai + bZ.
(Scalar multiplication is distributive on the right.)

You will need the above definition for all of the questions on this worksheet.



1. Last week, we proved the uniqueness of the additive inverse and the multiplicative
inverse for any element of a field. Here you will do the same for additive inverses in a
vector space.

First, complete the statement of a theorem below about the uniqueness of additive
inverses for elements of a vector space V. (Be careful about the order of quantifiers!)
Then prove your theorem as a corollary of the cancellation law for vector addition

(Theorem 1.1 in §1.2).
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2. Last week, we proved cancellation laws for addition and multiplication in a field. There
are two cancellation laws for scalar multiplication in a vector space. In this problem,
you will prove the first of them. Fill in the two blanks in the following statement of
a theorem, and then prove the theorem. In your proof, try to be explicit about every
field axiom (F [0-5]) and every vector space axiom (VS [0-8]) that you use.

Theorem. Let V' be a vector space over a field F'. For all a € F and all T,y € V, if
aZ = ay and axo, then X :3’
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For the next two problems, you will need the following theorem. (This is Theorem 1.2 in
your textbook.)

Theorem. Let V' be a vector space over a field F.
(a) For each T €V, 02 = 0.

(b) For each a € F and each ¥ € V, (—a)¥ = —(aZ) = a(—7).
(¢) For eacha € F, a0 = 0.

3. Fill in the blank in the following theorem, to get the “zero product property” for vector
spaces. (Recall that we proved the analogous fact for fields in class on Jan 10.) Then
prove the theorem.

Theorem. Let V' be a vector space over a_field F. For any a € F and any ¥ € V, if
a? =0, then A< O dr 0

Proof.
(Hint: Remember how to prove an either-or statement: “P or Q" is logically equivalent
to “If P is false, then Q is true”, and also equivalent to “If Q is false, then P is true”.)
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4. In this problem, you will prove the second of the cancellation laws for scalar multipli-
cation in a vector space. Fill in the two blanks in the following statement of a theorem,
and then prove the theorem.

Theorem. Let V' be a vector space over a field F'. For all a,b € F and all ¥ € V, if
aF = b and Yo , then a=b

Proof.
(Hint: This one is harder than the other one. But the previous problem will be helpful!)
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In the next homework assignment (Homework 3), you will be using the following two impor-
tant definitions in several problems. Here is the first of those definitions:

Definition. Let V' be a vector space over a field F', and let X and Y be nonempty subsets
of V. Then the sum of X and Y, denoted X + Y, is the set

{z+y|lzeXandyeY}.

5. In the vector space R?, consider the subsets X = {(1,1),(2,2),(3,3)} and Y =
{(1,0),(0,1)}. Compute the set X + Y.

(Note that neither of these sets are subspaces of R?. This problem is merely an example
to get you used to the idea of what the subset X + Y means.)
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6. Recall that two sets are equal if (and only if) they contain exactly the same elements.
Therefore, given two sets A and B, to show that A = B, the standard way is to show
that (1) for all z € A, it is also true that x € B, and (2) for all z € B, z € A as
well. Note that (1) is the same as showing A C B and (2) is the same as showing that
B C A.

Let V = R3, and let

X = span ({(1,1,0)}) ={(a,a,0) |a e R} and
Y = span ({(1 0)}) = { —a,0) |a e R}.

Let W = { (a1,as,a3) € R* | a3 = 0}. Prove that X +Y = W.
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Here is the second of the two definitions from Homework 3:

Definition. Let V be a vector space, and let W; and W5 be subspaces of V. We say that
V' is the (internal) direct sum of Wy and Wy if both of the following are true:

(i) V = Wi+ Wa (see the previous definition) and
(ii) Wi N W, = {0}.

If V is the direct sum of W7 and W5, we write V = W; & W.

7. Let V be a vector space over a field F', and suppose W; and W5 are two subspaces of
V such that V = W, @ W,. Let & € V. Then by part (i) of the above definition, we
have © € Wy + Ws, which means that there must exist some w;, € W; and @y € Wy
such that ¥ = w; + wWs. Prove that @, and w, are unique.

(Hint: Remember how to prove something is unique! It will help to first carefully state

more clearly what is meant by “wW; and Wy are unzque”) N
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8. Once again let V' be a vector space over a field F', and suppose W7 and W, are subspaces
of V. This time, suppose that W; + Wy =V, but W, N W, # {6} Let ¥ € V. Once
again, since Wi + Wy = V', we have ¥ € W; + W5, so there must exist w;, € W; and
Wy € Wy such that ¥ = w; + wy. This time, however, show that w; and Wy are not the
unique vectors satisfying this.
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