
Math 115A Worksheet

Thursday, Oct 12 (Week 2)

Recall: For a eld F , a vector space over F is a set V together with two operations, addition
(V × V → V ) and scalar multiplication (F × V → V ), which satisfy all of the following
properties (axioms):

(VS 0) For all x⃗, y⃗ ∈ V , x⃗+ y⃗ ∈ V . (V is closed under addition.)

and

For all a ∈ F and all x⃗ ∈ V , ax⃗ ∈ V . (V is closed under scalar multiplication.)

(VS 1) For all x⃗, y⃗ ∈ V ,
x⃗+ y⃗ = y⃗ + x⃗▷

(Addition in V is commutative.)

(VS 2) For all x⃗, y⃗, z⃗ ∈ V ,
(x⃗+ y⃗) + z⃗ = x⃗+ (y⃗ + z⃗)▷

(Addition in V is associative.)

(VS 3) There exists an element 0⃗ ∈ V such that, for all x⃗ ∈ V ,

0⃗ + x⃗ = x⃗▷

(There is an additive identity element. Furthermore, we proved it is unique.)

(VS 4) For all x⃗ ∈ V , there exists y⃗ ∈ V such that

x⃗+ y⃗ = 0⃗▷

(Every element has an additive inverse.)

(VS 5) For all x⃗ ∈ V ,
1x⃗ = x⃗▷

(VS 6) For all a, b ∈ F and all x⃗ ∈ V ,

a(bx⃗) = (ab)x⃗▷

(Scalar multiplication is associative.)

(VS 7) For all a ∈ F and all x⃗, y⃗ ∈ V ,

a(x⃗+ y⃗) = ax⃗+ ay⃗▷

(Scalar multiplication is distributive on the left.)

(VS 8) For all a, b ∈ F and all x⃗ ∈ V ,

(a+ b)x⃗ = ax⃗+ bx⃗▷

(Scalar multiplication is distributive on the right.)

You will need the above denition for all of the questions on this worksheet.



1. Last week, we proved the uniqueness of the additive inverse and the multiplicative
inverse for any element of a eld. Here you will do the same for additive inverses in a
vector space.

First, complete the statement of a theorem below about the uniqueness of additive
inverses for elements of a vector space V . (Be careful about the order of quantiers!)
Then prove your theorem as a corollary of the cancellation law for vector addition
(Theorem 1.1 in §1.2).

Theorem. Let F be a eld, and let V be a vector space over F .

Proof.

2. Last week, we proved cancellation laws for addition and multiplication in a eld. There
are two cancellation laws for scalar multiplication in a vector space. In this problem,
you will prove the rst of them. Fill in the two blanks in the following statement of
a theorem, and then prove the theorem. In your proof, try to be explicit about every
eld axiom (F [0-5]) and every vector space axiom (VS [0-8]) that you use.

Theorem. Let V be a vector space over a eld F . For all a ∈ F and all x⃗, y⃗ ∈ V , if
ax⃗ = ay⃗ and , then .

Proof.



For the next two problems, you will need the following theorem. (This is Theorem 1.2 in
your textbook.)

Theorem. Let V be a vector space over a eld F .

(a) For each x⃗ ∈ V , 0x⃗ = 0⃗.

(b) For each a ∈ F and each x⃗ ∈ V , (−a)x⃗ = −(ax⃗) = a(−x⃗).

(c) For each a ∈ F , a⃗0 = 0⃗.

3. Fill in the blank in the following theorem, to get the “zero product property” for vector
spaces. (Recall that we proved the analogous fact for elds in class on Jan 10.) Then
prove the theorem.

Theorem. Let V be a vector space over a eld F . For any a ∈ F and any x⃗ ∈ V , if
ax⃗ = 0⃗, then .

Proof.
(Hint: Remember how to prove an either-or statement: “P or Q” is logically equivalent
to “If P is false, then Q is true”, and also equivalent to “If Q is false, then P is true”.)

4. In this problem, you will prove the second of the cancellation laws for scalar multipli-
cation in a vector space. Fill in the two blanks in the following statement of a theorem,
and then prove the theorem.

Theorem. Let V be a vector space over a eld F . For all a, b ∈ F and all x⃗ ∈ V , if
ax⃗ = bx⃗ and , then .

Proof.
(Hint: This one is harder than the other one. But the previous problem will be helpful!)



In the next homework assignment (Homework 3), you will be using the following two impor-
tant denitions in several problems. Here is the rst of those denitions:

Defnition. Let V be a vector space over a eld F , and let X and Y be nonempty subsets
of V . Then the sum of X and Y , denoted X + Y , is the set

{ x+ y | x ∈ X and y ∈ Y } ▷

5. In the vector space R
2, consider the subsets X = {(1, 1), (2, 2), (3, 3)} and Y =

{(1, 0), (0, 1)}. Compute the set X + Y .

(Note that neither of these sets are subspaces of R2. This problem is merely an example
to get you used to the idea of what the subset X + Y means.)

6. Recall that two sets are equal if (and only if) they contain exactly the same elements.
Therefore, given two sets A and B, to show that A = B, the standard way is to show
that (1) for all x ∈ A, it is also true that x ∈ B, and (2) for all x ∈ B, x ∈ A as
well. Note that (1) is the same as showing A ⊆ B and (2) is the same as showing that
B ⊆ A.

Let V = R
3, and let

X = span
(

{(1, 1, 0)}
)

= { (a, a, 0) | a ∈ R } and

Y = span
(

{(1,−1, 0)}
)

= { (a,−a, 0) | a ∈ R } ▷

Let W = { (a1, a2, a3) ∈ R
3 | a3 = 0 }. Prove that X + Y = W .



Here is the second of the two denitions from Homework 3:

Defnition. Let V be a vector space, and let W1 and W2 be subspaces of V . We say that
V is the (internal) direct sum of W1 and W2 if both of the following are true:

(i) V = W1 +W2 (see the previous denition) and
(ii) W1 ∩W2 = {⃗0}.

If V is the direct sum of W1 and W2, we write V = W1 ⊕W2.

7. Let V be a vector space over a eld F , and suppose W1 and W2 are two subspaces of
V such that V = W1 ⊕W2. Let x⃗ ∈ V . Then by part (i) of the above denition, we
have x⃗ ∈ W1 + W2, which means that there must exist some w⃗1 ∈ W1 and w⃗2 ∈ W2

such that x⃗ = w⃗1 + w⃗2. Prove that w⃗1 and w⃗2 are unique.
(Hint: Remember how to prove something is unique! It will help to rst carefully state
more clearly what is meant by “w⃗1 and w⃗2 are unique”.)

8. Once again let V be a vector space over a eld F , and supposeW1 andW2 are subspaces
of V . This time, suppose that W1 +W2 = V , but W1 ∩W2 ̸= {⃗0}. Let x⃗ ∈ V . Once
again, since W1 +W2 = V , we have x⃗ ∈ W1 +W2, so there must exist w⃗1 ∈ W1 and
w⃗2 ∈ W2 such that x⃗ = w⃗1 + w⃗2. This time, however, show that w⃗1 and w⃗2 are not the
unique vectors satisfying this.


