
Math 115A Worksheet

Thursday, Oct 12 (Week 2)

Recall: For a eld F , a vector space over F is a set V together with two operations, addition
(V × V → V ) and scalar multiplication (F × V → V ), which satisfy all of the following
properties (axioms):

(VS 0) For all x⃗, y⃗ ∈ V , x⃗+ y⃗ ∈ V . (V is closed under addition.)

and

For all a ∈ F and all x⃗ ∈ V , ax⃗ ∈ V . (V is closed under scalar multiplication.)

(VS 1) For all x⃗, y⃗ ∈ V ,
x⃗+ y⃗ = y⃗ + x⃗▷

(Addition in V is commutative.)

(VS 2) For all x⃗, y⃗, z⃗ ∈ V ,
(x⃗+ y⃗) + z⃗ = x⃗+ (y⃗ + z⃗)▷

(Addition in V is associative.)

(VS 3) There exists an element 0⃗ ∈ V such that, for all x⃗ ∈ V ,

0⃗ + x⃗ = x⃗▷

(There is an additive identity element. Furthermore, we proved it is unique.)

(VS 4) For all x⃗ ∈ V , there exists y⃗ ∈ V such that

x⃗+ y⃗ = 0⃗▷

(Every element has an additive inverse.)

(VS 5) For all x⃗ ∈ V ,
1x⃗ = x⃗▷

(VS 6) For all a, b ∈ F and all x⃗ ∈ V ,

a(bx⃗) = (ab)x⃗▷

(Scalar multiplication is associative.)

(VS 7) For all a ∈ F and all x⃗, y⃗ ∈ V ,

a(x⃗+ y⃗) = ax⃗+ ay⃗▷

(Scalar multiplication is distributive on the left.)

(VS 8) For all a, b ∈ F and all x⃗ ∈ V ,

(a+ b)x⃗ = ax⃗+ bx⃗▷

(Scalar multiplication is distributive on the right.)

You will need the above denition for all of the questions on this worksheet.



1. Last week, we proved the uniqueness of the additive inverse and the multiplicative
inverse for any element of a eld. Here you will do the same for additive inverses in a
vector space.

First, complete the statement of a theorem below about the uniqueness of additive
inverses for elements of a vector space V . (Be careful about the order of quantiers!)
Then prove your theorem as a corollary of the cancellation law for vector addition
(Theorem 1.1 in §1.2).

Theorem. Let F be a eld, and let V be a vector space over F .

Proof.

2. Last week, we proved cancellation laws for addition and multiplication in a eld. There
are two cancellation laws for scalar multiplication in a vector space. In this problem,
you will prove the rst of them. Fill in the two blanks in the following statement of
a theorem, and then prove the theorem. In your proof, try to be explicit about every
eld axiom (F [0-5]) and every vector space axiom (VS [0-8]) that you use.

Theorem. Let V be a vector space over a eld F . For all a ∈ F and all x⃗, y⃗ ∈ V , if
ax⃗ = ay⃗ and , then .

Proof.



For the next two problems, you will need the following theorem. (This is Theorem 1.2 in
your textbook.)

Theorem. Let V be a vector space over a eld F .

(a) For each x⃗ ∈ V , 0x⃗ = 0⃗.

(b) For each a ∈ F and each x⃗ ∈ V , (−a)x⃗ = −(ax⃗) = a(−x⃗).

(c) For each a ∈ F , a⃗0 = 0⃗.

3. Fill in the blank in the following theorem, to get the “zero product property” for vector
spaces. (Recall that we proved the analogous fact for elds in class on Jan 10.) Then
prove the theorem.

Theorem. Let V be a vector space over a eld F . For any a ∈ F and any x⃗ ∈ V , if
ax⃗ = 0⃗, then .

Proof.
(Hint: Remember how to prove an either-or statement: “P or Q” is logically equivalent
to “If P is false, then Q is true”, and also equivalent to “If Q is false, then P is true”.)

4. In this problem, you will prove the second of the cancellation laws for scalar multipli-
cation in a vector space. Fill in the two blanks in the following statement of a theorem,
and then prove the theorem.

Theorem. Let V be a vector space over a eld F . For all a, b ∈ F and all x⃗ ∈ V , if
ax⃗ = bx⃗ and , then .

Proof.
(Hint: This one is harder than the other one. But the previous problem will be helpful!)



In the next homework assignment (Homework 3), you will be using the following two impor-
tant denitions in several problems. Here is the rst of those denitions:

Defnition. Let V be a vector space over a eld F , and let X and Y be nonempty subsets
of V . Then the sum of X and Y , denoted X + Y , is the set

{ x+ y | x ∈ X and y ∈ Y } ▷

5. In the vector space R
2, consider the subsets X = {(1, 1), (2, 2), (3, 3)} and Y =

{(1, 0), (0, 1)}. Compute the set X + Y .

(Note that neither of these sets are subspaces of R2. This problem is merely an example
to get you used to the idea of what the subset X + Y means.)

6. Recall that two sets are equal if (and only if) they contain exactly the same elements.
Therefore, given two sets A and B, to show that A = B, the standard way is to show
that (1) for all x ∈ A, it is also true that x ∈ B, and (2) for all x ∈ B, x ∈ A as
well. Note that (1) is the same as showing A ⊆ B and (2) is the same as showing that
B ⊆ A.

Let V = R
3, and let

X = span
(

{(1, 1, 0)}
)

= { (a, a, 0) | a ∈ R } and

Y = span
(

{(1,−1, 0)}
)

= { (a,−a, 0) | a ∈ R } ▷

Let W = { (a1, a2, a3) ∈ R
3 | a3 = 0 }. Prove that X + Y = W .



Here is the second of the two denitions from Homework 3:

Defnition. Let V be a vector space, and let W1 and W2 be subspaces of V . We say that
V is the (internal) direct sum of W1 and W2 if both of the following are true:

(i) V = W1 +W2 (see the previous denition) and
(ii) W1 ∩W2 = {⃗0}.

If V is the direct sum of W1 and W2, we write V = W1 ⊕W2.

7. Let V be a vector space over a eld F , and suppose W1 and W2 are two subspaces of
V such that V = W1 ⊕W2. Let x⃗ ∈ V . Then by part (i) of the above denition, we
have x⃗ ∈ W1 + W2, which means that there must exist some w⃗1 ∈ W1 and w⃗2 ∈ W2

such that x⃗ = w⃗1 + w⃗2. Prove that w⃗1 and w⃗2 are unique.
(Hint: Remember how to prove something is unique! It will help to rst carefully state
more clearly what is meant by “w⃗1 and w⃗2 are unique”.)

8. Once again let V be a vector space over a eld F , and supposeW1 andW2 are subspaces
of V . This time, suppose that W1 +W2 = V , but W1 ∩W2 ̸= {⃗0}. Let x⃗ ∈ V . Once
again, since W1 +W2 = V , we have x⃗ ∈ W1 +W2, so there must exist w⃗1 ∈ W1 and
w⃗2 ∈ W2 such that x⃗ = w⃗1 + w⃗2. This time, however, show that w⃗1 and w⃗2 are not the
unique vectors satisfying this.


