Permutations, Representations, and Partition Algebras

A Random Walk Through Algebraic Statistics

Ian Shors
Harvey Mudd College

May 1, 2023

Random Walks on Groups

Consider shuffling a deck of cards in the following way.

$$
1 \quad 2 \quad 3 \quad 4
$$

Random Walks on Groups

Consider shuffling a deck of cards in the following way.

Random Walks on Groups

Consider shuffling a deck of cards in the following way.

Random Walks on Groups

Consider shuffling a deck of cards in the following way.

Random Walks on Groups

Consider shuffling a deck of cards in the following way.

This procedure is called a random walk on the symmetric group S_{n}. I'd like to characterize the resulting permutation using representation theory.

Permutations

A permutation is a bijective function $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$. For example

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
I & I & I & I & I & I \\
3 & 2 & 4 & 1 & 6 & 5
\end{array}\right)
$$

Permutations

A permutation is a bijective function $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$. For example

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
I & I & I & I & I & I \\
3 & 2 & 4 & 1 & 6 & 5
\end{array}\right)
$$

One line notation:

$$
\sigma=324165
$$

Cycle notation:

$$
\sigma=(134)(2)(56)
$$

The symmetric group S_{n} is the group of permutations of $\{1,2, \ldots, n\}$ under function composition.

Permutation Statistics

Definition

An inversion in a permutation σ is a pair of integers $i<j$ such that $\sigma(i)>\sigma(j)$.

Permutation Statistics

Definition

An inversion in a permutation σ is a pair of integers $i<j$ such that $\sigma(i)>\sigma(j)$.

For example $\sigma=4132$ has 4 inversions:

$$
4132,4132, \quad 4132,4132 .
$$

A permutation statistic is a function defined on S_{n} encoding information about permutations. We can define a statistic Inv : $S_{n} \rightarrow \mathbb{Z}$ by

$$
\operatorname{INV}(\sigma)=\text { number of inversions in } \sigma
$$

Hence $\operatorname{Inv}(4132)=4$.

Permutation Statistics

Definition

An inversion in a permutation σ is a pair of integers $i<j$ such that $\sigma(i)>\sigma(j)$.

For example $\sigma=4132$ has 4 inversions:

$$
\text { 4132, 4132, 4132, } 4132 .
$$

A permutation statistic is a function defined on S_{n} encoding information about permutations. We can define a statistic Inv : $S_{n} \rightarrow \mathbb{Z}$ by

$$
\operatorname{INV}(\sigma)=\text { number of inversions in } \sigma
$$

Hence $\operatorname{Inv}(4132)=4$.

Goal

Characterize distributions of permutation statistics (like INV) sampled via random walks.

Moments

Goal
Characterize the distributions of permutation statistics (like Inv) sampled via random walks.

Moments

Goal

Characterize the distributions of permutation statistics (like Inv) sampled via random walks.

One way to characterize a statistic is through its moments.

$$
d^{\text {th }} \text { moment of } X=\mathbb{E}\left(X^{d}\right)
$$

For example,

- $1^{\text {st }}$ moment \rightarrow expected value
- $2^{\text {nd }}$ moment \rightarrow information about variance
- $3^{\text {rd }}$ moment \rightarrow information about skewness

Class functions on S_{n}

A class function is a statistic that depends only on the cycle type of a permutation (e.g. the number of 1-cycles, 2-cycles, etc). Class functions are often simpler to work with than non-class functions.

Class functions on S_{n}

A class function is a statistic that depends only on the cycle type of a permutation (e.g. the number of 1-cycles, 2-cycles, etc). Class functions are often simpler to work with than non-class functions.

$\sigma \in S_{3}$	$\\|(1)(2)(3)$	$(12)(3)$	$(13)(2)$	$(23)(1)$	(123)	(132)
$\operatorname{INV}(\sigma)$	0	1	3	1	2	2
$\overline{\operatorname{INV}}(\sigma)$	0	$5 / 3$	$5 / 3$	$5 / 3$	2	2

The mean statistic $\overline{\mathrm{INV}}$ of a statistic is obtained by averaging Inv over permutations with the same cycle type.

Past Results

Theorem (Rodrigues, 1839)
Let $\sigma \in S_{n}$ be a permutation, and let a_{k} be the number of k-cycles in σ.
Then

$$
\overline{\overline{\operatorname{INV}}(\sigma)=\frac{3 n^{2}-n-a_{1}^{2}-2 a_{1} n+a_{1}+2 a_{2}}{12}, \text {. }}
$$

This proof doesn't use any representation theory, just an elementary counting argument.

Past Results

Theorem (Rodrigues, 1839)

Let $\sigma \in S_{n}$ be a permutation, and let a_{k} be the number of k-cycles in σ. Then

$$
\overline{\operatorname{INV}}(\sigma)=\frac{3 n^{2}-n-a_{1}^{2}-2 a_{1} n+a_{1}+2 a_{2}}{12}
$$

This proof doesn't use any representation theory, just an elementary counting argument.

Theorem (Gaetz and Ryba, 2021)

For any $d \in \mathbb{N}, \overline{\mathrm{INV}^{d}}$ is a polynomial of degree at most $2 d$ in the variables $n, a_{1}, \ldots a_{2 d}$.

This proof is based on the representation theory of the partition algebra, and is non-constructive.

A Polynomial

Implementing Gaetz and Ryba's argument computationally, I found the polynomial for $\overline{\mathrm{INv}^{2}}$.

Proposition (S.)

$$
\begin{aligned}
\overline{\operatorname{INv}^{2}}(\sigma)= & \frac{1}{720}\left(5 a_{1}^{4}+20 a_{1}^{3} n-14 a_{1}^{3}-12 a_{1}^{2} a_{2}+50 a_{1}^{2} n^{2}-90 a_{1}^{2} n\right. \\
& -25 a_{1}^{2}-24 a_{1} a_{2} n+12 a_{1} a_{2}-24 a_{1} a_{3}+60 a_{1} n^{3} \\
& -126 a_{1} n^{2}+94 a_{1} n+98 a_{1}+60 a_{2}^{2}-20 a_{2} n^{2}+108 a_{2} n \\
& -124 a_{2}-24 a_{3} n-48 a_{3}-24 a_{4}+45 n^{4}-130 n^{3} \\
& \left.+111 n^{2}-98 n\right) .
\end{aligned}
$$

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related
 to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related Multiplication in $\operatorname{Par}_{k}(n)$: to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related Multiplication in $\operatorname{Par}_{k}(n)$: to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related Multiplication in $\operatorname{Par}_{k}(n)$: to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related Multiplication in $\operatorname{Par}_{k}(n)$: to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Where did this polynomial come from?

The partition algebra is an associative algebra whose elements are diagrams like the ones shown. It's representations are closely related Multiplication in $\operatorname{Par}_{k}(n)$: to those of the symmetric group, so many questions about the symmetric group can be rephrased as questions about the partition algebra and vice versa.

Results

Figure: Variance in the number of inversions in the product of t random transpositions from S_{10}.

Acknowledgements

I'm immensely grateful to my advisor, Professor Michael Orrison, for his invaluable advice and encouragement during this project. I'm also very thankful to my reader, Professor Gizem Karaali, and my colleagues Maxwell Thum, Hannah Friedman, Tomás Aguilar-Fraga, and Kausik Das for their helpful comments and support.

References

[GR21] Christian Gaetz and Christopher Ryba. "Stable characters from permutation patterns". In: Selecta Mathematica 27.4 (2021), p. 70. DOI: 10.1007/s00029-021-00692-9. URL: https://doi.org/10.1007/s00029-021-00692-9.
[Rod39] Olinde Rodrigues. "Note sur les inversions, ou dérangements produits dans les permutations". In: Journal de Mathématiques Pures et Appliquées 1e série, 4 (1839). URL:
http://www.numdam.org/item/JMPA_1839_1_4__236_0/.

