Permutations, Representations, and Partition Algebras: A Random Walk through Algebraic Statistics

Ian Shors

Math 197: Senior Thesis

Introduction
Consider shuffling a deck of cards pairwise: pick any two cards, swap them, and repeat. How can we characterize the resulting distribution?

Using representation theory, we can compute expected values of permutation statistics after t steps of a random walk like this one. I set out to find analogous formulas for higher order information like variance. We can characterize variance by understanding the behavior of squares of permutation statistics.

Background
An inversion in a permutation is a pair $i < j$ such that $i(j) > i(j)$. For example, 342156 ∈ S_6 has 5 inversions, which are 342156, 342156, 342156, 342156, 342156.

Let $\text{INV}(\sigma) =$ number of inversions in σ.

INV measures how much ‘reversing’ the permutation does.

Methods
The partition algebra $P_k(n)$ is an associative algebra whose elements are (k,k)-set partition diagrams like the one shown below.

These diagrams can be multiplied by stacking them vertically:

$$\begin{align*}
\begin{array}{c}
\cdots \\
\end{array}
\begin{array}{c}
\cdots \\
\end{array}
\end{align*}
\right)\left(\\
\right) = n^2\begin{align*}
\begin{array}{c}
\cdots \\
\end{array}
\begin{array}{c}
\cdots \\
\end{array}
\end{align*}.

The partition algebra $P_k(n)$ exhibits Schur-Weyl duality with the symmetric group S_n.

Extending the methods of [1] and using the previous equation, I was able to prove that for any $\sigma \in S_n$,

$$\text{INV}(\sigma) = \frac{1}{2}(98m_1 - 25m_1^2 - 14m_1 + 5m_1^4 - 124m_2 + 12m_1m_2 - 12m_1m_2 - 60m_2^2 - 48m_3 - 24m_1m_3 - 24m_2^2 - 98n - 34m_1n - 30m_1n^2 - 20m_1n - 12m_2n - 24m_1m_2 - 24m_3 - 9n^2 + 54m_1n^2 - 10m_1n^2 + 100m_2n^2 - 10m_3^2 - 60m_1n^3 + 45n^4).$$

This polynomial allows us to find exact formulas for variances in the number of inversions in permutations sampled via random walks.

Results

Acknowledgments
I’m immensely grateful to my advisor, Professor Michael Orrison, for his invaluable advice and encouragement during this project. I’m also very thankful to my reader, Professor Gizem Karaali, and my colleagues Maxwell Thum, Hannah Friedman, Tomás Aguilar-Fraga, and Kausik Das for their helpful comments and support.

References

Advisor: Michael Orrison
Reader: Gizem Karaali
Email: ishors@hmc.edu
Website: https://sites.google.com/g.hmc.edu/ishors