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Lie Algebras

Matrix Lie Algebras

Definition

Let X and Y be two n × n matrices. The Lie bracket is given by

[X ,Y ] = XY − YX .

Definition

Suppose g is a vector subspace of Mn(R) or Mn(C) that is closed under the Lie
bracket. The set g, endowed with the operations of + and [·, ·], is said to be a
matrix Lie algebra.

Note: There exists an abstract definition of a Lie algebra, but every
(finite-dimensional) abstract Lie algebra is isomorphic to a matrix Lie algebra.
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Lie Algebras

Matrix Lie Algebra Examples

gl(n,C) = {all n × n complex matrices}

sl(n,C) = {X ∈ gl(n,C)
∣∣ tr(X ) = 0}

su(n) = {X ∈ gl(n,C)
∣∣ tr(X ) = 0 and X ∗ = −X}
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Lie Algebras

Representations of Lie Algebras

A representation of a Lie algebra g is a vector space V together with a linear map
ρ : g → L(V ). We can think of each X ∈ g as being a linear operator on V , so we
say g acts on V .

This map must preserve the Lie algebra structure of g, so we require

ρ([X ,Y ]) = ρ(X )ρ(Y )− ρ(Y )ρ(X ).

Example

For a matrix Lie algebra g ⊆ Mn(C), we can let V = Cn and ρ(X ) = X . This is
called the defining representation of g.
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Lie Algebras

Some representations of sl(d ,C)
Let Hk = C[x1, . . . , xd ]k , the vector space of homogeneous polynomials in
x1, . . . , xd of degree k .

Example

Taking sl(3,C), we have

H1 = spanC{x , y , z}.
H2 = spanC{x2, y2, z2, xy , xz , yz}.
H3 = spanC{x3, y3, z3, x2y , xy2, x2z , xz2, y2z , yz2, xyz}.

Hk can be made into a representation of sl(d ,C) under the identification

ρ(Eij) = xj
∂

∂xi
.

This representation is isomorphic to the k th symmetric power of the defining
representation.
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Lie Algebras

Example: H3 for sl(3,C)

The representation H3 of sl(3,C) may be summarized in the following diagram.

ρ(E11) = x
∂

∂x

ρ(E12) = y
∂

∂x

ρ(E13) = z
∂

∂x

ρ(E21) = x
∂

∂y

ρ(E22) = y
∂

∂y

...
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Lie Algebras

Example: H3 for sl(3,C)

Rewriting H3 with basis vectors |abc⟩ = 1√
( k
a,b,c)

xaybzc , the diagram simplifies

considerably.

|003⟩

|102⟩ |012⟩

|201⟩ |111⟩ |021⟩

|300⟩ |210⟩ |120⟩ |030⟩

√
3

√
2

1

√
3

2

1

√
2

2

√
2

√
2

√
2

√
3

√
3

√
3

√
2

2

1

√
3

Ian Shors Quantum Metric Spaces, Lie Algebras, and QED January 2023 8 / 25



Quantum Metric Spaces
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Quantum Metric Spaces

Quantum Metric Spaces

Suppose H = Cd is the state space of a quantum system. Let L(H) = Md(C)
denote the set of linear operators from H to itself. Elements of L(H) are
interpreted as errors on H.

A quantum metric assigns a real number to each error representing its severity. In
particular, a quantum metric may be defined in terms of a function
D : Md(C) → [0,∞] satisfying

D(XY ) ≤ D(X ) + D(Y )

D(X + Y ) ≤ max{D(X ),D(Y )}
D(X ∗) = D(X )

D(αX ) = D(X ) for α ̸= 0

D(X ) = 0 if and only if X = αI for some α ∈ C

In error correction problems, we often assume that more severe errors are much
less likely to occur.
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Quantum Metric Spaces

Quantum Metric Spaces, Continued

Given such a function D, for each t ∈ [0,∞] we may define

Vt = {X ∈ Md(C) : D(X ) ≤ t}.

The collection {Vt} is called a ∗-algebra filtration of Md(C). A quantum metric
may be equivalently defined in terms of this filtration.

V0 V1 V2 · · · Md(C)
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Quantum Metric Spaces

Quantum Metric Spaces of Lie Type

Example

Let E be any subspace of Md(C) such that I ∈ E and E∗ = E . We can build a
quantum metric as follows:

V0 = spanC{I}, V1 = E , Vn = spanC En for n = 2, 3, 4, . . .

Quantum metrics constructed in this way are called quantum graph metrics.

Suppose H ∼= Cn is a representation of g with representation map ρ : g → Mn(C).
If we construct a quantum graph metric with E = spanC{I} ⊕ Image(ρ), then the
resulting quantum metric space has many nice properties. We say quantum metric
spaces of this form are of Lie type.
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Quantum Metric Spaces

sl(3,C) Quantum Metric Spaces

Recall the diagram for the representation H3 of sl(3,C):

In the corresponding
quantum metric,
distance one errors take
vectors to adjacent ones
in the diagram.
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|300⟩ |210⟩ |120⟩ |030⟩
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KLV Quantum Codes and Bounds

Quantum Error Detecting Codes

Alice
|ψ⟩−−−−−−−−−→ Bob

A quantum code is a subspace C of H.

Suppose Alice sends the message |ψ⟩ ∈ C
and an error E occurs, meaning Bob receives E |ψ⟩. This is fine if

E |ψ⟩ = ε |ψ⟩, (in which case the error E is inconsequential), or

E |ψ⟩ ⊥ C, (in which case the error is detectable).

An operator equation that encapsulates both of these scenarios is

PCEPC = εPC ,

where PC denotes the orthogonal projection onto C. Hence, we say a code C can
detect errors of distance t if PCEPC = ε(E )PC for all E in Vt . This ε is called the
slope of the code.
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KLV Quantum Codes and Bounds

KLV codes

In 1999, Knill, Laflamme and Viola (KLV) gave a procedure for constructing
quantum codes in general quantum metric spaces.

Suppose we wish to detect errors from Vt for some t.

1. Find a subspace B of H such that Vt restricted to B is commutative.

2. Find a subspace C of B that detects those commutative errors. This reduces
to a convex geometry problem.

In their original paper, KLV used a greedy algorithm for step 1, and cited
Tverberg’s theorem for step 2. With knowledge of the structure of the sl(3,C)
quantum metric spaces, both of these can be improved!
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KLV Quantum Codes and Bounds

Finding a commutative subspace

|003⟩

|102⟩ |012⟩

|201⟩ |111⟩ |021⟩

|300⟩ |210⟩ |120⟩ |030⟩

If we choose a subspace
spanned by vectors
spaced out by distance
t + 1, then the only
non-zero surviving errors
of distance ≤ t will be
diagonal.
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KLV Quantum Codes and Bounds

A larger example

H12 is shown below. Looking for subspaces B that diagonalize V1, we can achieve
dimB =

⌈
dimHk

3

⌉
. The greedy algorithm given by KLV gives dimB ≥

⌈
dimHk

8

⌉
.
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KLV Quantum Codes and Bounds

The Tverberg problem

Given n points in Rd , we wish to partition them into subsets so that the
intersection of the convex hull of each subset is nonempty.
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KLV Quantum Codes and Bounds

The Tverberg problem

Given n points in Rd , we wish to partition them into subsets so that the
intersection of the convex hull of each subset is nonempty.

What is the maximal number of subsets
we can take?

For points in general position, Tverberg’s
theorem says ⌈n/(d + 1)⌉.

However, for highly ordered sets of
points, we can potentially do better!
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KLV Quantum Codes and Bounds

KLV Construction, Step 2

Suppose we have a set of commuting errors F with basis {F1, . . . ,Fd} on B.
Since they commute, there is a basis in which all are diagonal. To each basis

vector |m⟩, we can associate a vector λ⃗m = (λ
(1)
m , . . . , λ

(d)
m ) ∈ Rd , where λ

(j)
m is

the eigenvalue of |m⟩ for the matrix Fj .

To find a code C inside B, we find a Tverberg partition of the λ⃗i ’s. Let ℓ be the
number of parts and ε⃗ be the Tverberg point. Say {λ⃗i1 , λ⃗i2 , . . . , λ⃗ik} is a set in the
partition. Then there exists

α1λ⃗i1 + · · ·+ αk λ⃗ik = ε⃗

where each αj > 0 and α1 + · · ·+ αk = 1. Define |ψ1⟩ ∈ B by

|ψ1⟩ =
√
α1 |i1⟩+ · · ·+

√
αk |ik⟩ .

Continuing in this way, we can construct vectors |ψ2⟩ , . . . , |ψℓ⟩, each
corresponding to a set in the partition. Then

C = spanC{|ψ1⟩ , . . . , |ψℓ⟩}

satisfies the error detection condition for F .
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KLV Quantum Codes and Bounds

KLV Construction, Step 2

λ⃗1

λ⃗2

λ⃗3

λ⃗4 λ⃗5

λ⃗6

λ⃗7

λ⃗8

λ⃗9

λ⃗10

ε⃗

Importantly, the dimension of
the resulting code is the number
of parts in this partition. So, we
can find larger codes by finding
partitions with more parts.
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KLV Quantum Codes and Bounds

Super Tverberg points

For our earlier example of an subspace B
of Hk for sl(3,C), the collection of
points is a triangular lattice. By pairing
up points on opposite sides of the
centroid, we can get approximately 4n/9
sets. Hence,

dim C
dimB

=
4

9
+ O(1/k)

which implies

dim C
dimHk

=
4

27
+ O(1/k).
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KLV Quantum Codes and Bounds

Further questions

The KLV construction can sometimes be modified to work with block
diagonal error, not just diagonal error. This allows us to enlarge B. How
much advantage does this give?

What about sl(4) and beyond?
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KLV Quantum Codes and Bounds

Thank you!
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KLV Quantum Codes and Bounds
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