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Weyl’s Law: Spectrum (Eigenvalues) and Geometry

Ω ⊆ Rd is a bounded domain.

N (λ) is the number of eigenvalues less than λ (counting their
multiplicities) of the standard Laplacian

∆ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2d
.

Weyl’s law:

Theorem (Weyl-1911)

lim
λ→∞

N (λ)

λd/2
=

vol (Ω)

2dπd/2Γ
(
d
2 + 1

) .
One can generalize Weyl’s law to Riemannian manifolds.
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CR Manifold

CR stands for either Cauchy-Riemann or complex-real.

Smooth manifolds but with some complex structure:

Tp (M) = Hp (M)⊕Xp (M) ,

where Hp (M) is the complex tangent space and Xp (M) is the real
tangent space.

Roughly,

Definition

Let M be a smooth manifold. M ⊆ Cn is a CR manifold if and only if
dimHp (M) is independent of p.

Example: any hypersurface in Cn, like S2n−1 ⊆ Cn ' R2n.

Example: any complex manifold.

Every CR manifold comes with a Kohn Laplacian, �b (CR version of
standard Laplacian).
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Dearborn REU 2020

Goal: Analog of Weyl’s law for the Kohn Laplacian on spheres S2n−1,

�b : L2
(
S2n−1)→ L2

(
S2n−1) .

L2
(
S2n−1) has spectral decomposition,

L2
(
S2n−1) =

∞⊕
p,q=0

Hp,q
(
S2n−1) .

Folland: Eigenvalue associated with Hp,q
(
S2n−1) is 2q (p+ n− 1).

dimHp,q
(
S2n−1) =

(
n+p−1

p

)(
n+q−1

q

)
−
(
n+p−2
p−1

)(
n+q−2
q−1

)
.
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Dearborn REU 2020 (cont.)

Theorem (BGS+21)

Let N(λ) be the eigenvalue counting function (with multiplicity) for �b on
L2
(
S2n−1). Then,

lim
n→∞

N (λ)

λn
= vol

(
S2n−1) n− 1

n (2π)n Γ (n+ 1)

ˆ ∞
−∞

( x

sinhx

)n
e−(n−2)x dx.

In comparison to the standard Laplacian:

Theorem (Weyl-1911)

lim
λ→∞

N (λ)

λn−1/2
=

vol
(
S2n−1)

22n−1πn−1/2Γ
(
n+ 1

2

) .
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Lens Spaces

A lens space is a quotient of an odd-dimensional sphere by the action
of a particular type of matrix. Example: RP 3.

k ∈ N, ζ = e2πi/k.

l1, . . . , ln relatively prime to k.

g ∈ U(n), gzj = ζ ljzj

g =


ζ l1 0 · · · 0
0 ζ l2 · · · 0
...

...
. . .

...
0 0 · · · ζ ln

 .

The lens space denoted by L(k; l1, . . . , ln) = L(k;~l) is the quotient
of S2n−1 by G = 〈g〉.
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The Goal

Theorem (2021)

Given the lens space L(k; l1, . . . , ln), we denote the eigenvalue counting
function for �b on the lens space by NL(λ), and the eigenvalue counting
function for S2n−1 by N(λ). We have

lim
λ→∞

NL(λ)

N(λ)
=

1

k
.
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HG
p,q

G acts naturally on L2(S2n−1) by precomposition

g ∗ f = f ◦ g.

g ∗ Hp,q(S2n−1) ⊆ Hp,q(S2n−1).

Denote the set of elements of Hp,q(S2n−1) that are fixed under the
action of G by HGp,q.

We have

L2(L(k; l1, . . . , ln)) =

∞⊕
p,q=0

HGp,q.

The eigenvalue for HGp,q for �b on the lens space is the same as the
eigenvalue on the sphere, 2q(p+ n− 1).

Want to compute dimHGp,q.
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Basis for Hp,q(S
2n−1)

For α ∈ Nn, define |α| =
∑n

j=1 αj .

Denote, for α, β ∈ Nn

D
α

=
∂|α|

∂zα1
1 · · · ∂zαn

n

, Dβ =
∂|β|

∂zβ11 · · · ∂z
βn
n

.

For p, q ∈ N{
D
α
Dβ|z|2−2n : |α| = p, |β| = q, α1 = 0 or β1 = 0

}
is a basis for Hp,q(S2n−1).
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Invariant Basis Elements of Hp,q(S
2n−1)

Let
fα,β = D

α
Dβ|z|2−2n.

Each fα,β is an eigenvector for the group action of G

g ∗ fα,β = ζ
∑n

j=1 lj(αj−βj)fα,β.

So the dimension of HGp,q is equal to the number of solutions to the
following system:

|α| = p, |β| = q;

α1 = 0 or β1 = 0;
n∑
j=1

lj(αj − βj) ≡ 0 mod k.
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The Problem

Eigenvalue of Hp,q(S2n−1) for �b is 2q(p+ n− 1).

N(λ), NL(λ) number of positive eigenvalues of �b on S2n−1, L(k;~l)
(counting multiplicities) less than λ

NL(λ) =
∑

p≥0,q>0,
0<2q(p+n−1)≤λ

dimHGp,q.

So NL(λ) is equal to the number of solutions to the following system

α, β ∈ Nn

0 < 2|α|(|β|+ n− 1) ≤ λ
α1 = 0 or β1 = 0;

m∑
j=1

lj(αj − βj) ≡ 0 mod k.

Our calculations yield: lim
λ→∞

NL(λ)

N(λ)
=

1

k
.
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Can You Hear the Shape of a Lens Space?

Theorem (Ikeda-Yamamoto)

Two lens spaces L(k; l1, . . . , ln) and L(k′; l′1, . . . , l
′
n) are isometric as

Riemannian manifolds if and only if

k = k′, and

there exists an integer a and a permutation σ such that
(l′1, l

′
2, . . . , l

′
n) ≡ (±alσ(1),±alσ(2), . . . ,±alσ(n)) (mod k).

Theorem (Ikeda-Yamamoto, Main Theorem)

Two 3-dimensional lens spaces have the same spectrum for the real
Laplacian if and only if they are isometric as Riemannian manifolds.

Example: L(3; 1, 1) and L(3; 1, 2) have the same real spectrum.
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Can You Hear the Shape of a CR Lens Space?

CR isometry is a stronger condition than Riemannian isometry.

Theorem (2021)

Let L(k; l1, . . . , ln) and L(k′, l′1, . . . , l
′
n). If

k = k′, and

there exists an integer a and a permutation σ such that
(l′1, l

′
2, . . . , l

′
n) ≡ (alσ(1), alσ(2), . . . , alσ(n)) (mod k).

then the spaces are CR isometric.

What happens with L(3; 1, 1) and L(3; 1, 2)?

Spectrum of �b on L(3; 1, 1) = {0, 4, 6, 10, 12, 16, 18, . . .}
Spectrum of �b on L(3; 1, 2) = {0, 4, 6, 8, 10, 12, 14, 16, . . .}

Goal: Characterize 3-dimensional lens spaces up to CR isometries via
spectra.
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Can You Hear the Shape of a CR Lens Space?

Conjecture

Two 3-dimensional lens spaces have the same Kohn spectrum if and only if
they are CR isometric.

This would mean the Kohn Laplacian is “more sensitive” than the
standard Laplacian.
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Some Partial Results

Proposition (2021)

If L(k; l1, l2, . . . , ln) is isospectral to L(k′; l′1, l
′
2, . . . , l

′
n) with respect to

�b, then k = k′.

Analog of Weyl’s law

Theorem (2021)

Let k be a prime. If L(k; l1, l2) and L(k; l′1, l
′
2) are isospectral with respect

to �b, then they are CR isometric.

Generating function approach
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Generating Function Approach

Given a lens space L(k; l1, l2, . . . , ln), we define a generating function

F (z, w) =
∑
p,q≥0

(dimHGp,q)zpwq.

Using tools from group representation theory, we obtain the closed
form

F (z, w) =
1

k

k−1∑
m=0

1− zw∏n
i=1(1− ζm`iz)(1− ζ−m`iw)

where ζ = e2πi/k.

This equivalence relates spectral information (dimHGp,q) to

information about the geometry of the lens space (k and ~l).
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Outline of Argument

CR isometricCR isospectral

dimHGp,q = dimHG′
p,q for all p, q (l1, . . . ln) ≡ (al′σ(1), . . . , al

′
σ(n))

Fix two lens spaces L(k, `1, . . . , `n) and L(k, `′1, . . . , `
′
n).

We would like to show that if two lens spaces are CR isospectral, they
are CR isometric.
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These directions quickly follow from the definitions.
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dimHGp,q = dimHG′
p,q for all p, q (l1, . . . ln) ≡ (al′σ(1), . . . , al
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We can show this direction by extending a result from Ikeda and
Yamamoto.
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Outline of Argument

CR isometricCR isospectral

dimHGp,q = dimHG′
p,q for all p, q (l1, . . . ln) ≡ (al′σ(1), . . . , al

′
σ(n))

This equivalence comes from the generating function∑
p,q≥0

(dimHGp,q)zpwq =
1

k

k−1∑
m=0

1− zw∏n
i=1(1− ζm`iz)(1− ζ−m`iw)

.

Fan, Plzak, Shors, Sottile Spectral Analysis of �b on Lens Spaces 17 / 18



Outline of Argument

CR isometricCR isospectral

dimHGp,q = dimHG′
p,q for all p, q (l1, . . . ln) ≡ (al′σ(1), . . . , al

′
σ(n))

We have shown the dotted arrow in the case when n = 2 and k is
prime.

We have conjectured that it is true for all k when n = 2.
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