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Abstract. In [Hjo96], Hjorth proved from ZF + AD + DC that there is no

sequence of distinct Σ1
2 sets of length δ1

2 . [Sar22] extends Hjorth’s technique to

show there is no sequence of distinct Σ1
2n sets of length δ1

2n. Sargsyan conjectured

an analogous property is true for any regular Suslin pointclass in L(R) — i.e. if κ

is a regular Suslin cardinal in L(R), then there is no sequence of distinct κ-Suslin

sets of length κ+ in L(R). We prove this in the case that the pointclass S(κ) is

inductive-like.

§1. Introduction.

Definition 1.1. For a boldface pointclass Γ, we say λ is Γ-reachable if
there is a sequence of distinct Γ sets of length λ and λ is Γ-unreachable if
λ is not Γ-reachable.

The problem of unreachability is to determine the minimal λ which is Γ-
unreachable for each pointclass Γ. As this problem is trivial assuming the
axiom of choice, unreachability is exclusively studied under determinacy
assumptions. Under AD, unreachability yields an interesting measure of
the complexity of a pointclass. An early result in this area is Harrington’s
theorem that there is no injection of ω1 into any pointclass strictly below
the pointclass of Borel sets in the Wadge hierarchy (see [Har78]).

Theorem 1.2 (Harrington). If β < ω1, then ω1 is Π0
β-unreachable.

A recent application of Harrington’s theorem was the resolution of the
decomposability conjecture by Marks and Day (see [DM21]).
Prior work on unreachability has focused on levels of the projective hi-

erarchy. Kechris gave a lower bound on the complexity of the pointclass
needed to reach δ12n+2 (see [Kec78]).
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Theorem 1.3 (Kechris). Assume ZF + AD + DC. δ12n+2 is ∆1
2n+1-

unreachable.

In [Kec78], Kechris conjectured his own result could be strengthened to
δ12n+2 is ∆1

2n+2-unreachable. He also made a second, stronger conjecture

that δ12n+2 is Σ1
2n+2-unreachable. Jackson proved the former in [Jac90].

Theorem 1.4 (Jackson). Assume ZF + AD + DC. δ12n+2 is ∆1
2n+2-

unreachable.

[Jac90] also made progress on Kechris’s second conjecture by showing
there is no strictly increasing sequence of Σ1

2n+2 sets of length δ12n+2. In
fact, Jackson and Martin proved the following more general theorem.

Theorem 1.5 (Jackson). Assume ZF+AD+DC. Suppose κ is a Suslin
cardinal, and κ is either a successor cardinal or a regular limit cardinal.
Then there is no strictly increasing (or strictly decreasing) sequence ⟨Aα :
α < κ+⟩ contained in S(κ).

But the resolution of Kechris’s second conjecture eluded the traditional
techniques of descriptive set theory. Hjorth pioneered the use of inner
model theory in this area to resolve one case of Kechris’s second conjecture
(see [Hjo96]).

Theorem 1.6 (Hjorth). Assume ZF+AD+DC. δ12 is Σ1
2-unreachable.

Kechris also pointed out the following corollary of Hjorth’s result.

Corollary 1.7. Assume ZF + AD + DC. A Π1
2 equivalence relation

has either 2ℵ0 or ≤ ℵ1 equivalence classes.

Hjorth’s proof of Theorem 1.6 involved an application of the Kechris-
Martin Theorem, which precluded an easy generalization of his technique
to other projective pointclasses. The rest of Kechris’s second conjecture sur-
vived another two decades, until Sargsyan found a modification of Hjorth’s
proof which generalized to the rest of the projective hierarchy (see [Sar22]).

Theorem 1.8 (Sargsyan). Assume ZF + AD +DC. δ12n+2 is Σ1
2n+2-

unreachable.

The following result of Kechris shows Sargsyan’s theorem is optimal.

Theorem 1.9 (Kechris). Assume ZF+AD+DC. Suppose κ is a Suslin
cardinal. Then there is a strictly increasing sequence ⟨Aα : α < κ⟩ con-
tained in S(κ).

Sargsyan’s theorem resolves the problem of unreachability for every level
of the projective hierarchy. He conjectured an analogous result holds for
every regular Suslin pointclass.
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Conjecture 1.10 (Sargsyan). Assume AD+. Suppose κ is a regular
Suslin cardinal. Then κ+ is S(κ)-unreachable.

Below, we prove part of Conjecture 1.10.

Theorem 1.11. Assume ZF + AD + DC + V = L(R). Suppose κ is
a regular Suslin cardinal and S(κ) is inductive-like. Then κ+ is S(κ)-
unreachable.

ZF +AD+DC + V = L(R) implies AD+, so Theorem 1.11 is a special
case of Conjecture 1.10. Theorem 1.9 demonstrates this is the optimal
result for inductive-like pointclasses.
Let Γ = S(κ) for κ as in Theorem 1.11. Then κ = δΓ. ZF + AD +

DC + V = L(R) also implies any inductive-like pointclass Γ is of the form
S(κ) for some regular Suslin cardinal κ. So an equivalent formulation of
Theorem 1.11 is the following:

Theorem 1.12. Assume ZF +AD+DC + V = L(R). Suppose Γ is an

inductive-like pointclass. Then δ+Γ is Γ-unreachable.

Our proof of Theorem 1.12 extends the inner model theory approach pio-
neered in [Hjo96]. Our technique also gives an alternative proof of Theorem
1.8.

§2. Background. We will assume the reader is familiar with the basics
of descriptive set theory espoused in [Mos09] and the theory of iteration
strategies for premice covered in [Ste09]. The rest of the necessary back-
ground is covered below. In Section 2.1, we summarize Steel’s classification
of the scaled pointclasses and Suslin pointclasses in L(R). Section 2.2 re-
views the relationship between Woodin cardinals and iteration trees. Two
inner model constructions are covered in Sections 2.3 and 2.4. In Section
2.5, we review results from the core model induction demonstrating the
existence of mice corresponding to inductive-like pointclasses in L(R).

2.1. The Pointclasses of L(R). We will assume for this section ZF +
DC + AD + V = L(R). All of the results in this section are due to Steel
and are proven outright or else implicit in [Ste83].
The boldface pointclasses we are interested in all appear in a hierarchy we

will now define. If Γ and Λ are non-selfdual pointclasses, say {Γ,Γc} <w
{Λ,Λc} if Γ ⊂ Λ ∩ Λc. This is a wellordering by Wadge’s Lemma. For
α < Θ, consider the αth pair {Γ,Γc} in this wellordering such that Γ or Γc

is closed under projection. Let Σ1
α denote whichever of the two is closed

under projection — if both are, Σ1
α denotes whichever has the separation

property. Let Π1
α = (Σ1

α)
c.



4 DEREK LEVINSON∗, ITAY NEEMAN∗, AND GRIGOR SARGSYAN†

For any pointclass Γ, we define

∆Γ = Γ ∩ Γc and

δΓ = sup{| ≤∗ | :≤∗ is a prewellordering in ∆Γ}.
.
Let δ1α = δΣ1

α
. The pointclasses {Σ1

n : n ∈ ω} and {Π1
n : n ∈ ω} are the

usual levels of the projective hierarchy. We will refer to the collection of
pointclasses {Σ1

α : α ∈ ON} ∪ {Π1
α : α ∈ ON} as the extended projective

hierarchy.
We now define a hierarchy slightly coarser than the one above. If n ∈ ω

and α ∈ ON , we say a pointset A is in the pointclass Σn(Jα(R)) if there
is a Σn formula ϕ with real parameters such that A = {x : Jα(R) |= ϕ[x]}.
Πn(Jα(R)) is defined analogously with Πn-formulas.1 The Levy hierarchy
consists of all pointclasses of the form Σn(Jα(R)) or Πn(Jα(R)) for some
n and α. It is clear any pointclass in the Levy hierarchy equals Σ1

α or Π1
α

for some α, but the converse is false.
In this section, we will classify the scaled pointclasses within the Levy

hierarchy, relate the Levy hierarchy to the extended projective hierarchy,
and classify the regular Suslin pointclasses.

2.1.1. Classification of Scaled Pointclasses. A Σ1-gap is a maximal in-
terval [α, β] such that for any real x, the Σ1-theory of x is the same in
Jα(R) and Jβ(R).
We say the gap [α, β] is admissible if Jα(R) |= KP , equivalently, if the

pointclass Σ1(Jα(R)) is closed under coprojection. Suppose [α, β] is an
admissible gap. Let nβ ∈ N be least such that the pointclass Σnβ(Jβ(R))
is not contained in Jβ(R). We say [α, β] is a strong gap if for any b ∈ Jβ(R),
there is β′ < β and b′ ∈ Jβ′(R) such that the Σnβ

and Πnβ
theories of b′ in

Jβ′(R) are the same as the Σnβ
and Πnβ

theories of b in Jβ(R). Otherwise,
we say [α, β] is weak.

Theorem 2.1. Suppose Γ is a pointclass in the Levy hierarchy. If Γ is
scaled, then one of the following holds.

1. Γ = Σ2k+1(Jα(R)) for some k ∈ ω and some α beginning an inadmis-
sible gap.

2. Γ = Π2k+2(Jα(R)) for some k ∈ ω and some α beginning an inad-
missible gap.

3. Γ = Σ1(Jα(R)) for some α beginning an admissible gap.
4. Γ = Σnβ+2k(Jβ(R)) for some k ∈ ω and some β ending a weak gap.
5. Γ = Πnβ+2k+1(Jβ(R)) for some k ∈ ω and some β ending a weak

gap.

1See [Ste83] for the definition of Jα(R). Alternatively, the reader will not lose too

much of importance by pretending Jα(R) = Lα(R).



UNREACHABILITY OF INDUCTIVE-LIKE POINTCLASSES IN L(R) 5

Definition 2.2. A self-justifying system (sjs) is a countable set B ⊆
P(R) which is closed under complements and has the property that every

B ∈ B admits a scale ψ⃗ such that ≤ψn
∈ B for all n.

Definition 2.3. Let z ∈ R and γ ∈ ON . OD<γ(z) is the set of pointsets
which are ordinal definable from the parameter z in Jξ(R) for some ξ < γ.
OD<γ denotes OD<γ(0).

The proof of Theorem 2.1 also gives:

Theorem 2.4. Suppose [α, β] is an admissible gap. Let β′ be the least
ordinal such that there is a scale for a universal Π1(Jα(R))-set definable
over Jβ′(R). Then there is z ∈ R and a sjs B ⊂ OD<β′

(z) such that a
universal Π1(Jα(R))-set is in B and either

1. [α, β] is weak and β′ = β or
2. [α, β] is strong and β′ = β + 1.

Remark 2.5. Suppose Γ is a boldface inductive-like pointclass in L(R).
Then

1. Γ = Σ1(Jα(R)) for some α beginning an admissible gap,
2. there is x ∈ R such that letting Γ be the class of pointsets which are

Σ1-definable over Jα(R) from the parameter x, Γ is the closure of Γ
under preimages by continuous functions, and

3. Γ = (Σ2
1)

∆Γ .2

2.1.2. Relationship between the Levy Hierarchy and the Extended Pro-
jective Hierarchy.

Definition 2.6. Suppose λ < Θ is a limit ordinal. We say

• λ is type I if Σ1
λ is closed under finite intersection but not countable

intersection,
• λ is type II if Σ1

λ is not closed under finite intersection,
• λ is type III if Σ1

λ is closed under countable intersection but not co-
projection, and

• λ is type IV if Σ1
λ is closed under coprojection.

Let ⟨δα : α < Θ⟩ enumerate the ordinals δ such that there exist sets
of reals in Jδ+1(R)\Jδ(R). Let nα be minimal such that Σnα(Jδα(R)) ̸⊂
Jδα(R).

Theorem 2.7. Suppose α < Θ.

1. If ωα is type I, then Σ1
ωα+k = Σnα+k(Jδα(R)) for all k ∈ ω.

2. If ωα is type II or III, then Σ1
ωα+k+1 = Σnα+k(Jδα(R)) for all k ∈ ω.

2We say A ⊆ R is in (Σ2
1)

∆Γ if there is z ∈ R and a formula ϕ such that for all x ∈ R,
x ∈ A ⇐⇒ (∃B ∈ ∆Γ)(R, B) |= ϕ(x, z).
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3. If ωα is type IV, then Π1
ωα = Σnα(Jδα(R)) and

Σ1
ωα+k+1 = Σnα+k(Jδα(R)) for all k ∈ ω\{0}.

2.1.3. Classification of Suslin Pointclasses. There is a related classifi-
cation of the Suslin pointclasses. For α < Θ, let κα be the αth Suslin
cardinal. Let να be the αth ordinal ν such that Σ1

ν or Π1
ν is scaled.

Theorem 2.8. Let λ < δ21 be a limit cardinal and ν = sup{να : α < λ}.
1. If ν is type I, then for all k ∈ ω

• Σ1
ν+2k and Π1

ν+2k+1 are scaled,

• S(κλ+k) = Σ1
ν+k+1,

• κλ+2k+1 = δ1ν+2k+1 = (κλ+2k)
+, and

• cof(κλ+2k) = ω.
2. If ν is type II or III, then for all k ∈ ω

• Σ1
ν+2k+1 and Π1

ν+2k are scaled,

• S(κλ+k) = Σ1
ν+k+1,

• κλ+2k+2 = δ1ν+2k+2 = (κλ+2k+1)
+, and

• cof(κλ+2k+1) = ω.
3. If ν is type IV, then Π1

ν is scaled, S(κλ) = Π1
ν , and for all k ∈ ω,

letting µ = νλ+1,
• Σ1

µ+2k and Π1
µ+2k+1 are scaled,

• S(κλ+k+1) = Σ1
µ+k+1,

• κλ+2k+2 = δ1µ+2k+1 = (κλ+2k+1)
+, and

• cof(κλ+2k+1) = ω.

Corollary 2.9. Suppose Γ = S(κ) for a regular Suslin cardinal κ ≤ δ21.
Then one of the following holds.

1. Γ = Σ2k+1(Jα(R)) for some k ∈ ω and some α beginning an inadmis-
sible gap.

2. Γ = Σ1(Jα(R)) for some α beginning an admissible gap.
3. Γ = Σnβ+2k(Jβ(R)) for some k ∈ ω and some β ending a weak gap.

2.2. Woodin Cardinals and Iterations. We borrow most of the no-
tation of premice and iteration trees from [Ste09]. In addition to the light-
face premice defined in [Ste09], we will also consider premice built over

some a ∈ HC. We write an a-premouse as M = (J E⃗α ,∈, E⃗ ↾ α,Eα, a), for
a fine extender sequence E⃗ = ⟨Eη : η ≤ α⟩. If β ≤ α, M |β represents

the premouse (J E⃗β ,∈, E⃗ ↾ β,Eβ , a). Unless otherwise specified, an iteration

strategy will refer to an (ω1, ω1)-iteration strategy and a mouse will refer
to a premouse with such a strategy. Under ZF + AD, ω1 is measurable,
so an (ω1, ω1)-iteration strategy induces an (ω1, ω1 + 1)-iteration strategy.
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In particular, the theorems in this section requiring an ω1 + 1-iteration
strategy will all apply to the mice we use in Section 3.
Additionally, if T is an iteration tree of limit length and b is a cofinal, non-

dropping branch through T , we let MT
b be the direct limit of the models

on b and let iTb :MT
0 →MT

b be the associated direct limit embedding.
For a model M , let δM denote the least Woodin cardinal of M (if one

exists) and EaM denote Woodin’s extender algebra in M at δM . Let κM
be the least cardinal of M which is < δM -strong in M . ea will refer to
the generic over EaM . When considering the product extender algebra
EaM ×EaM , we will write eal×ear for the generic. ear will typically code
a pair which we shall write (ea1r, ea

2
r). For posets of the form Col(ω,X), ġ

denotes a name for the generic.
Suppose M is a premouse with iteration strategy Σ. We say N is a

complete iterate of M if N is the last model of an iteration tree T on M
such that T is according to Σ and the branch through T from M to N is
non-dropping.3

Theorem 2.10. Let M be a countable premouse with an ω1+1-iteration
strategy such that M |= “There is a Woodin cardinal.” Then EaM is a
δM -c.c. Boolean algebra and for any x ∈ R, there is a countable, complete
iterate N of M such that x is EaN -generic over N .

Corollary 2.11. LetM be a countable premouse with an ω1+1-iteration
strategy such thatM |= “There is a Woodin cardinal.” Then for any x ∈ R,
there is a countable, complete iterate N of M and g which is Col(ω, δN )-
generic over N such that x ∈ N [g].

See Section 7.2 of [Ste09] for a proof of Theorem 2.10 and its corollary.

Definition 2.12. For κ < δ and A ⊆ δ, we say κ is A-reflecting in δ
if for every ν < δ, there is an extender E with critical point κ such that
iE(κ) > ν and iE(A) ∩ ν = A ∩ ν.

Theorem 2.13. Suppose b and c are distinct wellfounded branches of
a normal iteration tree T and A ⊆ δ(T ) is in MT

b ∩MT
c . Then there is

κ < δ(T ) such thatMT
b |= “κ is A-reflecting in δ(T ),” and this is witnessed

by a sequence of extenders on the extender sequence of M(T ).

See 6.9 and 6.10 of [Ste09] for definitions of δ(T ) and M(T ) and a proof
of Theorem 2.13. The theorem justifies the following definitions.

Definition 2.14. Suppose b is a wellfounded branch through a normal
iteration tree T . Let Q(b, T ) be the least initial segment of MT

b extending

3This is a slight abuse of notation, since being “a complete iterate of M” is dependent
on Σ as well as M . This will not cause any ambiguity, since the mice we are interested

in have unique iteration strategies.
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M(T ) such that there is A ⊂ δ(T ) which is definable over Q(b, T ) and real-
izes δ(T ) is not Woodin via extenders in M(T ), if such an initial segment
exists.

Definition 2.15. Suppose M is a premouse and η ∈ M . We say η is
a cutpoint of M if there is no extender on the fine extender sequence of
M with critical point less than η and length greater than η. η is a strong
cutpoint if there is no extender on the fine extender sequence of M with
critical point less than or equal to η and length greater than η.

Definition 2.16. Suppose T is a normal iteration tree. Let Q(T ) be the
least δ(T )-sound, ω1+1-iterable premouse extending M(T ) and projecting
to δ(T ) such that δ(T ) is a strong cutpoint of Q(T ) and there is A ⊂ δ(T )
which is definable over Q(T ) and realizes δ(T ) is not Woodin via extenders
in M(T ), if one exists.

It follows from Theorem 2.13 that there is at most one wellfounded
branch b through T such that Q(T ) ⊴ MT

b . In many cases, we will be
able to locate the branch a strategy Σ chooses as the unique branch which
absorbs Q(T ) in this sense.
Note an ω1-iteration strategy on a countable premouse can be coded by

a set of reals. For a ∈ HC and a pointclass Γ, this allows us to define

LpΓ(a) =
⋃

{N :N is an ω-sound a-premouse projecting to a

with an ω1-iteration strategy in ∆Γ}.

LpΓ(a) can be reorganized as an a-premouse, which is what we will typically
use LpΓ(a) to refer to.
Closely related to LpΓ is the operator CΓ. For x ∈ R,

CΓ(x) = {z ∈ R : z is ∆Γ(x) in some countable ordinal}.

And for a ∈ HC,

CΓ(a) = {b ⊆ a : for all reals x coding a, bx ∈ CΓ(x)}.

Here bx codes b relative to x. See [Ste16] for more details.

Theorem 2.17. Assume ADL(R). Suppose Γ is a (lightface) inductive-
like pointclass in L(R) and a ∈ HC. Then CΓ(a) = LpΓ(a) ∩ P (a).

Remark 2.18. Suppose a and b are countable, transitive sets and a ∈ b.
It is easy to see from the definition of CΓ that CΓ(a) ⊆ CΓ(b). This, and
the theorem above, implies LpΓ(a) ⊆ LpΓ(b).
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2.3. The Mitchell-Steel Construction. We shall require a method
of building an a-premouse inside a premouse M which contains a. Our
main tool for this purpose is the fully backgrounded Mitchell-Steel con-
struction developed in [MS17]. This section reviews the construction and
its properties.
We say a premouse M is reliable if Cω(M) exists and is universal and

solid. As we shall see in a moment, we will end the Mitchell-Steel construc-
tion if we reach a premouse which is not reliable. [MS17] defines reliable
to include the stronger property that Cω(M) is iterable. But the weaker
properties of universality and solidity are enough to propagate the con-
struction, and our weaker requirement ensures the construction does not
end prematurely when performed inside a mouse. The definitions of uni-
versality and solidity can be found in [Ste09]. In all of the cases relevant to
us, universality and solidity are guaranteed and the reader will lose little
by taking on faith that the construction does not end.
For the moment we will work in V and assume ZFC. Fix z ∈ R. Define

a sequence of z-premice ⟨Mξ : ξ ∈ On⟩ inductively as follows.

1. M0 = (Vω,∈, ∅, ∅, z)
2. Suppose we have constructed Mξ = (J E⃗α ,∈, E⃗, ∅, z). Note Mξ is a

passive premouse. Suppose also there is an extender F ∗ over V , an
extender F over Mξ, and ν < α such that
(a) Vν+ω ⊂ Ult(V, F ∗),
(b) ν is the support of F ,
(c) F ↾ ν = F ∗ ∩ ([ν]<ω ×Mξ), and

(d) Nξ+1 = (J E⃗α ,∈, E⃗, F, z) is a premouse.
IfNξ+1 is reliable, letMξ+1 = Cω(Nξ+1). Otherwise, the construction
ends. If there are multiple such F ∗, we pick one which minimizes the
support of F . We say F ∗ is the extender used as a background at step
ξ + 1.

3. Suppose we have constructed Mξ = (J E⃗α ,∈, E⃗, Eα, z) and either Mξ

is active or Mξ is passive and there is no extender F ∗ as above. Let

Nξ+1 = (J E⃗
⌢Eα

α+1 ,∈, E⃗⌢Eα, ∅, z). If Nξ+1 is reliable, let Mξ+1 =
Cω(Nξ+1). Otherwise, the construction ends.

4. Suppose we have constructed ⟨Mξ : ξ < λ⟩ for λ a limit ordinal. Let
η = lim infξ<λ(ρω(Mξ)

+)Mξ . Let Nλ be the passive premouse of
height η such that Nλ|β = limξ<λMξ|β for all β < η. If Nλ is
reliable, let Mλ = Cω(Nλ). Otherwise, the construction ends.

Suppose the construction never breaks down. That is, Mξ is defined for
all ξ ∈ On.
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Theorem 2.19. Suppose ζ0 and ξ are ordinals such that ζ0 < ξ and
κ = ρω(Mξ) ≤ ρω(Mζ) for all ζ ≥ ζ0. Then Mξ ⊴ Mη for all η ≥ ξ.
Moreover, Mξ+1 |= “every set has cardinality at most κ.”

Let M be the class-sized model such that whenever ξ ∈ On satisfies
Mξ ⊴ Mη for all η ≥ ξ, Mξ is an initial segment of M. We call M the
output of the Mitchell-Steel construction over z. For δ ∈ On, we call Mδ

the output of the Mitchell-Steel construction of length δ over z.

Theorem 2.20. Assume ZFC. Suppose δ is the least ordinal such that
δ is Woodin in L(Vδ). Suppose the Mitchell-Steel construction in Vδ does
not break down, and let M be the output of the construction. Then δ in
Woodin in L(M).

See the proof of Theorem 11.3 of [MS17].

Theorem 2.21 (Universality). Assume ZFC. Let δ be Woodin and z ∈
R. Assume the Mitchell-Steel construction of length δ over z does not break
down. Let N be the output of the construction. Suppose no initial segment
of N satisfies “there is a superstrong cardinal.” Let W be a premouse over
x of height ≤ δ, and suppose P and Q are the final models above W and
N , respectively, in a successful coiteration. Then P ⊴ Q.

See Theorem 11.1 of [Ste08].

Theorem 2.22. Suppose M is an ω1 + 1-iterable mouse with Woodin
cardinal δ satisfying enough of ZFC and z ∈ M ∩ R. Then the Mitchell-
Steel construction of length δ over z done inside M does not break down.
Let N be the output of the construction. Then N is a z-mouse of height δ.

The proof of Theorem 2.22 is well known. To show the construction does
not break down, by [MS17] it suffices to show universality and solidity of
the models ⟨Mξ : ξ < δ⟩ built during the construction. [MS17] further
reduces this to showing iterability for each Mξ. An iteration strategy for
Mξ can be defined by lifting iteration trees on Mξ to trees on (an initial
segment of) M and selecting the branch picked by the strategy for M .
ω1 + 1-iterability of M suffices to obtain the required iterability for each
Mξ. Similarly, N being a z-mouse follows from iterability of M .

For a premouse M satisfying enough of ZFC and z ∈ M ∩ R, we write
Le[M, z] for the output of the Mitchell-Steel construction in M over z
(assuming the construction does not break down). Le[M ] will refer to
Le[M, ∅]. Le[M, z] is a z-premouse. If M is iterable, so is Le[M, z].
We are most interested in cases in which M is a mouse with a Woodin

cardinal δ, no largest cardinal, and no total extenders above δ. Then
Le[M |δ, z] is equal to the Mitchell-Steel construction of length δ over z,
done inside M , and Le[M, z] is an initial segment of L(Le[M |δ.z]).
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Remark 2.23. Suppose M is an ω1 + 1-iterable premouse, z ∈ M ∩ R,
and κ is inaccessible in M . Let ⟨Mξ : ξ < κ⟩ be the models of the Mitchell-
Steel construction in M of length κ over z. Suppose an extender is added
at step ξ + 1 in the construction. Let F ∗, F , and ν be as in Case 2 of the
construction. Then there is F ′ ∈ M |κ such that M |= Vν+ω ⊂ Ult(M,F ′)
and F ′ ∩ ([ν]<ω × Mξ) = F ↾ ν. So we may assume if F ∗ is used as a
background in the construction of length κ, then F ∗ ∈M |κ.
In particular, if M is an ω1 + 1-iterable premouse, z ∈M ∩ R, and κ is

inaccessible in M , then Le[M |κ, z] equals the Mitchell-Steel construction of
length κ over z, done in M .

2.4. S-constructions. Below we outline the S-construction (this was
introduced as the P -construction in [SS09]).

Suppose M = (J E⃗γ ,∈, E⃗ ↾ γ,Eγ , a) is a countable a-premouse and δ ∈M

is a cardinal and cutpoint of M . Suppose ON ∩ S̄ = δ + ω, δ is a Woodin
cardinal of S̄, S̄ is definable over M , and there is a generic G (for the
version of Woodin’s extender algebra with δ propositional letters) such
that S̄[G] =M |δ+1. Inductively define a sequence ⟨Sα : δ+1 ≤ α ≤ γ⟩ as
follows. Sδ+1 is set to be S̄. At a limit λ, Sλ =

⋃
α<λ Sα. If M |λ is active,

add a predicate for Eλ ∩ Sλ to Sλ. For the successor step, we define Sα+1

by constructing one more level over Sα. The construction proceeds until
we construct Sγ , or we reach some Sα such that δ is not Woodin in Sα. We
refer to Sγ as the maximal S-construction in M over S̄ if the construction
reaches γ. We are primarily interested in cases where δ is Woodin in M ,
in which case the construction is guaranteed to reach γ.

Lemma 2.24. Suppose M, S̄, δ, γ, and G are as above. Assume also M is
(ω1, ω1 + 1)-iterable, ω-sound, and ρω(M) ≥ δ. If the construction reaches
γ, then for each α such that δ+1 ≤ α ≤ γ, Sα is an S̄-mouse and Sα[G] =
M |α. If also α < γ, or α = γ and δ is definably Woodin over Sα, then
ρn(Sα) = ρn(M |α) for all n and Sα is ω-sound.

Lemma 1.5 of [SS09] gives everything in Lemma 2.24 except the iterabil-
ity of Sγ . The iteration strategy for Sγ in Lemma 2.24 comes from lifting
an iteration tree on Sγ to iteration trees on M above δ. In particular, we
have:

Fact 2.25. Suppose M, S̄, δ, γ, and G are as in Lemma 2.24. Then the
iteration strategy for Sγ (as an S̄-premouse) is projective in the iteration
strategy for M restricted to iteration trees above δ.

The S-construction serves two purposes in what follows. It allows us
to “undo” generic extensions from Woodin’s extender algebra. And com-
bined with the fully-backgrounded Mitchell-Steel construction, it provides
an inner model of a premouse with convenient properties.
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Definition 2.26. Let M be an ω1 + 1-iterable premouse with a Woodin
cardinal and z ∈ M ∩ R. Let S̄ be the result of constructing one level of
the J -hierarchy over Le[M |δM , z]. Let StrLe[M, z] denote the maximal
S-construction in M over S̄.

2.5. Suitable Mice. We now review some results from the core model
induction. Most of the concepts below are from [SS], with some minor
additions. We need to work with mice with an inaccessible cardinal above
a Woodin, so in Definition 2.28 we introduce a modification of the standard
notion of a suitable premouse. [SS] proves the existence of terms in suitable
mice capturing certain sets of reals. We will need analogous lemmas for our
modified definition. In fact we require more than is stated in [SS] — it is
essential for our purposes that there is a canonical term capturing each set.
Fortunately, this stronger claim is already implicit in the proofs of [SS].
For the remainder of this section, we will asssume ZF +AD+DC+V =

L(R) and fix a boldface inductive-like pointclass Γ such that Γ ̸= Σ2
1. We

then have Γ = Σ1(Jα0
(R)) for some α0 beginning an admissible Σ1-gap

[α0, β0]. Fix a lightface pointclass Γ as in Remark 2.5 such that Γ is the
closure of Γ under preimages by continuous functions.

Definition 2.27. Suppose x ∈ HC. Say an x-premouse N is Γ-suitable
if N is countable and

1. N |= there is exactly one Woodin cardinal δN .
2. Letting N0 = LpΓ(N |δN ) and Ni+1 = LpΓ(Ni), we have that N =⋃

i<ω Ni.

3. If ξ < δN , then LpΓ(N |ξ) |= ξ is not Woodin.

Definition 2.28. Suppose x ∈ HC. Say an x-premouse N is Γ-super-
suitable (Γ-ss) if N is countable and

1. N |= There is exactly one Woodin cardinal δN .
2. N |= There is exactly one inaccessible cardinal above δN . We denote

this inaccessible by νN .
3. Letting N0 = LpΓ(N |νN ) and Ni+1 = LpΓ(Ni), we have that N =⋃

i<ω Ni.

4. For each ξ ≥ δN , N |(ξ+)N = LpΓ(N |ξ).
5. If ξ < δN , then LpΓ(N |ξ) |= ξ is not Woodin.

Definition 2.29. Let N be a mouse and δ ∈ N . We say δ is a Γ-Woodin
of N if δ is Woodin in LpΓ(N |δ).

A Γ-suitable premouse is a minimal premouse with a Γ-Woodin cardinal
which is closed under LpΓ, in that none of its initial segments have this
property. Similarly, a Γ-ss premouse can be considered a minimal premouse
with a Γ-Woodin which is closed under LpΓ and has an inaccessible cardinal
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above its Γ-Woodin. The existence of a Γ-suitable (or Γ-ss) premouse is not
any stronger than the existence of a premouse with a Γ-Woodin cardinal.
For suppose N = LpΓ(N |δ), δ is Woodin in N , and no ξ < δ is a Γ-
Woodin of N . If Q ▷ N , ρ(Q) ≤ δ, Q is δ-sound, and a set definable over
Q witnesses that δ is not Woodin, then Q must have a Γ-Woodin cardinal
above δ. Otherwise, Q would be iterable by Q-structures in ∆Γ and hence
in LpΓ(N |δ). Then we may build a Γ-suitable (Γ-ss) premouse by closing
under LpΓ as many times as is necessary, since this will never construct a
Γ-Woodin.

Definition 2.30. Let A ⊆ R, N a countable premouse, η an uncountable
cardinal of N , and τ ∈ NCol(ω,η). We say that τ weakly captures A over
N if whenever g is Col(ω, η)-generic over N , τ [g] = A ∩N [g].

Lemma 2.31. Suppose B is a self-justifying system and N and M are
transitive models of enough of ZFC such that N ∈M . Let C be a comeager
set of Col(ω,N) generics over M and suppose for each B ∈ B there is a
term τB ∈ M such that if g ∈ C, then τB [g] = B ∩M [g]. Let π : M̄ → M
be elementary with {N}∪{τB : B ∈ B} ⊂ ran(π). Let (N, τB) = π(N̄ , τ̄B).
Then whenever g is Col(ω, N̄)-generic over M̄ , τ̄B [g] = B ∩ M̄ [g].

See Lemma 3.7.2 of [SS].
Let β′ be the least ordinal greater than α0 such that there is a scale for a

universal Π1(Jα0
(R)) set definable over Jβ′(R). By Theorem 2.4, β′ = β0

or β′ = β0 + 1 and there is a self-justifying system G = {Gn : n ∈ ω} such
that

G0 = {(x, y) :x codes some transitive set a and y codes an ω-sound

a-premouse R such that R projects to a and R has an

ω1-iteration strategy in ∆},

and G is contained in OD<β′
(z) for some z ∈ R. Note G0 ∈ Γ, by part 3 of

Remark 2.5. In fact, G0 is a universal Γ-set (we will not need this property
specifically for G0, but we will use that G contains some universal Γ-set).

For ease of notation, assume G ⊂ OD<β′
.

Definition 2.32. Suppose B ⊂ R, N is a premouse, and η is a cardinal
of N . Let τNB,η be the set of pairs (σ, p) ∈ N such that

1. σ is a Col(ω, η)-standard term for a real,
2. p ∈ Col(ω, η), and
3. for comeager many g ⊂ Col(ω, η) which are Col(ω, η)-generic over N

such that p ∈ g, σ[g] ∈ B.

For n ∈ ω, let τNn,η = τNGn,η
and if N has a Woodin cardinal let τNn = τNn,δN .

Lemma 2.33. Suppose N is a Γ-suitable or Γ-ss premouse, z ∈ N , B ∈
OD<β′

(z), and η is a cardinal of N . Then τNB,η is in N .
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See the proof of Lemma 3.7.5 of [SS]. In Lemma 5.4.3 of [SS], Lemma
2.31 is used to show:

Lemma 2.34 (Woodin). Suppose z ∈ R, N is a Γ-suitable (or Γ-ss) z-
premouse, and B is a sjs containing a universal Σ1(Jα0

(R))-set such that

each B ∈ B is OD<β′
(z). Suppose π : M → N is Σ1-elementary and for

every B ∈ B and η ≥ δN , τNB,η ∈ range(π). Then

1. M is Γ-suitable (Γ-ss) and
2. π(τMB,η̄) = τNB,η, where η̄ is such that π(η̄) = η.

As a result of Lemmas 2.31 and 2.33 we have:

Corollary 2.35. If N is Γ-suitable or Γ-ss and η is an uncountable
cardinal of N , then τNn,η weakly captures Gn.

Definition 2.36. Let T be a normal iteration tree on a Γ-suitable (or
Γ-ss) premouse N . Suppose also T is below δN . Say T is Γ-short if for
all limit ξ ≤ lh(T ), LpΓ(M(T ↾ ξ)) |= δ(T ↾ ξ) is not Woodin. Otherwise,
say T is Γ-maximal.

Definition 2.37. Let N be a Γ-suitable (Γ-ss) premouse with an (ω1, ω1)-
iteration strategy Σ. Say Σ is fullness-preserving if whenever P is an iterate
of N by Σ via an iteration below δN , then

1. if the branch to P does not drop, then P is Γ-suitable (Γ-ss), and
2. if the branch to P does drop, then P has an ω1-iteration strategy in

Jα0(R).

Remark 2.38. Let N be a Γ-suitable (or Γ-ss) mouse with a fullness-
preserving iteration strategy Σ. Suppose P ◁ N |δN , and Σ′ is the iteration
strategy for P given by restricting the domain of Σ to trees on P . Suppose
T is an iteration tree on P according to Σ′. Then the branch b through
T chosen by Σ′ can be determined from Q(T ). And Q(T ) is the unique
M(T )-mouse projecting to ω with an iteration strategy in ∆. It follows
from Remark 2.5 and the uniqueness of Q(T ) that Σ′ is coded by a set in
∆.

Definition 2.39. Let T be a Γ-maximal iteration tree on a Γ-suitable
(or Γ-ss) premouse N and let b be a cofinal branch through T . Say b respects

G⃗n if iTb (τ
N
k,η) = τ

MT
b

k,ib(η)
for all k < n and every cardinal η of N above δN .

Definition 2.40. Let N be a Γ-suitable (or Γ-ss) mouse with a fullness-
preserving iteration strategy Σ. Say Σ is guided by G if whenever T is an
iteration tree according to Σ of limit length and b = Σ(T ), then

1. if T is Γ-short, then Q(b, T ) exists and Q(b, T ) ∈ LpΓ(M(T )), and

2. if T is Γ-maximal, then Σ(b) respects G⃗n for all n ∈ ω.



UNREACHABILITY OF INDUCTIVE-LIKE POINTCLASSES IN L(R) 15

Lemma 2.41. If N is Γ-suitable (or Γ-ss) and Σ is an iteration strategy
for N which is guided by G, then Σ is not in Γ.

Proof. There is n ∈ ω such that Gn is a universal Γc-set. Then y ∈ Gn
if and only if there exists a countable, complete iterate N∗ of N according
to Σ and g ∈ R which is Col(ω,R)-generic over N∗ such that y ∈ τN

∗

n [g].
Since Γ is closed under projection, if Σ were in Γ, Gn would also be in
Γ. ⊣

Theorem 2.42 (Woodin). For any x ∈ HC, there is a (unique) ω-
sound, Γ-suitable x-mouse Wx projecting to x with a (unique) iteration
strategy that is fullness-preserving, condenses well,4 and is guided by G.
Similarly, there is a (unique) ω-sound, Γ-ss x-mouse Mx projecting to x
with a (unique) iteration strategy that is fullness-preserving, condenses well,
and is guided by G.

Chapter 5 of [SS] demonstrates the existence of such a Γ-suitable mouse.
It is not difficult to see this gives the existence of the required Γ-ss mouse
as well.
For any Γ-suitable (or Γ-ss) premouse N and any n ∈ ω, let

γNn = HullN ({τNi : i < n}) ∩ δN .

The regularity of δN in N implies each γNn is an ordinal. Lemma 2.34
can be used to show:

Fact 2.43. ⟨γNn : n ∈ ω⟩ is cofinal in δN .

Lemma 2.44. Let T be a normal iteration tree on a Γ-suitable (or Γ-ss)

premouse N and let b and c be branches through T which respect G⃗n. Then

iTb ↾ γNn = iTc ↾ γNn . Moreover, if b and c both respect G⃗n for all n, then
b = c.

See Lemma 6.25 of [SW16].
Lemma 2.44 implies if b is the branch through T chosen by the nice

iteration strategy for a Γ-suitable premouse given by Theorem 2.42 and c

is any branch respecting G⃗n, then i
T
b and iTc agree up to γNn . In particular,

to track the iteration of a Γ-suitable mouse up to some point below its least
Woodin, it is sufficient to know finitely many of the sets in G.
Suppose M is a countable premouse with an (ω1, ω1 +1)-iteration strat-

egy.5 Together, the Comparison Lemma and the Dodd-Jensen Lemma
imply the collection of countable, complete iterates of M , together with
the iteration maps between them, forms a directed system.

4In the sense of Definition 5.3.7 of [SS].
5The suitable mice from Theorem 2.42 satisfy this. We only explicitly required these

to have (ω1, ω1)-iteration strategies, but since ZF + AD implies ω1 is measurable, an

(ω1, ω1)-iteration strategy induces an (ω1, ω1 + 1)-iteration strategy.



16 DEREK LEVINSON∗, ITAY NEEMAN∗, AND GRIGOR SARGSYAN†

[Ste95b] presents work of Steel and Woodin analyzing the direct limit
of all countable, complete iterates of M#

ω . This direct limit cut to its
least Woodin is (HOD||Θ)L(R). [SW16] goes further in showing that the
entire class HODL(R) is a strategy mouse. The iteration maps through
trees on M#

ω are approximated using indiscernibles, analogously to the
use of terms in Lemma 2.44. These approximations are merged to give
an ordinal definable definition of the direct limit in L(R). In particular,
initial segments of the direct limit maps are definable from finitely many
indiscernibles.
In place of M#

ω , we shall analyze the direct limit of a Γ-suitable mouse
and prove that portions of the direct limit maps are definable within a Γ-ss
mouse.
Our task is simpler in that we only need to reach up to δ+Γ , which we

show in Section 3.1 is below the least Woodin of our direct limit. So a single
approximation using only finitely many sets from G will suffice. Another
advantage we have is that there is no harm in working over a real parameter,
so we can work in a Γ-ss mouse over a real which codes W0. On the other
hand, we will have some extra work to do in Section 3.2 ensuring enough
information about Γ and G is definable in a Γ-ss mouse before we internalize
the directed system in Section 3.3.
[SW16] also makes use of the fact that the derived model of M#

ω is
essentially L(R). So for x ∈ M#

ω ∩ R, a Σ2
1 statement about x is true if

and only if it holds in the derived model of M#
ω . In particular, there is a

natural way to ask about Σ2
1 truth inside of M#

ω . A second, though minor,
inconvenience of having to use a Γ-suitable mouse is we cannot talk about
its derived model, since it only has one Woodin. Instead we will use the
fine-structural witness condition of [SS].

Remark 2.45. We can associate to any Σ1-formula ϕ a sequence of for-
mulas ⟨ϕk : k < ω⟩ such that for any ordinal γ and any real z, Jγ+1(R) |=
ϕ[z] ⇐⇒ (∃k)Jγ(R) |= ϕk[z]. Moreover, the map ϕ → ⟨ϕk : k < ω⟩ is
recursive.

Definition 2.46. Suppose ϕ(v) is a Σ1-formula and z ∈ R. A ⟨ϕ, z⟩-
witness is an ω-sound z-mouse N in which there are δ0 < ... < δ9, S, and
T such that N satisfies the formulae expressing

1. ZFC,
2. δ0 < ... < δ9 are Woodin,
3. S and T are trees on some ω× η which are absolutely complementing

in V Col(ω,δ9), and
4. For some k < ω, ρ[T ] is the Σk+3-theory (in the language with names

for each real) of Jγ(R), where γ is least such that Jγ(R) |= ϕk[z].
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Other than iterability, the rest of the properties of being a ⟨ϕ, z⟩-witness
are first order. The following two lemmas illustrate the usefulness of this
definition.

Lemma 2.47. If there is a ⟨ϕ, z⟩-witness, then L(R) |= ϕ[z].

Lemma 2.48. Suppose ϕ is a Σ1-formula, z ∈ R, γ is a limit ordinal,
and Jγ(R) |= ϕ[z]. Then there is a ⟨ϕ, z⟩-witness N such that the iteration
strategy for N restricted to countable trees is in Jγ(R). By taking a Skolem
hull, we can also ensure ρω(N) = ω.

§3. The Inductive-Like Case. In this section we will prove Theorem
1.12. We now assume ZF + AD + DC + V = L(R) and fix a boldface
inductive-like pointclass Γ. By a reflection argument, we may assume Γ ̸=
Σ2

1.
6

Let ∆ = ∆Γ and let [α0, β0], β
′, Γ, and G be as in Section 2.5. We will

also refer to the mouse operators x→Wx and x→Mx from Theorem 2.42
and use the notation for standard terms from Definition 2.32.
In Sections 3.1 through 3.3 we analyze the directed system of iterates of

a suitable mouse and show the directed system can be approximated inside
a larger suitable mouse. Section 3.4 covers some lemmas about the StrLe
construction inside a suitable mouse. Section 3.5 contains a lemma we will
use to obtain witnesses for Σ1 statements inside an initial segment of a
suitable mouse. Finally, Theorem 1.12 is proven in Section 3.6.
One of the key ideas to our proof of Theorem 1.12 is a different coding

than the one used in [Hjo96] and [Sar22]. In [Sar22], Σ1
2n+2 sets are coded

by conditions in the extender algebra at the least Woodin of some complete

iterate N of M#
2n+1. The reflection argument from [Hjo96] ensures a code

for each Σ1
2n+2 set appears below the least < δN -strong cardinal κN of

some iterate N (in fact it gives a uniform bound below κN ). But this
reflection argument depends upon the pointclass Σ1

2n+2 not being closed
under coprojection.
Our proof of Theorem 1.12 instead codes Γ-sets by sets of conditions

in the extender algebra of some Γ-suitable mouse N . A weaker reflection
argument than the one in [Hjo96] is used to contain each code in N |κN .

6Suppose the theorem fails for Γ = Σ2
1. Then an initial segment of L(R) satisfying a

large fragment of ZF + AD +DC satisfies this. Reflecting this gives an inital segment
N of L(R) below δ21 such that Γ′ = (Σ2

1)
N is an inductive-like pointclass in L(R) and N

satisfies that there exists a sequence of distinct Γ′ sets of length δΓ
+. Since N satisfies

enough of ZF +AD +DC + V = L(R), the proof that follows will give a contradiction

in N . In this case, the iteration strategy for the Γ′-suitable mouse used in the proof will
not be in N . But this does not effect the argument — it is enough that the strategy is

in L(R).
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This weaker reflection is sufficient for the proof.

3.1. The Direct Limit. Let W = W0 and let I be the directed sys-
tem of countable, complete iterates of W according to its (ω1, ω1)-iteration
strategy. Let M∞ be the direct limit of I. For M,N ∈ I and N an iterate
of M , let πM,N : M → N be the iteration map and πM,∞ : M → M∞ the
direct limit map. Here we demonstrate a few properties ofM∞. The proofs
of this section are generalizations of arguments in [Ste09] and [SW16] giving
analogous properties of the direct limit of all countable, complete iterates
of M#

ω .

Lemma 3.1. κM∞ ≤ δΓ
7

Proof. Suppose ξ < κM∞ . Let M ∈ I and ξ̄ ∈ M be such that
πM,∞(ξ̄) = ξ. Let P be an initial segment of M such that ξ̄ ∈ P and
the largest cardinal of P is both a cutpoint and a cardinal of M . The
iteration strategy Σ for P is in ∆ by Remark 2.38. Let IP be the directed
system of countable, complete iterates of P by Σ. Then ξ̄ is sent to ξ by the
direct limit map of this system, since the largest cardinal of P is a cutpoint
and a cardinal of M . So a prewellordering of height ξ is projective in Σ
and therefore δΓ > ξ. ⊣

Lemma 3.2. δM∞ > (δΓ)
+

Proof. Let Σ be the (ω1, ω1)-iteration strategy for W . Recall Σ is not
in Γ. We will show Σ is in S(δM∞)\S(δΓ+).

Claim 3.3. Σ is δM∞-Suslin.

Proof. Let T be a tree on (ω × ω) × δM∞ such that (x, y, f) ∈ [T ] if
and only if x codes a countable iteration tree S on W of limit length, y
codes a cofinal, wellfounded branch b through S, and f codes an embedding
π :MS

b →M∞ such that π ◦ iSb = πW,∞. Let Σ′ = ρ[T ].
If (x, y) ∈ Σ, then x codes an iteration tree S on W according to Σ and

y codes the cofinal, wellfounded branch b through S chosen by Σ. And
πMS

b ,∞
◦ iSb = πW,∞. So if f : ω → δM∞ codes the embedding πMS

b ,∞
, then

(x, y, f) ∈ [T ]. Thus (x, y) ∈ Σ′.
On the other hand, suppose (x, y) ∈ Σ′ and x codes an iteration tree S

according to Σ. Fix f : ω → δM∞ such that (x, y, f) ∈ [T ]. Let b be the
branch coded by y and π the embedding coded by f .

Subclaim 3.4. For all n, πS
b (τ

W
n ) = τ

MS
b

n .

Proof. Let Q ∈ I be such that range(π) ⊆ range(πQ,∞). Let π′ =

π−1
Q,∞ ◦π. Then π′ :MS

b → Q and π′(iSb (τ
W
n )) = τQn . Then by Lemma 2.34,

iSb (τ
W
n ) = τ

MS
b

n . ⊣

7In fact κM∞ = δΓ, but we don’t need this.
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From the subclaim and the last part of Lemma 2.44, we have that (x, y) ∈
Σ.
We can now characterize Σ as the set of (x, y) ∈ R× R such that

1. x codes an iteration tree S on W of limit length,
2. y codes a cofinal, wellfounded branch through S,
3. (x, y) ∈ Σ′, and
4. for any (x0, y0) ≤T x such that x0 codes a proper initial segment S0

of S of limit length and y0 codes the branch through S0 determined
by S, (x0, y0) ∈ Σ′.

Condition 4 is just to guarantee S is in the domain of Σ. It does so
because any proper initial segment S0 of S is coded by some real computable
from x. From this, and the preceding paragraphs, it is clear these conditions
characterize Σ. Since Σ′ is δM∞ -Suslin, this characterization of Σ makes
plain that Σ is also δM∞-Suslin. ⊣

Claim 3.5. Γ = S(δΓ).

Proof. First, let’s establish Γ is Suslin (we say a pointclass is Suslin if
it equals S(λ) for some cardinal λ). Let

Ω = {Σ1(Jγ(R)) : γ < α0 and γ begins a Σ1-gap}.
It follows from Theorem 2.7 that Γ is the minimal non-selfdual pointclass
closed under projection which contains every pointclass in Ω. Let

Ψ = {Σ1(Jγ(R)) ∈ Ω : Σ1(Jγ(R)) is Suslin}.
By Theorem 2.8, Ψ is cofinal in Ω. But the minimal Suslin pointclass
larger than any element of Ψ is just the minimal non-selfdual pointclass
closed under projection which contains every pointclass in Ω (by part 3 of
Theorem 2.8). Since Ψ is cofinal in Ω, this is Γ.
So Γ = S(λ) for some cardinal λ. By the Kunen-Martin Theorem, there

is a prewellordering of length λ in Γ but no prewellordering of length λ+.
The latter implies that λ ≥ δΓ, since δΓ is a limit cardinal,8 and since
there are prewellorderings of length α in Γ for all α < δΓ. The former
implies that λ ≤ δΓ, since there is no prewellordering of length δ+Γ in Γ
(Otherwise a proper initial segment of this prewellordering would be of
length δΓ, giving a prewellordering of length δΓ in ∆). So δΓ = λ. ⊣

By the previous two claims, Σ ∈ S(δM∞)\S(δΓ). In particular, δM∞ ≥ λ′

where λ′ is the next Suslin cardinal after δΓ.
9 But cof(λ′) = ω by part 3

of Theorem 2.8, so δM∞ ≥ λ′ > δ+Γ . ⊣

Lemma 3.6. Suppose µ < δM∞ is a regular cardinal of M∞. Then µ is
not measurable in M∞ if and only if µ has cofinality ω in L(R).

8See Theorem 7D.8 of [Mos09].
9In fact δM∞ = λ′, but we don’t need this.
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Proof. Suppose µ is not measurable in M∞. Fix M ∈ I and µ̄ such
that πM,∞(µ̄) = µ. Then µ̄ is regular but not measurable in M . Since
M is countable, there is a sequence of ordinals ⟨ξ̄n : n < ω⟩ cofinal in
µ̄. Let ξn = πM,∞(ξ̄n). Since µ̄ is regular and not measurable in M ,
πM,∞ is continuous at µ̄ (This is because πM,∞ is essentially an iteration

embedding — in fact it is an iteration embedding in V Col(ω,R). And any
iteration embedding is continuous at a cardinal which is regular but not
measurable, since ultrapower embeddings are continuous at such cardinals).
So ⟨ξn : n < ω⟩ is cofinal in µ.

Now suppose µ has cofinality ω in L(R). Let ⟨ξn : n < ω⟩ be cofinal
in µ. Fix M ∈ I such that there is µ̄ ∈ M and ⟨ξ̄n : n < ω⟩ ⊂ M with
πM,∞(µ̄) = µ and πM,∞(ξ̄n) = ξn. If µ is measurable in M∞, then there is
a total extender F on the fine extender sequence of M with critical point
µ̄. Let M ′ be the ultrapower of M by F and j : M → M ′ the embedding
induced by F . Then for any n < ω,

ξn = πM,∞(ξ̄n)

= πM ′,∞ ◦ j(ξ̄n)
= πM ′,∞(ξ̄n)

< πM ′,∞(µ̄)

< πM ′,∞ ◦ j(µ̄)
= µ.

So πM ′,∞(µ̄) is an upper bound for ξ̄n below µ, a contradiction. ⊣

3.2. Definability in Suitable Mice.

Lemma 3.7. Suppose N is a premouse satisfying enough of ZFC, ν is
a cardinal of N , LpΓ(a) ⊂ N for each a ∈ N |ν, and τ ∈ NCol(ω,ν) weakly
captures G0. Then the map with domain N |ν defined by a 7→ LpΓ(a) is
definable in N from τ .

Proof. Recall

G0 = {(x, y) :x codes some transitive set a and y codes an ω-sound

a-premouse R such that R projects to a and R has an

ω1-iteration strategy in ∆},

Fix a ∈ N |ν. If R is any set in N |ν and g is any Col(ω, ν)-generic over N ,
then there are reals x and y in N [g] coding a and R, respectively. It is easy
to see from this that LpΓ(a) is⋃

{R ∈ N : ∅ ⊩NCol(ω,ν) (∃x, y)[(x, y) ∈ τ ∧ x codes a ∧ y codes R]}.

⊣
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Corollary 3.8. If P is Γ-ss, then the map with domain P |νP defined
by a 7→ LpΓ(a) is definable in P from τP0,νP .

Proof. It is clear from Remark 2.18 and Corollary 2.35 that P and
τP0,νP satisfy the conditions of Lemma 3.7. ⊣

Lemma 3.9. Suppose P is Γ-ss and N ∈ P |νP is Γ-suitable. Then
{τNn,µ : µ is an uncountable cardinal of N} is definable in P from N and

τPn,νP (uniformly in P and N).

Proof. Let µ be an uncountable cardinal of N .
Note if g is Col(ω, νP )-generic over P and f ∈ P is a surjection of νP

onto µ, then f ◦g is P -generic for Col(ω, µ). In particular, f ◦g is N -generic
for Col(ω, µ). Fix such an f which is minimal in the constructibility order
of P . Let

τn,µ = {(σ, p) : σ is a Col(ω, µ)-standard term for a real, p ∈ Col(ω, µ),

and ∅ ⊩PCol(ω,νP ) (p̌ ∈ f̌ ◦ ġ → σ̌[f̌ ◦ ġ] ∈ τPn,νP )}

It is clear that τn,µ is definable in P from N , µ, and τPn,νP . It suffices to

show τn,µ = τNn,µ.

τn,µ ⊆ τNn,µ by Definition 2.32 and that comeager many h ⊂ Col(ω, µ)
which are generic overN are of the form f◦g for some g which is Col(ω, νP )-
generic over P .

On the other hand, suppose (σ, p) ∈ τNn,µ. By Corollary 2.35, σ[h] ∈ Gn
for any h which is Col(ω, µ)-generic over N such that p ∈ h. In particular,
σ[f ◦ g] ∈ τPn,νP [g] for any g which is Col(ω, νP )-generic over P such that
p ∈ f ◦ g. Thus (σ, p) ∈ τn,µ. ⊣
We will also need versions of Corollary 3.8 and Lemma 3.9 in generic

extensions of Γ-ss mice.

Lemma 3.10. Suppose B ⊆ R, P is a premouse, δ is Woodin in P ,
µ ≥ δ, τ ∈ PCol(ω,µ) weakly captures B over P , and y is EaP -generic
over P . Then there is τ ′ ∈ P [y]Col(ω,µ) which weakly captures B over P [y].
Moreover, τ ′ is definable in P [y] from τ and y (uniformly).

Proof. Col(ω, µ) is universal for pointclasses of size µ. So there is a
complete embedding Φ : Eap × Col(ω, µ) → Col(ω, µ).10 If g is Col(ω, µ)-
generic over P , let (yg, fg) be the EaP ×Col(ω, µ)-generic consisting of all
conditions (p, q) ∈ EaP ×Col(ω, µ) such that Φ((p, q)) ∈ g (see Chapter 7,

10In the sense of Definition 7.1 of Chapter 7 of [Kun83].
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Theorem 7.5 of [Kun83]). Let

τ∗ = {(σ, (p, q)) :σ is an EaP -term for a Col(ω, µ)-standard term

for a real, (p, q) ∈ EaP × Col(ω, µ), and

Φ((p, q)) ⊩PCol(ω,µ) σ[yg][fg] ∈ τ [g]}.

Claim 3.11. For any (y, f) which is EaP × Col(ω, µ)-generic over P ,
τ∗[y][f ] = B ∩ P [y][f ].

Proof. Suppose x ∈ τ∗[y][f ]. x = σ[y][f ] for some (σ, (p, q)) ∈ τ∗ such
that p ∈ y and q ∈ f . Let g be Col(ω, µ)-generic such that yg = y and
fg = f . In particular, Φ((p, q)) ∈ g. Then P [g] |= σ[yg][fg] ∈ τ [g]. Since
x = σ[yg][fg] and τ [g] = B ∩ P [g], x ∈ B ∩ P [g].

Now suppose x ∈ B ∩ P [y][f ]. Let σ be an EaP -term for a Col(ω, µ)-
standard term for a real such that x = σ[y][f ].⋃

Φ′′{(p, q) : (p, q) ∈ y× g} is a function g1 : S → µ for some S ⊆ ω. Let

Q = {r ∈ Col(ω, µ) : domain(r) ∩ S = ∅}
(Q is the quotient of Col(ω, µ) by g1). Let g2 be Q-generic over P [g1].
Then g = g1 ∪ g2 is Col(ω, µ)-generic over P .
We have x ∈ τ [g]. Pick s ∈ g such that s ⊩PCol(ω,µ) σ[yg][fg] ∈ τ [g].

s = r1 ∪ r2 for some r1 ∈ g1 and r2 ∈ g2.

Subclaim 3.12. r1 ⊩PCol(ω,µ) σ[yg][fg] ∈ τ .

Proof. Suppose not. Then there is g′2 which is Q-generic over P [g1]
such that, letting g′ = g1 ∪ g′2, σ[yg′ ][fg′ ] /∈ τ [g′]. σ[yg′ ][fg′ ] = x, since yg
and fg depend only on g ↾ S. But then x ∈ (B ∩P [g′])\τ [g′], contradicting
that τ weakly captures B. ⊣
Pick p ∈ y and q ∈ f such that Φ((p, q)) extends r1. Then (σ, (p, q)) ∈ τ∗.

So x ∈ τ∗[y][f ]. ⊣
Let

τ ′ = {(σ[y], q) : ∃p ∈ y such that (σ, (p, q)) ∈ τ∗}.
τ ′ is definable in P [y] from τ and y. It is clear from Claim 3.11 that τ ′

weakly captures B over P [y]. ⊣

Lemma 3.13. Let P be Γ-ss and y be EaP -generic over P . Then for any
a ∈ P [y], LpΓ(a) ⊂ P [y].

Proof. Let N be a Γ-suitable mouse built over P . N has a Woodin
cardinal δN above δP . The iteration strategy for any proper initial segment
of N |δN restricted to trees above δP is in ∆. And no initial segment of
N above δN projects strictly below δN . It follows that any cardinal of P
remains a cardinal in N . In particular, δP remains Woodin in N and y is
also EaP -generic over N .
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Suppose R is an ω-sound a-premouse with an ω1-iteration strategy in ∆
such that R projects to a. It suffices to show R ∈ P [y].
Let α be the height of R. Iterating N above R if necessary, we may

assume there is a real g which is Col(ω, δN )-generic over N such that some
real in N [y][g] codes R. By Lemma 3.10, there is a Col(ω, δN )-term τ in
N [y] which weakly captures G0. Then R is the unique premouse in N [y][g]
of height α such that if xa codes a and xR codes R, then (xa, xR) ∈ τ [g].
By homogeneity of the forcing, for any g′ which is Col(ω, δN )-generic over
N , there is a premouse R′ ∈ N [y][g′] of height α and reals xa and xR′

in N [y][g′] coding a and R′, respectively, such that (xa, xR′) ∈ τ [g′]. The
uniqueness of R implies R ∈ N [y]. Since R is coded by a subset of a,
R ∈ P [y]. ⊣

Corollary 3.14. If P is Γ-ss and y is EaP -generic over P , then the
map with domain P [y]|νP defined by a 7→ LpΓ(a) is definable in P [y] from
τP0,νP and y (uniformly in P and y).

Proof. P [y] is LpΓ-closed by Lemma 3.13. Then by Lemma 3.7, the
map a → LpΓ(a) with domain P [y]|νP is definable from any term τ ∈
P [y]Col(ω,νP ) which weakly captures G0 over P [y].
Lemma 3.10 shows there is a term τ ∈ P [y]Col(ω,νP ) which weakly cap-

tures G0 over P [y] and is definable from τP0,νP and y in P [y]. ⊣

Corollary 3.15. Suppose P is Γ-ss, y is EaP -generic over P , and N ∈
P [y]|νP is Γ-suitable. Then {τNn,µ : µ is an uncountable cardinal of N} is

definable in P [y] from N , y, and τPn,νP (uniformly in P , y, and N).

Proof. This is by the proof of Lemma 3.9, using from Lemma 3.10 that
there is a term in P which weakly captures Gn over P [y] and is definable
from τPn,νP and y. ⊣

3.3. Internalizing the Direct Limit. Let x0 ∈ R be any real which
is Turing above some real coding W and consider some M which is a
countable, complete iterate of Mx0

. For elements of M |νM , being a Γ-
suitable premouse, a Γ-short iteration tree, or a Γ-maximal iteration tree is
definable over M from τM0,νM (This follows easily from Corollary 3.8). Let

IM = {P ∈M |νM : P ∈ I}.

Lemma 3.16. Let T ∈ M |νM be a Γ-short tree on some Γ-suitable P ∈
M . Then the branch b picked by the iteration strategy for P is in M and
b is definable in M from T and τM0,νM (uniformly). In particular, MT

b and

the iteration map iTb : P →MT
b are definable in M from T and τM0,νM .

Proof. Let g be Col(ω, νM )-generic over M . Note b is the unique
branch through T which absorbs Q(T ). So by Shoenfield absoluteness,



24 DEREK LEVINSON∗, ITAY NEEMAN∗, AND GRIGOR SARGSYAN†

b ∈ M [g] (in M [g] the existence of such a branch is a Σ1
2 statement about

reals). But b is independent of the generic g, so b ∈M .
It then follows from Corollary 3.8 that b, and therefore also MT

b and iTb ,
are definable in M from τM0,νM . ⊣

Corollary 3.17. Suppose P ∈ IM and Σ is the iteration strategy for
P . Suppose also T ∈ M |νM is an iteration tree on P below δP of limit
length. Whether T is according to Σ is definable in M from parameter
τM0,νM by a formula independent of T and the choice of Γ-ss mouse M .

Lemma 3.18. Suppose P,Q ∈ IM . Then there is R ∈ IM and normal
iteration trees T and U on P and Q, respectively, such that

1. T realizes R is a complete iterate of P ,
2. U realizes R is a complete iterate of Q,
3. T ↾ lh(T ) ∈M |νM ,
4. U ↾ lh(U) ∈M |νM , and
5. R is definable in M from P , Q, and τM0,νM (uniformly).

Proof. We perform a coiteration of P and Q inside M . Suppose so far
from the coiteration we have obtained iteration trees T and U on P and
Q, respectively.

Suppose T and U have successor length. Let P ′ and Q′ be the last models
of T and U , respectively. First consider the case P ′ ⊴ Q′ or P ′ ⊴ Q′. If
either is a proper initial segment of the other, or there are any drops on
the branches to P ′ or Q′, we have violated the Dodd-Jensen property. So
P ′ = Q′ and P ′ is a common, complete iterate of P and Q. Otherwise,
we continue the coiteration as usual by applying the extender at the least
point of disagreement between the last models of T and U , respectively.

Now suppose T and U are of limit length. In this case M(T ) = M(U).
If T is Γ-short, so is U , and by Lemma 3.16, M can identify the branches
the iteration strategies for P and Q pick through T and U , respectively.
So the coiteration can be continued inside M . Otherwise, T and U are
Γ-maximal. In this case let R be the unique Γ-suitable mouse extending
M(T ). R is just the result of applying LpΓ to M(T ) ω times, so M can
identify R by Lemma 3.7. Then R is a complete iterate of P and Q.

The proof of the Comparison Lemma gives the coiteration terminates
in fewer than νM steps. Then the argument above implies the trees from
this coiteration, without their last branches, are in M |νM and definable in
M . ⊣

The lemma implies IM is a directed system. IM is countable and con-
tained in I, so we may define the direct limit HM of IM , and HM ∈ I.
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Let

ĨM = {P ∈ IM : there is a normal iteration tree T such that T realizes

P is a complete iterate of W and T ↾ lh(T ) ∈M |νM}.

. ĨM is definable in M by Corollary 3.17.

Lemma 3.19. ĨM is cofinal in IM . In particular, the direct limit of ĨM
is HM .

Proof. Suppose P ∈ IM . By Lemma 3.18, there is R ∈ IM which
is a common, complete, normal iterate of both P and W by trees which
are in M (modulo their final branches). Then R is below P in IM and

R ∈ ĨM . ⊣
Lemma 3.20. Suppose P ∈ IM . Let Σ be the (unique) iteration strategy

for P . Suppose T ∈ M |νM is an iteration tree on P according to Σ. Let
b = Σ(T ) and let Q = MT

b . Then Q is definable in M from T and τM0,νM .

And πP,Q ↾ γPn is definable in M from T and ⟨τMk,νM : k < n⟩ (uniformly).

Proof. If T is Γ-short, then this is by Lemma 3.16.
Suppose T is Γ-maximal. Then Q =

⋃
i<ω Qi, where Q0 = M(T ) and

Qi+1 = LpΓ(Qi). So Q is definable from M(T ) and τM0,νM by Corollary 3.8.

And πP,Q ↾ γPn = πc ↾ γPn , where c is any branch through T respecting G⃗n.

The argument of Lemma 3.16 shows there is a branch c inM respecting G⃗n.
Then πP,Q ↾ γPn = πc ↾ γPn for any wellfounded branch c ∈ M through T
such that πc(⟨τPk : k < n⟩) = ⟨τQk : k < n⟩. ⟨τPk : k < n⟩ and ⟨τQk : k < n⟩
are definable in M from P , Q, and ⟨τMk,νM : k < n⟩ by Lemma 3.9. So

πP,Q ↾ γPn is definable in M from T and ⟨τMk,νM : k < n⟩. ⊣
It follows from the previous lemmas that for any P ∈ IM , πP,HM ↾ γPn

is definable in M from P and ⟨τMk,νM : k < n⟩ (uniformly in M). The same

lemmas hold in M [y] for y EaM -generic over M . In particular, we have:

Lemma 3.21. Suppose y is EaM -generic over M and P ∈ I ∩M [y]|νM .
Let Σ be the (unique) iteration strategy for P . Suppose T ∈M [y]|νM is an
iteration tree on P according to Σ. Let b = Σ(T ) and let Q = MT

b . Then
Q is definable in M [y] from T and τM0,νM . And πP,Q ↾ γPn is definable in

M [y] from T and ⟨τMk,νM : k < n⟩ (uniformly). Moreover, the definition is
independent not just of the choice of Γ-ss mouse M , but also of the generic
y.

Lemma 3.22. Suppose p ∈ EaM and Ṡ is an EaM -name in M |νM such

that p ⊩EaM “Ṡ is a complete iterate of W .” Then there is R ∈ ĨM such
that R is a complete iterate of S[y] for every y ∈ R which is EaM -generic
over M . Moreover, we can pick R such that R is (uniformly) definable in

M from parameters Ṡ and p.
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Proof. Let P be the finite support product Πj<ωPj , where each Pj is
a copy of the part of EaM below p. Let H be P-generic over M . We
can represent H as Πj<ωHj , where Hj is Pj-generic over M . Let Ṡj be a

P-name for Ṡ[Hj ]. Let Sj = Ṡj [H] for j ∈ ω and S−1 =W .
Lemma 3.21 tells us thatM [H] can perform the simultaneous coiteration

of all of the Sj for j ∈ [−1, ω) (except possibly finding the last branches).
The proof of the Comparison Lemma gives that this coiteration terminates
after fewer than νM steps. Let Rj be the last model of the iteration tree
on Sj produced by the coiteration. Since each Sj is a complete iterate of
W , the Dodd-Jensen property implies there are no drops on the branches
from Sj to Rj and Rj = Ri for all i, j ∈ [−1, ω). Let R = Rj for some
(equivalently all) j ∈ [−1, ω). Then R is a complete iterate of M and R is
a complete iterate of Sj for each j ∈ ω. Let U be the iteration tree on W
from the coiteration.

Claim 3.23. R is independent of the choice of generic H.

Proof. Code R by a set of ordinals X contained in νM . Let Ẋ be a
name for X. If R is not independent of H, then there is α < νM and
q1, q2 ∈ P such that q1 ⊩ α̌ ∈ Ẋ and q2 ⊩ α̌ /∈ Ẋ.
Let N > max(support(q2)). Let q̄1 be the condition q1 shifted over by

N — that is, support(q̄1) = {j ∈ [N,ω) : j − N ∈ support(q1)} and for
j ∈ support(q̄1), q̄1(j) = q1(j − N). So q̄1 is compatible with q2 and by

symmetry, q̄1 ⊩ α̌ ∈ Ẋ. But then there is r ≤ q2, q̄1 which forces both
α̌ ∈ Ẋ and α̌ /∈ Ẋ. ⊣

Claim 3.24. U ↾ lh(U) is independent of the choice of generic H.

Proof. The same proof as in Claim 3.23 works. ⊣
Claim 3.23 implies R ∈M |νM and R is a complete iterate of S[y] for any

y which is EaM -generic over M . Claim 3.24 gives that U ↾ lh(U) ∈M |νM
and thus R ∈ ĨM . ⊣

3.4. The StrLe Construction. Recall the mouse operator x → Mx

defined in Section 2.5. In the following lemmas let z, x ∈ R be such that
z ∈Mx and let M =Mx.

Lemma 3.25. Suppose P = StrLe[M, z]. Then P is Γ-ss and δP = δM .

Proof. Let δ = δM . By Lemma 2.24, the cardinals of P above δ are the
same as the cardinals of M and νM is inaccessible in P . Any inaccessible
of P above δ is inaccessible in M , since M is a generic extension of P by
a δ-c.c. forcing. In particular, νM is the unique inaccessible of P above δ.
Then it suffices to show the following claim.

Claim 3.26. (a) If η < δ, then LpΓ(P |η) ◁ P .
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(b) δ is a Γ-Woodin of P . That is, δ is Woodin in LpΓ(P |δ).
(c) If η ∈ P and η ≥ δ, then P |(η+)P ⊴ LpΓ(P |η).
(d) P |= δ is Woodin.
(e) If η < δ, η is not Woodin in LpΓ(P |η).
(f) If η ∈ P and δ ≤ η, then LpΓ(P |η) ⊆ P .

Proof. To prove (a), it suffices to show if η < δ, R ◁ LpΓ(P |η), and
ρω(R) = η, then R◁P . Coiterate R against Le[M, z]. Suppose T and U are
the iteration trees on R and Le[M, z], respectively, from the coiteration.
T is above η because Le[M, z]|η = R|η and η is a cutpoint of R. Let
λ < lh(T ) be a limit ordinal and Q = Q(T ) = Q(U). Since R ∈ LpΓ(P |η)
and T is above η, Q ∈ LpΓ(M(T )). [0, λ]T and [0, λ]U are the unique
branches through T and U , respectively, which absorb Q. By Corollary
3.8, these branches can be identified in M . In particular, the coiteration of
R and Le[M, z] can be performed inM . Theorem 2.21 gives that R cannot
outiterate Le[M, z]. Then since R is ω-sound, R projects to η, and Le[M, z]
does not project to η, R is a proper initial segment of Le[M, z]|(η+)Le[M,z].
Le[M, z] agrees with P up to δ, so R ◁ P .
(b) is by the proof of Theorem 11.3 of [MS17]. For (c), the iteration

strategies for initial segments of P |(η+)P restricted to iteration trees above
δ are in ∆ by Fact 2.25. (d) is immediate from (b) and (c). See Sublemma
7.4 of [SW16] for a proof of (e).
Towards (f), let Q = LpΓ(P |η). Let P be the extender algebra in P at δ

with δ generators. M |δ is P-generic over P . Note δ is Woodin in Q by (b).
In particular, P is also δ-c.c. in Q, so any antichain of P in Q is also in P
and M |δ is also P-generic over Q.

Let B ∈ LpΓ(P |η). B is in M = P [M |δ] since P |η is in M and M is

closed under LpΓ. So let Ḃ be a P-name in P such that Ḃ[M |δ] = B.

Choose p ∈ P such that p ⊩QP Ḃ = B̌.
Any G which is P-generic over P is also P-generic over Q. So for any G

which is P-generic over P such that p ∈ G, Ḃ[G] = B. But then B is in P ,

since B = {ξ < δ : p ⊩PP ξ̌ ∈ Ḃ}.11 ⊣
⊣

Lemma 3.27. Suppose P = StrLe[M, z]. Let µ ≥ δP be a cardinal of P .
τPn,µ is definable in M from τMn,µ and z.

Proof. Let

τ = {(σ, p) ∈ P : σ is a Col(ω, µ)-standard term for a real, p ∈ Col(ω, µ),

and p ⊩MCol(ω,µ) σ ∈ P [ġ] ∩ τMn,µ}.

11Viewing B as a subset of δ.
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Since τMn,µ ∈M and P is definable overM from z, τ ∈M and is definable

from τMn,µ and z. Then it suffices to show the following claim.

Claim 3.28. τ = τPn,µ

Proof. Clearly τ ⊆ τPn,µ.
Suppose (σ, p) ∈ τ . Let C be the set of g which are Col(ω, µ)-generic over

M such that p ∈ g. For any g ∈ C, σ[g] ∈ τMn,µ[g]. In particular, σ[g] ∈ Gn.
Since C is comeager in the set of Col(ω, µ)-generics over P which extend p,
σ ∈ τPn,µ. ⊣

⊣
Lemma 3.29. Suppose P = StrLe[M, z]. The iteration strategy for P is

fullness-preserving and guided by G.
Proof. Let Σ be the (unique) iteration strategy for P . The proof of

Theorem 2.22 gives that Σ is determined by lifting an iteration on P to one
on M . More precisely, if T is a non-dropping12 iteration tree on P0 = P
with ⟨Pα⟩ the models of the iteration and iβ,α the associated iteration
maps for β <T α, then we maintain an iteration tree T ∗ on M0 =M with
models ⟨Mα⟩ and associated iteration embeddings i∗β,α. We also maintain

embeddings πα : Pα → StrLe[Mα, z] such that πα ◦ iβ,α = i∗β,α ◦ πβ and
π0 = id. In particular, πα ◦ i0,α = i∗0,α.

Suppose µ is a cardinal of P and µ > δP . By Lemma 3.27, i∗0,α(τ
P
n,µ) =

τ
StrLe[Mα,z]
n,µ for each n < ω. Then πα ◦ i0,α(τPn,µ) = τ

StrLe[Mα,z]
n,µ . Then

by Lemma 2.34, Pα is Γ-ss and πα(τ
Pα
n,µ) = τ

StrLe[Mα,z]
n,µ . This gives Σ is

fullness-preserving. A second application of Lemma 2.34 gives i0,α(τ
P
n,µ) =

τPα
n,µ. So Σ is guided by G. ⊣
Corollary 3.30. Suppose P = StrLe[M, z]. Then the ω1-iteration

strategy for P is not in Γ.

Proof. Immediate from Lemmas 2.41 and 3.29. ⊣
Lemma 3.31. Suppose x, z ∈ R and x codes a mouse N which is a com-

plete iterate of Mz. Let P = StrLe[Mx, z]. Then P is a complete iterate
of N below δN .

Proof. Coiterate N and P . Let T and U be the iteration trees on N
and P , respectively, from the coiteration. Let N∗ and P ∗ be the last models
of T and U , respectively.
Suppose P outiterates N . One possibility is that there is a drop on the

branch of T from P to P ∗. Since the iteration strategy for P is fullness-
preserving by Lemma 3.29, P ∗ has an ω1-iteration strategy in ∆. But the

12We leave to the reader the task of proving the case where T drops, as well as

showing that Σ condenses well.
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strategy for N is fullness-preserving and guided by G. So N∗ cannot have
an iteration strategy in ∆, contradicting that N∗ ⊴ P ∗.
If there is no drop between P and P ∗, then N∗ ◁ P . Since neither side

of the coiteration drops, N∗ and P ∗ are both Γ-ss. But no Γ-ss mouse can
have a proper initial segment which is Γ-ss.
An identical argument shows N cannot outiterate P . Thus N∗ = P ∗ and

T and U realize N∗ and P ∗ are complete iterates of N and P , respectively.
Since there are no total extenders on N above δN , T is below δN . Simi-
larly, U is below δP . Then stationarity of the Mitchell-Steel construction13

implies that P ∗ = P . So T realizes that P is a complete iterate of N . ⊣

3.5. A Reflection Lemma. In this section we prove a lemma that any
Σ1 statement true in Mx also holds in some N ◁Mx|κMx

with the property
that StrLe[N ]◁StrLe[M ]. A thorough reader not already familiar with the
fully-backgrounded Mitchell-Steel construction may wish to review Section
2.3 before proceeding. A lazy one may read the statement of Lemma 3.35
and skip to Section 3.6.
First, we need to show Mx can compute the iteration strategies of its

own initial segments below its Woodin cardinal. More precisely, we have:

Lemma 3.32. Let x ∈ R, N ◁Mx|δMx
and T ∈ Mx be an iteration tree

on N of limit length < δMx
, according to the (unique) iteration strategy for

N . The cofinal branch b through T determined by the iteration strategy for
N is definable in Mx (uniformly in N and T , from the parameter τMx

0,νMx
).

Proof. Let M = Mx. By Corollary 3.8, the function a 7→ LpΓ(a) with
domain M |δM is definable in M from the parameter τM0,νM .
Let N and T be as in the statement of the lemma. Let S = M(T ).

Clearly S is definable from T . Let Q = Q(T ). Q is an initial segment of
LpΓ(S). The previous paragraph implies Q is definable in M from S and
τM0,νM . The branch b through T chosen by the iteration strategy for N is
the unique branch which absorbs Q.
It remains to show b is in M . Iterate M to M ′ well above where T is

constructed to make some g generic over EaM
′

δM′ so that g codes b. M ′[g]

satisfies that b is the unique branch which absorbs Q. Since b is in fact the
unique such branch in V , symmetry of the forcing gives b is in M ′. But
the iteration from M to M ′ does not add any subsets of lh(T ), so in fact
b is in M . ⊣
We need to put down a few more properties of the Mitchell-Steel con-

struction before proving the main lemma of this section.

Lemma 3.33. Suppose N is a mouse with a Woodin cardinal δN . Let
z ∈ N ∩ R. There is a club C of τ < δN such that Le[N |δN , z]|τ = Mτ ,

13See e.g. 3.23 of [ST16].
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where Mτ is the Mitchell-Steel construction of length τ in N |δN . Moreover,
we can take C to be definable in N .

Proof. Let ⟨Mξ : ξ < δN ⟩ be the models from the Mitchell-Steel con-
struction of length δN over z, done inside N |δN . Let C ′ ⊂ δN be the set of
τ < δN such that Mτ has height τ and ρω(Mξ) ≥ τ whenever ξ is between
τ and the height of N . It is not hard to see from the material in Section
2.3 that C is a club and if τ ∈ C, then Mτ = Le[N |δN , z]|τ . ⊣

Corollary 3.34. Let N , z, and C be as in Lemma 3.33. Let S be the
set of inaccessibles of N below δN . Then Le[N |δN , z] =

⋃
τ∈C∩S Le[N |τ, z].

Proof. Since δN is Woodin in N , N |= “S is stationary.” And C is
definable in N , so C ∩ S is cofinal in δN . Since Le[N |δN , z] has height δN ,
Le[N |δN , z] =

⋃
τ∈C∩S Le[N |δN , z]|τ . So it suffices to show if τ ∈ C ∩ S,

then Le[N, z]|τ = Le[N |τ, z].
Let ⟨Mξ : ξ < δN ⟩ be the models from the Mitchell-Steel construction of

length δN over z, done inside N . τ ∈ C guarantees Le[N, z]|τ = Mτ . And
by Remark 2.23, τ ∈ S gives Mτ = Le[N |τ, z]. So Le[N, z]|τ = Le[N |τ, z]
for τ ∈ C ∩ S. ⊣

Lemma 3.35. Suppose Mx |= ϕ[⃗a, δMx
] for some Σ1 formula ϕ, z ∈ R ∩

Mx, and a⃗ ∈ R|⃗a| ∩Mx. Then there exists N ◁Mx|κMx such that

(a) N has one Woodin cardinal,
(b) δN is an inaccessible cardinal of Mx,
(c) N |= ϕ[⃗a, δN ], and
(d) StrLe[N, z] ◁ StrLe[Mx, z].

Proof. Denote Mx by M . For ease of notation we will assume z = 0.
Let µ be a cardinal of M above δM such that M |µ |= ϕ[⃗a].

Claim 3.36. There is a stationary set of τ < δM such that τ is inac-
cessible in M and if τ ≤ ζ < δM , then ζ is not definable in M |µ from
parameters below τ .

Proof. Work in M . Let S be the set of inaccessible cardinals below
δM . Since δM is Woodin, S is stationary. Define f : S → δM by setting
f(ζ) to be the least η such that there is ζ ≤ ι < δM definable in M |µ from
parameters in η. If the claim is false, then f is regressive on a stationary
set. Then by Fodor’s Lemma, there is a stationary set S0 and η < δM such
that f ′′S0 = {η}. But cof(δM ) > |η<ω| × ℵ0, so we cannot have cofinally
many elements of δM defined by some formula and parameters from η. ⊣

Fix τ as in Lemma 3.33 and Claim 3.36. Let H = HullM |µ(τ). Let N
be the transitive collapse of H and π : N →M |µ the anti-collapse map.
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By condensation, N ◁M |µ.14 Clearly N ◁M |δM , N |= ϕ[⃗a, δN ], τ is the
unique Woodin of N , τ is inaccessible in M , and ρω(N) = τ .

Claim 3.37. Le[N |τ ] ◁ Le[M |δM ]

Proof. For ζ < τ , Le[N |ζ] ◁ Le[N |τ ] ⇐⇒ Le[M |ζ] ◁ Le[M |δM ] by
elementarity. But Le[N |ζ] = Le[M |ζ] for ζ < τ . So if Le[N |ζ] is an initial
segment of Le[N |τ ], then it is also an initial segment of Le[M |δM ]. But this
implies Le[N |τ ] ◁ Le[M |δM ], since by Corollary 3.34, Le[N |τ ] is a union of
mice of the form Le[N |ζ] for ζ < τ . ⊣

We have found N ◁ M |δM satisfying (a), (b), (c), ρω(N) = δN , and
Le[N |δN ] ◁Le[M |δM ] (since δN = τ). Our next step is to reflect this below
κM . Let F be a total extender in M such that the strength of F is greater
than On ∩N . In particular, we have N ◁ Ult(M |δM , F ).

Claim 3.38. Le[N |τ ] ◁ Le[Ult(M |δM , F )].

Proof. τ is inaccessible in Ult(M |δM , F ). So by Remark 2.23, Le[N |τ ]
equals the Mitchell-Steel construction of length τ in Ult(M |δM , F ).
Suppose the claim fails. Then there is a mouse Q built during the

Mitchell-Steel construction in Ult(M |δM , F ) after Le[N |τ ] is constructed,
such that Q projects to some β < τ . Pick such a Q which minimizes β. By
Lemma 3.32, any initial segment of M below δM is iterable in M . Then M
has iteration strategies for Ult(P, F ) for any P ◁M |δM . Q is a mouse built
during the Mitchell-Steel construction in Ult(P, F ) for some P ◁M |δM , so
Q is also iterable in M . Let Q′ = Cω(Q). Then Q′ is an ω-sound mouse
over Le[N |τ ]|β projecting to β which is iterable in M . It follows from
Theorem 2.21 that Le[M |δM ] outiterates Q′. Since both extend Le[N |τ ]|β,
and Q′ is ω-sound and projects to β, Q′ ◁ Le[M |δM ]. But then since τ is
inaccessible in M , Le[M |τ ] has height τ , and Le[M |τ ] ◁ Le[M |δM ], Q′ is
in Le[M |τ ]. This is a contradiction, since a subset of β which is not in
Le[M |τ ] is definable over Q′. ⊣

By elementarity of the ultrapower embedding induced by F , there exists
N ◁M |κM satisfying (a), (b), (c), ρω(N) = δN , and Le[N |δN ] ◁ Le[M |δM ].
It remains to prove the following claim.

Claim 3.39. StrLe[N ] ◁ StrLe[M ].

Proof. Since N projects to δN , so does StrLe[N ] (by Lemma 2.24).
And StrLe[N ] agrees with StrLe[M ] up to δN since Le[N |δN ]◁Le[M |δM ].
So it suffices to show StrLe[M ] outiterates StrLe[N ]. But StrLe[N ] has
an iteration strategy in Γ, and StrLe[M ] cannot by Lemma 3.30. ⊣

⊣

14See Theorem 5.1 of [Ste09].
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3.6. Main Theorem. We are ready to prove Theorem 1.12. Suppose
for contradiction ⟨Aα|α < δ+Γ ⟩ is a sequence of distinct Γ sets. Let U ⊂
R× R be a universal Γ set.

Recall in Section 3.1 we defined I as the direct limit of all countable,
complete iterates of the Γ-suitable mouse W . Let J = {(P, ξ) : P ∈
I ∧ ξ < δP }. Say (P, ξ) ≤∗ (Q, ζ) if (P, ξ), (Q, ζ) ∈ J and whenever S is
a complete iterate of both P and Q, πP,S(ξ) ≤ πQ,S(ζ). By Lemma 3.2,

the relation ≤∗ has length > δ+Γ . Fix n such that for some (equivalently

any) P ∈ I, πP,∞(γPn ) > δ+Γ . Let ≤′
∗ be ≤∗ restricted to pairs (P, ξ)

such that ξ < γPn . Then ≤′
∗ has length ≥ δ+Γ and ≤′

∗ is in Jβ′(R).15 Let
Bα = {y : Uy = Aα}. By the Coding Lemma there is a set D in Jβ′(R) such
that (x, y) ∈ D implies x codes a pair in the domain of ≤′

∗ and y ∈ B|x|≤′
∗
,

and Dx is nonempty for all x in the domain of ≤′
∗.

Let z0 ∈ R be such that z0 codes W and D ∈ OD<β′
(z0). Let I ′ be

the directed system of all countable, complete iterates of Mz0 . Let M ′
∞

be the direct limit of I ′. For M,N ∈ I ′ and N an iterate of M , let
πM,N : M → N be the iteration map and πM,∞ : M → M ′

∞ the direct
limit map (We also used πM,N and πM,∞ for M,N ∈ I, but this should
not cause any confusion).
For M ∈ I ′, let τM = τMD,δM . There is a slight issue in that our current

definitions do not obviously guarantee that τM is moved correctly. That is,
we might have a complete iterate N ofM such that πM,N (τM ) ̸= τN . This
can happen because we defined the operator x 7→Mx so that Mx is guided
by G, but it is possible D /∈ G. There is no real issue here, since we can
expand G to a larger self-justifying system G′ such that D ∈ G′ and require
Mx be guided by G′. However, we should leave the operator x → Wx as
is, otherwise we risk altering our construction of D. This raises another
minor complication, because in Sections 3.2 and 3.3 we assumed our Γ-ss
mouse M was guided by the same self-justifying system as our Γ-suitable
mouse W . Fortunately, the results of those sections remain true so long as
G ⊆ G′, modulo increasing the number of terms required as parameters in
some of the lemmas. For simplicity, in what follows we will just assume
τM is moved correctly.

Definition 3.40. Say M ∈ I ′ is locally α-stable if there is ξ ∈ M such
that πHM ,∞(ξ) = α. Write αM for this ordinal ξ.

Definition 3.41. Say M ∈ I ′ is α-stable if M is locally α-stable and
whenever N ∈ I ′ is a complete iterate of M , πM,N (αM ) = αN .

Lemma 3.42. For any α < δ+Γ , there is an α-stable M ∈ I ′.

15This is done by similar arguments to those in Section 3.3.
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Proof. This is essentially the same as the proof of the analogous lemma
in [Sar22]. We will show for any P ∈ I ′, there is an iterate of P which is
α-stable.

Claim 3.43. For any P ∈ I ′, there is a countable, complete iterate R of
P which is locally α-stable

Proof. Fix S ∈ I and ζ ∈ S such that πS,∞(ζ) = α. Let R be a
countable, complete iterate of P such that S is EaR-generic over R.

Let Ṡ be an EaR-name for S such that ∅ ⊩REaR “Ṡ is a complete iterate

of W .” Applying Lemma 3.22 yields S′ ∈ IR which is a complete iterate
of S. Then

πHR,∞ ◦ πS′,HR ◦ πS,S′(ζ) = πS,∞(ζ)

= α.

In particular, α ∈ range(πHR,∞). ⊣
Now suppose no M ∈ I ′ is α-stable. Let ⟨Rj : j < ω⟩ be a sequence in

I ′ such that for all j, Rj is locally α-stable and Rj+1 is an iterate of Rj ,
but πRj ,Rj+1(αRj ) ̸= αRj+1 .

Claim 3.44. πRj ,Rj+1
(αRj

) ≥ αRj+1

Proof. By elementarity, πRj ,Rj+1 ↾ HRj is an embedding of HRj into

HRj+1 . Then the Dodd-Jensen property implies for any common, complete
iterate Q of HRj and HRj+1 ,

πHRj+1 ,Q ◦ πRj ,Rj+1
(αRj

) ≥ πHRj ,Q(αRj
).

Then

πHRj+1 ,∞ ◦ πRj ,Rj+1
(αRj

) ≥ πHRj ,∞(αRj
)

= α

= πHRj+1 ,∞(αRj+1).

So πRj ,Rj+1(αRj ) ≥ αRj+1 . ⊣
Let Rω be the direct limit of the sequence ⟨Rj : j < ω⟩. Let αj =

πRj ,Rω (αRj ). Claim 3.44 implies αj+1 < αj for all j, contradicting the
wellfoundedness of Rω. ⊣
Let A be a maximal antichain in EaM such that p ∈ A implies p forces

the generic ea is a pair (ea1, ea2), where ea1 codes a pair (Rea1 , ξea1) such
that there exists an iteration tree on W (according to the strategy for W )
with last model Rea1 and ξea1 < δRea1 .

16 Since EaM is δM -c.c., |A|M < δM .
Then the disjunction of conditions in A is also a condition in EaM . Pick
pM ∈ EaM to be the least condition in the constructability order of M

16This is first order by Corollary 3.14 and Lemma 3.21.
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which is the disjunction of conditions in some A as above, to ensure pM is
definable in M . pM is a maximal condition forcing the property above, in
that any condition p′ ∈ EaM which forces the same property is compatible
with pM .

Lemma 3.45. There is QM ∈ IM such that pM forces QM is a com-
plete iterate of Rea1 . Moreover, QM is definable in M from parameter pM

(uniformly in M).

Proof. Apply Lemma 3.22 to the condition pM and a name for Rea1 . ⊣

Definition 3.46. For α-stable M ∈ I ′, say p ∈ EaM is α-good if p
extends pM and p forces
1. πQ̌M ,HM ◦ πRea1 ,Q̌M (ξea1) = αM and

2. (ea1, ea2) ∈ τM .

Remark 3.47. If α < δ+Γ , being α-good is definable over α-stableM ∈ I ′

from αM , τM , and ⟨τMk,νM : k < n⟩ (uniformly in M). This follows from
Lemmas 3.20 and 3.21.

Let pMα be the maximal α-good condition in M which is least in the
construction of M . Note if M is α-stable and N is a complete iterate of
M , then πM,N (pMα ) = pNα .

For w ∈ R ∩ M and a Σ1 formula ψ(w), write M |= [ψ(w)] to mean
whenever g is Col(ω, δM )-generic over M , there is a proper initial segment
of M [g] which is a ⟨ψ′, g⟩-witness, where ψ′(x) is a formula expressing
“ψ(f(x))” for some computable function f such that f(g) = w. Note
“M |= [ψ(w)]” is Σ1 over M if M is iterable.
For α-stable M ∈ I ′, let SMα be the set of conditions q such that there

exist N, r ∈M satisfying

(a) N ◁M |κM ,
(b) N has one Woodin,
(c) δN is a cardinal of M ,
(d) q, r ∈ EaN and (q, r) ⊩NEaN×EaN [U(eal, ea

2
r)],

17 and

(e) r is compatible with pMα .

Let Sα = πM,∞(SMα ) for some (equivalently any) α-stable M ∈ I ′. Sα
can be viewed as an element of P (κM ′

∞
)M

′
∞ .

Let A′
α be the set of reals x such that for any α-stable M̄ ∈ I ′ there is

a countable, complete iterate M of M̄ and q ∈M satisfying

1. q ∈ SMα ,
2. x |= q, and
3. x is EaM -generic over M .

17Here by U we really mean some fixed Σ1-formula defining U in Jα0 (R).
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Lemma 3.48. A′
α = Aα

Corollary 3.49. α ̸= β=⇒Sα ̸= Sβ

Proof. Suppose Sα = Sβ . Let x ∈ Aα. Let M̄ ∈ I ′ be β-stable. There

is a countable, complete iterate M̂ of M̄ which is also α-stable. By Lemma
3.48, x ∈ A′

α, so there is a countable, complete iterate M of M̂ such that
q ∈ SMα , x |= q, and x is EaM -generic overM . M is also a complete iterate
of M̄ , so we have shown x ∈ A′

β . Applying Lemma 3.48 again, x ∈ Aβ .
Similarly, x ∈ Aβ =⇒x ∈ Aα, so Aα = Aβ and thus α = β. ⊣

It suffices to show Lemma 3.48. By the same proof as for M∞ given
in Lemma 3.1, κM ′

∞
≤ δΓ. Then by Corollary 3.49, we have δ+Γ distinct

subsets of δΓ in M ′
∞. Then the successor of δΓ in M ′

∞ is the successor of
δΓ in L(R), contradicting the following claim.

Claim 3.50. Let η = δΓ. Then (η+)M
′
∞ < (η+)L(R)

Proof. Let λ = (η+)M
′
∞ . Since λ is regular inM ′

∞ but not measurable,
Lemma 3.6 implies λ has cofinality ω in L(R).
Let f ∈ L(R) be a cofinal function from ω to λ. Let ⟨gξ : ξ < λ⟩ be a

sequence of functions in M ′
∞ such that gξ : η → ξ is a surjection. Such a

sequence exists because M ′
∞ satisfies AC. Then in L(R) we can construct

from f and ⟨gξ⟩ a surjection from η onto λ. ⊣
Proof of Lemma 3.48. First suppose x ∈ Aα. Let M̄ ∈ I ′ be α-

stable. Pick y ∈ R such that y = (y1, y2), D(y1, y2) holds, and |y1|≤∗ = α.
Let z be a real coding M̄ and let P =M⟨x,y,z⟩. Let S = StrLe[P, z0].

Claim 3.51. x and y are EaS-generic over S.18

Claim 3.52. S is a complete iterate of M̄ by an iteration below δM̄ .

Proof. See Lemma 3.31. ⊣

Claim 3.53. There is r ∈ EaS such that r is α-good and y |= r.

Proof. Note by choice of y, y1 codes a pair (R, ξ) such that R is a
complete iterate of W , πR,HS (ξ) = αS , and D(y1, y2) holds. Then there
is r ∈ EaS such that y |= r, r forces πQ̌S ,HS ◦ πRea1 ,Q̌S (ξea1) = αS , and

(ea1, ea2) ∈ τS . ⊣

Claim 3.54. There exist conditions q, r ∈ EaS such that x |= q, y |= r,
and (q, r) ⊩SEaS×EaS [U(eal, ea

2
r)].

Proof. By Claim 3.53, y satisfies some α-good condition r. Let y0 be
S[x]-generic such that y0 |= r. Then by the definition of α-good, y0 =

18This is a standard property of the fully-backgrounded construction - see Section 1.7

of [Sar22].
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(y10 , y
2
0) where (y10 , y

2
0) ∈ D and |y10 |≤∗ = α. It follows that Uy20 = Aα. So

x ∈ Uy20 .

Subclaim 3.55. S[x][y0] |= [U(x, y20)].

Proof. Let g be Col(ω, δS)-generic over S[x][y0]. Note S[x][y0][g] =
S[g] is a g-mouse. By the proof of Lemma 3.13, LpΓ(g) is contained in
S[g]. Let f be a computable function such that f(g) = (x, y20) and let
U ′(v) be a formula expressing U(f(v)) holds. By Lemma 2.48, there is a
⟨U ′, g⟩-witness which is sound, projects to ω, and has an iteration strategy
in ∆. Since LpΓ(g) ⊆ S[g], this witness is an initial segment of S[g]. ⊣

We have shown S[x][y0] |= [U(x, y20)] for any y0 which satisfies r and is
S[x]-generic. Thus there is q ∈ EaS such that x satisfies q and (q, r) ⊩
[U(eal, ea

2
r)]. ⊣

We next would like to find some N ◁ S|κS with the properties of S
we obtained above. Note Claims 3.51 and 3.54 are not first order over
S, since x and y are not in S. So a straightforward reflection argument
inside S will not suffice. The point of introducing P and obtaining S as a
construction inside P is that these claims are first order in P . The next
claim demonstrates we can perform a reflection in P to obtain the desired
initial segment of S.

Claim 3.56. There is N ◁ S|κS such that N has one Woodin, δN is an
inaccessible cardinal of S, x and y are generic for EaN , and there exist
q, r ∈ EaN × EaN such that x |= q, y |= r, and (q, r) ⊩ [U(eal, ea

2
r)].

Proof. By Claims 3.51 and 3.54, P satisfies

1. x and y are EaStrLe[P,z0]-generic over StrLe[P, z0] and
2. there exist conditions q, r ∈ StrLe[P, z0] such that x |= q, y |= r, and

(q, r) ⊩StrLe[P,z0]EaStrLe[P,z0]×EaStrLe[P,z0]
[U(eal, ea

2
r)].

Both properties are Σ1 over P in parameters x, y, z0, and δP . Then we
may apply Lemma 3.35 to obtain P ′ ◁ P |κP such that P ′ has one Woodin
cardinal, δP ′ is an inaccessible cardinal of P , StrLe[P ′, z0] ◁ S, and P ′

satisfies properties 1 and 2.
Let N = StrLe[P ′, z0]. Note δN = δP ′ is an inaccessible cardinal of

S. Then all the properties we required of N are apparent except that
N ◁ S|κS . Standard properties of the Mitchell-Steel construction imply
that κS ≥ κP .

19 Then N has cardinality less than κS in P , since N is
contained in P ′. Since also N ◁ S, we have N ◁ S|κS . ⊣
To get x ∈ A′

α, it remains to show the following claim.

19Suppose λ < δS = δP and E is an extender on the fine extender sequence of S
witnessing κS is λ-strong in S. Let E∗ be the background extender for E on the fine

extender sequence of P . Then E∗ witnesses κS is λ-strong in P .
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Claim 3.57. r is compatible with pSα.

Proof. By Claim 3.53, y satisfies some α-good condition p. We may
assume p extends r. p is α-good, so by maximality p is compatible with
pSα. Then r is compatible with pSα as well. ⊣

Now suppose x ∈ A′
α. Let M, q realize this (for whichever M̄ ∈ I ′ you

please) and let N, r realize q ∈ SMα . Let y be M [x]-generic for EaM such
that y |= r ∧ pMα . Since y |= pMα , y = (y1, y2) where Uy2 = Aα. Since
(x, y) |= (q, r), M [x][y] |= [U(x, y2)]. Let g ⊂ Col(ω, δM ) be M [x][y]-
generic. Then M [x][y][g] = M [g] has an initial segment R witnessing
U(x, y2). By taking the least such R, we may assume R projects to ω
and hence R ∈ LpΓ(g). It follows that x ∈ Uy2 = Aα. ⊣

§4. Remarks on Some Projective-Like Cases. Here we provide a
few brief comments on the problem of unreachability for projective-like
cases. Section 4.1 covers the projective pointclasses. In Section 4.2, we
discuss what appears to be the main obstacle to proving the rest of the
following conjecture.

Conjecture 4.1. Assume ZF+AD+DC+V = L(R). Suppose κ ≤ δ21
is a Suslin cardinal and κ is either a successor cardinal or a regular limit
cardinal. Then κ+ is S(κ)-unreachable.

4.1. The Projective Cases. In the introduction, we discussed a the-
orem of Sargsysan solving the problem of unreachability for the projective
pointclasses:

Theorem 4.2 (Sargsyan). Assume ZF + AD + DC. Then δ12n+2 is

Σ1
2n+2-unreachable.

Our technique for proving Theorem 1.12 gives another proof of Sargsyan’s
theorem, which we outline below. We will assume ZF +AD+DC for the
rest of this section.
Let W = M#

2n+1. Let I be the directed system of countable, complete
iterates of W and let M∞ be the direct limit of I.

Fact 4.3. κM∞ < δ12n+2 and δM∞ > (δ12n+2)
+.

The iteration strategy Σ for W is guided by indiscernibles, analogously
to how the iteration strategies for Γ-suitable mice are guided by terms for
sets in a sjs.20 [Sar13] covers this analysis of the iteration strategy for W

20More explicitly, for an appropriate sequence of indiscernibles ⟨vi : i < ω⟩, Σ is the
unique iteration strategy witnessing that W is strongly ⟨v0, .., vi⟩-iterable (in the sense

of [Sar13]) for every i < ω.
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in detail. Also analogously to Sections 3.2 and 3.3, inside an iterate M of

M#
2n+1(x0) for some x0 ∈ R coding W , we can form the direct limit HM of

countable iterates of W in M and approximate the iteration maps from W
to HM . This internalization is covered in [Sar22].
The following fact gives us an analogue of the notion of a ⟨ϕ, z⟩-witness.

Fact 4.4. There is a computable function which sends a Σ1
2n+2-formula

ϕ to a formula ϕ∗ = ϕ∗(u0, ..., u2n−1, v) in the language of mice such that
the following hold:

1. If x ∈ R, M is a countable, ω1 + 1-iterable x-premouse, M |= ZFC,
M has 2n Woodin cardinals δ0, ..., δ2n−1, ϕ is a Σ1

2n+2 formula, and
M |= ϕ∗[δ0, ..., δ2n−1, x], then ϕ(x) holds.

2. If x ∈ R, δ0, ..., δ2n−1 are the Woodin cardinals of M#
2n(x), ϕ is a

Σ1
2n+2 formula, and ϕ(x) holds, then a proper initial segment of M

above δ2n−1 satisfies ZFC and ϕ∗[δ0, ..., δ2n−1, x].

With these tools it is not difficult to adapt our proof of Theorem 1.12
into a proof of Theorem 4.2.
Here is a brief overview of the proof of Theorem 4.2 in [Sar22]. The

basis of this proof is also studying the directed system I ′ of countable

iterates of M#
2n+1(z0) for some z0 ∈ R. Suppose ⟨Aα : α < δ12n+2⟩ is

a sequence of distinct Σ1
2n+2 sets. Fix a Π1

2n+3\Σ1
2n+3 set A ⊂ ω. If

n ∈ A, this is witnessed in a proper initial segment of any M2n+1-like
Π1

2n+2-iterable premouse M . Then there is a Σ1
2n+3 set A′ ⊂ A consisting

of, roughly speaking, all n ∈ ω which are witnessed in such an M before
some x ∈ Aα is witnessed. There is n0 ∈ A′\A. This is witnessed in some
proper initial segment N̄M of M |κM for any M ∈ I ′. A coding set SM is
defined analogously to our coding sets in the proof of Theorem 1.12, but
with the additional requirement that the conditions appear below N̄M . The
coding sets are used to show a Σ1

2n+2 code for Aα is small generic over M .
The contradiction is obtained from this.
The technique described in the previous paragraph is a stronger argument

than the one we used for Theorem 1.12, since it gives coding sets which are
uniformly bounded below the least strong cardinal. It is not clear whether
a similar argument could work for inductive-like pointclasses. There is no
obvious analogue of the Π1

2n+3\Σ1
2n+3 set A for an inductive-like pointclass

Γ, since there is no universal Γ\Γc set of integers. So the proof from [Sar22]
is not applicable to inductive-like pointclasses. On the other hand, the tech-
niques of Section 3 are applicable to the projective pointclasses. And this
yields a substantially simpler proof of Theorem 4.2, since it eliminates the
need for a uniform bound on our coding sets.
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4.2. Mouse Sets and Open Problems. In this section we discuss
the relationship between the problem of unreachability and well-known
conjectures on mouse sets. We will assume ZF + AD +DC + V = L(R),
although this is overkill for some of the results stated below.

Definition 4.5. X ⊂ R is a mouse set if there is an ω1 + 1-iterable
premouse M such that X =M ∩ R.

Theorem 4.6 (Steel). Suppose Γ = Σ1
n+2 for some n ∈ ω. Then CΓ is

a mouse set.

Theorem 4.7 (Woodin). Suppose λ is a limit ordinal and let
Γ = {A ⊆ R : A is definable in Jβ(R) for some β < λ}. Then CΓ is a
mouse set.

See [Ste95a] and [Ste16] for proofs of Theorems 4.6 and 4.7, respectively.
[Ste16] also gives the following conjecture.

Conjecture 4.8 (Steel). Suppose Γ is a level of the (lightface) Levy
hierarchy.21 Then CΓ is a mouse set.

Conjecture 4.8 is a way of asking if there is a mouse corresponding exactly
to the pointclass Γ. For each Γ in the Levy hierarchy, the core model
induction constructs a mouse which contains CΓ, but in some cases the
mouse constructed is too large. For example, let J be the mouse operator
J(x) =

⋃
n<ωM

#
n (x). If Γ = Σn+2(J2(R)), then

MJ#

n ∩ R ⊊ CΓ ⊊MJ#

n+1 ∩ R.

There are many similar cases in which the mice constructed in [SS] skip
the (hypothesized) mouse realizing Conjecture 4.8. Recent progress has
been made towards Conjecture 4.8 in [Rud23], which resolves the case Γ =
Σ2(J2(R)).
The problem of unreachability is connected to a boldface version of Con-

jecture 4.8.

Conjecture 4.9. Suppose α ∈ ON and n ∈ ω. For x ∈ R, let Γx
consist of all pointsets A for which there is a Σn formula ϕ with parameter
x such that A = {y : Jα(R) |= ϕ[y]}. Then for any y ∈ R, there is x ∈ R
such that y ≤T x and CΓx is a mouse set.

Presumably a proof of Conjecture 4.8 would relativize, so a proof of
Conjecture 4.8 would also resolve Conjecture 4.9.

The mouse operator x 7→M#
2k(x) realizes Conjecture 4.9 holds for α = 1

and n = 2k + 2. To prove δ12n+2 is Σ1
2n+2-unreachable, we studied the

21I.e. Γ = Σn(Jα(R)) for some α ∈ On and n ∈ ω.
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direct limit of M = M#
2n+1(x0) for some x0 ∈ R. Note if g is Col(ω, δM )-

generic over M , then M [g] =M#
2n(g).

For α admissible, the mouse operator x 7→ Mx of Theorem 2.42 realizes
Conjecture 4.9 holds in the case n = 1. Note if g is Col(ω, δMx

)-generic
over Mx, then Mx[g] ∩ R = LpΓ(g) ∩ R = CΓ(g). So in the inductive-like
case as well we studied the direct limit of a mouse such that collapsing its
least Woodin yields a mouse realizing one case of Conjecture 4.9.
Thus for each pointclassΣn(Jα(R)) for which we have proven Conjecture

1.10 holds, we used a mouse operator realizing Conjecture 4.9 holds for α
and n. It seems likely a proof of Conjecture 4.1 would involve proving
Conjecture 4.9 for each α and n such that Σn(Jα(R)) = S(κ) for some
Suslin cardinal κ which is a successor cardinal or a regular limit cardinal.
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