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Abstract. In [Hjo96], Hjorth proved from ZF + AD + DC that there is no

sequence of distinct 33 sets of length 8%. [Sar22] extends Hjorth’s technique to

show there is no sequence of distinct E;H sets of length 6%,, Sargsyan conjectured

an analogous property is true for any regular Suslin pointclass in L(R) — i.e. if
is a regular Suslin cardinal in L(R), then there is no sequence of distinct x-Suslin
sets of length 1 in L(R). We prove this in the case that the pointclass S(k) is
inductive-like.

§1. Introduction.

DEFINITION 1.1. For a boldface pointclass T', we say A is I'-reachable if
there is a sequence of distinct T' sets of length A and X is T'-unreachable if
A is not I'-reachable.

The problem of unreachability is to determine the minimal A which is I'-
unreachable for each pointclass I'. As this problem is trivial assuming the
axiom of choice, unreachability is exclusively studied under determinacy
assumptions. Under AD, unreachability yields an interesting measure of
the complexity of a pointclass. An early result in this area is Harrington’s
theorem that there is no injection of w; into any pointclass strictly below
the pointclass of Borel sets in the Wadge hierarchy (see [Har78]).

THEOREM 1.2 (Harrington). If 8 < w1, then wy is Hg-unreachable.

A recent application of Harrington’s theorem was the resolution of the
decomposability conjecture by Marks and Day (see [DM21]).

Prior work on unreachability has focused on levels of the projective hi-
erarchy. Kechris gave a lower bound on the complexity of the pointclass
needed to reach 83, , (see [Kec78]).

x This material is based upon work supported by the National Science Foundation
under grant No. DMS-1764029.
1 The third author gratefully acknowledges the support of the NCN Grant WEAVE-
UNISONO, Id: 567137.
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THEOREM 1.3 (Kechris). Assume ZF + AD + DC. 83, ., is A}, -
unreachable.

In [Kec78], Kechris conjectured his own result could be strengthened to
83, 4218 Al 4p-unreachable. He also made a second, stronger conjecture
that 3, ,, is 33, | ,-unreachable. Jackson proved the former in [Jac90].

THEOREM 1.4 (Jackson). Assume ZF + AD + DC. 5%n+2 is A%n+2_
unreachable.

[Jac90] also made progress on Kechris’s second conjecture by showing
there is no strictly increasing sequence of 33, sets of length 63, ,. In
fact, Jackson and Martin proved the following more general theorem.

THEOREM 1.5 (Jackson). Assume ZF+AD+DC. Suppose k is a Suslin
cardinal, and k is either a successor cardinal or a regular limit cardinal.
Then there is no strictly increasing (or strictly decreasing) sequence (A, :
a < k1) contained in S(k).

But the resolution of Kechris’s second conjecture eluded the traditional
techniques of descriptive set theory. Hjorth pioneered the use of inner
model theory in this area to resolve one case of Kechris’s second conjecture
(see [Hjo96]).

THEOREM 1.6 (Hjorth). Assume ZF+AD+DC. &3 is £1-unreachable.
Kechris also pointed out the following corollary of Hjorth’s result.

COROLLARY 1.7. Assume ZF + AD + DC. A H% equivalence relation
has either 2% or < Ny equivalence classes.

Hjorth’s proof of Theorem 1.6 involved an application of the Kechris-
Martin Theorem, which precluded an easy generalization of his technique
to other projective pointclasses. The rest of Kechris’s second conjecture sur-
vived another two decades, until Sargsyan found a modification of Hjorth’s
proof which generalized to the rest of the projective hierarchy (see [Sar22]).

THEOREM 1.8 (Sargsyan). Assume ZF + AD + DC. 6;n+2 is E;n+2_
unreachable.

The following result of Kechris shows Sargsyan’s theorem is optimal.

THEOREM 1.9 (Kechris). Assume ZF+AD+DC'. Suppose k is a Suslin
cardinal. Then there is a strictly increasing sequence (A, : o < K) con-
tained in S(k).

Sargsyan’s theorem resolves the problem of unreachability for every level
of the projective hierarchy. He conjectured an analogous result holds for
every regular Suslin pointclass.
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CONJECTURE 1.10 (Sargsyan). Assume ADT. Suppose k is a regular
Suslin cardinal. Then T is S(k)-unreachable.

Below, we prove part of Conjecture 1.10.

THEOREM 1.11. Assume ZF + AD + DC +V = L(R). Suppose k is
a regular Suslin cardinal and S(k) is inductive-like. Then k* is S(k)-
unreachable.

ZF + AD+ DC +V = L(R) implies AD™, so Theorem 1.11 is a special
case of Conjecture 1.10. Theorem 1.9 demonstrates this is the optimal
result for inductive-like pointclasses.

Let I' = S(k) for x as in Theorem 1.11. Then x = dpr. ZF + AD +
DC +V = L(R) also implies any inductive-like pointclass I is of the form
S(k) for some regular Suslin cardinal k. So an equivalent formulation of
Theorem 1.11 is the following:

THEOREM 1.12. Assume ZF + AD 4+ DC +V = L(R). Suppose I is an
inductive-like pointclass. Then 61‘1' s I'-unreachable.

Our proof of Theorem 1.12 extends the inner model theory approach pio-
neered in [Hjo96]. Our technique also gives an alternative proof of Theorem
1.8.

§2. Background. We will assume the reader is familiar with the basics
of descriptive set theory espoused in [Mos09] and the theory of iteration
strategies for premice covered in [Ste09]. The rest of the necessary back-
ground is covered below. In Section 2.1, we summarize Steel’s classification
of the scaled pointclasses and Suslin pointclasses in L(R). Section 2.2 re-
views the relationship between Woodin cardinals and iteration trees. Two
inner model constructions are covered in Sections 2.3 and 2.4. In Section
2.5, we review results from the core model induction demonstrating the
existence of mice corresponding to inductive-like pointclasses in L(R).

2.1. The Pointclasses of L(R). We will assume for this section ZF +
DC + AD +V = L(R). All of the results in this section are due to Steel
and are proven outright or else implicit in [Ste83].

The boldface pointclasses we are interested in all appear in a hierarchy we
will now define. If ' and A are non-selfdual pointclasses, say {I',T'¢} <,
{A;A°} if T' C AN A°. This is a wellordering by Wadge’s Lemma. For
a < 0O, consider the ath pair {T',I'°} in this wellordering such that I or T'®
is closed under projection. Let 2}1 denote whichever of the two is closed
under projection — if both are, E}l denotes whichever has the separation
property. Let IT, = (21)°.
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For any pointclass T', we define
Ar =I'NTI*° and
or = sup{| <* | :<* is a prewellordering in Ar}.

Let 6% = ds1. The pointclasses {X], : n € w} and {II}, : n € w} are the
usual levels of the projective hierarchy. We will refer to the collection of
pointclasses {32, : « € ON}U{II} : « € ON} as the extended projective
hierarchy.

We now define a hierarchy slightly coarser than the one above. If n € w
and a € ON, we say a pointset A is in the pointclass 3, (J,(R)) if there
is a X, formula ¢ with real parameters such that A = {z : J,(R) | ¢[z]}.
I1,,(J,(R)) is defined analogously with IT,,-formulas.! The Levy hierarchy
consists of all pointclasses of the form 3, (J,(R)) or I, (J,(R)) for some
n and a. It is clear any pointclass in the Levy hierarchy equals X! or IT}
for some «, but the converse is false.

In this section, we will classify the scaled pointclasses within the Levy
hierarchy, relate the Levy hierarchy to the extended projective hierarchy,
and classify the regular Suslin pointclasses.

2.1.1. Classification of Scaled Pointclasses. A ¥1-gap is a maximal in-
terval [«, 8] such that for any real x, the X;-theory of z is the same in
Jo(R) and J3(R).

We say the gap [a, 8] is admissible if J,(R) = K P, equivalently, if the
pointclass 37 (J,(R)) is closed under coprojection. Suppose [a, (] is an
admissible gap. Let ng € N be least such that the pointclass 3, ,(Js(R))
is not contained in Jg(R). We say [, 5] is a strong gap if for any b € Jg(R),
there is 8’ < § and b’ € Jz (R) such that the X,,, and II,,, theories of b’ in
Jg/(R) are the same as the ¥,,, and II,,, theories of b in Jg(R). Otherwise,
we say [a, (] is weak.

THEOREM 2.1. Suppose T’ is a pointclass in the Levy hierarchy. If T is
scaled, then one of the following holds.

1. T'=3gp41(Ja(R)) for some k € w and some a beginning an inadmis-
sible gap.

2. T = Igk42(Ja(R)) for some k € w and some « beginning an inad-
missible gap.

3. T' =X (Ja(R)) for some « beginning an admissible gap.

4. T =3, 12k(J3(R)) for some k € w and some 3 ending a weak gap.

5. T = I 42k 11(J3(R)) for some k € w and some 3 ending a weak
gap.

1See [Ste83] for the definition of Ju(R). Alternatively, the reader will not lose too
much of importance by pretending Jo (R) = L (R).
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DEFINITION 2.2. A self-justifying system (sjs) is a countable set B C
P(R) which is closed under complements and has the property that every

B € B admits a scale 1E such that <, € B for all n.

DEFINITION 2.3. Letz € R andy € ON. OD<"7(z) is the set of pointsets
which are ordinal definable from the parameter z in Je(R) for some & < 7.
OD<" denotes OD<7(0).

The proof of Theorem 2.1 also gives:

THEOREM 2.4. Suppose |, 5] is an admissible gap. Let B’ be the least
ordinal such that there is a scale for a universal TI1(J,(R))-set definable
over Jg (R). Then there is z € R and a sjs B ¢ OD<F'(2) such that a
universal II1 (Jo(R))-set is in B and either

1. [o, f] is weak and 5/ = 8 or

2. |a, B] is strong and ' = 5+ 1.

REMARK 2.5. Suppose I' is a boldface inductive-like pointclass in L(R).
Then
1. T =31 (Jo(R)) for some « beginning an admissible gap,
2. there is x € R such that letting T' be the class of pointsets which are
31 -definable over J,(R) from the parameter x, I' is the closure of T’

under preimages by continuous functions, and
3. = (x2)Ar2

2.1.2. Relationship between the Levy Hierarchy and the Extended Pro-
jective Hierarchy.

DEFINITION 2.6. Suppose A < © is a limit ordinal. We say

e \ is type I if Ei is closed under finite intersection but not countable
intersection,

e \ is type II if X3 is not closed under finite intersection,

o ) is type IIT if 33 is closed under countable intersection but not co-
projection, and

o )\ is type IV if 2}\ is closed under coprojection.

Let (04 : @ < ©) enumerate the ordinals § such that there exist sets
of reals in Jsy1(R)\J5(R). Let n, be minimal such that 3,_(J5, (R)) ¢
Js. (R).

THEOREM 2.7. Suppose a < ©.

1. If wa is type I, then Eia_l_k =3 +k(Js, (R)) for all k € w.

2. Ifwais type I or IT1, then B 3 = B +k(J5, (R)) for allk € w.

2We say A C R is in (£2)Ar if there is z € R and a formula ¢ such that for all z € R,
c€A < (3BE Ar)(R,B) |= é(, 2).
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3. If wa is type IV, then ITY, =%, _(Js,(R)) and
Ei:a—i—k—l—l = Yo +k(Js, (R)) for all k € w\{0}.

2.1.3. Classification of Suslin Pointclasses. There is a related classifi-
cation of the Suslin pointclasses. For a < ©, let k, be the ath Suslin
cardinal. Let v, be the ath ordinal v such that 211) or Hllj is scaled.

THEOREM 2.8. Let A\ < 82 be a limit cardinal and v = sup{v, : @ < A\}.

1. If v is type I, then for all k € w
) Elll_}_% and H11,+2k+1 are scaled,
o S(katr) = Ezlz—i-k—i—l’
o Fapoktl = Op opry = (Fasaw)™, and

o cof(kxtar) = w.
2. If v is type II or III, then for all k € w

. 211/+2k+1 and 1_1,1/4_2,c are scaled,
o S(kxsr) = Z3,:5+k+1;
® Kxpoktz = Op opio = (Fasaey1)t, and
o cof(Katart1) = w.
3. If v is type 1V, then IIL is scaled, S(ky) = IIY, and for all k € w,
letting p = vay1,
o E}H—Zk and H}L+2k+1 are scaled,
[} S(/ﬁ:)\+k+1) = Elli+k+1’
® K)\42k+2 = 6/:.[L+2k‘+1 = (5A+2k+1)+; and
o cof(Katart1) = w.

COROLLARY 2.9. Suppose I’ = S(k) for a reqular Suslin cardinal k < 63.
Then one of the following holds.

1. T'=39p41(Ja(R)) for some k € w and some « beginning an inadmis-
stble gap.

2. T =31 (Ja(R)) for some o beginning an admissible gap.

3. T'= %, 101(Jp(R)) for some k € w and some 3 ending a weak gap.

2.2. Woodin Cardinals and Iterations. We borrow most of the no-
tation of premice and iteration trees from [Ste09]. In addition to the light-
face premice defined in [Ste09], we will also consider premice built over
some a € HC. We write an a-premouse as M = (Jf, G,E ' a, Ey,a), for
a fine extender sequence E = (Ep :n < a). If B < a, M| represents
the premouse (J g , €, E I 8, Eg,a). Unless otherwise specified, an iteration
strategy will refer to an (wq,w;)-iteration strategy and a mouse will refer
to a premouse with such a strategy. Under ZF + AD, w; is measurable,
so an (w1,w )-iteration strategy induces an (wy,w; + 1)-iteration strategy.
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In particular, the theorems in this section requiring an w; + l-iteration
strategy will all apply to the mice we use in Section 3.

Additionally, if 7 is an iteration tree of limit length and b is a cofinal, non-
dropping branch through 7T, we let MbT be the direct limit of the models
on b and let i} : MJ — M, be the associated direct limit embedding.

For a model M, let §y; denote the least Woodin cardinal of M (if one
exists) and Fay; denote Woodin’s extender algebra in M at dpr. Let kpy
be the least cardinal of M which is < dps-strong in M. ea will refer to
the generic over Fap;. When considering the product extender algebra
Fayr x Eayy, we will write ea; X ea,. for the generic. ea, will typically code
a pair which we shall write (eal, ea2). For posets of the form Col(w, X), g
denotes a name for the generic.

Suppose M is a premouse with iteration strategy 3. We say N is a
complete iterate of M if NV is the last model of an iteration tree 7 on M
such that 7 is according to ¥ and the branch through 7 from M to N is
non-dropping.?

THEOREM 2.10. Let M be a countable premouse with an wy + 1-iteration
strategy such that M = “There is a Woodin cardinal.” Then Eays is a
dpr-c.c. Boolean algebra and for any x € R, there is a countable, complete
iterate N of M such that x is Fay-generic over N.

COROLLARY 2.11. Let M be a countable premouse with an wi+1-iteration
strategy such that M = “There is a Woodin cardinal.” Then for any x € R,
there is a countable, complete iterate N of M and g which is Col(w,dn)-
generic over N such that x € N|g|.

See Section 7.2 of [Ste09] for a proof of Theorem 2.10 and its corollary.

DEFINITION 2.12. For k < 6 and A C 6§, we say k is A-reflecting in 0
if for every v < 4, there is an extender E with critical point k such that
ig(k) >vandig(A)Nv=AnNv.

THEOREM 2.13. Suppose b and ¢ are distinct wellfounded branches of
a normal iteration tree T and A C §(T) is in M| N M. Then there is
k < 6(T) such that M, = “ is A-reflecting in §(T),” and this is witnessed
by a sequence of extenders on the extender sequence of M(T).

See 6.9 and 6.10 of [Ste09] for definitions of §(7") and M(T) and a proof
of Theorem 2.13. The theorem justifies the following definitions.

DEFINITION 2.14. Suppose b is a wellfounded branch through a normal
iteration tree T. Let Q(b,T) be the least initial segment of Ml;r extending

3This is a slight abuse of notation, since being “a complete iterate of M” is dependent
on X as well as M. This will not cause any ambiguity, since the mice we are interested
in have unique iteration strategies.
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M(T) such that there is A C 6(T) which is definable over Q(b, T) and real-
izes 6(T) is not Woodin via extenders in M(T), if such an initial segment
exists.

DEFINITION 2.15. Suppose M is a premouse and n € M. We say n is
a cutpoint of M if there is mo extender on the fine extender sequence of
M with critical point less than n and length greater than n. n is a strong
cutpoint if there is no extender on the fine extender sequence of M with
critical point less than or equal to 1 and length greater than 7.

DEFINITION 2.16. Suppose T is a normal iteration tree. Let Q(T) be the
least 6(T)-sound, wy + 1-iterable premouse extending M(T) and projecting
to 6(T) such that §(T) is a strong cutpoint of Q(T) and there is A C 6(T)
which is definable over Q(T) and realizes §(T) is not Woodin via extenders

in M(T), if one exists.

It follows from Theorem 2.13 that there is at most one wellfounded
branch b through 7 such that Q(7) < M,/ . In many cases, we will be
able to locate the branch a strategy ¥ chooses as the unique branch which
absorbs Q(T) in this sense.

Note an wj-iteration strategy on a countable premouse can be coded by
a set of reals. For « € HC' and a pointclass I', this allows us to define

Lp* (a) = U{N : N is an w-sound a-premouse projecting to a
with an wi-iteration strategy in Ar}.

Lp"(a) can be reorganized as an a-premouse, which is what we will typically
use Lp'(a) to refer to.
Closely related to Lp" is the operator Cp. For z € R,

Cr(z) ={z € R: zis Ar(z) in some countable ordinal}.
And for a € HC,
Cr(a) ={b C a: for all reals z coding a, b, € Cr(x)}.
Here b, codes b relative to . See [Stel6] for more details.

THEOREM 2.17. Assume AD*®) . Suppose T is a (lightface) inductive-
like pointclass in L(R) and a € HC. Then Cr(a) = Lp"(a) N P(a).

REMARK 2.18. Suppose a and b are countable, transitive sets and a € b.
It is easy to see from the definition of Cr that Cr(a) C Cr(b). This, and
the theorem above, implies Lp' (a) C Lp" (b).
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2.3. The Mitchell-Steel Construction. We shall require a method
of building an a-premouse inside a premouse M which contains a. Our
main tool for this purpose is the fully backgrounded Mitchell-Steel con-
struction developed in [MS17]. This section reviews the construction and
its properties.

We say a premouse M is reliable if C,, (M) exists and is universal and
solid. As we shall see in a moment, we will end the Mitchell-Steel construc-
tion if we reach a premouse which is not reliable. [MS17] defines reliable
to include the stronger property that C, (M) is iterable. But the weaker
properties of universality and solidity are enough to propagate the con-
struction, and our weaker requirement ensures the construction does not
end prematurely when performed inside a mouse. The definitions of uni-
versality and solidity can be found in [Ste09]. In all of the cases relevant to
us, universality and solidity are guaranteed and the reader will lose little
by taking on faith that the construction does not end.

For the moment we will work in V' and assume ZFC. Fix z € R. Define
a sequence of z-premice (M, : £ € On) inductively as follows.

1. My = (Vw, c, (Z), (Z), Z)

2. Suppose we have constructed Mg = (JZ| E,E,W,z). Note Mg is a
passive premouse. Suppose also there is an extender F* over V, an
extender F' over M, and v < « such that
(a) VVer C Ult(V7 F*)v
(b) v is the support of F,

(c) Flv=F"Nn(v]<¥ x M¢), and

(d) Nev1 = (JE, €, E, F, z2) is a premouse.

If Neqq is reliable, let Meiq = Cy(Neq1). Otherwise, the construction
ends. If there are multiple such F*, we pick one which minimizes the
support of F'. We say F'* is the extender used as a background at step
£+ 1 )

3. Suppose we have constructed M, = (JE, €, E,E,, z) and either M,
is active or Mg is passive and there is no extender F'* as above. Let
Nepr = (Jf;E‘*, €,E"E,,0,2). If Ney1 is reliable, let Mgy =
Cus(Nes1). Otherwise, the construction ends.

4. Suppose we have constructed (M : & < A) for X a limit ordinal. Let
n = liminfecx(po(Me)T)Me. Let Ny be the passive premouse of
height n such that N)|8 = limecy M¢|B for all B < n. If Ny is
reliable, let M, = C,,(N,). Otherwise, the construction ends.

Suppose the construction never breaks down. That is, Mg is defined for
all £ € On.
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THEOREM 2.19. Suppose (o and £ are ordinals such that ¢y < & and
k= pu(Me) < pu(Mc) for all ¢ > (. Then Mg I M, for all n > €.
Moreover, M¢y1 = “every set has cardinality at most k.”

Let M be the class-sized model such that whenever £ € On satisfies
Me I M, for all n > &, M, is an initial segment of M. We call M the
output of the Mitchell-Steel construction over z. For § € On, we call Mg
the output of the Mitchell-Steel construction of length § over z.

THEOREM 2.20. Assume ZFC. Suppose 0 is the least ordinal such that
0 is Woodin in L(Vs). Suppose the Mitchell-Steel construction in Vs does
not break down, and let M be the output of the construction. Then § in
Woodin in L(M).

See the proof of Theorem 11.3 of [MS17].

THEOREM 2.21 (Universality). Assume ZFC. Let 6 be Woodin and z €
R. Assume the Mitchell-Steel construction of length d over z does not break
down. Let N be the output of the construction. Suppose no initial segment
of N satisfies “there is a superstrong cardinal.” Let W be a premouse over
x of height < §, and suppose P and Q) are the final models above W and
N, respectively, in a successful coiteration. Then P < Q.

See Theorem 11.1 of [Ste08].

THEOREM 2.22. Suppose M is an wi + 1-iterable mouse with Woodin
cardinal 0 satisfying enough of ZFC and z € M NR. Then the Mitchell-
Steel construction of length § over z done inside M does not break down.
Let N be the output of the construction. Then N is a z-mouse of height §.

The proof of Theorem 2.22 is well known. To show the construction does
not break down, by [MS17] it suffices to show universality and solidity of
the models (Mg : £ < 0) built during the construction. [MS17] further
reduces this to showing iterability for each M¢. An iteration strategy for
M can be defined by lifting iteration trees on M, to trees on (an initial
segment of) M and selecting the branch picked by the strategy for M.
w1 + l-iterability of M suffices to obtain the required iterability for each
Me. Similarly, N being a z-mouse follows from iterability of M.

For a premouse M satisfying enough of ZFC and z € M N R, we write
Le[M, z] for the output of the Mitchell-Steel construction in M over z
(assuming the construction does not break down). Le[M] will refer to
Le[M,()]. Le[M, z] is a z-premouse. If M is iterable, so is Le[M, z].

We are most interested in cases in which M is a mouse with a Woodin
cardinal J, no largest cardinal, and no total extenders above §. Then
Le[M]6, 2] is equal to the Mitchell-Steel construction of length ¢ over z,
done inside M, and Le[M, z] is an initial segment of L(Le[M|d.z]).
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REMARK 2.23. Suppose M is an wy + 1-iterable premouse, z € M NR,
and K is inaccessible in M. Let (Mg : £ < k) be the models of the Mitchell-
Steel construction in M of length k over z. Suppose an extender is added
at step € + 1 in the construction. Let F*, F, and v be as in Case 2 of the
construction. Then there is F' € M|k such that M |= V, 4, C Ult(M, F")
and F' N ([V]<¥ x M¢) = F | v. So we may assume if F* is used as a
background in the construction of length k, then F* € M|k.

In particular, if M is an wy + 1-iterable premouse, z € M NR, and K is
inaccessible in M, then Le[M |k, 2] equals the Mitchell-Steel construction of
length k over z, done in M.

2.4. S-constructions. Below we outline the S-construction (this was
introduced as the P-construction in [SS09]).

Suppose M = (Jf, €, E [ v, E,,a) is a countable a-premouse and § € M
is a cardinal and cutpoint of M. Suppose ON NS = § + w, § is a Woodin
cardinal of S, S is definable over M, and there is a generic G (for the
version of Woodin’s extender algebra with 0 propositional letters) such
that S[G] = M|§+ 1. Inductively define a sequence (S, : 6+1 < a <) as
follows. Ss41 is set to be S. At a limit A, Sy = Uy« Sa- If M|\ is active,
add a predicate for Ey NSy to Sy. For the successor step, we define Sy41
by constructing one more level over S,. The construction proceeds until
we construct S, or we reach some S, such that § is not Woodin in S,,. We
refer to S, as the maximal S-construction in M over S if the construction
reaches v. We are primarily interested in cases where § is Woodin in M,
in which case the construction is guaranteed to reach ~.

LEMMA 2.24. Suppose M, S,d,~, and G are as above. Assume also M is
(w1, wy + 1)-iterable, w-sound, and p,(M) > 6. If the construction reaches
7, then for each a such that §+1 < a < 7, S, is an S-mouse and S, [G] =
M|a. If also o < v, or o = v and ¢ is definably Woodin over S, then
pn(Sa) = pn(M|a) for all n and S, is w-sound.

Lemma 1.5 of [SS09] gives everything in Lemma 2.24 except the iterabil-
ity of §,. The iteration strategy for S, in Lemma 2.24 comes from lifting
an iteration tree on Sy to iteration trees on M above §. In particular, we
have:

FACT 2.25. Suppose M, S, 8,7, and G are as in Lemma 2.24. Then the
iteration strategy for S, (as an S-premouse) is projective in the iteration
strategy for M restricted to iteration trees above 6.

The S-construction serves two purposes in what follows. It allows us
to “undo” generic extensions from Woodin’s extender algebra. And com-
bined with the fully-backgrounded Mitchell-Steel construction, it provides
an inner model of a premouse with convenient properties.
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DEFINITION 2.26. Let M be an wi + 1-iterable premouse with a Woodin
cardinal and z € M NR. Let S be the result of constructing one level of
the J-hierarchy over Le[M|dyr,z]. Let StrLe[M,z] denote the mazimal
S-construction in M over S.

2.5. Suitable Mice. We now review some results from the core model
induction. Most of the concepts below are from [SS], with some minor
additions. We need to work with mice with an inaccessible cardinal above
a Woodin, so in Definition 2.28 we introduce a modification of the standard
notion of a suitable premouse. [SS] proves the existence of terms in suitable
mice capturing certain sets of reals. We will need analogous lemmas for our
modified definition. In fact we require more than is stated in [SS] — it is
essential for our purposes that there is a canonical term capturing each set.
Fortunately, this stronger claim is already implicit in the proofs of [SS].

For the remainder of this section, we will asssume ZF + AD+DC+V =
L(R) and fix a boldface inductive-like pointclass I' such that T' # X2. We
then have T' = 34 (J,,(R)) for some oy beginning an admissible ¥;-gap
[ag, Bp]- Fix a lightface pointclass T' as in Remark 2.5 such that T' is the
closure of I' under preimages by continuous functions.

DEFINITION 2.27. Suppose x € HC'. Say an x-premouse N is I'-suitable
if N is countable and

1. N = there is exactly one Woodin cardinal oy .

2. Letting No = Lp" (N|dn) and N;z1 = Lp"(N;), we have that N =
Ui<w Ni.

3. If € < 8y, then LpY (N|€) = € is not Woodin.

DEFINITION 2.28. Suppose x € HC'. Say an x-premouse N is I'-super-
suitable (T'-ss) if N is countable and

1. N = There is exactly one Woodin cardinal oy .

2. N |= There is exactly one inaccessible cardinal above §n. We denote
this inaccessible by vy .

3. Letting Nog = LpY(N|vx) and Ny = Lp'(N;), we have that N =
Ui<w Ni'

4. For cach € > by, N|(€H)N = LpF (N€).

5. If € < 6y, then LpY (NI€) |= € is not Woodin.

DEFINITION 2.29. Let N be a mouse and d € N. We say d is a T'-Woodin
of N if § is Woodin in Lp* (N|).

A T-suitable premouse is a minimal premouse with a I'~-Woodin cardinal
which is closed under Lp', in that none of its initial segments have this
property. Similarly, a I'-ss premouse can be considered a minimal premouse
with a T~-Woodin which is closed under Lp" and has an inaccessible cardinal
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above its I'-Woodin. The existence of a I'-suitable (or I'-ss) premouse is not
any stronger than the existence of a premouse with a I'-Woodin cardinal.
For suppose N = Lp"(N|6), § is Woodin in N, and no ¢ < § is a I'-
Woodin of N. If Q> N, p(Q) < 6, Q is d-sound, and a set definable over
@ witnesses that § is not Woodin, then @) must have a I'-Woodin cardinal
above 0. Otherwise, ) would be iterable by Q-structures in Ar and hence
in Lp* (N|6). Then we may build a I-suitable (I'-ss) premouse by closing
under Lp' as many times as is necessary, since this will never construct a

I'~-Woodin.

DEFINITION 2.30. Let A C R, N a countable premouse, n an uncountable
cardinal of N, and 7 € NN We say that T weakly captures A over
N if whenever g is Col(w,n)-generic over N, T[g] = AN N]g].

LEMMA 2.31. Suppose B is a self-justifying system and N and M are
transitive models of enough of ZFC such that N € M. Let C be a comeager
set of Col(w,N) generics over M and suppose for each B € B there is a
term Tp € M such that if g € C, then Tp[g] = BN Mlg]. Let m: M — M
be elementary with {N}U{rp : B € B} C ran(r). Let (N,75) = 7(N,7B).
Then whenever g is Col(w, N)-generic over M, Tg[g] = BN M|g].

See Lemma 3.7.2 of [SS].

Let 8’ be the least ordinal greater than «q such that there is a scale for a
universal ITy (J,, (R)) set definable over Jg/(R). By Theorem 2.4, 5’ = G
or 3’ = By + 1 and there is a self-justifying system G = {G,, : n € w} such
that

Go = {(z,y) : ¢ codes some transitive set a and y codes an w-sound

a-premouse R such that R projects to a and R has an

wi-iteration strategy in A},

and G is contained in OD<#'(z) for some z € R. Note Gy € T', by part 3 of
Remark 2.5. In fact, Gg is a universal I'-set (we will not need this property
specifically for Go, but we will use that G contains some universal I'-set).
For ease of notation, assume G C OD<F.

DEFINITION 2.32. Suppose B C R, N is a premouse, and n is a cardinal
of N. Let Tgn be the set of pairs (o,p) € N such that

1. ¢ is a Col(w,n)-standard term for a real,

2. p € Col(w,n), and

3. for comeager many g C Col(w,n) which are Col(w,n)-generic over N
such that p € g, olg] € B.

Forn € w, let T,]L\fn = Tgn y and if N has a Woodin cardinal let N =7V

n,éN N
LEMMA 2.33. Suppose N is a I'-suitable or I'-ss premouse, z € N, B €
OD<P(2), and n is a cardinal of N. Then Tgm isin N.
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See the proof of Lemma 3.7.5 of [SS]. In Lemma 5.4.3 of [SS], Lemma
2.31 is used to show:

LEMMA 2.34 (Woodin). Suppose z € R, N is a T'-suitable (or T'-ss) z-
premouse, and B is a sjs containing a universal 31 (Jo, (R))-set such that
each B € B is OD<5/(z). Suppose m : M — N is Xy-elementary and for
every B € B and n > oy, 7']]3\7’77 € range(m). Then

1. M is T-suitable (T'-ss) and

2. W(Tg{ﬁ) = Tg)n, where 7] is such that w(7) = 7.

As a result of Lemmas 2.31 and 2.33 we have:

COROLLARY 2.35. If N is I'-suitable or I'-ss and n is an uncountable
cardinal of N, then Té\’[n weakly captures G,,.

DEFINITION 2.36. Let T be a normal iteration tree on a I'-suitable (or
I'-ss) premouse N. Suppose also T is below on. Say T is I'-short if for
all limit € < IW(T), LpY (M(T 1 €)) = 0(T | €) is not Woodin. Otherwise,

say T is [-mazimal.

DEFINITION 2.37. Let N be aT'-suitable (T'-ss) premouse with an (w1, ws)-
iteration strateqy X. Say X is fullness-preserving if whenever P is an iterate
of N by ¥ via an iteration below dy, then

1. if the branch to P does not drop, then P is I'-suitable (I"-ss), and
2. if the branch to P does drop, then P has an wi-iteration strategy in
Jao (R).

REMARK 2.38. Let N be a T-suitable (or T'-ss) mouse with a fullness-
preserving iteration strategy ¥. Suppose P < N|dn, and ¥’ is the iteration
strategy for P given by restricting the domain of ¥ to trees on P. Suppose
T is an iteration tree on P according to ¥'. Then the branch b through
T chosen by X' can be determined from Q(T). And Q(T) is the unique
M(T)-mouse projecting to w with an iteration strategy in A. It follows
from Remark 2.5 and the uniqueness of Q(T) that X' is coded by a set in
A.

DEFINITION 2.39. Let T be a I'-mazimal iteration tree on a I'-suitable
(orT-ss) premouse N and let b be a cofinal branch through T . Say b respects

S5 TN M .
G, if i} (Tk’n) =T, ibb(n) for all k < n and every cardinal n of N above dy.
DEFINITION 2.40. Let N be a I'-suitable (or I'-ss) mouse with a fullness-

preserving iteration strateqy . Say X is guided by G if whenever T is an
iteration tree according to X of limit length and b= 3(T), then

1. if T is D-short, then Q(b,T) exists and Q(b, T) € Lp* (M(T)), and
2. if T is T'-mazimal, then X(b) respects G, for alln € w.
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LEMMA 2.41. If N is I'-suitable (or I'-ss) and X is an iteration strategy
for N which is guided by G, then X is not in I.

PROOF. There is n € w such that G, is a universal I'°-set. Then y € G,
if and only if there exists a countable, complete iterate N* of N according
to ¥ and g € R which is Col(w, R)-generic over N* such that y € 7" [g].
Since T is closed under projection, if ¥ were in I', G,, would also be in
T. -

THEOREM 2.42 (Woodin). For any x € HC, there is a (unique) w-
sound, T'-suitable xz-mouse W, projecting to x with a (unique) iteration
strategy that is fullness-preserving, condenses well,* and is gquided by G.
Similarly, there is a (unique) w-sound, T'-ss x-mouse M, projecting to x
with a (unique) iteration strategy that is fullness-preserving, condenses well,
and is guided by G.

Chapter 5 of [SS] demonstrates the existence of such a I'-suitable mouse.
It is not difficult to see this gives the existence of the required I'-ss mouse
as well.

For any I'-suitable (or I'-ss) premouse N and any n € w, let

AN = HullV ({7 1 i < n})Non.

The regularity of 6 in N implies each v is an ordinal. Lemma 2.34
can be used to show:

FacT 2.43. (v) :n € w) is cofinal in On.

LEMMA 2.44. Let T be a normal iteration tree on a I'-suitable (or I'-ss)
premouse N and let b and ¢ be branches through T which respect G.,,. Then

ibT I AN =T | 4N. Moreover, if b and ¢ both respect Gn for all n, then
b=c.

See Lemma 6.25 of [SW16].

Lemma 2.44 implies if b is the branch through 7 chosen by the nice
iteration strategy for a I'-suitable premouse given by Theorem 2.42 and ¢
is any branch respecting én, then z'bT and ZZ agree up to v2'. In particular,
to track the iteration of a I'-suitable mouse up to some point below its least
Woodin, it is sufficient to know finitely many of the sets in G.

Suppose M is a countable premouse with an (w;,w; + 1)-iteration strat-
egy.> Together, the Comparison Lemma and the Dodd-Jensen Lemma
imply the collection of countable, complete iterates of M, together with
the iteration maps between them, forms a directed system.

4In the sense of Definition 5.3.7 of [SS].

5The suitable mice from Theorem 2.42 satisfy this. We only explicitly required these
to have (w1,wn)-iteration strategies, but since ZF + AD implies wi is measurable, an
(w1, w1 )-iteration strategy induces an (w1,w1 + 1)-iteration strategy.



16 DEREK LEVINSON*, ITAY NEEMAN*, AND GRIGOR SARGSYANT

[Ste95b] presents work of Steel and Woodin analyzing the direct limit
of all countable, complete iterates of M7#. This direct limit cut to its
least Woodin is (HOD||©)*®). [SW16] goes further in showing that the
entire class HODY®) is a strategy mouse. The iteration maps through
trees on M7 are approximated using indiscernibles, analogously to the
use of terms in Lemma 2.44. These approximations are merged to give
an ordinal definable definition of the direct limit in L(R). In particular,
initial segments of the direct limit maps are definable from finitely many
indiscernibles.

In place of M7, we shall analyze the direct limit of a T-suitable mouse
and prove that portions of the direct limit maps are definable within a I'-ss
mouse.

Our task is simpler in that we only need to reach up to 6; , which we
show in Section 3.1 is below the least Woodin of our direct limit. So a single
approximation using only finitely many sets from G will suffice. Another
advantage we have is that there is no harm in working over a real parameter,
so we can work in a I'-ss mouse over a real which codes Wy. On the other
hand, we will have some extra work to do in Section 3.2 ensuring enough
information about I and G is definable in a I'-ss mouse before we internalize
the directed system in Section 3.3.

[SW16] also makes use of the fact that the derived model of M is
essentially L(R). So for z € M# NR, a Y2 statement about z is true if
and only if it holds in the derived model of M#. In particular, there is a
natural way to ask about ¥? truth inside of M. A second, though minor,
inconvenience of having to use a I'-suitable mouse is we cannot talk about
its derived model, since it only has one Woodin. Instead we will use the
fine-structural witness condition of [SS].

REMARK 2.45. We can associate to any ¥1-formula ¢ a sequence of for-
mulas (¢* : k < w) such that for any ordinal v and any real z, J,+1(R)
Pz] <= (Fk)J,(R) | ¢*[2]. Moreover, the map ¢ — (¢* : k < w) is

recursive.

DEFINITION 2.46. Suppose ¢(v) is a Xq-formula and z € R. A (¢, z)-
witness is an w-sound z-mouse N in which there are 6y < ... < dg, S, and
T such that N satisfies the formulae expressing

1. ZFC,

2. 0g < ... < b9 are Woodin,

8. S and T are trees on some w x 1 which are absolutely complementing
in VEolw.) ~qnd

4. For some k < w, p[T] is the Xy 3-theory (in the language with names
for each real) of J,(R), where ~y is least such that J,(R) | ¢*[z].
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Other than iterability, the rest of the properties of being a (¢, z)-witness
are first order. The following two lemmas illustrate the usefulness of this
definition.

LEMMA 2.47. If there is a (¢, z)-witness, then L(R) | ¢[z].

LEMMA 2.48. Suppose ¢ is a X1-formula, z € R, v is a limit ordinal,
and Jy(R) [= ¢[z]. Then there is a (¢, z)-witness N such that the iteration
strategy for N restricted to countable trees is in J,(R). By taking a Skolem
hull, we can also ensure p,(N) = w.

§3. The Inductive-Like Case. In this section we will prove Theorem
1.12. We now assume ZF + AD + DC +V = L(R) and fix a boldface
inductive-like pointclass I'. By a reflection argument, we may assume I"
»26

1Let A = Ar and let [ag, Bo], 3, T, and G be as in Section 2.5. We will
also refer to the mouse operators x — W, and x — M, from Theorem 2.42
and use the notation for standard terms from Definition 2.32.

In Sections 3.1 through 3.3 we analyze the directed system of iterates of
a suitable mouse and show the directed system can be approximated inside
a larger suitable mouse. Section 3.4 covers some lemmas about the StrLe
construction inside a suitable mouse. Section 3.5 contains a lemma we will
use to obtain witnesses for Y, statements inside an initial segment of a
suitable mouse. Finally, Theorem 1.12 is proven in Section 3.6.

One of the key ideas to our proof of Theorem 1.12 is a different coding
than the one used in [Hjo96] and [Sar22]. In [Sar22], 33 . , sets are coded
by conditions in the extender algebra at the least Woodin of some complete
iterate N of M, +1- The reflection argument from [Hjo96] ensures a code
for each E;n 1o set appears below the least < dn-strong cardinal ky of
some iterate N (in fact it gives a uniform bound below ky). But this
reflection argument depends upon the pointclass Eén 1o Dot being closed
under coprojection.

Our proof of Theorem 1.12 instead codes I'-sets by sets of conditions
in the extender algebra of some I'-suitable mouse N. A weaker reflection
argument than the one in [Hjo96] is used to contain each code in N|ky.

6Suppose the theorem fails for T' = Z%. Then an initial segment of L(R) satisfying a
large fragment of ZF + AD + DC satisfies this. Reflecting this gives an inital segment
N of L(R) below 6% such that IV = (£2)% is an inductive-like pointclass in L(R) and N
satisfies that there exists a sequence of distinct T sets of length drt. Since N satisfies
enough of ZF + AD + DC + V = L(R), the proof that follows will give a contradiction
in N. In this case, the iteration strategy for the I''-suitable mouse used in the proof will
not be in N. But this does not effect the argument — it is enough that the strategy is
in L(R).
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This weaker reflection is sufficient for the proof.

3.1. The Direct Limit. Let W = Wj and let Z be the directed sys-
tem of countable, complete iterates of W according to its (wq, wy )-iteration
strategy. Let My be the direct limit of Z. For M, N € Z and N an iterate
of M, let mpr,n : M — N be the iteration map and mps00 : M — My the
direct limit map. Here we demonstrate a few properties of M,,. The proofs
of this section are generalizations of arguments in [Ste09] and [SW16] giving
analogous properties of the direct limit of all countable, complete iterates
of M.

LEMMA 3.1. kp < 6p 7

PROOF. Suppose £ < kp.. Let M € T and € € M be such that
Tareo(§) = €. Let P be an initial segment of M such that £ € P and
the largest cardinal of P is both a cutpoint and a cardinal of M. The
iteration strategy 3 for P is in A by Remark 2.38. Let Zp be the directed
system of countable, complete iterates of P by ¥. Then ¢ is sent to & by the
direct limit map of this system, since the largest cardinal of P is a cutpoint
and a cardinal of M. So a prewellordering of height £ is projective in %
and therefore or > €. B

LEMMA 3.2. &y > (o)

PROOF. Let X be the (wy,ws)-iteration strategy for W. Recall ¥ is not
in T'. We will show ¥ is in S(dx7.)\S(6rT).

CrLAamM 3.3. X is dpr_ -Suslin.

PROOF. Let T be a tree on (w x w) X dpr, such that (z,y, f) € [T] if
and only if z codes a countable iteration tree S on W of limit length, y
codes a cofinal, wellfounded branch b through S, and f codes an embedding
7 M — My such that 704§ = my.o0. Let &' = p[T].

If (x,y) € ¥, then x codes an iteration tree S on W according to ¥ and
y codes the cofinal, wellfounded branch b through S chosen by 3. And
TMS 00 © if = TwW,00. S0 if f:w — dps codes the embedding TS then
(2. f) € [T]. Thus (z,y) € ¥.

On the other hand, suppose (z,y) € ¥’ and x codes an iteration tree S
according to X. Fix f : w — dp_ such that (z,y, f) € [T]. Let b be the
branch coded by y and 7 the embedding coded by f.

,007

S
SUBCLAIM 3.4. For all n, 75 (7V) = " .

PROOF. Let @ € T be such that range(w) C range(ng o). Let n’ =
716710o om. Then 7' : M — Q and 7' (i§ (1)) = 7&. Then by Lemma 2.34,
S W M
() )= ". —|

"In fact KM, = Or, but we don’t need this.
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From the subclaim and the last part of Lemma 2.44, we have that (z,y) €
3.
We can now characterize ¥ as the set of (z,y) € R x R such that

1. = codes an iteration tree S on W of limit length,

2. y codes a cofinal, wellfounded branch through S,

3. (z,y) € ¥', and

4. for any (xo,y0) <r z such that z codes a proper initial segment Sy

of § of limit length and yo codes the branch through Sy determined
by S, (l‘o,yo) e Y.

Condition 4 is just to guarantee S is in the domain of 3. It does so
because any proper initial segment Sy of S is coded by some real computable
from x. From this, and the preceding paragraphs, it is clear these conditions
characterize ¥. Since ¥’ is dpr_-Suslin, this characterization of ¥ makes
plain that ¥ is also dps_-Suslin. -

Cram 3.5. T'= S(dr).

PROOF. First, let’s establish T" is Suslin (we say a pointclass is Suslin if
it equals S(A) for some cardinal A). Let

Q= {%1(Jy(R)) : v < o9 and =y begins a ¥1-gap}.

It follows from Theorem 2.7 that I' is the minimal non-selfdual pointclass
closed under projection which contains every pointclass in 2. Let

U ={31(J,(R)) € Q: 31(J,(R)) is Suslin}.

By Theorem 2.8, ¥ is cofinal in 2. But the minimal Suslin pointclass
larger than any element of ¥ is just the minimal non-selfdual pointclass
closed under projection which contains every pointclass in Q (by part 3 of
Theorem 2.8). Since V¥ is cofinal in 2, this is T

So I' = S()\) for some cardinal A. By the Kunen-Martin Theorem, there
is a prewellordering of length X in I' but no prewellordering of length \*.
The latter implies that A > dr, since dr is a limit cardinal,® and since
there are prewellorderings of length a in I' for all @ < dpr. The former
implies that A < dp, since there is no prewellordering of length 514: inT
(Otherwise a proper initial segment of this prewellordering would be of
length dr, giving a prewellordering of length dr in A). So dr = \. —

By the previous two claims, ¥ € S(dpr)\S(dr). In particular, dpr > N
where )\’ is the next Suslin cardinal after ér.° But cof(\) = w by part 3
of Theorem 2.8, s0 dpr > N > 514:. -

LEMMA 3.6. Suppose i < pr., is a reqular cardinal of M. Then p is
not measurable in My if and only if p has cofinality w in L(R).

8See Theorem 7D.8 of [Mos09).
9In fact dpr., = A, but we don’t need this.
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PROOF. Suppose p is not measurable in M. Fix M € 7 and f such
that mas00(f) = p. Then [ is regular but not measurable in M. Since
M is countable, there is a sequence of ordinals (£, : n < w) cofinal in
fi. Let & = Taroo(€n). Since i is regular and not measurable in M,
TM,0o 18 continuous at fi (This is because w0 is essentially an iteration
embedding — in fact it is an iteration embedding in V!« R)  And any
iteration embedding is continuous at a cardinal which is regular but not
measurable, since ultrapower embeddings are continuous at such cardinals).
So (&, : n < w) is cofinal in p.

Now suppose p has cofinality w in L(R). Let (£, : n < w) be cofinal
in u. Fix M € T such that there is i € M and (£, : n < w) C M with
Tat.oo (1) = o and Tas.00(€n) = &n- If g is measurable in M, then there is
a total extender F' on the fine extender sequence of M with critical point
fi. Let M’ be the ultrapower of M by F and j : M — M’ the embedding
induced by F. Then for any n < w,

En = 7TM,oo(£n)

= TM’,00 O](gn)
= 71'M’,OO(En)
<M/ 00 (H)

< Twr,e0 © (1)
= L.

So Tar.00(f2) is an upper bound for &, below p, a contradiction. n

3.2. Definability in Suitable Mice.

LEMMA 3.7. Suppose N is a premouse satisfying enough of ZFC, v is
a cardinal of N, Lp"(a) C N for each a € N|v, and T € NCU“Y) weakly
captures Go. Then the map with domain N|v defined by a + Lp"(a) is
definable in N from 7.

PROOF. Recall

Go = {(z,y) : x codes some transitive set a and y codes an w-sound

a-premouse R such that R projects to @ and R has an

wi-iteration strategy in A},

Fix a € N|v. If R is any set in N|v and g is any Col(w, v)-generic over N,
then there are reals « and y in N[g| coding a and R, respectively. It is easy
to see from this that Lp'(a) is

U{R EN:D Il—gol(w)y) (3z,y)[(x,y) € T Ax codes a Ay codes R]}.
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COROLLARY 3.8. If P is I'-ss, then the map with domain Plvp defined
by a — Lp*(a) is definable in P from 7&

2

ProOOF. It is clear from Remark 2.18 and Corollary 2.35 that P and

T(f vp satisfy the conditions of Lemma 3.7. -

LEMMA 3.9. Suppose P is I'-ss and N € Plvp is ['-suitable. Then
{T,]L\f# i pis an uncountable cardinal of N} is definable in P from N and
7P (uniformly in P and N ).

n,vp

PrROOF. Let p be an uncountable cardinal of N.

Note if g is Col(w, vp)-generic over P and f € P is a surjection of vp
onto p, then fog is P-generic for Col(w, ). In particular, fog is N-generic
for Col(w, u). Fix such an f which is minimal in the constructibility order
of P. Let

Tnu ={(0,p) : 0 is a Col(w, p)-standard term for a real,p € Col(w, 1),

and O 1L,y (D E fog—a[foglery, )}

It is clear that 7, , is definable in P from N, p, and 7}, . Tt suffices to
show 7, )y =75, -

Tnpu C Té\’[# by Definition 2.32 and that comeager many h C Col(w, i)
which are generic over N are of the form fog for some g which is Col(w, vp)-
generic over P.

On the other hand, suppose (o,p) € T,JXH. By Corollary 2.35, o[h] € G,
for any h which is Col(w, ut)-generic over N such that p € h. In particular,
o[fogl €7l lg] for any g which is Col(w,vp)-generic over P such that

p € fog. Thus (0,p) € Ty . -

We will also need versions of Corollary 3.8 and Lemma 3.9 in generic
extensions of I'-ss mice.

LEMMA 3.10. Suppose B C R, P is a premouse, ¢ is Woodin in P,
p > 6, 7 € POUD) weakly captures B over P, and vy is Fap-generic
over P. Then there is 7' € Ply]9°"“:*) which weakly captures B over Ply].
Moreover, 7' is definable in Ply] from 7 and y (uniformly).

PRrROOF. Col(w,p) is universal for pointclasses of size p. So there is a
complete embedding ® : Fa, x Col(w, u) — Col(w, u).*% If g is Col(w, u)-
generic over P, let (yq, fg) be the Eap x Col(w, p)-generic consisting of all
conditions (p, q) € Fap x Col(w, p1) such that ®((p, q)) € g (see Chapter 7,

10Tn the sense of Definition 7.1 of Chapter 7 of [Kun83].
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Theorem 7.5 of [Kun83]). Let
7 ={(0,(p,q)) :0 is an Fap-term for a Col(w, p)-standard term

for a real, (p,q) € Fap x Col(w, p), and

o((p, 9)) H_gol(w,u) olygllfs] € Tlg]}-

Cram 3.11. For any (y, f) which is Eap x Col(w, u)-generic over P,
T [yllf] = BN Py][f].

PROOF. Suppose z € 7*[y][f]. = = o[y][f] for some (o, (p,q)) € T* such
that p € y and ¢ € f. Let g be Col(w, p1)-generic such that y, = y and
fg = [. In particular, ®((p,q)) € g. Then Plg] k= oly,l[f] € Tlg]. Since
z = olyy][fy] and 7[g] = BN Plg], x € BN Plg].

Now suppose z € BN P[y][f]. Let o be an Eap-term for a Col(w, u)-
standard term for a real such that = = o[y|[f].

U2"{(p,q) : (p,q) € yx g} is a function g; : S — p for some S C w. Let

Q= {r € Col(w, n) : domain(r)n S = 0}

(Q is the quotient of Col(w,u) by g1). Let go be Q-generic over P[g1].
Then g = g1 U go is Col(w, u)-generic over P.

We have z € 7[g]. Pick s € g such that s Il—gol(w)u) alygllfe] € Tlgl.
s =11 Ury for some r1 € g1 and 15 € gs.

SUBCLAIM 3.12. 71 1F5 0, 0 olygllfg] € 7.

PROOF. Suppose not. Then there is g5 which is Q-generic over P[g]

such that, letting ¢’ = g1 U g5, olyy|[fg] € Td']. olyy]lfy] = x, since y,
and f, depend only on g | S. But then x € (BN Plg'])\7[¢], contradicting

that 7 weakly captures B. -
Pick p € y and ¢ € f such that ®((p, ¢)) extends r;. Then (o, (p,q)) € 7*.

So x € 7*[y][f]. 5
Let

" ={(oly],q) : Ip € y such that (o, (p,q)) € 7"}

7’ is definable in P[y] from 7 and y. It is clear from Claim 3.11 that 7’
weakly captures B over P[y]. -

LEMMA 3.13. Let P be I'-ss and y be FEap-generic over P. Then for any
a € P[y), Lp"(a) C P[y).

PrOOF. Let N be a I'-suitable mouse built over P. N has a Woodin
cardinal 6y above dp. The iteration strategy for any proper initial segment
of N|dy restricted to trees above dp is in A. And no initial segment of
N above 0y projects strictly below dn. It follows that any cardinal of P
remains a cardinal in N. In particular, dp remains Woodin in N and y is
also Fap-generic over N.
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Suppose R is an w-sound a-premouse with an wi-iteration strategy in A
such that R projects to a. It suffices to show R € P[y].

Let a be the height of R. Iterating N above R if necessary, we may
assume there is a real g which is Col(w, dn)-generic over N such that some
real in N[y][g] codes R. By Lemma 3.10, there is a Col(w,dy)-term 7 in
Ny] which weakly captures Go. Then R is the unique premouse in Ny]|[g]
of height « such that if x, codes a and zr codes R, then (z,,zr) € T[g].
By homogeneity of the forcing, for any ¢’ which is Col(w, dy)-generic over
N, there is a premouse R’ € NJ[y][g'] of height o and reals z, and zg/
in Ny][¢’] coding a and R/, respectively, such that (z,,zr') € 7[¢']. The
uniqueness of R implies R € N[y]. Since R is coded by a subset of a,
R € Ply]. =

COROLLARY 3.14. If P is I'-ss and y is Eap-generic over P, then the
map with domain Ply||vp defined by a — Lp* (a) is definable in Ply] from
T(fVP and y (uniformly in P and y).

PROOF. P[y] is Lp'-closed by Lemma 3.13. Then by Lemma 3.7, the
map a — Lp'(a) with domain P[y]|vp is definable from any term 7 €
P[y]¢°Hw»P) which weakly captures G over Pl[y].

Lemma 3.10 shows there is a term 7 € P[y]¢°"«¥?) which weakly cap-
tures Go over P[y] and is definable from 74, and y in P[y]. =

COROLLARY 3.15. Suppose P isT'-ss, y is Eap-generic over P, and N €
Plyllvp is D-suitable. Then {7, : p is an uncountable cardinal of N} is
definable in P[y] from N, y, and 7L, (uniformly in P, y, and N ).

n,vp

PRrROOF. This is by the proof of Lemma 3.9, using from Lemma 3.10 that
there is a term in P which weakly captures G,, over P[y] and is definable

from T,ijp and y. -

3.3. Internalizing the Direct Limit. Let xg € R be any real which
is Turing above some real coding W and consider some M which is a
countable, complete iterate of M, . For elements of M|vys, being a I'-
suitable premouse, a I'-short iteration tree, or a I'-maximal iteration tree is
definable over M from Té\,/{jM (This follows easily from Corollary 3.8). Let

IM = {P € M|vy : P € T}.

LEMMA 3.16. Let T € M|vas be a T'-short tree on some T'-suitable P €
M. Then the branch b picked by the iteration strategy for P is in M and
b is definable in M from T and T%,M (uniformly). In particular, M, and
the iteration map i[ P — M,;r are definable in M from T and T(%M,

PROOF. Let g be Col(w,vy)-generic over M. Note b is the unique
branch through 7 which absorbs Q(7). So by Shoenfield absoluteness,
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b € M[g] (in M[g] the existence of such a branch is a 33 statement about
reals). But b is independent of the generic g, so b € M.

It then follows from Corollary 3.8 that b, and therefore also M, and i]
are definable in M from T(%M. -

COROLLARY 3.17. Suppose P € IM and ¥ is the iteration strategy for
P. Suppose also T € Ml|vys is an iteration tree on P below dp of limit
length. Whether T is according to % is definable in M from parameter
Té‘f,M by a formula independent of T and the choice of T'-ss mouse M.

LEMMA 3.18. Suppose P,Q € TM. Then there is R € M and normal
iteration trees T and U on P and Q, respectively, such that

. T realizes R is a complete iterate of P,

. U realizes R is a complete iterate of Q,

. T 1IA(T) € My,

.U TIRU) € M|y, and

. R is definable in M from P, Q, and Té\j{j]v[ (uniformly).

Gr s o v ~

PROOF. We perform a coiteration of P and @ inside M. Suppose so far
from the coiteration we have obtained iteration trees 7 and U on P and
Q, respectively.

Suppose T and U have successor length. Let P’ and Q' be the last models
of T and U, respectively. First consider the case P < Q' or P’ < Q. If
either is a proper initial segment of the other, or there are any drops on
the branches to P’ or @)', we have violated the Dodd-Jensen property. So
P’ = @' and P’ is a common, complete iterate of P and (. Otherwise,
we continue the coiteration as usual by applying the extender at the least
point of disagreement between the last models of 7 and U, respectively.

Now suppose 7 and U are of limit length. In this case M(T) = M(U).
If 7 is I-short, so is U, and by Lemma 3.16, M can identify the branches
the iteration strategies for P and @ pick through 7 and U, respectively.
So the coiteration can be continued inside M. Otherwise, 7 and U are
I'maximal. In this case let R be the unique I'-suitable mouse extending
M(T). R is just the result of applying Lpt to M(T) w times, so M can
identify R by Lemma 3.7. Then R is a complete iterate of P and Q.

The proof of the Comparison Lemma gives the coiteration terminates
in fewer than vy, steps. Then the argument above implies the trees from
this coiteration, without their last branches, are in M|vy; and definable in
M. -

The lemma implies ZM is a directed system. ZM is countable and con-
tained in Z, so we may define the direct limit H™ of ZM, and HM € T.
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Let
IM = {P € I™ : there is a normal iteration tree 7 such that 7 realizes
P is a complete iterate of W and T [ IA(T) € M|vas}.

. IM is definable in M by Corollary 3.17.

LEMMA 3.19. ZM is cofinal in TM . In particular, the direct limit of TM
is HM.

PROOF. Suppose P € ZM. By Lemma 3.18, there is R € ZM which
is a common, complete, normal iterate of both P and W by trees which
are in M (modulo their final branches). Then R is below P in ZM and
R e iJV[. -

LEMMA 3.20. Suppose P € IM. Let X be the (unique) iteration strategy
for P. Suppose T € M|vys is an iteration tree on P according to X. Let
b=X(T) and let Q = M. Then Q is definable in M from T and Té\f,M.
And wpg | E is definable in M from T and <T%/M ck < n) (uniformly).

ProoOF. If T is I'-short, then this is by Lemma 3.16.

Suppose T is I-maximal. Then Q = J,.,, Qi, where Qo = M(T) and
Qir1 = Lp"(Q;). So Q is definable from M(T) and T(%M by Corollary 3.8.
And 7po | vL = 7. | 7L, where ¢ is any branch through 7 respecting Gh.
The argument of Lemma 3.16 shows there is a branch ¢ in M respecting én
Then 7pg | v = m. | 7L for any wellfounded branch ¢ € M through T
such that m.((tf : k < n)) = (7',? ck<n). (tf : k <n) and <T]? tk<n)
are definable in M from P, @), and <T,§7/[VM : k < n) by Lemma 3.9. So
mpq | 7% is definable in M from 7 and (7}, :k <n). =

It follows from the previous lemmas that for any P € 7™, Tpym | P
is definable in M from P and (7)Y, :k < n) (uniformly in M). The same
lemmas hold in M|[y] for y Eaps-generic over M. In particular, we have:

LEMMA 3.21. Suppose y is Eapr-generic over M and P € TN Mlyl]|lva-
Let X be the (unique) iteration strategy for P. Suppose T € M|yl|var is an
iteration tree on P according to X. Let b= X(T) and let @ = M, . Then
Q is definable in My] from T and Té\f,M. And tpg | YL is definable in
Mly] from T and (7}, ~:k <n) (uniformly). Moreover, the definition is
independent not just of the choice of I'-ss mouse M, but also of the generic
.

LEMMA 3.22. Suppose p € Eay; and S is an Eapr-name in M|vy such
that p IFEa,, “S is a complete iterate of W.” Then there is R € I™ such
that R is a complete iterate of S[y] for every y € R which is Eapr-generic
over M. Moreover, we can pick R such that R is (uniformly) definable in
M from parameters S and p.
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PRrROOF. Let P be the finite support product 1I;.,P;, where each IP; is
a copy of the part of Fay; below p. Let H be P-generic over M. We
can represent H as Il; ., H;, where H; is P;-generic over M. Let Sj be a
P-name for S[H,]. Let S; = S;[H] for j € w and S_; = W.

Lemma 3.21 tells us that M[H] can perform the simultaneous coiteration
of all of the S; for j € [-1,w) (except possibly finding the last branches).
The proof of the Comparison Lemma gives that this coiteration terminates
after fewer than v)s steps. Let R; be the last model of the iteration tree
on S; produced by the coiteration. Since each S; is a complete iterate of
W, the Dodd-Jensen property implies there are no drops on the branches
from S; to R; and R; = R, for all 4,5 € [-1,w). Let R = R; for some
(equivalently all) j € [-1,w). Then R is a complete iterate of M and R is
a complete iterate of S; for each j € w. Let U be the iteration tree on W
from the coiteration.

CLAIM 3.23. R is independent of the choice of generic H.

ProoF. Code R by a set of ordinals X contained in vy;. Let X be a
name for X. If R is not independent of H, then there is a < vy; and
q1,q2 € P such that ¢; I & € X and ¢ I+ & ¢ X.

Let N > max(support(qz)). Let g1 be the condition g; shifted over by
N — that is, support(q;) = {j € [N,w) : j — N € support(q;)} and for
J € support(qi), 1(4) = ¢1(j — N). So @ is compatible with g2 and by
symmetry, ¢; IF & € X. But then there is 7 < ga,q which forces both
adcXandadX. 4

Cramm 3.24. U [ Ih(U) is independent of the choice of generic H.

PROOF. The same proof as in Claim 3.23 works. .
Claim 3.23 implies R € M|vys and R is a complete iterate of S[y] for any
y which is Fays-generic over M. Claim 3.24 gives that U | lh(U) € M|vy
and thus R € ZM, -

3.4. The StrLe Construction. Recall the mouse operator x — M,
defined in Section 2.5. In the following lemmas let z,z € R be such that
z € M, and let M = M,.

LEMMA 3.25. Suppose P = StrLe[M,z]. Then P is T'-ss and 6p = .

PROOF. Let § = d,;. By Lemma 2.24, the cardinals of P above § are the
same as the cardinals of M and v, is inaccessible in P. Any inaccessible
of P above 4 is inaccessible in M, since M is a generic extension of P by
a §-c.c. forcing. In particular, vy, is the unique inaccessible of P above §.
Then it suffices to show the following claim.

CLAIM 3.26. (a) Ifn <&, then Lp"(P|n) < P.
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(b) & is a T-Woodin of P. That is, § is Woodin in Lp" (P|5).
(c) If n € P and n > 6, then P|(n™)¥ < Lp"(P|n).

(d) P =6 is Woodin.

(e) If n < &, n is not Woodin in Lp" (P|n).

(f) If n € P and § <, then Lp* (P|n) C P.

ProOF. To prove (a), it suffices to show if n < §, R < LpY(P|n), and
pw(R) =, then R<P. Coiterate R against Le[M, z]. Suppose T and U are
the iteration trees on R and Le[M, z], respectively, from the coiteration.
T is above n because Le[M, z]ln = R|n and n is a cutpoint of R. Let
A < Ih(T) be a limit ordinal and Q = Q(T) = Q(U). Since R € Lp"' (P|n)
and 7 is above 7, Q € Lp"(M(T)). [0,\r and [0, \]y are the unique
branches through 7 and U, respectively, which absorb Q. By Corollary
3.8, these branches can be identified in M. In particular, the coiteration of
R and Le[M, z] can be performed in M. Theorem 2.21 gives that R cannot
outiterate Le[M, z]. Then since R is w-sound, R projects to n, and Le[M, z]
does not project to 7, R is a proper initial segment of Le[M, 2]|(n+)LelM =],
Le[M, z] agrees with P up to ¢, so R< P.

(b) is by the proof of Theorem 11.3 of [MS17]. For (c), the iteration
strategies for initial segments of P|(n*)? restricted to iteration trees above
0 are in A by Fact 2.25. (d) is immediate from (b) and (c). See Sublemma
7.4 of [SW16] for a proof of (e).

Towards (f), let @ = Lp* (P|n). Let P be the extender algebra in P at §
with ¢ generators. M|d is P-generic over P. Note § is Woodin in @ by (b).
In particular, PP is also d-c.c. in @, so any antichain of P in @ is also in P
and M]|d is also P-generic over Q.

Let B € Lp"(P|n). Bis in M = P[M|] since P|n is in M and M is
closed under Lp". So let B be a P-name in P such that B[M|§] = B.

Choose p € P such that p H—g B=B.

Any G which is P-generic over P is also P-generic over Q. So for any G
which is P-generic over P such that p € G, B[G] = B. But then B is in P,
since B={£ <d:pltE £ e B}.I! 4

_|

LEMMA 3.27. Suppose P = StrLe[M,z]. Let 1 > §p be a cardinal of P.
T,IZM 1s definable in M from T%M and z.

PROOF. Let
7= {(0,p) € P: ois a Col(w, p)-standard term for a real,p € Col(w, p),

and p H—gol(w’#) o€ Plg|N T%L .

1Viewing B as a subset of 4.
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Since Tfl”# € M and P is definable over M from z, 7 € M and is definable

from Tfl”# and z. Then it suffices to show the following claim.

Cramv 3.28. 7 =171,

Proor. Clearly 7 C T,’ZM.

Suppose (o,p) € 7. Let C be the set of g which are Col(w, p)-generic over
M such that p € g. For any g € C, olg] € 7)!,[g]. In particular, o[g] € Gy.
Since C is comeager in the set of Col(w, )-generics over P which extend p,

P
0 €Ty -
_|

LEMMA 3.29. Suppose P = StrLe[M, z]. The iteration strategy for P is
fullness-preserving and guided by G.

PROOF. Let ¥ be the (unique) iteration strategy for P. The proof of
Theorem 2.22 gives that X is determined by lifting an iteration on P to one
on M. More precisely, if 7 is a non-dropping'? iteration tree on Py = P
with (P,) the models of the iteration and ig, the associated iteration
maps for § <7 «, then we maintain an iteration tree 7* on My = M with
models (M,) and associated iteration embeddings i3 ,. We also maintain
embeddings 7, : Py — StrLe[M,, z] such that m, 0 ig, = i% o ©7p and
7o = id. In particular, T4 00,0 = 1( 4-

Suppose p is a cardinal of P and p > dp. By Lemma 3.27, 2'87&(7'5#) =

StrLe[M., . StrLe[M.,
ratrkelMaz] o1 each n < w. Then mq o i0,0(Th ) = oyt Mozl Then

by Lemma 2.34, P, is I-ss and mo(7,.1%,) = TiZLe[M“’Z]. This gives ¥ is
fullness-preserving. A second application of Lemma 2.34 gives i o (T,}Z W)=

T,f};, So ¥ is guided by G. B

COROLLARY 3.30. Suppose P = StrLe[M,z]. Then the wi-iteration
strategy for P is not in T.

PROOF. Immediate from Lemmas 2.41 and 3.29. =

LEMMA 3.31. Suppose x,z € R and x codes a mouse N which is a com-
plete iterate of M,. Let P = StrLe[M,,z]. Then P is a complete iterate
of N below iy .

PRrOOF. Coiterate N and P. Let 7 and U be the iteration trees on N
and P, respectively, from the coiteration. Let N* and P* be the last models
of 7 and U, respectively.

Suppose P outiterates V. One possibility is that there is a drop on the
branch of 7 from P to P*. Since the iteration strategy for P is fullness-
preserving by Lemma 3.29, P* has an w;-iteration strategy in A. But the

12We leave to the reader the task of proving the case where 7 drops, as well as
showing that > condenses well.
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strategy for N is fullness-preserving and guided by G. So N* cannot have
an iteration strategy in A, contradicting that N* < P*.

If there is no drop between P and P*, then N* <« P. Since neither side
of the coiteration drops, N* and P* are both I'-ss. But no I'-ss mouse can
have a proper initial segment which is I'-ss.

An identical argument shows N cannot outiterate P. Thus N* = P* and
T and U realize N* and P* are complete iterates of N and P, respectively.
Since there are no total extenders on N above dy, T is below dy. Simi-
larly, U is below 6p. Then stationarity of the Mitchell-Steel construction'?
implies that P* = P. So T realizes that P is a complete iterate of N. -

3.5. A Reflection Lemma. In this section we prove a lemma that any
¥, statement true in M, also holds in some N <M, |kps, with the property
that StrLe[N]<StrLe[M]. A thorough reader not already familiar with the
fully-backgrounded Mitchell-Steel construction may wish to review Section
2.3 before proceeding. A lazy one may read the statement of Lemma 3.35
and skip to Section 3.6.

First, we need to show M, can compute the iteration strategies of its
own initial segments below its Woodin cardinal. More precisely, we have:

LEMMA 3.32. Let v € R, N < M,|dp, and T € M, be an iteration tree
on N of limit length < 1, , according to the (unique) iteration strategy for
N. The cofinal branch b through T determined by the iteration strategy for
N is definable in M, (uniformly in N and T, from the parameter Té\f[jMw).

PROOF. Let M = M,. By Corollary 3.8, the function a — Lp' (a) with
domain M| is definable in M from the parameter Té\f,M.

Let N and 7 be as in the statement of the lemma. Let S = M(T).
Clearly S is definable from 7. Let Q = Q(7). @ is an initial segment of
Lp"(S). The previous paragraph implies @Q is definable in M from S and
Té\,/{)M. The branch b through 7 chosen by the iteration strategy for N is
the unique branch which absorbs Q).

It remains to show b is in M. Iterate M to M’ well above where T is
constructed to make some g generic over Eaé‘j{;, so that g codes b. M'[g]
satisfies that b is the unique branch which absorbs Q. Since b is in fact the
unique such branch in V, symmetry of the forcing gives b is in M’. But
the iteration from M to M’ does not add any subsets of [h(T), so in fact
bisin M. -

We need to put down a few more properties of the Mitchell-Steel con-
struction before proving the main lemma of this section.

LEMMA 3.33. Suppose N is a mouse with a Woodin cardinal dx. Let
z € NNR. There is a club C of T < oy such that Le[N|dn, z]|T = M.,

13See e.g. 3.23 of [ST16].
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where M is the Mitchell-Steel construction of length T in N|dn. Moreover,
we can take C to be definable in N.

PROOF. Let (Mg : & < dn) be the models from the Mitchell-Steel con-
struction of length dy over z, done inside N|dy. Let C’ C dn be the set of
T < dn such that M has height 7 and p,,(M¢) > 7 whenever ¢ is between
7 and the height of N. It is not hard to see from the material in Section
2.3 that C is a club and if 7 € C, then M, = Le[N|dy, z]|7. o

COROLLARY 3.34. Let N, z, and C be as in Lemma 3.33. Let S be the
set of inaccessibles of N below 0. Then Le[N|on, 2] = U, cong Le[N|T, 2].

PROOF. Since dy is Woodin in N, N | S is stationary.” And C is
definable in N, so C'N S is cofinal in dy. Since Le[N|dy, 2] has height dy,
Le[N|on, 2] = U,cons Le[N|dn, 2]|T. So it suffices to show if 7 € C'N S,
then Le[N, z||T = Le[N]|r, z].

Let (Mg : € < dn) be the models from the Mitchell-Steel construction of
length dx over z, done inside N. 7 € C guarantees Le[N, z]|7 = M,. And
by Remark 2.23, 7 € S gives M, = Le[N|1,z]. So Le[N, z]|t = Le[N|r, 2]
forteCnNS. —

LEMMA 3.35. Suppose M, |= @l@,dnr,] for some £y formula ¢, z € RN
M, and d € Rl@ N M,. Then there exists N < M |kp, such that

(a) N has one Woodin cardinal,

(b) én is an inaccessible cardinal of M,
(¢) N = ¢la,dn], and

(d) StrLe|[N,z] < StrLe[M,,z].

PRrROOF. Denote M, by M. For ease of notation we will assume z = 0.
Let p be a cardinal of M above §y; such that M|u = ¢|a].

CLAIM 3.36. There is a stationary set of T < dpr such that T is inac-
cessible in M and if T < { < Opr, then ¢ is not definable in M| from
parameters below 7.

ProOOF. Work in M. Let S be the set of inaccessible cardinals below
dpr. Since 0p is Woodin, S is stationary. Define f : S — dpr by setting
f(€) to be the least n such that there is ¢ < ¢ < dps definable in M|y from
parameters in 7. If the claim is false, then f is regressive on a stationary
set. Then by Fodor’s Lemma, there is a stationary set So and 1 < d,; such
that f”So = {n}. But cof(dar) > [n<¥| x Ny, so we cannot have cofinally
many elements of d; defined by some formula and parameters from n. -

Fix 7 as in Lemma 3.33 and Claim 3.36. Let H = HullM#(7). Let N
be the transitive collapse of H and 7 : N — M |u the anti-collapse map.
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By condensation, N < M|u.1* Clearly N < M|dy, N = ¢[d@,dn], 7 is the
unique Woodin of N, 7 is inaccessible in M, and p,(N) = 7.

Cram 3.37. Le[N|t] < Le[M|é]

PRrROOF. For ( < 7, Le[N|(] < Le[N|r] <= Le[M|(] < Le[M|dn] by
elementarity. But Le[N|(] = Le[M|(] for ¢ < 7. So if Le[N|(] is an initial
segment of Le[N|7], then it is also an initial segment of Le[M|dys]. But this
implies Le[N|7] < Le[M|dp], since by Corollary 3.34, Le[N|7] is a union of
mice of the form Le[N|(] for ¢ < 7. .

We have found N < M|dy satisfying (a), (b), (¢), pu(N) = dn, and
Le[N|én] < Le[M|dn] (since 0 = 7). Our next step is to reflect this below
k- Let F be a total extender in M such that the strength of F' is greater
than On N N. In particular, we have N <Ult(M|dpr, F).

CLAM 3.38. Le[N|7] < Le[Ult(M|dpr, F)].

PROOF. 7 is inaccessible in Ult(M|dps, F'). So by Remark 2.23, Le[N|7]
equals the Mitchell-Steel construction of length 7 in Ult(M|dar, F).

Suppose the claim fails. Then there is a mouse @ built during the
Mitchell-Steel construction in Ult(M|dp, F) after Le[N|7] is constructed,
such that @ projects to some 8 < 7. Pick such a () which minimizes 3. By
Lemma 3.32, any initial segment of M below §,; is iterable in M. Then M
has iteration strategies for Ult(P, F') for any P<4M|dps. @ is a mouse built
during the Mitchell-Steel construction in Ult(P, F') for some P < M|dps, so
Q is also iterable in M. Let Q" = C,(Q). Then @’ is an w-sound mouse
over Le[N|7]|S projecting to S which is iterable in M. It follows from
Theorem 2.21 that Le[M|dys] outiterates @Q'. Since both extend Le[N|7]|3,
and @’ is w-sound and projects to 8, Q' < Le[M|0ps]. But then since 7 is
inaccessible in M, Le[M|7] has height 7, and Le[M|r] < Le[M|dp], Q' is
in Le[M|r]. This is a contradiction, since a subset of 5 which is not in
Le[M]|r] is definable over @’'. o

By elementarity of the ultrapower embedding induced by F, there exists
N <1 M|k satisfying (a), (b), (¢), pw(N) = dn, and Le[N|dy] < Le[M|0as].
It remains to prove the following claim.

CLAmM 3.39. StrLe[N] < StrLe[M].

PROOF. Since N projects to dy, so does StrLe[N] (by Lemma 2.24).
And StrLe[N] agrees with StrLe[M] up to dy since Le[N|0n] < Le[M|dp].
So it suffices to show StrLe[M] outiterates StrLe[N]. But StrLe[N| has
an iteration strategy in T, and StrLe[M] cannot by Lemma 3.30. -

_|

14See Theorem 5.1 of [Ste09].
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3.6. Main Theorem. We are ready to prove Theorem 1.12. Suppose
for contradiction (Ay|o < 8f) is a sequence of distinct T sets. Let U C
R x R be a universal I" set.

Recall in Section 3.1 we defined Z as the direct limit of all countable,
complete iterates of the I'-suitable mouse W. Let J = {(P,¢{) : P €
IANE<dp}. Say (P§) <. (Q,Q) if (P,€),(Q,¢) € J and whenever S is
a complete iterate of both P and @, nps(§) < mg,s(¢). By Lemma 3.2,
the relation <, has length > 6{1‘ . Fix n such that for some (equivalently
any) P € I, mpoo(vE) > 8. Let </ be <, restricted to pairs (P,¢&)
such that £ < 42, Then <’ has length > 85 and </, is in Jg (R)."> Let
B, ={y: U, = A,}. By the Coding Lemma there is a set D in Jz (R) such
that (z,y) € D implies x codes a pair in the domain of </, and y € By,
and D, is nonempty for all 2 in the domain of </,. ’

Let zp € R be such that zy codes W and D € OD<ﬁl(z0). Let Z' be
the directed system of all countable, complete iterates of M,,. Let M/
be the direct limit of Z/. For M, N € I’ and N an iterate of M, let
7m.N : M — N be the iteration map and 700 1 M — M. the direct
limit map (We also used mps,n and mp oo for M, N € Z, but this should
not cause any confusion).

For M € T, let ™™ = TJIDV{(;M. There is a slight issue in that our current
definitions do not obviously guarantee that 7 is moved correctly. That is,
we might have a complete iterate N of M such that my;, n(T™) # 7N, This
can happen because we defined the operator x — M, so that M, is guided
by G, but it is possible D ¢ G. There is no real issue here, since we can
expand G to a larger self-justifying system G’ such that D € G’ and require
M, be guided by G’. However, we should leave the operator x — W, as
is, otherwise we risk altering our construction of D. This raises another
minor complication, because in Sections 3.2 and 3.3 we assumed our I'-ss
mouse M was guided by the same self-justifying system as our I'-suitable
mouse W. Fortunately, the results of those sections remain true so long as
G C @', modulo increasing the number of terms required as parameters in
some of the lemmas. For simplicity, in what follows we will just assume
™ is moved correctly.

DEFINITION 3.40. Say M € T’ is locally a-stable if there is € € M such
that Tyn o (&) = a. Write apy for this ordinal €.

DEFINITION 3.41. Say M € I’ is a-stable if M is locally a-stable and
whenever N € T' is a complete iterate of M, wpr n(cnr) = an.

LEMMA 3.42. For any o < 83, there is an a-stable M € T'.

15This is done by similar arguments to those in Section 3.3.
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PRrOOF. This is essentially the same as the proof of the analogous lemma,
in [Sar22]. We will show for any P € 7', there is an iterate of P which is
a-stable.

CraM 3.43. For any P € T', there is a countable, complete iterate R of
P which is locally a-stable

PRrOOF. Fix § € 7 and ¢ € S such that 75 (() = a. Let R be a
countable, complete iterate of P such that S is Fag-generic over R.

Let S be an Eap-name for S such that () IkgaR “S is a complete iterate
of W.” Applying Lemma 3.22 yields S’ € Z# which is a complete iterate

of S. Then
THR 00 O Tsr 4k 0TS 5/ (C) = T5,00(C)
=aq.
In particular, o € range(myr o )- -

Now suppose no M € 7’ is a-stable. Let (R; : j < w) be a sequence in
7’ such that for all j, R; is locally a-stable and R;4; is an iterate of R;,

but TR;,Rjt1 (aRj) 7é QR4
CLAIM 3.44. TR;,Rji1 (CYRj) > QR; .y
Rip | HT is an embedding of H into

HTi+1. Then the Dodd-Jensen property implies for any common, complete
iterate Q of H® and HTi+1,

PROOF. By elementarity, 7g;,

TRien Q © TRy Ry (OR;) 2 Tyymy o (ORy)-

Then
TaRit1 oo © TRy Ryrr (OR;) = Tyyry o (OUR;)
=«
= TyRit1 ’oo(aRj+1)'
So TR, R, ., (QR,) > R, ;- -

Let R, be the direct limit of the sequence (R; : j < w). Let o =
TR, R, (R;). Claim 3.44 implies a1 < a; for all j, contradicting the
wellfoundedness of R,,,. -

Let A be a maximal antichain in Fajy; such that p € A implies p forces
the generic ea is a pair (ea', ea?), where ea’ codes a pair (Req1,&qq1) such
that there exists an iteration tree on W (according to the strategy for W)
with last model Req1 and Eeqr < 0g_,.'% Since Eapy is dar-c.c., [A[M <y
Then the disjunction of conditions in A is also a condition in Fapy;. Pick
pM € FEays to be the least condition in the constructability order of M

16 This is first order by Corollary 3.14 and Lemma 3.21.
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which is the disjunction of conditions in some A as above, to ensure p is
definable in M. p™ is a maximal condition forcing the property above, in
that any condition p’ € Faj; which forces the same property is compatible
with p.

LEMMA 3.45. There is Q™ € IM such that p™ forces QM is a com-
plete iterate of Req1. Moreover, QM is definable in M from parameter pM
(uniformly in M ).

PROOF. Apply Lemma 3.22 to the condition p and a name for R.,1. -

DEFINITION 3.46. For a-stable M € T, say p € Fay is a-good if p
extends pM and p forces
1. 71'@]\4,7_[1\4 o TrReal’QM (feal) = Q) and
2. (eat,ea?) € ™.

REMARK 3.47. Ifa < 514:, being a-good is definable over a-stable M € T'
from anr, ™, and <7'%/M ik < n) (uniformly in M ). This follows from
Lemmas 3.20 and 3.21.

Let pM be the maximal a-good condition in M which is least in the
construction of M. Note if M is a-stable and N is a complete iterate of
M, then mps n(pM) = pX.

For w € RN M and a ¥; formula ¢(w), write M = [¢(w)] to mean
whenever g is Col(w, dpr)-generic over M, there is a proper initial segment
of M[g] which is a (¢/, g)-witness, where ¢’(z) is a formula expressing
“b(f(x))” for some computable function f such that f(g) = w. Note
“M E [¢p(w)]” is X1 over M if M is iterable.

For a-stable M € 7, let SM be the set of conditions g such that there
exist N,r € M satisfying

(a) N< M|k,

(b) N has one Woodin,

(¢) dn is a cardinal of M,

(d) ¢,r € Eay and (er) ”_gaNanN [U(eal’eag)]a
(e) r is compatible with p.

17 and

Let S, = mar,00(S2) for some (equivalently any) a-stable M € Z’. S,
can be viewed as an element of P(RM()C)MQO.

Let A/, be the set of reals x such that for any a-stable M € 7’ there is
a countable, complete iterate M of M and q € M satisfying

1. g€ SM,

2. x = ¢, and

3. x is Fays-generic over M.

17Here by U we really mean some fixed X1-formula defining U in Jo, (R).
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LEMMA 3.48. A/ = A,
COROLLARY 3.49. a# =S5, # Ss

PROOF. Suppose S, = Sg. Let x € Ay. Let M € T’ be B-stable. There
is a countable, complete iterate M of M which is also a-stable. By Lemma
3.48, x € A/, so there is a countable, complete iterate M of M such that
q € Sg‘f, z = ¢, and z is Eaps-generic over M. M is also a complete iterate
of M, so we have shown z € Ag. Applying Lemma 3.48 again, z € Ag.
Similarly, x € Ag=2 € Aq, so A, = Ag and thus o = 8. =

It suffices to show Lemma 3.48. By the same proof as for M., given
in Lemma 3.1, kp;,. < dp. Then by Corollary 3.49, we have 511" distinct
subsets of or in M/ . Then the successor of dr in M/ is the successor of
dr in L(R), contradicting the following claim.

CLAIM 3.50. Let n = &p. Then (nt)Mee < (n+)E®

PROOF. Let A = ()M Since X is regular in M/_ but not measurable,
Lemma 3.6 implies A has cofinality w in L(R).

Let f € L(R) be a cofinal function from w to A. Let (ge : £ < A) be a
sequence of functions in M/  such that g: : 7 — £ is a surjection. Such a
sequence exists because M/ satisfies AC. Then in L(R) we can construct
from f and (g¢) a surjection from 7 onto A. -

PROOF OF LEMMA 3.48. First suppose z € A,. Let M € I’ be a-
stable. Pick y € R such that y = (y',%?), D(y',»*) holds, and |y'|<, = a.
Let z be a real coding M and let P = M, , .y. Let S = StrLe[P, z].
CLAIM 3.51. z and y are Eag-generic over S.'8
CLAIM 3.52. S is a complete iterate of M by an iteration below & ;.
PrROOF. See Lemma 3.31. -
CLAM 3.53. There is r € Eag such that v is a-good and y = r.

PROOF. Note by choice of y, y' codes a pair (R,&) such that R is a
complete iterate of W, mg 3s(§) = as, and D(y',y?) holds. Then there
is r € Fag such that y |= r, r forces TGS s © TR, 1,08 (€ear) = ag, and
(ea',ea?) € 5. 4

CrLAM 3.54. There exist conditions q,r € Fag such that x = q, y E r,
and (4,7) s g 1U(ear, a2)]:

Proor. By Claim 3.53, y satisfies some a-good condition r. Let yo be
S[x]-generic such that yo = r. Then by the definition of a-good, yy =

18This is a standard property of the fully-backgrounded construction - see Section 1.7
of [Sar22].
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(yd,y3) where (yd,y2) € D and |yi|<, = a. It follows that Uz = Aqa. So
MRS Uyg

SuBcLAIM 3.55. S[z][yo] = [U(x,43)].

PROOF. Let g be Col(w,dg)-generic over S[z][yo]. Note S[z][vo]lg] =
S[g] is a g-mouse. By the proof of Lemma 3.13, Lp'(g) is contained in
S[g]. Let f be a computable function such that f(g) = (z,y2) and let
U’ (v) be a formula expressing U(f(v)) holds. By Lemma 2.48, there is a
(U, g)-witness which is sound, projects to w, and has an iteration strategy
in A. Since Lp'(g) C S[g], this witness is an initial segment of S]g]. -

We have shown S[z][yo] E [U(z,y3)] for any yo which satisfies r and is
S[z]-generic. Thus there is ¢ € Fag such that = satisfies ¢ and (q,r) I+
[U(eay, ea?)]. -

We next would like to find some N < S|kg with the properties of S
we obtained above. Note Claims 3.51 and 3.54 are not first order over
S, since z and y are not in S. So a straightforward reflection argument
inside S will not suffice. The point of introducing P and obtaining .S as a
construction inside P is that these claims are first order in P. The next
claim demonstrates we can perform a reflection in P to obtain the desired
initial segment of S.

CramM 3.56. There is N < S|kg such that N has one Woodin, oy is an
inaccessible cardinal of S, x and y are generic for Eay, and there exist
¢, € Ean x Eay such that x = q, y = r, and (g,7) I+ [U(ear, ea?)].

PrOOF. By Claims 3.51 and 3.54, P satisfies

1. x and y are Faggrre|p,z,)-generic over StrLe[P, zp] and
2. there exist conditions ¢,r € StrLe[P, zp] such that x = ¢, y = r, and

StrLe[P,zo]
(q7r) H7E“:StiLe[’lz:’(fzo]><EaSt7"Le[P,zo] [U(eal’ ea%)].

Both properties are 37 over P in parameters z, y, zg, and dp. Then we
may apply Lemma 3.35 to obtain P’ < P|kp such that P’ has one Woodin
cardinal, dp/ is an inaccessible cardinal of P, StrLe[P’, z] < S, and P’
satisfies properties 1 and 2.

Let N = StrLe[P’,z]. Note éy = dp/ is an inaccessible cardinal of
S. Then all the properties we required of N are apparent except that
N <« S|ks. Standard properties of the Mitchell-Steel construction imply
that kg > kp.'” Then N has cardinality less than kg in P, since N is
contained in P’. Since also N < S, we have N < S|ks. =

To get x € AL, it remains to show the following claim.

19Suppose A < dg = 6p and E is an extender on the fine extender sequence of S
witnessing kg is A-strong in S. Let E* be the background extender for E on the fine
extender sequence of P. Then E* witnesses kg is A-strong in P.
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CLAIM 3.57. r is compatible with pS.

ProoOF. By Claim 3.53, y satisfies some a-good condition p. We may
assume p extends r. p is a-good, so by maximality p is compatible with
pS. Then r is compatible with p3 as well. —

Now suppose z € A/,. Let M, q realize this (for whichever M € Z’ you
please) and let N, realize ¢ € SM. Let y be M|[z]-generic for Eays such
that y = 7 ApM. Since y = pM, y = (y*,y?) where Uy = A,. Since
(z,y) | (¢7), Mlz]ly] = [U(z,y?)]. Let g C Col(w,dn) be M[z][y]-
generic. Then M|x][y]lg] = M|g] has an initial segment R witnessing
U(x,y?). By taking the least such R, we may assume R projects to w
and hence R € Lp'(g). It follows that z € U2 = A,. =

8§4. Remarks on Some Projective-Like Cases. Here we provide a
few brief comments on the problem of unreachability for projective-like
cases. Section 4.1 covers the projective pointclasses. In Section 4.2, we
discuss what appears to be the main obstacle to proving the rest of the
following conjecture.

CONJECTURE 4.1. Assume ZF+AD+DC+V = L(R). Suppose k < 82
is a Suslin cardinal and K is either a successor cardinal or a regular limit
cardinal. Then k™ is S(k)-unreachable.

4.1. The Projective Cases. In the introduction, we discussed a the-
orem of Sargsysan solving the problem of unreachability for the projective
pointclasses:

THEOREM 4.2 (Sargsyan). Assume ZF + AD + DC. Then 6%77.—}-2 is
E%n—l—Z -unreachable.

Our technique for proving Theorem 1.12 gives another proof of Sargsyan’s
theorem, which we outline below. We will assume ZF + AD + DC for the
rest of this section.

Let W = Mj; 41+ Let Z be the directed system of countable, complete
iterates of W and let M., be the direct limit of Z.

FACT 4.3. kpr, < 5§n+

The iteration strategy % for W is guided by indiscernibles, analogously
to how the iteration strategies for I'-suitable mice are guided by terms for
sets in a sjs.20 [Sar13] covers this analysis of the iteration strategy for W

o and dpr, > (03,45)T

20More explicitly, for an appropriate sequence of indiscernibles (v; : i < w), ¥ is the
unique iteration strategy witnessing that W is strongly (vo, .., v;)-iterable (in the sense
of [Sar13]) for every i < w.
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in detail. Also analogously to Sections 3.2 and 3.3, inside an iterate M of
MZ +1(z0) for some zg € R coding W, we can form the direct limit # of
countable iterates of W in M and approximate the iteration maps from W
to HM. This internalization is covered in [Sar22].

The following fact gives us an analogue of the notion of a (¢, z)-witness.

Fact 4.4. There is a computable function which sends a E%n+2—f0rmula
¢ to a formula ¢* = ¢*(ug, ..., uan—1,v) in the language of mice such that
the following hold:

1. If v € R, M is a countable, wy + 1-iterable x-premouse, M |= ZFC),
M has 2n Woodin cardinals dg, ...,02n_1, ¢ is a E%n+2 formula, and
M = ¢*[do, -, O2n—1, ], then ¢(x) holds.

2. If v € R, dg,...,09,_1 are the Woodin cardinals of Mj;(z), o is a
E%n+2 formula, and ¢(x) holds, then a proper initial segment of M
above day,—1 satisfies ZFC and ¢*[do, ..., dan—1, ).

With these tools it is not difficult to adapt our proof of Theorem 1.12
into a proof of Theorem 4.2.

Here is a brief overview of the proof of Theorem 4.2 in [Sar22]. The
basis of this proof is also studying the directed system Z’ of countable
iterates of M;flﬂ(zo) for some zy € R. Suppose (4, : a < 5%n+2> is
a sequence of distinct 2%n+2 sets. Fix a I}, 4\%3,,5 set A C w. If
n € A, this is witnessed in a proper initial segment of any My, 1-like
I13,,, o-iterable premouse M. Then there is a X3, 5 set A’ C A consisting
of, roughly speaking, all n € w which are witnessed in such an M before
some x € A, is witnessed. There is ng € A’\A. This is witnessed in some
proper initial segment Ny of M|k for any M € Z'. A coding set SM is
defined analogously to our coding sets in the proof of Theorem 1.12, but
with the additional requirement that the conditions appear below Nj;. The
coding sets are used to show a 33 4o code for A, is small generic over M.
The contradiction is obtained from this.

The technique described in the previous paragraph is a stronger argument
than the one we used for Theorem 1.12, since it gives coding sets which are
uniformly bounded below the least strong cardinal. It is not clear whether
a similar argument could work for inductive-like pointclasses. There is no
obvious analogue of the I13, . 5\X3, 5 set A for an inductive-like pointclass
T, since there is no universal I'\I'® set of integers. So the proof from [Sar22]
is not applicable to inductive-like pointclasses. On the other hand, the tech-
niques of Section 3 are applicable to the projective pointclasses. And this
yields a substantially simpler proof of Theorem 4.2, since it eliminates the
need for a uniform bound on our coding sets.
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4.2. Mouse Sets and Open Problems. In this section we discuss
the relationship between the problem of unreachability and well-known
conjectures on mouse sets. We will assume ZF + AD + DC +V = L(R),
although this is overkill for some of the results stated below.

DEFINITION 4.5. X C R is a mouse set if there is an wy + 1-iterable
premouse M such that X = M NR.

THEOREM 4.6 (Steel). Suppose I' = X}, for some n € w. Then Cp is
a mouse set.

THEOREM 4.7 (Woodin). Suppose X is a limit ordinal and let
I' = {A C R : A is definable in Jg(R) for some < A\}. Then Cr is a
mouse set.

See [Ste95a] and [Stel6] for proofs of Theorems 4.6 and 4.7, respectively.
[Stel6] also gives the following conjecture.

CONJECTURE 4.8 (Steel). Suppose T' is a level of the (lightface) Levy
hierarchy.2! Then Cr is a mouse set.

Conjecture 4.8 is a way of asking if there is a mouse corresponding exactly
to the pointclass I'. For each T' in the Levy hierarchy, the core model
induction constructs a mouse which contains Cr, but in some cases the
mouse constructed is too large. For example, let J be the mouse operator
J(x) =U, <o M#(z). T = X, 12(J2(R)), then

M ARCCr € M) NR.

There are many similar cases in which the mice constructed in [SS] skip
the (hypothesized) mouse realizing Conjecture 4.8. Recent progress has
been made towards Conjecture 4.8 in [Rud23], which resolves the case I" =
Ea(J2(R)).

The problem of unreachability is connected to a boldface version of Con-
jecture 4.8.

CONJECTURE 4.9. Suppose o« € ON and n € w. For xz € R, let T,
consist of all pointsets A for which there is a 33, formula ¢ with parameter
x such that A = {y : Jo(R) |= ¢[y]}. Then for any y € R, there is x € R
such that y <rp x and Cr, is a mouse set.

Presumably a proof of Conjecture 4.8 would relativize, so a proof of
Conjecture 4.8 would also resolve Conjecture 4.9.

The mouse operator = — Mj,i(ac) realizes Conjecture 4.9 holds for a =1
and n = 2k + 2. To prove 83, , is 33 | ,-unreachable, we studied the

2e. T' = %, (Ja(R)) for some o € On and n € w.
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direct limit of M = M;’;H(aco) for some zy € R. Note if g is Col(w, Ipr)-
generic over M, then Mg] = MZ. (g).

For o admissible, the mouse operator x +— M, of Theorem 2.42 realizes
Conjecture 4.9 holds in the case n = 1. Note if g is Col(w, dps, )-generic
over M,, then M,[g]NR = Lp'(g) "R = Cr(g). So in the inductive-like
case as well we studied the direct limit of a mouse such that collapsing its
least Woodin yields a mouse realizing one case of Conjecture 4.9.

Thus for each pointclass 3, (J,(R)) for which we have proven Conjecture
1.10 holds, we used a mouse operator realizing Conjecture 4.9 holds for «
and n. It seems likely a proof of Conjecture 4.1 would involve proving
Conjecture 4.9 for each o and n such that %,,(J,(R)) = S(x) for some
Suslin cardinal x which is a successor cardinal or a regular limit cardinal.
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