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1. Introduction

Let κ be a regular infinite cardinal. A κ-tree is a tree of height κ where every level

has cardinality less than κ, and κ has the tree property if every κ-tree has a branch

of length κ. A κ-Aronszajn tree is a counterexample to the tree property at κ, that

is to say a κ-tree with no branch of length κ. A λ+-tree T is special if there is a

function f : T → λ such that u <T v =⇒ f(u) ̸= f(v): such a tree is a robust

counterexample to the tree property, in the sense that it is a λ+-Aronszajn tree in

any outer model where λ+ remains a cardinal.

The tree property belongs to a class of compactness properties, which are of

great interest in combinatorial set theory. Significant results about the tree property

include:

• (Kőnig [9, 1927]) ω has the tree property.

• (Specker [22, 1949]) If κ<κ = κ then there is a special κ+-tree.

• If κ is strongly inaccessible then:

– (Keisler and Tarski [8, 1963]) If κ has the tree property then κ is

weakly compact.

– (Monk and Scott [14, 1964]) If κ is weakly compact then κ has the

tree property.

• (Silver [13, Theorem 5.9, 1972]) If κ is uncountable and has the tree prop-

erty, then κ is weakly compact in L.

• (Magidor and Shelah [12, 1996]) If λ is a singular limit of cardinals which

are λ+-strongly compact, then λ+ has the tree property.

• (Combining results of Foreman, Magidor and Schindler [4, 2001], Schim-

merling and Zeman [17, 2004], and Jensen and Steel [7, 2013]) If κ and

κ+ are successive regular cardinals with the tree property, then there is an

inner model with a Woodin cardinal.

• (Combining results of Schimmerling and Zeman [17, 2004], and Jensen and

Steel [7, 2013]) If λ is a singular cardinal such that λ+ has the tree property,

then there is an inner model with a Woodin cardinal.

It is known to be consistent that certain small regular cardinals can have the tree

property. Mitchell [13] showed that if λ < κ with λ regular and κ weakly compact,

then there is a generic extension by < λ-closed κ-cc forcing in which 2λ = κ = λ++

and the tree property of κ is preserved. Magidor and Shelah [12] showed it to be

consistent modulo a hypothesis at the level of huge cardinals that ℵω+1 is strong

limit and has the tree property.

A natural question, raised by Foreman and by Magidor among others, asks

whether it is consistent that all regular κ > ℵ1 should simultaneously have the tree

property. There are many obstacles to be overcome in resolving this question: in

particular we need a model where GCH fails everywhere and Jensen’s “weak square”

principle □∗
λ fails for every λ. On a closely related point, we seem to need instances

of strong compactness in order to violate weak square for singular λ, but there
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is tension here with Solovay’s theorem that SCH holds above a strongly compact

cardinal.

Our main result is:

Theorem 1.1. Modulo a suitable large cardinal assumption, it is consistent that

ℵω2 is strong limit and the tree property holds for all regular cardinals κ such that

ℵ2 ≤ κ ≤ ℵω2+3.

Theorem 1.1 is the first known instance where the tree property holds on regular

cardinals in an interval which overlaps a strong limit cardinal. To be more precise,

observe that if κ is a singular strong limit cardinal and SCH holds at κ, then by

Specker’s theorem there is a special κ++-tree. It follows to get a model where all

regular cardinals above ω1 have the tree property, we are required to produce a

singular strong limit cardinal κ where regular cardinals between ω1 and κ all have

the tree property, 2κ ≥ κ++, and κ+ has the tree property.

This has long been considered the next key step in the longstanding goal of

obtaining the tree property everywhere. Notice that in Theorem 1.1 the strong limit

cardinal which is overlapped is ℵω2 , not ℵω. This sidesteps another key question,

which is still open, as to whether the failure of the Singular Cardinals Hypothesis

at ℵω is consistent with the tree property at ℵω+1.

The history behind Theorem 1.1 and the ingredients that go into its proof is

a long one. We survey this history very briefly, where the price of brevity is that

some contributions are omitted. In the light of the preceding discussion, we will be

rather specific about cardinal arithmetic.

• Building on work of Abraham [1], Cummings and Foreman [2] showed that

consistently 2ℵn = ℵn+2 and ℵn+2 has the tree property for all n < ω

simultaneously. They also showed that the tree property can hold at κ++

where κ is strong limit of cofinality ω and 2κ = κ++.

• Neeman [16] showed that the tree property can hold at ℵn+2 for n < ω and

at ℵω+1. In this model 2ℵn = ℵn+2 for n < ω and 2ℵω = ℵω+1. Unger [25]

showed it can hold for all regular cardinals in the interval [ℵ2,ℵω+ω). In

this model 2ℵ0 = ℵ2, 2ℵi = ℵω+2 for 1 ≤ i < ω, and 2ℵω+i = ℵω+i+2 for

i < ω.

• Building on work of Gitik and Sharon [5], Neeman [15] showed that the

tree property can hold at κ+ where κ is strong limit of cofinality ω and

2κ = κ++.

• Sinapova [19] produced a model of GCH where ℵω+1 has the tree property,

using different methods from those of Magidor and Shelah together with

weaker hypotheses.

• Sinapova [18] produced a model where ℵω2 is strong limit, 2ℵω2 = ℵω2+2,

and ℵω2+1 has the tree property. Sinapova and Unger [20] produced a model

where ℵω2 is strong limit, 2ℵω2 = ℵω2+2, and both ℵω2+1 and ℵω2+2 have

the tree property.
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• Unger [26] proved a result closely related to Theorem 1.1, producing a

model where there is no special κ-Aronszajn tree for regular κ with ℵ2 ≤ κ ≤
ℵω2+3. In this model none of the cardinals ℵω·n for n finite is strong limit, in

fact 2ℵ(ω·n)+4 = ℵω·(n+1)+3. However ℵω2 is strong limit, and 2ℵω2 = ℵω2+3.

The proof of Theorem 1.1 has several steps, which we outline here with many

technicalities omitted.

• (Section 5.1) We start with a model V0 such that θ and κ are the first two

supercompact cardinals, there are θ+ supercompact cardinals above κ, and

if δ is the supremum of the first θ+ supercompact cardinals then there is

j0 : V0 → M0 which witnesses that κ is δ+-supercompact and is such that

supercompact cardinals up to δ are supercompact in M0.

• (Section 5.1) We build a generic extension V of V0, in which θ is the con-

tinuum and exhibits a strong form of generic supercompactness. We lift j0
to obtain j : V →M with similar properties.

• (Section 5.2) Working in V , we use the generic supercompactness of θ to

show that for every supercompact cardinal λ with κ < λ < δ, there exist

an ω-successor cardinal ρ < θ and a forcing poset uniformly defined from ρ

and λ, forcing (among other things) the following conclusions: ρ+ is ℵ1, the

successor of the supremum of the first ω supercompact cardinals above λ

is ℵω+1, and ℵω+1 has the tree property. We will never actually force with

this forcing, rather we will use it as a device to show that certain cardinals

in our final model have the tree property. Informally we can think of ρ as

being “good for λ”.

• (Section 5.3) Still working in V , we select cardinals ρ, λa, λb such that

ρ < θ < κ < λa < λb < δ and ρ is good for both λa and λb in the sense

described above. In the final model ρ+ will become ℵ1, θ will become ℵ2,

and κ will be ℵω2 .

Using the supercompactness of κ, we argue that there are many triples

(τ,Λa(τ),Λb(τ)) where τ < Λa(τ) < Λb(τ) < κ and (τ,Λa(τ),Λb(τ)) re-

flects the properties of (κ, λa, λb). In particular ρ is good for both Λa(τ)

and Λb(τ).

• (Section 6) We build a generic extension V [L] of V in which κ is still highly

supercompact and certain cardinals above λa are collapsed: in particular

the cardinals (λb)+n for n ∈ ω ∪ {ω + 2, ω + 3} as computed in V [L] were

all supercompact in V . A similar situation holds below κ in V [L] for the re-

flected cardinals Λb(τ). Working in V [L] we carefully choose an embedding

j∗ witnessing that κ is < (λb)+ω+3-supercompact, and derive supercom-

pactness measures Un on Pκ(λb)+n for large enough n < ω.

• (Section 8) Working in V [L] we define a forcing poset Agg ∗ P̄ where Agg

is a highly distributive auxiliary forcing, and P̄ is a diagonal supercompact

Prikry forcing with some complex forcing posets interleaved between suc-

cessive points of the generic ω-sequence. Our final model is the extension
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of V [L] by Agg ∗ P̄.

The definition of P̄ uses the measures Un, and a “guiding generic” K

whose definition involves Agg. P̄ has the effect of making ρ+ = ℵ1, θ = ℵ2,

and κ = ℵω2 . Above κ all cardinals up to and including (λb)
+ω are collapsed

to have cardinality κ, while cardinals above this point are preserved, so that

(λb)+ω+n becomes ℵω2+n.

• (Section 9) We verify that in our final model all regular cardinals in [ℵ2,ℵω2)

have the tree property.

• (Section 10) We verify that in our final model the cardinals ℵω2+1, ℵω2+2

and ℵω2+3 all have the tree property.

Our notational conventions are fairly standard. When p and q are forcing con-

ditions we write “q ≤ p” when q is stronger than p. A poset is τ -closed if every

decreasing τ -sequence has a lower bound, and < τ -closed if every decreasing < τ -

sequence has a lower bound: note that some authors call these properties τ+-closed

and τ -closed respectively. Our convention for directed closure is similar, so that a

poset is < τ -directed closed if every directed subset of size less than τ has a lower

bound. When the decreasing sequences have greatest lower bounds we describe

posets as being canonically closed: in particular a poset is canonically τ -closed if

every decreasing τ -sequence has a greatest lower bound, and canonically < τ -closed

if every decreasing < τ -sequence has a greatest lower bound. Of course the Cohen

poset Add(τ, ρ) and the Levy collapse posets Coll(τ, ρ) and Coll(τ,< ρ) are exam-

ples of canonically < τ -closed posets. When p0 and p1 are compatible conditions

we will sometimes abuse notation and write “p0 ∧ p1 ⊩ ϕ”, when we should more

properly write “p ⊩ ϕ for every common refinement p ≤ p0, p1”. Most of the forcing

posets appearing in this paper have a top element, but we do not demand this.

In general we will name forcing posets with blackboard bold letters (for example

A) and the associated generic objects with the corresponding upper case italic letter

(for example A). When this naming convention would cause confusion we may call

the A-generic object GA. If τ̇ is an A-name then τ̇ [A] is the interpretation of τ̇ by

A. For x in the ground model, x̌ is the canonical name for x, where the forcing for

which x̌ is a name should always be clear from the context.

When κ is inaccessible and λ ≥ κ we abuse notation and write Pκλ for the set

of x ⊆ λ with x ∩ κ ∈ κ and |x| < κ. When x, y ∈ Pκλ we write x ≺ y for the

relation “x ⊆ y and ot(x) < y ∩ κ. Of course we will also use ≺ for the relation “is

an elementary substructure of” but in practice there is no possibility of confusion.

Once the main construction begins at the start of Section 5, we will begin to

introduce many objects which are then fixed for the whole duration of the construc-

tion. To help the reader keep track, all these “global” objects will be flagged as they

appear and will correspond to entries in the “Index of Notation” section.
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2. Preliminaries

2.1. A fact about κ-cc forcing

The following Lemma is often useful.

Lemma 2.1. Let κ be regular and uncountable, let P be κ-cc and let (pα)α<κ be a

κ-sequence of conditions in P. Then there exists α < κ such that pα forces {β < κ :

pβ ∈ P} to be unbounded in κ.

Proof. If not, for each α we choose rα ≤ pα such that rα forces {β < κ : pβ ∈ P} to

be bounded in κ, and then use κ-cc to find an ordinal ηα < κ such that rα forces

{β < κ : pβ ∈ P} ⊆ ηα. Let C = {δ : ∀γ < δ ηγ < δ}, so that C is club in γ. If

γ, δ ∈ C with γ < δ then rγ forces pδ /∈ P , so that rγ forces rδ /∈ P , which is to say

that rγ is incompatible with rδ. So {rγ : γ ∈ C} is an antichain in P, contradicting

κ-cc for P.

Remark 2.2. An easy variation on this argument shows that there is α such that

pα forces {β < κ : pβ ∈ P} to be stationary in V [P ], but this is more than we need.

2.2. Laver functions and Laver indestructibility

Recall that if κ is supercompact, there is a Laver function f : κ→ Vκ, that is to say

a function such that for all x and all λ there is a λ-supercompactness embedding

j : V →M such that crit(j) = κ and j(f)(κ) = x.

Definition 2.3. Let f be a partial function defined on ordinals. A closure point of

f is an ordinal γ such that f(α) ∈ Vγ for all α ∈ dom(f) ∩ γ.

Thinning the domain of a Laver function f , we may assume that dom(f) consists

of inaccessible closure points of f .

Given a Laver function f the Laver iteration is an Easton support iteration

L of length κ, where we force with f(α)[Lα] whenever f(α) is a Lα-name for a

< α-directed closed forcing poset: the poset L is κ-cc and has cardinality κ. Laver

[10] showed that if κ is supercompact then a Laver function exists, and that the

Laver iteration forces the supercompactness of κ to be indestructible by subsequent

< κ-directed closed forcing. With our conventions the Laver iteration defined from

f preserves the inaccessibility of all points in dom(f).

Definition 2.4. Let I be an interval of cardinals, then a partial function f on I

is a universal Laver function on I if and only if dom(f) ⊆ sup(I), and f ↾ κ is a

Laver function on κ for every supercompact κ ∈ I.

Adapting the standard argument for the existence of a Laver function, it is easy

to see that every interval has a universal Laver function. Since the construction of

a Laver function f proceeds by choosing f(α) as the least counterexample to f ↾ α
being a Laver function, we may (and will) assume that the domain of a universal

Laver function contains no supercompact cardinals. If f is a universal Laver function
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on I then the standard Laver iteration defined from f is the Easton support iteration

L which runs from min(I) to sup(I), forcing as before with f(α)[Lα] whenever f(α)

is a Lα-name for a < α-directed closed forcing poset. The poset L is < min(dom(f))-

directed closed and makes every supercompact cardinal in I indestructible.

We will need a strengthening of the concept of Laver indestructibility due to

Neeman [16].

Definition 2.5. Let κ be a supercompact cardinal. An indestructible Laver function

for κ is a partial function ϕ from κ to Vκ such that for every x ∈ V , λ ≥ κ

and < κ-directed closed forcing extension V [E], there is an elementary embedding

π : V [E] → N such that:

(1) The embedding π is defined in V [E], and witnesses that κ is λ-supercompact

in V [E].

(2) π ↾ ON is definable in V .

(3) κ ∈ dom(π(ϕ)) and π(ϕ)(κ) = x.

(4) The first point in dom(π(ϕ)) past κ is greater than λ.

Note that an indestructible Laver function for κ can only exist when κ is inde-

structibly supercompact. Adapting the arguments of [16] to use a universal Laver

function, one can readily get a universal indestructible Laver function.

Fact 2.6. Let I be an interval of cardinals. Then there is a forcing poset L such

that in the extension by L, there exists a partial function ϕ such that ϕ ↾ κ is an

indestructible Laver function for every V -supercompact cardinal κ ∈ I.

Proof. We do a straightforward adaptation of the argument from the beginning of

[16, Section 4]. Let f be a universal Laver function on I, and derive functions f0
and f1 from f such that f(α) = (f0(α), f1(α)) when f(α) is an ordered pair and the

values fi(α) are undefined otherwise. Let L be the standard Laver iteration defined

from f0, and let L be L-generic over V . Define ϕ(α) = f1(α)[Lα] at every point α

such that f1(α) is an Lα-name.

Remark 2.7. The poset L does not create any new instances of supercompactness,

and by convention the domain of a universal Laver function does not include any

supercompact cardinals. It follows that in the extension by L, κ /∈ dom(ϕ) and ϕ ↾ κ
is an indestructible Laver function for every supercompact κ ∈ I.

Unfortunately the property of Laver indestructibility is quite fragile:

Fact 2.8 (Hamkins [6]). If κ is supercompact and Q is a non-trivial forcing poset

with |Q| < κ, then κ is not indestructible in the extension by Q. In fact κ becomes

“superdestructible”, that is to say its supercompactness (even its weak compactness)

is destroyed by any further < κ-closed forcing which adds a new subset of κ.

Since indestructibility plays a central role in our arguments, we will need to

make repeated appeals to Fact 2.6.
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Fact 2.9. Let Q be a forcing poset, let |Q| < µ and let f be a universal Laver

function defined up to µ. Let Q be Q-generic over V and define F ∈ V [Q] by setting

F (α) = f(α)[Q] for all α such that f(α) is a Q-name. Then F is a universal Laver

function on the interval (|Q|, µ) in V [Q].

Proof. Let |Q| < κ < µ with κ supercompact in V [Q], so that κ is supercompact

in V and f ↾ κ is a Laver function. Let γ > κ, let x ∈ H
V [Q]
γ and let x = ẋ[Q]

for some ẋ ∈ Hγ . Choose j : V → M witnessing κ is γ-supercompact in V with

j(f)(κ) = ẋ, then j lifts to an embedding j : V [Q] →M [Q] such that j witnesses κ

is γ-supercompact in V [Q] and j(F )(κ) = x.

Remark 2.10. Note that the Laver functions ϕ and F from Facts 2.6 and 2.9 are

derived from an initial Laver function f in such a way that rk(ϕ(α)), rk(F (α)) ≤
rk(f(α)). It follows that closure points of f are automatically closure points of its

derived Laver functions.

2.3. Trees and systems

We will sometimes be in a situation where T is a tree, we know that T has a branch

in some generic extension, and we want to conclude that T has a branch in V . In

this situation we will often use one of the following preservation lemmas or branch

lemmas.

Fact 2.11 (Unger [24]). Let κ be regular and uncountable. If P× P is κ-cc, then P
has the κ-approximation property. In particular forcing with P cannot add a branch

through a tree of height κ.

Fact 2.12 (Unger [23, Lemma 6]). Let κ and η be regular and uncountable with

κ < η ≤ 2<κ. Let P be < κ-closed in V and let V ′ be a κ-cc extension of V . Then

forcing with P over V ′ cannot add a branch through an η-tree in V ′.

If the universe is a κ-cc generic extension of a submodel in which P is < κ-closed,

we sometimes say that P is formerly < κ-closed.

Fact 2.13 (Magidor and Shelah [12, Theorem 2.1]). Suppose that µ < ν where µ

is an infinite cardinal and ν is a singular cardinal of cofinality ω. Let V [G] be a

µ-closed generic extension, and let E be generic over V [G] for a poset in V of size

µ. If T ∈ V [E] and T is a ν+-tree, then any branch through T in V [E][G] is already

in V [E].

The concepts of system and a system of branches will play a central role. Typ-

ically a system arises from a name for a tree T in some generic extension, and

a system of branches arises from a name for a branch of T in a further generic

extension.

Definition 2.14. Let D be a set of ordinals and τ be a cardinal. A system on D×τ
is an indexed collection (Ri)i∈I of transitive reflexive relations on D× τ such that:
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• (α, η)Ri(β, ζ) and (α, η) ̸= (β, ζ) implies α < β.

• (α, η)Ri(β, ζ) and (α′, η′)Ri(β, ζ) implies that (α, η) and (α′, η′) are Ri-

comparable.

• For α < β both in D there exist η, ζ < τ and i ∈ I such that (α, η)Ri(β, ζ).

A system of branches through such a system is an indexed collection (bj)j∈J of

partial functions from D to τ such that:

• bj is a branch through Ri for some i, that is for every β ∈ dom(bj) and

every α ∈ D∩β, α ∈ dom(bj) if and only if there is η with (α, η)Ri(β, bj(β))

and in this case bj(α) is the unique such η.

• For every α ∈ D there is j such that α ∈ dom(bj).

We will need the following technical fact about systems and systems of branches,

which appears in a slightly different form as [16, Remark 3.4].

Fact 2.15. Let (Ri)i∈I be a system on D × τ and let ν be a cardinal such that D

is a cofinal subset of ν+. Let P be a poset which adds a system of branches (bj)j∈J

through the system (Ri)i∈I , and let λ be a regular cardinal such that:

• max(|I|, |J |, τ) < λ < ν.

• There is a forcing Q which adds λ mutually generic filters for P, without
collapsing λ or forcing that cf(ν+) ≤ λ.

Then there is j ∈ J such that bj ∈ V and dom(bj) is cofinal in ν+.

Since the proof is quite short we sketch it here.

Proof sketch. Towards a contradiction, we may assume without loss of generality

that P forces “dom(bj) cofinal implies bj /∈ V ” for all j. Force with Q and let bαj
be the realization of ḃj by the αth P-generic filter. If α ̸= β and both dom(bαj ) and

dom(bβj ) are cofinal, then by mutual genericity bαj ̸= bβj . Since cf(ν+) > λ we may

choose η < ν+ so large such that dom(bαj ) bounded implies dom(bαj ) ⊆ η for all

j ∈ J and α < λ, and also dom(bαj ) and dom(bβj ) both cofinal and α ̸= β implies

bαj ↾ η ̸= bβj ↾ η for all j ∈ J and distinct α, β < λ. Let γ ∈ D \ η, then for all α < λ

there exist j ∈ J , i ∈ I and ζ < τ such that γ ∈ dom(bαj ) (in particular dom(bαj )

is cofinal), bjα is a branch through Ri and bαj (γ) = ζ. Since λ is a cardinal we may

choose α ̸= β which give the same values for (j, i, ζ), but then bαj (γ) = bβj (γ) and

both bαj , b
β
j are branches through Ri, so that bαj ↾ γ = bβj ↾ γ in contradiction to the

choice of η.

2.4. A branch lemma

In Fact 2.15 it is important that the “width” τ of the system is considerably less

than the “height” ν+. In Section 10.2 we are forced to consider systems where the
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height is the successor of the width, and to handle these we will use an alternative

branch lemma (due to Unger) whose proof is similar to that of Fact 2.12.

Let V ⊆ W . Let δ < ν < µ < λ be cardinals in W where µ and λ are regular.

Assume that 2δ ≥ λ in V , and W = V [E] where E is µ-cc in V . Let P be < µ-closed

in V , where we note that by Easton’s Lemma cf(λ) ≥ µ in W [P ].

Let R be a system on λ × µ in W , with relations Ri for i < ν. Assume that

forcing with P overW adds a system of branches (bi)i∈ν where bi is a branch through

Ri. Then there is i such that bi ∈W and dom(bi) is cofinal in λ.

Proof. We work in V until further notice. For each i < ν we fix Ṙi an E-name

for Ri and ḃi an E × P-name for bi. Assume for a contradiction that E × P forces

that bi /∈ W for every i with dom(bi) cofinal. Since P is < µ-closed and E is

µ-cc in V [P ], it is easy to find e∗ ∈ E, p∗ ∈ P and η < λ such that (e∗, p∗) ⊩V
E×P

“dom(bi) bounded implies dom(bi) ⊆ η” for all i < ν. Going forward we work below

(e∗, p∗).

Let e ∈ E, p0, p1 ∈ P, i < ν and γ ∈ [η, λ). Then (e, p0, p1) forces divergence for

bi at γ if both (e, p0) and (e, p1) decide “dom(bi) is cofinal” and one of the following

holds:

• At least one of (e, p0) and (e, p1) forces “dom(bi) is bounded”.

• Both (e, p0) and (e, p1) force “dom(bi) is cofinal”, and one of the following

holds:

– (e, p0) ⊩ γ ∈ dom(bi), (e, p1) ⊩ γ /∈ dom(bi).

– (e, p0) ⊩ γ /∈ dom(bi), (e, p1) ⊩ γ ∈ dom(bi).

– (e, pj) ⊩ bi(γ) = ζj for j ∈ 2, and ζ0 ̸= ζ1.

Claim 2.17. Let e ∈ E, p0, p1 ∈ P and i < ν. Then there exist γ ∈ [η, λ) and

(e′, p′0, p
′
1) ≤ (e, p0, p1) such that (e′, p′0, p

′
1) forces divergence for bi at γ.

Proof. Extending if necessary, we may as well assume that both (e, p0) and (e, p1)

decide “dom(bi) is cofinal”. There is nothing to do unless (e, p0) and (e, p1) force

“dom(bi) is cofinal”. In this case force with E below e, and then force over V [E] with

the formerly closed forcing P×P below (p0, p1) to obtain Pleft×Pright. Now since bi
is forced over V [E] by P not to lie in V [E], bi[E×Pleft] and bi[E×Pright] are distinct

partial functions with cofinal domains, and it is easy to choose (e′, p′0, p
′
1) ∈ E×P×P

and γ as required.

Claim 2.18. Let p0, p1 ∈ P and i < ν. Then there exist p′0 ≤ p0, p
′
1 ≤ p1, γ

∗ ∈ [η, λ)

and a maximal antichain A in E such that for all e ∈ A, (e, p′0, p
′
1) forces divergence

for bi at γ for some γ ∈ [η, γ∗).

Proof. We construct pairwise incompatible eα ∈ E, decreasing pα0 below p0 and pα1
below p1, and γα < λ. Since E is µ-cc the construction halts before µ steps. If

(eα)α<β does not enumerate a maximal antichain in E, then we choose fβ ∈ E
incomparable with all eα for α < β and lower bounds qβ0 and qβ1 in P for
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the sequences (pα0 )α<β and (pα1 )α<β , and then apply Claim 2.17 to the condi-

tion (fβ , qβ0 , q
β
1 ). This gives (eβ , pβ0 , p

β
1 ) ≤ (fβ , qβ0 , q

β
1 ) and γβ ∈ [η, λ) such that

(eβ , pβ0 , p
β
1 ) forces divergence at γβ . Once the construction terminates after β stages,

we let A = {eα : α < β}, let p′0 and p′1 be lower bounds for (pα0 )α<β and (pα1 )α<β

respectively, and let γ∗ = supα<β γα.

Claim 2.19. Let p0, p1 ∈ P. Then there exist p′0 ≤ p0, p
′
1 ≤ p1 and γ∗ ∈ [η, λ) such

that for all i < ν, there is a maximal antichain Ai in E such that for all e ∈ Ai,

(e, p′0, p
′
1) forces divergence for bi at γ for some γ ∈ [η, γ∗).

Proof. Apply Claim 2.18 to each i < ν in turn, using the < µ-closure of P and the

regularity of λ to find p′0, p′1 and γ∗ that work for all i.

Claim 2.20. Assuming that δ is minimal with 2δ ≥ λ, there exist a binary tree

of decreasing sequences (pσ)σ∈<δ2 and an ordinal γ∗ ∈ [η, λ) with the following

property: for all σ ∈ <δ2 and all i < ν, there is a maximal antichain Aσ
i such that

for all e ∈ Aσ
i , (e, pσ⌢0, pσ⌢1) forces divergence for bi at γ for some γ < γ∗.

Proof. For each σ ∈ <δ2 we appeal to Claim 2.19 with p0 = p1 = pσ to find pσ⌢0,

pσ⌢1, antichains Aσ
i for i < ν, and an ordinal γσ as in the conclusion. At limit stages

we take lower bounds. Since 2<δ < λ and λ is regular, we may set γ∗ = supσ γσ.

For each f ∈ δ2, let pf be a lower bound for (pf↾j)j<δ. Now force with E and

start to work in V [E], so that R = Ṙ[E] is a system with relations Ri = Ṙi[E], and

(ḃi[E])i<ν is a P-name for a system of branches with bi a branch through Ri.

For each f ∈ δ2, let qf ≤ pf decide a value of i such that γ∗ ∈ dom bi[E], and

let qf also decide the value bi[E](γ∗) for this i. Since λ is still a cardinal in V [E],

there exist f ̸= g and values i < ν and ζ < µ such that qf and qg both force that

bi[E](γ∗) = ζ. Let σ be the longest common initial segment of f and g, so that

without loss of generality qf ≤ pσ⌢0 and qg ≤ pσ⌢1. By construction there exist a

condition e ∈ E and γ < γ∗ such that:

• (e, pσ⌢0, pσ⌢1) forces divergence for bi at γ.

• e forces that both qf and qg force bi[E](γ∗) = ζ.

This is impossible as both qf and qg force that bi[E](γ) = ζ ′ for the unique ζ ′ such

that (γ, ζ ′)Ri(γ
∗, ζ).

2.5. Another branch lemma

We will require a branch lemma with the same general flavor as Fact 2.13. This

will be used in Section 10.1 to help establish the tree property at ℵω2+1 in our

final model. This branch lemma is quite general and has some independent interest,

so we prove it here axiomatizing the needed assumptions. It is a descendant of a

branch lemma due to Sinapova and Unger [20].

Let P and R be forcing posets and let µ and ν be cardinals. We assume that:
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(1) ν is a cardinal of cofinality ω and µ = ν+.

(2) There is a cardinal κ ≤ ν such that ⊩V
P µ = κ+ and ⊩V

P×R µ = κ+.

(3) R is < µ-distributive and countably closed.

(4) Every condition p in P has a stem (we write it as stem(p)) and there are at

most ν stems.

(5) If stem(p) = stem(p′) = h then there is q ≤ p, p′ with stem(q) = h.

(6) If (pn)n∈ω is a decreasing sequence of conditions with stem h then there is

a lower bound with stem h.

We note for the record that by assumptions 1, 4 and 5 the poset P is µ-cc.

We say that stem h′ extends stem h if there are conditions p, p′ ∈ P such that

stem(p) = h, stem(p′) = h′ and p′ ≤ p.

The motivating idea is that P is some type of Prikry forcing, and R is a “mild”

forcing poset. Our assumptions on P are quite weak, in particular we do not need

to assume any form of the Prikry lemma. In the intended application P will be a

complex Prikry-type forcing where taking a direct extension can change the stem,

and the direct extension ordering is not countably closed.

Lemma 2.21. Let P ×R be P× R-generic and let T ∈ V [P ] be a µ-tree. If T has

a cofinal branch in V [P ][R], then T has a cofinal branch in V [P ].

Proof. Suppose that Ṫ ∈ V is a P-name of a µ-tree. As usual, for each α < µ we

assume that level α in the tree consists of pairs in {α} × κ. We refer to elements

of µ × κ as nodes, and if u is a node often we call u0 the level of u and write it

as lev(u). Of course Ṫ ∈ V [R] and can be viewed as a P-name for a µ-tree in this

model.

A note on notation: α and β will typically be levels of nodes. h will typically be

a stem. p and q will typically be conditions in P. r and s will typically be conditions

in R. u and v will typically be nodes. Of course these letters may be decorated with

subscripts and superscripts as needed.

Without loss of generality, let ḃ be an R×P-name which is forced by the empty

condition to be a cofinal branch though Ṫ . Let ḃ[R] be the P-name in V [R] for such

a branch obtained by partially realizing ḃ.

Claim 2.22. Let p ∈ P. Let u and v be nodes with lev(u) < lev(v). If p ⊩V [R]
P u, v ∈

ḃ[R] then p ⊩V
P u <Ṫ v.

Proof. Let r force that p ⊩V [R]
P u, v ∈ ḃ[R], so that (r, p) ⊩V

R×P u, v ∈ ḃ. If there is

p′ ≤ p such that p′ ⊩V
P u ≮Ṫ v, then (r, p′) ⊩V

R×P u ≮Ṫ v and (r, p′) ⊩V
R×P u, v ∈ ḃ,

which is impossible as ḃ is forced to be a branch. So p ⊩V
P u <Ṫ v as claimed.

The following definition takes place in V [R].

Definition 2.23. For a stem h, we say that †h holds if there are an unbounded

J ⊆ µ, ξ < κ and ⟨pα | α ∈ J⟩ such that for all α ∈ J :

• The condition pα has stem h.
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• pα ⊩V [R]
P ⟨α, ξ⟩ ∈ ḃ[R].

Before reading the following remark, the reader should recall our convention

that when we write “p0 ∧ p1 ⊩ ϕ” we mean only that p0 and p1 are compatible and

every common lower bound r ≤ p0, p1 is such that r ⊩ ϕ. We are not asserting that

p0 and p1 have a greatest lower bound.

Remark 2.24. Let J , ξ and ⟨pα | α ∈ J⟩ witness †h as in Definition 2.23 and

let α, β ∈ J with α < β. Then pα and pβ are compatible in P by item 5 of our

hypotheses, and pα ∧ pβ ⊩V
P ⟨α, ξ⟩ <Ṫ ⟨β, ξ⟩ by Claim 2.22.

Claim 2.25. In V [R] every stem h can be extended to a stem h′ such that †h′ holds.

Proof. Work in V [R]. Let h be a stem, and let p ∈ P be a condition with stem h.

For each α < µ, let pα ≤ p and uα = ⟨α, ξα⟩ be such that pα ⊩P uα ∈ ḃ[R]. Since

the number of stems is less than µ, there exist an unbounded set J ⊆ µ, an ordinal

ξ < κ and a stem h′ such that pα has stem h′ and ξα = ξ for all α ∈ J . Then h′

extends h and †h′ holds.

If †h holds and h′ extends h, it does not follow in general that †h′ will hold.

The issue is that in general not every condition with stem h can be extended to a

condition with stem h′. However we do have the following in V [R]:

Claim 2.26. If †h holds then there is a condition p with stem h such that {p′ :

†stem(p′) holds} is dense below p.

Proof. Let J , ξ and (pα)α∈J witness †h. As P is µ-cc, it follows from Lemma 2.1

that there is α such that pα forces the set of β ∈ J with pβ ∈ P to be unbounded.

Set p equal to pα and let p̄ ≤ p. Then p̄ is compatible with pβ for every β in some

unbounded J ′ ⊆ J , and we may choose p′β ≤ p̄, pβ for all β ∈ J ′. Thinning out

J ′ we may assume that for some stem h′, stem(p′β) = h′ for all β ∈ J ′. Then the

conditions (p′β)β∈J′ together with ξ and J ′ witness †h′ , and for any β ∈ J ′ we have

that p′β ≤ p̄ and †stem(p′
β)

holds.

The following definition takes place in V .

Definition 2.27. Let h be a stem and let s ∈ R. There is an (h, s)-splitting if there

are a condition p ∈ P with stem h, conditions s0, s1 in R, and nodes u0, u1 ∈ µ× κ

such that:

(1) s0, s1 ≤ s.

(2) (sk, p) ⊩V
R×P u

k ∈ ḃ for k ∈ 2.

(3) p ⊩V
P “u0 and u1 are incomparable in Ṫ .”

We note that the witnessing conditions s0 and s1 for an (h, s)-splitting must be

incompatible. The issue is that if s∗ ≤ s0, s1 then (s∗, p) forces that both u0 and u1

lie on ḃ, while p forces them to be incomparable in T .
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Definition 2.28. ḃ is h-new below s if and only if the set of s′ such that there is

an (h, s′)-splitting is dense below s.

The following key claim takes place in V .

Claim 2.29. Suppose that s forces “†h holds”, and ḃ is h-new below s. There are

sequences ⟨si | i < ν⟩, ⟨pi | i < ν⟩, and ⟨vi | i < ν⟩, such that

(1) For all i < ν, si ≤ s and the stem of pi is h.

(2) For all i < ν, (si, pi) ⊩
V
R×P vi ∈ ḃ.

(3) For i < j < ν, pi ∧ pj ⊩V
P “vi and vj are incomparable in Ṫ”.

Proof. Suppose that s forces †h as witnessed by ξ, J̇ , and ṗα for α ∈ J̇ . Forcing

below s we pass to a generic extension V [R] where ξ, J and ⟨pα : α ∈ J⟩ witness

†h.

The following subclaim takes place in V [R].

Subclaim 2.30. For every γ ∈ J there exist p ∈ P with stem h, conditions r0, r1

in R below s and nodes v0, v1 ∈ µ× κ such that:

• (r0, p) ⊩V
R×P (γ, ξ) ∈ ḃ.

• For k ∈ 2, (rk, p) ⊩V
R×P vk ∈ ḃ.

• p ⊩V
P “v0 and v1 are incomparable elements above (γ, ξ) in Ṫ”.

• r0 ∈ R.

Proof. We will do a density argument in V to show that suitable values for r0 are

dense below s. Let r ≤ s force that γ ∈ J , and decide the value of pγ as q. Then q

has stem h and (r, q) ⊩V
R×P (γ, ξ) ∈ ḃ. Since r ≤ s and ḃ is h-new below s, we may

extend r if needed and assume that there is an (h, r)-splitting.

Fix r0, r1 ≤ r, nodes v0, v1 and a condition q′ with stem h such that:

(1) (rk, q′) ⊩V
R×P v

k ∈ ḃ for k ∈ 2.

(2) q′ ⊩V
P “v0 and v1 are incomparable in Ṫ .”.

Since stem(q) = stem(q′) = h, by item 5 of our hypotheses we may find p ≤ q, q′

with stem(p) = h. Since (rk, p) forces that both (γ, ξ) and vk are in ḃ, p forces

that (γ, ξ) and vk are comparable in Ṫ . Since p also forces that v0 and v1 are

incomparable, it follows that they are both on levels above γ.

Still working in V [R], choose a club C ⊆ µ such that for all β ∈ C and all

γ ∈ J ∩ β, the conclusion of Subclaim 2.30 holds with witnessing nodes v0, v1

having levels below β.

We select increasing sequences γi and βi for i < ν such that

(1) βi ∈ C,

(2) γi ∈ J ,

(3) γi < βi ≤ γi+1.
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Now for each γi the conclusion of Subclaim 2.30 holds, with witnessing nodes

on levels below γi+1. We record the witnesses to this splitting as pi, r
k
i and vki . Let

ui = (γi, ξ).

For i < j we claim that pi ∧ pj forces that v1i and v1j are incomparable. The

point is that we can choose a lower bound r∗ for r0i , r0j as both are in R. Now

(r∗, pi∧pj) ⊩V
R×P v

0
i , uj ∈ ḃ, so pi∧pj ⊩V

P v0i <Ṫ uj <Ṫ v1j . Since v0i , v
1
i are on levels

below γj and pi ∧ pj forces that v0i is incomparable with v1i , pi ∧ pj forces that v1i
is incomparable with v1j .

Now let vi = v1i and si = r1i . By the distributivity of R, the sequence ⟨si, pi, vi |
i < ν⟩ is in V and by construction it satisfies the desired properties.

Claim 2.31. If s forces †h, then ḃ is not h-new below s.

Proof. Assume for a contradiction that s forces †h and ḃ is h-new below s. Note

that these properties also hold for conditions below s.

Using Claim 2.29, we will construct a tree of conditions ⟨(rσ, pσ) | σ ∈ ν<ω⟩ in

R× P and nodes ⟨vσ | σ ∈ ν<ω⟩ such that:

(1) For all σ, pσ has stem h.

(2) If σ′ ⊃ σ, then (rσ′ , pσ′) ≤ (rσ, pσ).

(3) For all σ, (rσ, pσ) ⊩V
R×P vσ ∈ ḃ.

(4) For all σ and all i ̸= j in ν, pσ⌢i ∧ pσ⌢j forces that vσ⌢i and vσ⌢j are

incomparable in Ṫ .

Given rσ and sσ, we appeal to Claim 2.29 with sσ in place of s to produce si,

vi and pi. We then set rσ⌢i = si and vσ⌢i = vi. Finally we set pσ⌢i = pσ ∧ pi.
When the construction is done we choose γ < µ such that all the nodes vσ have

levels below γ. We use the countable closure of R and item 6 of our hypotheses on

P to choose (rf , pf ) for f ∈ νω such that pf has stem h, and (rf , pf ) ≤ (rf↾n, pf↾n)

for all n < ω. We then choose (r′f , p
′
f ) ≤ (rf , pf ) so that (r′f , p

′
f ) determines the

node on level γ in the branch ḃ as uf .

Since νω > ν ≥ κ, there exist f ̸= g such that uf = ug = u∗ and stem(p′f ) =

stem(p′g) = h∗ for some node u∗ and stem h∗. Let n be least such that f(n) ̸= g(n).

Let σ = f ↾ n = g ↾ n, i = f(n) and j = g(n), so that f ↾ n + 1 = σ⌢i and

g ↾ n+ 1 = σ⌢j.

By construction p′f ∧ p′g forces that vσ⌢i and vσ⌢j are incomparable in Ṫ . Also

(rf , p
′
f∧p′g) forces that both vσ⌢i and u∗ are in ḃ, so p′f∧p′g ⊩V

P vσ⌢i < u∗. Similarly

p′f ∧ p′g ⊩V
P vσ⌢j < u∗. This is a contradiction.

For each stem h, let Dh be the set of s such that either s forces ¬†h or there

is no (h, s)-splitting. It is easy to see that Dh is open, and we claim that it is also

dense. To see this let s be arbitrary, where by extending s we may assume that s

decides †h. If s forces ¬†h then s ∈ Dh by definition. If s forces †h then ḃ is not

h-new below s by Claim 2.31, in which case by definition there is s′ ≤ s with no

(h, s′)-splitting and s′ ∈ Dh.



September 17, 2025 16:29 treepaper˙jml

16 J. Cummings, Y. Hayut, M .Magidor, I. Neeman, D. Sinapova & S. Unger

Since R is ν-distributive,
⋂

hDh is dense and open. Let s∗ ∈
⋂

hDh. By Claims

2.25 and 2.26, and extending s∗ if necessary, we may assume that:

• For some stem h, s∗ forces that †h holds.

• There is a condition p such that s∗ forces that {p′ : †stem(p′)} is dense below

p.

Now we force below p to obtain a P-generic filter P with p ∈ P . Working in

V [P ], let

d = {u ∈ µ× κ : ∃q ∈ P ∃s′ ≤ s∗ (s′, q) ⊩V
R×P u ∈ ḃ}.

Claim 2.32. d is a cofinal branch in T .

Proof. Since R × P forces that ḃ is a cofinal branch, it is routine to check that d

contains nodes with unboundedly high levels. The key remaining point is that d is a

chain in T . To see this, suppose for a contradiction that u0 and u1 are incomparable

members of d.

We may choose q ∈ P with q ≤ p, together with s0, s1 ≤ s∗, such that:

• q ⊩V
P “u0 and u1 are incomparable in Ṫ .”.

• (si, q) ⊩V
R×P u

i ∈ ḃ.

Forcing with R below s∗ over V [P ] we obtain R mutually generic with P , such

that in V [R] the set {p′ : †stem(p′)} is dense below p. So we may choose p′ ∈ P

with p′ ≤ q and s∗∗ ≤ s∗ such that s∗∗ forces †h where h = stem(p′). So s∗

does not force ¬†h, and since s∗ ∈ Dh it follows that there is no (h, s∗)-splitting.

However p′ together with si and ui form an example of an (h, s∗)-splitting, which

is a contradiction.

This completes the proof of Lemma 2.21.

2.6. Term forcing

Let P be a forcing poset and Q̇ be a P-name for a forcing poset. Then A(P, Q̇) is the

set of P-names for elements of Q̇, where we identify names q̇0 and q̇1 if ⊩P q̇0 = q̇1.

A(P, Q̇) is ordered as follows: q̇1 ≤ q̇0 in A(P, Q̇) if and only if ⊩P q̇1 ≤Q̇ q̇0. Term

forcing was introduced by Laver, and the theory was elaborated by Foreman.

The following Lemmas are standard:

Lemma 2.33. Let P be a forcing poset, Q̇ be a P-name for a forcing poset, and let

R = A(P, Q̇).

(1) The identity function is a projection from P× R to P ∗ Q̇.

(2) If P × R is P × R-generic over V and Q = {q̇[P ] : q̇ ∈ R}, then Q is

Q̇[G]-generic over V [P ].

(3) If P ∗Q is P∗Q-generic and we force over V [P ∗Q] with {q̇ ∈ R : q̇[P ] ∈ Q}
using the ordering inherited from R, then we obtain R such that P × R is

P× R-generic and induces P ∗Q.
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(4) If λ is forced by P to be a regular uncountable cardinal and Q̇ is forced by

P to be < λ-closed (resp < λ-directed closed, canonically < λ-closed), then

R is < λ-closed (resp < λ-directed closed, canonically < λ-closed).

Lemma 2.34. Let P be a forcing poset.

(1) If it is forced by P that Q̇ and Ṙ are forcing posets, then A(P, Q̇ × Ṙ) is

canonically isomorphic to A(P, Q̇) × A(P, Ṙ), identifying names for pairs

with pairs of names.

(2) If it is forced by P that Q̇1 and Q̇0 are forcing posets and π̇ is a projection

from Q̇1 to Q̇0, then q̇ 7→ π̇(q̇) is a projection from A(P, Q̇1) to A(P, Q̇0).

We can view A(P, Q̇) as adding a “universal generic object” for Q̇, which can

be realized using any V -generic filter P on P as a V [P ]-generic filter on Q̇[P ]. For

use later we record some more easy facts about term forcing.

Lemma 2.35. If κ is weakly compact, |P| < κ and ⊩P “Q̇ is κ-cc”, then A(P, Q̇)

is κ-cc.

Proof. Suppose for a contradiction that (τi)i<κ enumerates an antichain in A(P, Q̇),

so that for i < j we have ̸⊩P “τi and τj are compatible in Q̇”. Define a coloring of

[κ]2 in |P| colors, by coloring (i, j) with some condition p(i, j) such that p(i, j) ⊩
“τi and τj are incompatible in Q̇”.

Since κ is weakly compact, there exist H ∈ [κ]κ and p such that p(i, j) = p

for all (i, j) ∈ [H]2. But then p forces that (τi)i∈H enumerates an antichain in Q̇,

contradicting the hypothesis.

Lemma 2.36. If Ṙ is a P ∗ Q̇-name for a forcing poset then A(P ∗ Q̇, Ṙ) ≃
A(P,AV [P ](Q̇, Ṙ)).

Proof. This is immediate using the canonical identification between P∗ Q̇-terms for

elements of R on the one hand, and P-terms for Q-terms for elements of R on the

other hand.

It is also useful to analyze A(P, Q̇ ∗ Ṙ) where Q ∗ Ṙ ∈ V [P ].

Lemma 2.37. There is a projection from A(P, Q̇) ×A(P ∗ Q̇, Ṙ) to A(P, Q̇ ∗ Ṙ)

Proof. In V [P ] there is a projection from Q × A(Q, Ṙ) to Q ∗ Ṙ, and by item

2 of Lemma 2.34 this induces a projection from A(P, Q̇) × A(P,AV [P ](Q, Ṙ)) to

A(P, Q̇ ∗ Ṙ). By Lemma 2.36 the posets A(P,AV [P ](Q, Ṙ)) and A(P ∗ Q̇, Ṙ) are

canonically isomorphic.

Remark 2.38. With suitable identifications, the projection map from the proof of

Lemma 2.37 is the identity map.

Let P ∗ Q be P ∗ Q̇-generic. In a mild abuse of notation, we sometimes denote

by “A(P, Q̇)/P ∗ Q” the forcing from item 3 of Lemma 2.33, which is defined in

V [P ∗Q] to produce an A(P, Q̇)-generic filter R such that P ×R projects to P ∗Q.
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We will call this kind of forcing poset a quotient to term poset. We will often say

“force to remove the dependence of Q on P” or “force to refine P ∗Q to P ×R” as

shorthand for “force with the quotient to term poset A(P, Q̇)/P ∗Q”. The forcing

A(P, Q̇)/P ∗Q is defined in V [P ∗Q] but we may force with it over generic extensions

of this model:

Lemma 2.39. Let P ∗Q be P ∗ Q̇-generic over V , let K ∈ V [P ∗Q] and let K be

K-generic over V [P ∗Q]. Forcing with A(P, Q̇)/P ∗Q over V [P ∗Q ∗K] produces

R such that P ×R induces P ∗Q and K is K-generic over V [P ×R].

Proof. Let A be A(P, Q̇)/P ∗Q-generic over V [P ∗Q ∗K] and let V [P ∗Q ∗ A] =

V [P ×R]. Since K and A(P, Q̇)/P ∗Q are both in V [P ∗Q], K and A are mutually

generic over V [P ∗Q], so K is K-generic over V [P ×R].

Remark 2.40. In the sequel we sometimes replace A(P, Q̇) by more elaborate posets

which have the similar effect of adding a P-name for a Q̇[P ]-generic object: the

analogue of Lemma 2.39 is true for such posets by the same argument.

We record some easy but useful equivalences involving quotient to term posets.

Lemma 2.41. In V , P ∗Q ∗ A(P, Q̇)/P ∗Q is equivalent to P×A(P, Q̇). In V [P ],

Q ∗ (A(P, Q̇)/P ∗Q) is equivalent to A(P, Q̇).

The idea of term forcing extends in a natural way to iterations with more than

two steps. Suppose that ⟨Pα, Q̇α : α < j⟩ is an iteration with limit Pj . Then we

may form a product of term posets
∏

α<j A(Pα, Q̇α), using the same supports that

were used to form Pj . We note that the poset P0 is trivial, so the first term poset

in the product is equivalent to Q0.

It is easy to see that:

• the underlying set of
∏

α<j A(Pα, Q̇α) is the underlying set of Pj .

• The identity function is a projection from
∏

α<j A(Pα, Q̇α) to Pj .

• There is a natural quotient to term forcing defined in V [Pj ] to produce a∏
α<j A(Pα, Q̇α)-generic object which projects to Pj .

We will need some lemmas relating Cohen posets computed in different models.

Lemma 2.42. Let κ<κ = κ ≤ λ and let P be a κ-cc forcing poset of cardinality

at most κ. Let Q̇ be a P-name for AddV [P](κ, λ). Then A(P, Q̇) is equivalent to

AddV (κ, λ).

Proof. We can view AddV [P ](κ, λ) as the < κ-support product in V [P ] of λ copies

of 2, considered as a poset where 0 and 1 are incomparable elements. By the chain

condition A(P, Q̇) is equivalent to the < κ-support product of λ copies of A(P, 2̇).

An element ṫ of A(P, 2̇) is determined by the Boolean value bṫ of “ṫ = 0”, and

easily ⊩ ṫ0 ≤ ṫ1 ⇐⇒ ⊩ ṫ0 = ṫ1 ⇐⇒ bṫ0 = bṫ1 . So A(P, 2̇) is a poset with at

most κ pairwise incomparable conditions, and then easily A(P, Q̇) is equivalent to

AddV (κ, λ).
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In the situation of Lemma 2.42, let R = A(P, Q̇). If P × R induces P ∗Q then

V [P ∗Q] and V [P ×R] have the same < κ-sequences of ordinals: to put it another

way the associated quotient to term forcing R/P ∗Q is < κ-distributive in V [P ∗Q].

Since both P ∗Q and P× R are κ+-cc, R/P ∗Q is κ+-cc in V [P ∗Q].

For use in the proofs of Claims 9.12 and 9.13 from Section 9.2, we need an easy

lemma about R/P ∗Q. The point of Lemma 2.43 is that chain condition properties

of R/P ∗Q can be deduced from corresponding properties for R.

Lemma 2.43. Let the hypotheses of Lemma 2.42 hold and let R = A(P, Q̇). Then

in any outer model W of V [P ∗ Q] where R is (κ+)W -Knaster, P × (R/P ∗ Q) is

also (κ+)W -Knaster.

Proof. Since |P| = κ it is enough to show that R/P ∗ Q is (κ+)W -Knaster. We

use the description of R from the proof of Lemma 2.42. Let (rα)α<(κ+)W be a

sequence in W such that rα ∈ R/P ∗ Q. Since R is (κ+)W -Knaster in W , we may

find B ∈ W such that B is unbounded in (κ+)W and (rα)α∈B is a sequence of

conditions which are pairwise compatible in R. Let α, β ∈ B, then by definition for

every η ∈ dom(rα) ∩ dom(rβ) the same term appears at coordinate η in rα and rβ .

It is easy to see that (rα ∪ rβ)[P ] = rα[P ] ∪ rβ [P ] ∈ Q, so that rα ∪ rβ ∈ R/P ∗Q
and is a common lower bound in R/P ∗Q for rα and rβ .

We also record an easy fact about the closure of quotient-to-term posets.

Lemma 2.44. Let P be ρ-distributive and let P force “Q̇ is canonically ρ-closed”.

Let P ∗Q be P ∗ Q̇-generic over V . Then the quotient-to-term poset A(P, Q̇)/P ∗Q
is canonically ρ-closed in V [P ∗Q].

More generally, if ⟨Pα, Q̇α : α < j⟩ is an iteration whose supports are closed

under increasing ρ-sequences, Q0 is ρ-distributive and ⊩α “Qα is ρ-canonically ρ-

closed” for 0 < α < j then the associated quotient-to-term poset is canonically

ρ-closed in V [Pj ].

Proof. Let (τi)i<ρ ∈ V [P ∗ Q] be a decreasing sequence in A(P, Q̇)/P ∗ Q. Since

P ∗ Q̇ is ρ-distributive, (τi)i<ρ ∈ V . By the definition of A(P, Q̇)/P ∗Q, τi[P ] ∈ Q

for all i and ⊩P τj ≤ τi for i < j < ρ. Let τ be a name for a greatest lower bound for

(τi)i<ρ in Q̇, then τ [P ] is a greatest lower bound for (τi[P ])i<ρ in Q̇[P ], so τ [P ] ∈ Q

and hence τ ∈ A(P, Q̇)/P ∗ Q. It follows easily that τ is a greatest lower bound

for (τi)i<ρ in A(P, Q̇)/P ∗ Q. The argument for longer iterations is essentially the

same.

2.7. Projection and absorption

We also collect some facts about projections between forcing posets and absorbing

forcing posets by collapses which will be used in the sequel. We refer the reader to

[12] for a careful discussion of these matters.
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Definition 2.45. Let P and Q be canonically < κ-closed. A projection map π :

P → Q is < κ-continuous if it preserves the greatest lower bounds assured by the

canonical closure. That is to say if (pi)i<α is decreasing in P for some α < κ, and

p is the greatest lower bound in P for (pi)i<α, then π(p) is the greatest lower bound

in Q for (π(pi))i<α.

Facts 2.46 and 2.47 both form part of [12, Lemma 2.6].

Fact 2.46. Suppose that P and Q are canonically < κ-closed and π : P → Q is

a < κ-continuous projection. If Q is Q-generic, then in V [Q] the quotient forcing

P/Q is canonically < κ-closed.

Fact 2.47. Suppose that κ < µ are inaccessible cardinals. Suppose that Q is a

canonically < κ-closed forcing of size at most µ. Then there is a < κ-continuous

projection from Coll(κ, µ) to Q.

Definition 2.48. Let κ < λ where κ is inaccessible and λ is Mahlo. Let E be a set

of inaccessible cardinals such that κ, λ ∈ E, and E ∩ [κ, λ) is the intersection of a

club subset of [κ, λ) with the set of inaccessible cardinals in this interval. For each

α ∈ E, let α∗ = min(E \ (α+ 1)).

Let EastE(κ,< λ) be the collection of partial functions f with dom(f) ⊆ E∩[κ, λ)

such that

(1) dom(f) is an Easton set, that is to say it is bounded in every inaccessible

cardinal.

(2) For all α ∈ dom(f), f(α) ∈ Coll(α,< α∗).

EastE(κ,< λ) is ordered coordinatewise.

Note that by the hypotheses on E and λ, E ∩ [κ, λ) is stationary in λ, and the

Easton support condition for f is equivalent to demanding that dom(f) is bounded

in every cardinal in E ∪ {λ}.

Lemma 2.49. EastE(κ,< λ) is canonically < κ-closed and λ-Knaster.

Proof. The closure is immediate since each component is canonically < κ-closed

and the union of fewer than κ Easton subsets of [κ, λ) is Easton. Given (pi)i<λ we

may find a stationary set E′ ⊆ E ∩ [κ, λ) such that pi ↾ i is constant for i ∈ E′,

and then a stationary E′′ ⊆ E′ such that dom(pi) ⊆ j for i, j ∈ E′′ with i < j. The

conditions pi for i ∈ E′′ are pairwise compatible.

Lemma 2.50. With the same hypotheses as in Definition 2.48, let (U(α))α∈E∩[κ,λ)

be such that U(α) is a canonically < α-closed poset (which may be trivial) in

Vα∗ , and let U be the Easton support product of the U(α)’s. Then there is a < κ-

continuous projection from EastA(κ,< λ) to U.

Proof. By Fact 2.47, for every α ∈ A ∩ [κ, λ) there is a < α-continuous projection

πα : Coll(α,< α∗) → U(α). We define a projection π from EastA(κ,< λ) to U
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by defining dom(π(f)) = dom(f) and π(f)(α) = πα(f(α)) for all α. It is easy to

check that the map π is a < κ-continuous projection since each of the maps πα is

a < α-continuous projection.

The point of EastE(κ,< λ) is that it can absorb suitable Easton support itera-

tions in a reasonable way. The following lemma is a prototype for the arguments in

Section 9.4.

Lemma 2.51. With the same hypotheses as in Definition 2.48, let ⟨Pα, Q̇α : α ∈
E ∩ [κ, λ)⟩ be an Easton support iteration, assume that ⊩α “Q̇α ∈ Vα∗” and ⊩α

“Q̇α is canonically < α-closed” for all α, and let Pλ be the direct limit. Then Pλ

can be absorbed into EastE(κ, λ) so that the quotient forcing is canonically < κ-

closed.

Proof. Let U(α) = A(Pα, Q̇α) and let U be the Easton support product of the posets

U(α). Then there is a natural projection from U to the limit poset Pλ, and it routine

to check that the projection is < κ-continuous. Lemma 2.50 gives a < κ-continuous

projection from EastE(κ, λ) to U. It follows from Fact 2.46 that the quotient forcings

for absorbing Pλ into U and U into EastE(κ, λ) are both canonically < κ-closed.

There is a parallel but simpler fact for the standard Levy collapse.

Lemma 2.52. Let κ and λ be inaccessible with κ < λ, let (U(α))α∈[κ,λ) be a

sequence of canonically < κ-closed posets of cardinality less than λ and let U be the

product of the U(α)’s with < κ-supports. Then there is a < κ-continuous projection

from Coll(κ,< λ) to U.

2.8. Easton sets in Easton extensions

In Section 9.4 we will need to absorb some iterations of the form L ∗ P, where L
and P are Easton support iterations done over the same set of cardinals, into a

suitable Easton support product of term forcings. To apply the ideas of Section 2.7

we need to analyze the Easton sets in V [L], because they will form the supports of

conditions in P.

Let E be a set of inaccessible cardinals with limit order type such that for every

inaccessible α < sup(E) with α = sup(E ∩ α), α is in E. For each α < sup(E),

let α∗ = min(E \ (α + 1)). Note that a subset of E is an Easton set if and only if

it is bounded in every element of E, together with sup(E) in case this cardinal is

inaccessible.

Let L be an iteration with Easton supports such that:

• The support of L is contained in E.

• For every α ∈ E, it is forced by L ↾ α that the iterand at α is < α-closed.

• For every α ∈ E, |L ↾ α+ 1| < α∗.
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It is easy to see that for every β < sup(E), |L ↾ β + 1| < β∗. As a consequence

it is forced by L ↾ β + 1 that the tail iteration above β is < β∗-closed. It follows

easily that every α ∈ E remains inaccessible in V [L].

Lemma 2.53. If S ∈ V [L] is an Easton subset of E then S is covered by an Easton

subset of E which lies in V .

Proof. Let Ṡ be an L-name for an Easton subset of E. We will establish that a

stronger statement holds for all triples (p, β, γ) where p ∈ L, and β < γ ≤ sup(E):

R(p, β, γ) is the statement “There exist p′ ≤ p with p′ ↾ β + 1 = p ↾ β + 1 and an

Easton set T ⊆ [β, γ) ∩ E such that p′ ⊩ Ṡ ∩ [β, γ) ⊆ Ť”.

Our desired conclusion will follow by setting β = 0 and γ = sup(E). We prove

that R(p, β, γ) holds for all triples (p, β, γ) by induction on γ.

• Case I: E is bounded in γ, say γ̄ = sup(E∩γ) < γ. If β = γ̄ then [β, γ)∩E =

∅ and there is nothing to do. If β < γ̄ then we appeal to R(p, β, γ̄), which

is true by induction.

• Case II: γ = sup(E ∩ γ) and cf(γ) = µ < γ.

– Subcase IIa: µ ≤ β. Note that the union of at most µ Easton subsets of

[β, γ)∩E is Easton. Choose an increasing sequence (γi)i<µ of ordinals

which is cofinal in (β, γ). Let p0 = p, and build a decreasing sequence

(pi)i<µ of conditions in L with pi ↾ β + 1 = p0 ↾ β + 1, together with

Easton sets Ti ⊆ [β, γi) ∩ E, such that pi+1 ⊩ Ṡ ∩ [β, γi) ⊆ Ťi.

At successor steps we choose pi+1 by appealing to R(pi, β, γi), at limits

we may take lower bounds because all iterands past β are forced to

be µ-closed and (by the remark about unions of Easton sets) there

is no problem with the supports. After µ steps we let p′ be a lower

bound for the conditions pi such that p′ ↾ β + 1 = p0 ↾ β + 1, and

T =
⋃

i<µ Ti, where p′ can be chosen as in the choice of pi for i limit

and T is Easton by the remark on unions of Easton sets.

– Subcase IIb: β < µ < γ. Start by appealing to R(p, β, µ) to produce

p′ ≤ p and T0 an Easton subset of [β, µ) such that p′ ↾ β+1 = p ↾ β+1

and p′ ⊩ Ṡ∩ [β, µ) ⊆ Ť0. Then replace β by µ and argue as in Subcase

IIa to produce p′′ ≤ p′ and an Easton set T1 ⊆ [µ, γ) ∩ E such that

p′′ ↾ µ+1 = p′ ↾ µ+1 and p′′ ⊩ Ṡ∩ [µ, γ) ⊆ Ť1. Clearly p′′ and T0∪T1
will serve to witness R(p, β, γ).

• Case III: γ = sup(E ∩ γ) and γ is inaccessible, in particular γ ∈ E or

γ = sup(E).

It is forced that Ṡ is bounded in γ. Since |L ↾ β + 1| < β∗ < γ we

may build p′ ≤ p such that p′ ↾ β + 1 = p ↾ β + 1, and for every q ≤ p′

such that q decides sup(Ṡ ∩ γ) we have that q ↾ β + 1⌢p′ ↾ (β + 1, sup(A))

decides it: the key points are that all iterands past β are < β∗-closed,

(β+ 1, γ)∩E = [β∗, γ)∩E, and the union of fewer than β∗ Easton subsets
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of [β∗, γ) ∩ E is Easton. If we let γ′ = sup{η : ∃r ∈ L ↾ β + 1 r⌢p′ ↾
(β + 1, γ) ⊩ sup(Ṡ ∩ γ) = η} then γ′ < γ and p′ ⊩ Ṡ ∩ γ ⊆ γ′. Appealing

to R(p′, β, γ′) we find p′′ ≤ p′ and an Easton set T ⊆ [β, γ′) such that

p′′ ↾ β + 1 = p′ ↾ β + 1 and p′′ ⊩ Ṡ ∩ [β, γ) ⊆ Ť .

2.9. Robustness of chain condition

In the sequel we will often force over V using the Cohen poset Add(κ, λ) defined

over some inner model of V . This idea is often useful in the situation where κ = µ+

and 2µ > µ+: forcing with Add(µ+, λ) as defined in V will collapse µ+, so instead we

force with Add(µ+, λ) defined in some inner model where 2µ = µ+. The following

Lemma shows that the chain condition (really the Knaster property) of Cohen

forcing is quite robust. We will also need that the distributivity of Cohen forcing

is robust, but we will typically establish this by ad hoc arguments using Easton’s

Lemma and term forcing, see for instance Lemma 4.9 below.

Lemma 2.54. Let κ be regular and let P = Add(κ, λ). If η<κ < µ for every η < µ,

and W is an outer model in which µ is regular and every set of ordinals of size less

than κ inW is covered by a set of size less than κ in V , thenW |= “P is µ-Knaster”.

Proof. We work in W , noting that our hypotheses imply that κ is still regular in

W . Let (pi)i<µ be a µ-sequence of conditions in P. Let X =
⋃

i<µ dom(pi), so that

X ⊆ κ × λ with |X| ≤ µ, and enumerate X as (xi)i<µ. Let di = {j < µ : xj ∈
dom(pi)}.

Let S = µ ∩ cof(κ), and for i ∈ S define f(i) = sup(di ∩ i). Since f is regressive

we may fix S0 ⊆ S stationary and η < µ such that f(i) = η for all i ∈ S. Thinning

out S0 if necessary, we may assume that if i, j ∈ S0 with i < j then sup di < j. Let

Di ∈ V be such that di ∩ η ⊆ Di ⊆ η and |Di| < κ. Since η<κ < µ in V , we may

find S1 ⊆ S0 stationary and D such that Di = D for every i ∈ S1.

Now let z = {xj : j ∈ D}, and use the covering hypothesis again to find Z ∈ V

such that z ⊆ Z ⊆ κ × λ and |Z| < κ. Since 2|Z| < µ in V , we may find S2 ⊆ S1

stationary and a partial function p from Z to 2 such that pi ↾ Z = p for all i ∈ S2.

We claim that the conditions pi for i ∈ S2 are compatible. Let i < j with

i, j ∈ S2, and let (α, β) ∈ dom(pi) ∩ dom(pj). Since (α, β) ∈ X, we find k with

(α, β) = xk, so that by definition k ∈ di ∩ dj . Since sup(di) < j, k ∈ dj ∩ j, so

k < f(j) = η.

It follows that k ∈ di∩η, so that k ∈ Di = D. By definition xk = (α, β) ∈ z ⊆ Z,

and since (α, β) ∈ dom(pi) ∩ dom(pj) we have pi(α, β) = p(α, β) = pj(α, β).

Remark 2.55. Similar lemmas with similar purposes appear in papers by Abraham

[1, Lemma 2.16] and Cummings and Foreman [2, Lemma 2.6]

To streamline the process of applying Lemma 2.54, we encapsulate some of the

hypotheses in a definition.
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Let κ and µ be regular cardinals. Then an outer model W ⊇ V is (κ, µ)-good if

and only if every set of ordinals of size less than κ in W is covered by a set of size

less than κ in V , and µ is regular in W .

Remark 2.57. If W1 is a (κ, µ)-good outer model of V and W2 is a (κ, µ)-good outer

model of W1, then W2 is a (κ, µ)-good outer model of V . If W is a (κ, µ)-good outer

model of V and W ′ is an intermediate model, then W ′ is also a (κ, µ)-good outer

model of V .

2.10. A technical fact

We will need a version of a technical fact from [16]. The exact statement is slightly

different but the proof will be essentially the same, see the discussion following the

statement.

Fact 2.58 (essentially [16, Lemma 3.10]). Let (κm)2≤m<ω be an increasing sequence

of regular cardinals and let ν = supm κm. Let Index ⊆ κ2, let N < ω and let M(ρ)

for ρ ∈ Index be forcing posets such that |M(ρ)| ≤ κN for all ρ. Let R = Vζ where

ζ > ν+ and R satisfies a large enough finite fragment of ZFC. Assume that:

• For all sufficiently large m < ω, there exist posets P and Q such that:

– P adds a generic embedding π : V → V ∗ such that crit(π) > κm and

π is discontinuous at ν+.

– Q adds κm mutually generic filters for P.
– Q preserves cardinals up to and including κm, and forces cf(ν+) > κm.

• There are stationarily many X ≺ R such that for some ν+-Knaster poset

PX :

– ν+ ⊆ X and |X| = ν+.

– Letting M be the transitive collapse of X, PX adds a generic embed-

ding π : M → M∗ such that crit(π) = κ2, π(κ2) > ν+, and π is

discontinuous at ν+.

– ν ∈ π(Index), and PX adds L which is π(M)(ν)-generic over M∗.

Then there exists ρ ∈ Index such that M(ρ) forces “ν+ has the tree property”.

The only differences between the proof here and in [16, Lemma 3.10] are that:

• The forcing posets M(ρ) are potentially larger (cardinality κN rather than

κ2) which does not materially affect the argument for choosing D and n.

• Only a tail of the cardinals κm for m > 2 are assumed to have the necessary

properties, but we can still choose a suitable m > n,N .

3. A, B, U, C and S

We will use several versions of the main forcing construction from Neeman’s paper

[16]. To minimize repetition we describe here the simplest version that we will need,
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then later in the paper we modify the construction as needed. See Section 3.3 for a

discussion of how we modify the construction.

3.1. The basic forcing

The version we describe in detail here is basically the forcing of [16] with the mi-

nor simplification that the cardinal µ1 is fixed from the start rather than chosen

generically. The initial setup involves an increasing ω-sequence of regular cardinals

(µn)n<ω, where µ<µ0

0 = µ0, µ<µ1

1 = µ1, and the µn’s are indestructibly supercom-

pact for n ≥ 2, together with a universal indestructible Laver function ϕ defined on

(µ1, µω), where µω = supn µn. We will define forcing posets A, B, U, C and S along

with a number of auxiliary forcing posets.

The basic idea is that we will define A,B,C ∈ V and then project A×B×C to

an iteration A ∗ U ∗ S. Forcing with A ∗ U ∗ S will produce an extension in which

2µn = µn+2 for all n, µn+1 = µ+
n for all n > 0, and µn enjoys a highly indestructible

version of the tree property for n ≥ 2. Very roughly speaking A is responsible for

making 2µn = µn+2 for all n, S is responsible for collapsing cardinals so that µn+1

becomes the successor of µn for n > 0, and U is responsible for making the tree

property at µn indestructible for n ≥ 2. We discuss these points in more detail after

defining A ∗ U ∗ S.

Remark 3.1. Readers of [16] will notice that the definitions of An and A are slightly

different here. This makes the definitions more uniform, and is possible because the

value of µ1 is fixed.

• A: Conditions in An are partial functions from the interval [µn+1, µn+2)

to 2 with supports of size less than µn, ordered by extension. We will

sometimes write An as Add(µn, [µn+1, µn+2)). Of course An is equivalent

to the standard Cohen poset Add(µn, µn+2). The poset An ↾ α is defined

in the obvious way.

A is the full support product of the posets An for n < ω. Whenever

it is convenient we will regard conditions in A as partial functions p from

[µ1, µω) to 2, such that p ↾ [µn+1, µn+2) has support of size less than µn.

Intuitively A is set up so that we finish adding Cohen subsets of µn before

we begin to add Cohen subsets of µn+1.

For α < µω, A ↾ α is equivalent to
∏

i<n Ai × An ↾ α for the least n

such that α ≤ µn+2. We let A be some A-generic object, and define An and

A ↾ α in the obvious way.

• B and U: B and U are two posets with the same set of conditions but differ-

ent orderings, with B ∈ V and U ∈ V [A]. In a sense that we make precise

later B is a term forcing for U, but its definition involves a kind of “self-

reference” not present in the simple term forcing of Section 2.6. Conditions

in B will be certain functions with domains contained in (µ1, µω), and B ↾ α
is the set of b ∈ B with dom(b) ⊆ α; more generally if I is an interval then

B ↾ I is the set of b ∈ B with dom(b) ⊆ I, and in all cases we will view
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B ↾ I as a poset with the ordering inherited from B. U ↾ α has the same

conditions as B ↾ α.

Formally speaking we will define B ↾ α and U ↾ α by simultaneous

induction on α, in such a way that U ↾ α ∈ V [A ↾ α]. A condition b ∈ B ↾ α
is a function such that:

– dom(b) is an Easton subset of the set of α′ ∈ dom(ϕ) ∩ α such that

ϕ(α′) is a A ↾ α′ ∗ U̇ ↾ α′-name for a < α′-directed closed forcing poset.

– For every α′ ∈ dom(b), b(α′) is an A ↾ α′ ∗ U̇ ↾ α′-name for a condition

in ϕ(α′).

B ↾ α and U ↾ α are ordered as follows:

– b1 ≤ b0 in B ↾ α if and only if dom(b0) ⊆ dom(b1) and (0, b1 ↾
α′) ⊩A↾α′∗U↾α′ b1(α′) ≤ b0(α′) for all α′ ∈ dom(b0).

– u1 ≤ u0 in U ↾ α if and only if dom(u0) ⊆ dom(u1) and there is

a ∈ A ↾ α such that (a ↾ α′, u1 ↾ α′) ⊩A↾α′∗U↾α′ u1(α′) ≤ u0(α′) for all

α′ ∈ dom(u0).

By going to a dense subset we may view A∗ U̇ as consisting of pairs (a, u) where

a ∈ A and u ∈ B, ordered as follows: (a1, u1) ≤ (a0, u0) if and only if a1 ≤ a0 in A,

dom(u0) ⊆ dom(u1), and (a1 ↾ α, u1 ↾ α) ⊩ u1(α) ≤ u0(α) for all α ∈ dom(u0). A

similar remark applies to initial segments A ↾ β ∗ U̇ ↾ α where α ≤ β ≤ µω.

Remark 3.2.

(1) We see from the definition that U ∈ V [A], and that U may be viewed as

some type of iteration in V [A], where at every α in the domain of B we use

the U ↾ α-name ϕ(α)[A ↾ α]

(2) The construction of B is also iterative, so that in particular for α < β ≤
µω the poset B ↾ β is not isomorphic to B ↾ α × B ↾ [α, β). However

standard term forcing arguments show that the natural concatenation map

is a projection from B ↾ α× B ↾ [α, β) to B ↾ β.

Let α ≤ β ≤ µω and let F ⊆ A ↾ β ∗ U̇ ↾ α be a filter, which we assume to be

generated by pairs (a, u) with a ∈ A ↾ β and u ∈ U ↾ α. The reader is warned that

F may only exist in a generic extension of V .

• B+F ↾ [α, β): The underlying set of the poset B+F ↾ [α, β) is B ↾ [α, β), and

it is ordered by feeding in information from F . Formally b1 ≤ b0 if and only

if dom(b0) ⊆ dom(b1) and there is (a, u) ∈ F such that (a ↾ α′, u∪b1 ↾ α′) ⊩
b1(α′) ≤ b0(α′) for all α′ ∈ dom(b0). Note that the definition makes sense

because dom(u) ⊆ α and dom(b1) ⊆ [α, β), so that u ∪ b1 ↾ α′ ∈ B ↾ α′.

Note also that F being a filter generated by pairs (a, u) as above is sufficient

to show that the ordering on B+F ↾ [α, β) is transitive.

A couple of examples may help to clarify this definition, where throughout α ≤
β < µω:
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• F = 0 (the trivial filter): B+0 ↾ [α, β) = B ↾ [α, β).

• α = 0 and F = A ↾ β ∗ 0: B+A↾β∗0 ↾ [0, β) = U ↾ β.

• F = A ↾ β∗U ↾ α: B+A↾β∗U↾α ↾ [α, β) is equivalent to the natural forcing for

prolonging A ↾ β ∗ U ↾ α to A ↾ β ∗ U ↾ β. We let U ↾ [α, β) = B+A↾β∗U↾α ↾
[α, β).

We quote without proof some facts from [16]: the proofs are in every case the

same, or slightly easier because here we fixed a value for µ1 in advance.

Fact 3.3 ([16, Claim 4.5]). Let F0 ⊆ F1 be two filters on A ↾ β ∗ U̇ ↾ α, and let G0

be generic for B+F0 ↾ [α, β) over a universe W ⊇ V with F0, F1 ∈W . Let G1 be the

upwards closure of G0 in B+F1 ↾ [α, β). Then G1 is generic for B+F1 ↾ [α, β) over

W .

Remark 3.4. Fact 3.3 explains our comment above that B is a kind of term forcing.

As an instructive example let G0 be B+A↾α∗U↾α ↾ [α, β)-generic over V [A ↾ α∗U ↾ α].

If we force over V [A ↾ α ∗ U ↾ α][G0] with A ↾ [α, β) and prolong A ↾ α ∗ U ↾ α to

A ↾ β ∗U ↾ α, then in V [A ↾ β ∗U ↾ α][G0] we may induce G1 which is U ↾ [α, β) =

B+A↾β∗U↾α ↾ [α, β)-generic over V [A ↾ β ∗ U ↾ α][G0]. So B+A↾α∗U↾α ↾ [α, β) serves

as a kind of term poset, adding an A ↾ [α, β)-name for a U ↾ [α, β)-generic object.

Fact 3.3 has a kind of reversal: if G1 is generic for B+F1 ↾ [α, β) over W then we

can force over W [G1] with a suitable factor forcing to obtain G0 which induces G1

as above: the factor forcing is just G1 with the ordering of B+F0 ↾ [α, β), and is a

version of the “quotient to term” forcing discussed in Section 2.6.

Fact 3.5 ([16, Claim 4.7]). If α′ ≤ α and F ′ is A ↾ α′ ∗U ↾ α′-generic over V , then

B+F ′
↾ [α, β) is < α-directed closed in V [F ′].

Remark 3.6. As a useful special case of Claim 3.5, we may set α′ = 0 and F ′ = 0

to see that B ↾ [α, β) is < α-directed closed in V .

To lend some insight into what the forcing A ∗U is doing, we quote a fact from

[16]. We will not be appealing to this fact directly, but the ideas in its proof will be

used heavily in the proof of Lemma 4.5 below.

Fact 3.7 ([16, Claim 4.12]). Let A∗U ↾ µn+2 be A∗U ↾ µn+2-generic over V . Then

in V [A ∗ U ↾ µn+2] the cardinal µn+2 is indestructibly generically supercompact for

< µn+2-directed closed posets lying in V [A ↾ µn+2 ∗ U ↾ µn+2], where the generic

embeddings π witnessing the generic supercompactness are added by posets of the

form AddV (µn, π(µn+2)) × AddV (µn+1, π(µn+3)).

Now we define more posets C ∈ V , C+F for a filter F on A ∗ U, and S:

• C: The forcing poset C is the full support product of forcing posets Cn

for n < ω. Conditions in Cn are functions whose domains are subsets of

(µn+1, µn+2) with domains of size less than µn+1. If c ∈ C and α ∈ dom(c)∩
(µn+1, µn+2) then c(α) is an A ↾ α ∗ U̇ ↾ µn+1-name for a condition in
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Add(µn+1, 1)V [A↾α∗U↾µn+1]. C is ordered like a pure term forcing, that is to

say c1 ≤ c0 if and only if dom(c0) ⊆ dom(c1) and ⊩ c1(α) ≤ c0(α) for all

α ∈ dom(c0).

• C+F : Let F ⊆ A ∗ U be a filter, and define a forcing poset C+F with the

same set of conditions as C but a richer ordering: c1 ≤ c0 if and only if

dom(c0) ⊆ dom(c1) and there is (a, u) ∈ F such that for all n and all

α ∈ dom(c0) ∩ (µn+1, µn+2), (a ↾ α, u ↾ µn+1) ⊩ c1(α) ≤ c0(α).

• S = C+A∗U .

C serves as a term forcing for S in roughly the same way that B serves as a

term forcing for U. Restrictions of the posets C and S to intervals are defined in the

natural way, and there is an analogous version of Fact 3.3 for C and S.

We let Bn = B ↾ [µn+1, µn+2), Un = U ↾ [µn+1, µn+2), and Sn = S ↾
[µn+1, µn+2). In connection with this we note that An = A ↾ [µn+1, µn+2) and

Cn = C ↾ [µn+1, µn+2). It is easy to see that U ↾ µn ∈ V [A ↾ µn] and

S ↾ µn ∈ V [A ↾ µn][U ↾ µn−1] for all n > 1.

Remark 3.8. Each of the posets A,B,C consists of partial functions with domains

contained in [µ1, µω). It is useful to note that we are using different supports in each

of these posets on the interval [µn+1, µn+2), which corresponds to the factors with

index n: supports of size less than µn for An, Easton supports for Bn, supports of

size less than µn+1 for Cn.

In the current setting, S is just a product in V [A ∗ U ] of the posets Sn. We

emphasize that U is a not a product but an iteration. We may view A ∗ U ∗ S as a

projection of A × B × C in the natural way. Much as in Remark 3.2 we may also

view B as a projection of
∏

n Bn, and so may view A ∗ U ∗ S as a projection of∏
n An × Bn × Cn. See Lemma 3.13 below for more on this.

One small difference with [16] is that here the definitions are valid for n = 0,

because we fixed the value of µ1 in advance. The definitions for n = 0 have some

special features that will be useful later, and which we record in the following

remarks.

Remark 3.9. B0 ↾ µ1 and U0 ↾ µ1 are trivial. U0 = (B0)+A0 ∈ V [A0]. Since U0 ↾
µ1 is trivial, U0 is irrelevant to the definition of S0, and S0 = C+A0

0 ∈ V [A0].

V [A0 ∗ U0 ∗ S0] = V [A0 ∗ (U0 × S0)], and we may view A0 ∗U0 ∗ S0 as a projection

of A0×B0×C0. A0 ∗S0 is essentially Mitchell forcing [13], and C0 is essentially the

term forcing from Abraham’s product analysis of Mitchell forcing [1].

Remark 3.10. The natural forcing to add a B0 × C0-generic object B0 × C0 such

that A0 × (B0 × C0) induces A0 ∗ U0 ∗ S0 is < µ0-closed in V [A0 ∗ U0 ∗ S0]. The

argument is essentially the same as that for Lemma 2.44: conditions are pairs (b, c)

with (b, c)[A0] ∈ U0 × S0, A0 ∗U0 ∗ S0 is < µ0-distributive so that decreasing < µ0-

sequences lie in V , hence it is easy to find a lower bound.

We quote more facts from [16].
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Fact 3.11 ([16, Claim 4.15]).

(1) Let α ≤ µn+1 and let F = A ↾ α ∗ U ↾ α. Then in V [F ] the poset C+F ↾
[µn+1, µω) is < µn+1-directed closed.

(2) Let α ∈ (µn+1, µn+2) and let F = A ↾ α∗U ↾ µn+1. Then in V [F ] the poset

C+F ↾ [α, µn+2) is < µn+1-directed closed.

Fact 3.12 ([16, Claim 4.30]). Let F = A ↾ µn+2 ∗ U ↾ µn+2, let P1 be the poset

to refine U ↾ [µn+2, µω) to a generic object for B+F ↾ [µn+2, µω), and let P2 be the

poset to refine S ↾ [µn+2, µω) to a generic object for C+F ↾ [µn+2, µω). Then both

P1 and P2 are < µn+1-closed in V [A][U ][S ↾ [µn+1, µω)].

As we already mentioned, if we force with A ∗ U ∗ S we obtain an extension in

which 2µn = µn+2 for all n, and µn+1 = µ+
n for all n > 0.

• A is responsible for blowing up the powersets of the µn’s.

• U is responsible for ensuring that µn+2 has the indestructible generic su-

percompactness property from Fact 3.7 in V [A ∗ U ↾ µn+2].

• S is responsible for collapsing cardinals in the interval (µn+1, µn+2) to have

cardinality µn+1.

A ∗ U ∗ S is a descendant of Mitchell’s original forcing [13] for collapsing a

large cardinal while preserving the tree property. Exactly as in that forcing the S-

coordinate is collapsing cardinals between µn+1 and µn+2 “in parallel” with the A
coordinate adding subsets of µn, so that there is no inner model where 2µn = µn+1

and µn+2 = µ+
n+1 and we do not run afoul of Specker’s result from [22].

We record some information about A ∗ U ∗ S for use later.

Lemma 3.13.

(1) A ↾ µn+2 is µn+1-Knaster and A ↾ [µn+2, µω) is < µn+1-directed closed.

(2) B ↾ µn+1 is µn+1-Knaster.

(3) C ↾ µn+1 is µn+1-Knaster.

(4) A ↾ µn+2 ∗ U ↾ µn+1 ∗ S ↾ µn+1 is µn+1-Knaster.

(5) B ↾ [µn+1, γ) is < µn+1-directed closed for all γ, in particular Bn is < µn+1-

directed closed.

(6) Cn is < µn+1-directed closed, as is C ↾ [µn+1, µω).

(7) For each n, the forcing poset A ∗ U ∗ S is the projection of P0 × P1, where

P0 = A ↾ µn+2 ∗ U ↾ µn+1 ∗ S ↾ µn+1 and P1 = A ↾ [µn+2, µω) × B ↾
[µn+1, µω) ×C ↾ [µn+1, µω). P0 is µn+1-Knaster and P1 is < µn+1-directed

closed.

(8) It is forced by P1 that P0 is µn+1-cc.

(9)
∏

n<ω An ×Bn ×Cn adds no < µ0-sequences of ordinals, and preserves the

cardinals µn for n < ω together with µ+
ω . Since A ∗ U ∗ S is a projection of∏

n<ω An × Bn × Cn, the same holds for A ∗ U ∗ S.

Proof.
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(1) This is immediate since A ↾ µn+2 =
∏

i≤n Ai and A ↾ [µn+2, ω) =
∏

i>n Ai.

(2) For n = 0, B ↾ µ1 is trivial forcing. For n > 0 the supports of conditions in

B ↾ µn+1 are Easton subsets of the Mahlo cardinal µn+1, |B ↾ α| < µn+1

for all α < µn+1, and the µn+1-Knaster property for B ↾ µn+1 follows by

standard arguments in iterated forcing.

(3) For n = 0, C ↾ µ1 is trivial forcing. For n > 0, C ↾ µn+1 = (C ↾ µn)×Cn−1,

and |C ↾ µn| < µn+1 so this factor is trivially µn+1-Knaster. Cn−1 is the

product taken with < µn-supports of µn+1 posets each with cardinality

less than µn+1, and µn+1 is inaccessible, so the µn+1-Knaster property for

B ↾ µn+1 follows by standard arguments in product forcing.

(4) A ↾ µn+2 ∗ U ↾ µn+1 ∗ S ↾ µn+1 is a projection of A ↾ µn+2 × B ↾ µn+1 ×
C ↾ µn+1, which is a product of µn+1-Knaster posets. We note that the

projection is the identity map between two posets with the same underlying

set but different orderings.

(5) This follows from Remark 3.6.

(6) Cn is the product taken with < µn+1-supports of < µn+1-closed term forc-

ing posets, and C ↾ [µn+1, µω) =
∏

i≥n Ci.

(7) It is routine to verify that the natural map from P0×P1 to A∗U∗S is a pro-

jection. The claims about closure and chain condition follow immediately

from what we already proved.

(8) This is immediate by Easton’s lemma.

(9) The preservation of µ0 and the claim about < µ0-sequences are immediate,

as the product is < µ0-closed.
∏

m≤n Am×
∏

m<n Bm×
∏

m<n Cm is µn+1-

Knaster and
∏

m>n Am ×
∏

m≥n Bm ×
∏

m≥n Cm is < µn+1-closed, so that

µn+1 is preserved by Easton’s Lemma. If µ+
ω were collapsed we would have

cf(µ+
ω ) < µω in the extension, but this is impossible by Easton’s Lemma.

Remark 3.14. Item 8 is immediate in our current setting but will hold and be useful

in more general settings, as we discuss in Section 3.3 below.

Corollary 3.15.

(1) Every < µn+1-sequence of ordinals from V [A ∗ U ∗ S] lies in the submodel

V [A ↾ µn+2][U ↾ µn+1][S ↾ µn+1].

(2) Every set of ordinals of cardinality less than µn+1 in V [A∗U ∗S] is covered

by such a set lying in V .

(3) If Q is µω-closed in V and Q is Q-generic over V [A ∗ U ∗ S], every set of

ordinals of cardinality less than µn+1 in V [A ∗U ∗ S][Q] is covered by such

a set lying in V .

Proof. The first two claims are immediate. For the last claim write Q × A ∗ U ∗ S
as the projection of Q×P0 ×P1 where P0 is µn+1-cc and P1 is < µn+1-closed, then

argue as usual by Easton’s Lemma.
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In a similar spirit, we state some more easy projection and absorption facts

about U[n,ω) and Sn for use in Section 9.4.

Lemma 3.16. A ∗ U can be viewed as the projection of the product of A ∗ U[0,n)

and the Easton support product of the term forcing posets AV (A ↾ α,U ↾ α) for

α ∈ dom(B[n,ω)).

We note that by Lemma 2.50, the product of term forcing in Lemma 3.16 may

be absorbed into a suitable Easton collapse.

Lemma 3.17. A ∗ U ∗ Sn can be viewed as the projection of the product of A ∗ U
and Cn.

We note that Cn may be viewed as the < µn+1-support product of the term

forcing posets AV (A ↾ α ∗ U ↾ µn+1, ˙Add(µn+1, 1)) for α ∈ (µn+1, µn+2). As such,

by Lemma 2.52 Cn may be absorbed into a suitable < µn+1-closed Levy collapse.

For use later (notably in Sections 6 and 9.4) we record the fact that U[n,ω) and

S[n,ω) have a very modest degree of closure in the models where they are defined.

These results are surely not optimal (and in some special cases we will need and

prove more closure) but are all we need for the purposes of Sections 6 and 9.4. The

argument is similar to but easier than the proofs of Fact 3.5 or Lemma 7.1.

Lemma 3.18.

U[n,ω) is < µ0-closed in V [A ∗ U[0,n)].

S[n,ω) is < µ0-closed in V [A ∗ U ].

Proof. We only prove the closure of Un in V [A∗U[0,n)], which is enough to illustrate

the idea. Recall that the underlying set of Un is Bn = B ↾ (µn+1, µn+2), and the

ordering is defined in V [A[0,n]∗U[0,n)]. Let η < µ0 and let u⃗ = (ui)i<η be a decreasing

sequence in Un, where by Lemma 3.13 we have u⃗ ∈ V . We assume without loss of

generality that it is forced by A[0,n] ∗ U[0,n) that u⃗ is decreasing in Un.

We will construct b ∈ Bn inductively, where b =
⋃

i dom(ui) is easily seen to be

an Easton set, and arrange that it is forced by A[0,n] ∗U[0,n) that b is a lower bound

for u⃗ in Un. Suppose that µn+1 ≤ α < µn+2, and we have defined b ↾ α which is

forced by A[0,n] ∗ U[0,n) to be a lower bound for u⃗ ↾ α in Un ↾ α. We force with

A ↾ α ∗ U ↾ α below (0, b ↾ α) to obtain FA
α ∗ FU

α .

Let di = ui(α)[FA
α ∗ FU

α ]. We claim that (di)i<η forms a decreasing sequence in

ϕ(α)[FA
α ∗ FU

α ]. To see this let i < j < η, and force to prolong FA
α to FA which

is A[0,n]-generic. By our hypothesis on u⃗, V [FA ∗ FA
α ↾ µn+1] |= uj ≤Un ui. By

the definition of Un, there are conditions p ∈ FA
α and q ∈ FU

α ↾ µn+1 such that

(p, q ⌢ uj ↾ α) ⊩ uj(α) ≤ ui(α).

Since we forced below (0, b ↾ α), (0, b ↾ α) ∈ FA
α ∗FU

α . By hypothesis V [FA∗FA
α ↾

µn+1] |= b ↾ α ≤Un↾α uj ↾ α, so extending p and q if necessary we may assume that

(p, q) ⊩ b ↾ α ≤ uj ↾ α. So (p, q ⌢ uj ↾ α) ∈ FA
α ∗ FU

α and dj ≤ di as required.

Now since ϕ(α) is forced to be < α-closed we may choose an A ↾ α ∗U ↾ α-name

b(α) such that (0, b ↾ α) ⊩ b(α) ≤ ḋi for all i. Let F = A[0,n] ∗ U[0,n−1) be an
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arbitrary A[0,n] ∗ U[0,n−1)-generic object. By induction b ↾ α ≤ ui ↾ α for all i < η

in the version of Un computed in V [F ], and we will show that b ↾ α+ 1 ≤ ui ↾ α+ 1

in this poset. This is easy because for any condition (a, u) ∈ F , (a ↾ α, u ∪ b ↾ α)

forces b(α) ≤ ui(α).

3.2. Further analysis

As we saw in Section 3.1, A ∗U ∗ S is naturally a projection of
∏

n(An ×Bn ×Cn),

and this latter forcing preserves all cardinals µn together with µ+
ω . To get more

information we will use a style of analysis sometimes called “tail forcing”, which is

often useful in the setting of a product of ω many increasingly closed forcing posets.

Let f and g be elements of
∏

n(An × Bn × Cn). We say that f =finite g if and

only if f(n) = g(n) for all large n, and f ≤finite g if and only if f(n) ≤ g(n) for all

large n. Then =finite is an equivalence relation on
∏

n(An × Bn × Cn).

If we let
∏

n(An × Bn × Cn)/finite be the set of equivalence classes then ≤finite

naturally induces a partial ordering on
∏

n(An×Bn×Cn)/finite, and it is easy to see

that f 7→ [f ]finite is a projection from
∏

n(An×Bn×Cn) to
∏

n(An×Bn×Cn)/finite.

If we define =finite and ≤finite on
∏

n≥m(An × Bn × Cn) in the natural way, then

easily
∏

n(An × Bn ×Cn)/finite is isomorphic to
∏

n≥m(An × Bn ×Cn)/finite, and

f 7→ [f ]finite is a projection from
∏

n≥m(An×Bn×Cn) to
∏

n≥m(An×Bn×Cn)/finite,

Now we may represent
∏

n(An×Bn×Cn) as a two-step iteration E0 ∗E1, where

E0 =
∏

n(An × Bn × Cn)/finite, and E1 is the set of elements of
∏

n An × Bn × Cn

whose classes modulo finite are in E0, where the ordering of E1 is the the ordering

inherited from
∏

n An × Bn × Cn.

Claim 3.19. E0 is µm-strategically closed for every m < ω, so in particular it is

µω-distributive.

Proof. By the discussion above, E0 is isomorphic to the projection via f 7→ [f ]finite
of the < µm-closed poset

∏
n≥m(An × Bn × Cn).

Claim 3.20. E1 is µ+
ω -cc in V [E0].

Proof. We will show the stronger assertion that E1 is the union of µω many filters

in V [E0 ∗E1]. Let R be the
∏

n(An ×Bn ×Cn)-generic object added by E0 ∗E1, so

that V [E0 ∗E1] = V [R], E0 is the set of equivalence classes of elements of R modulo

finite, E1 is the set of conditions which are equal mod finite to some element of R,

and E1 = R. The key point is that µ+
ω is still an uncountable regular cardinal in

V [R].

Now we work in V [R]. If p ∈ E1 then there are n < ω and r ∈ R such that

p ↾ [n, ω) = r ↾ [n, ω). For all n and q ∈
∏

i<n(Ai × Bi × Ci), let Fn,q be the set of

p ∈ E1 such that p ↾ n = q and p ↾ [n, ω) = r ↾ [n, ω) for some r ∈ R. It is easy to

see that Fn,q is a filter, E1 =
⋃

n,q Fn,q and there are µω possibilities for (n, q).

We have proved:
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Lemma 3.21. V [A ∗U ∗S] ⊆ V [E0 ∗E1], where E0 is µω-distributive in V and E1

is µ+
ω -cc in V [E0].

Remark 3.22. Since E0 is µm-strategically closed for all m, the distributivity of E0

is quite robust in mild forcing extensions of V . The argument we gave for the chain

condition of E1 shows that the chain condition of E1 is also robust in mild forcing

extensions of V [E0].

3.3. Modifying the forcing

In the sequel we will need to use some modified forms of A ∗ U ∗ S. The main

modifications will be:

• We sometimes choose the Cohen forcing An from an inner model V̄ (which

may depend on n), that is we set An = AddV̄ (µn, µn+2). When we do this

we will make sure to arrange that A[m,n] is < µm-distributive and µn+1-

Knaster for m ≤ n < ω.

• We sometimes weaken the assumptions on the cardinals µn for n ≥ 2 and

the function ϕ. The µn’s will still be supercompact but may not be inde-

structibly supercompact, and (relatedly) the function ϕ ↾ µn may only be

a Laver function rather than an indestructible Laver function. In practice

there will typically be an inner model V ′ such that V is a small generic

extension of V ′, and ϕ is obtained from an indestructible Laver function in

V ′ using Lemma 2.9.

With these modifications the closure assertions from Facts 3.5, 3.11, and 3.12

will remain true, since they only use chain condition and distributivity properties on

the A-coordinate. Most of the conclusions of Lemmas 3.13 and 3.15 remain true, the

only difference is that now A ↾ [µn+2, µω) and P1 are merely < µn+1-distributive.

The analysis from Section 3.2 needs to be slightly modified but the conclusion is the

same: the modified version of A ∗ U ∗ S embeds into a two-step iteration where the

first step has a robust form of µω-distributivity, and the second step has a robust

form of µ+
ω -cc.

Remark 3.23. At certain points in the main construction (see Sections 7.1 and

7.2) we will start with a sequence of cardinal parameters µ0, µ1, µ2 . . ., force with

A0 ∗ U0 ∗ S0 (in Section 7.1) or A0 ∗ U0 ∗ L for some preparation forcing L (in

Section 7.2), and then work over the extension to define and force with A[1,ω) ∗
U[1,ω) ∗ S[1,ω) (in Section 7.1) or A[1,ω) ∗ U[1,ω) ∗ S (in Section 7.2). The resulting

iteration is broadly similar to the A ∗ U ∗ S construction defined from µ0, µ1, µ2 . . .

but is not equivalent: we will handle this situation by analyzing the two parts of the

construction separately. In the sequel we will call this kind of iteration a two-phase

A ∗ U ∗ S construction. Since A0 forces 2µ0 = µ2 it will be important to define A1

in an inner model, so that A1 does not collapse µ2.

Remark 3.24. Readers of this paper and [16] will note a limited family resemblance
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between A∗U∗S and the constructions of Abraham [1] and Cummings and Foreman

[2], which also involve forcing posets with an “add coordinate”, a “collapse coordi-

nate” and an “indestructibility coordinate”. The key differences are that in those

earlier papers the supercompact cardinals are not assumed to be indestructible, all

three coordinates are iterations, and the “indestructibility coordinate” comes last

and uses ordinary ground model Laver functions to guess names.

4. Indestructibility results

In the proof of Theorem 1.1 we will produce a model which combines many different

instances of the construction of Section 3. Roughly speaking the double successor

cardinals below ℵω2 in the final model will be grouped into blocks of length ω,

where cardinals in each block will be handled by an instance of that construction.

Unfortunately in each block there is interference caused by the instances that handle

the neighboring blocks. We will deal with some of this interference by proving

general indestructibility results (Lemmas 4.5 and 4.10 below) stating that instances

of the tree property produced by the construction of Section 3 are somewhat robust

under further mild forcing. All the ideas needed for the indestructibility results are

already present in [16], we just need some small adjustments to the proofs.

In some cases we would like to use Lemma 4.5 in situations where the hypotheses

do not quite apply, and this issue will be addressed by going to a further generic

extension where the hypotheses do apply, and using a mutual genericity argument

to finish. See Remarks 4.11 and 4.12 following Lemma 4.5 for more on this. Of

course we could have incorporated this idea into the statement and proof of Lemma

4.5, at the cost of further complicating the statement and the proof.

Let A∗U∗S be a forcing poset of the type described in Section 3, but allowing for

the possibility that some of the posets Ak may be chosen in submodels as discussed

in Section 3.3. The poset A ∗ U ∗ S will be constructed in a universe Vdef : this

notation is perhaps a bit cumbrous but makes it easier to specify which universe is

to play the role of Vdef in the sequel. Let n < ω, with a view to showing that the

tree property holds at µn+2 in a wide class of generic extensions of Vdef [A ∗ U ∗ S],

and make the following assumptions:

• There is an inner model Vinn of Vdef , such that Vdef is a generic extension

Vinn[X] and Vinn |= “X is ω-distributive and µ1-cc with |X| ≤ µ1”.

• In Vinn, (µi)i<ω is an increasing sequence of regular cardinals such that µi

is indestructibly supercompact for i ≥ 2, and there is a universal indestruc-

tible Laver function ψ defined up to µω. The cardinal µ1 need not be a

large cardinal, and in fact is often the successor of a singular cardinal.

• The Laver function ϕ used to define U is obtained from the universal inde-

structible Laver function ψ in Vinn using Lemma 2.9, that is ϕ(α) = ψ(α)[X]

whenever ψ(α) is an X-name in Vinn. In Vdef , ϕ is a universal Laver function

on the interval (µ1, µω), where µω = supi<ω µi.

• Each of the posets Ak may be defined in some inner model of Vdef , with
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the constraints that:

– Ak is defined in Vinn for k ≥ n+ 2.

–
∏

i≤m Ai is µm+1-Knaster in Vdef for all m.

–
∏

i≥m Ai is < µm-distributive in Vdef for all m.

Remark 4.1. With an eye to future applications, these hypotheses are slightly more

general than is needed for our purposes in this paper.

From our hypotheses A[n+2,ω) = (
∏

n+2≤i<ω Add(µi, [µi+1, µi+2)))Vinn , so that

A[n+2,ω) is defined and < µn+2-directed closed in Vinn. For k ≤ n+ 1, Ak will most

often be defined in some model intermediate between Vinn and Vdef , and in this case

Lemma 4.2 below will handle most of the work of checking the chain condition and

distributivity of products of the Ak’s.

Lemma 4.2. Suppose that Ak = AddVint,k(µk, [µk+1, µk+2)) for 1 ≤ k ≤ n + 1,

where Vint,k is intermediate between Vinn and Vdef . Then A[1,m] =
∏

1≤i≤m Ai is

µm+1-Knaster in Vdef and A[m,ω) =
∏

i≥m Ai is < µm-distributive in Vdef for all

m ≥ 1.

Proof. We set Vint,k = Vinn for k ≥ n+ 2, so that Ak = AddVint,k(µk, [µk+1, µk+2))

for k ≥ 1. As µk is inaccessible in Vdef for k ≥ 2, Vint,k |= “∀η < µk+1 η
<µk < µk+1”

for all k ≥ 1.

Let Vint,k = Vinn[Xk] for a forcing poset Xk ∈ Vinn, and let A∗
k = AVinn(Xk, Ȧk),

so that A∗
k is < µk-closed in Vinn by Lemma 2.33. For m ≥ n+ 2, A[m,ω) is < µm-

closed in Vinn, so it is < µm-distributive in Vdef by Easton’s lemma.

For 1 ≤ m ≤ n+ 1, we may write Vdef [A[m,ω)] = Vinn[(X ∗A[m,n+2))×A[n+2,ω)],

and by a suitable quotient to term forcing we may extend to obtain a generic

extension Vinn[X ×
∏

m≤i<n+2A
∗
i × A[n+2,ω)]. Since

∏
m≤i<n+2 A∗

i × A[n+2,ω) is

< µm-closed in Vinn, by Easton’s lemma it is < µm-distributive in Vdef , so that

easily A[m,ω) is < µm-distributive in Vdef .

It is easy to see that Vdef is a (µ1, µ2)-good extension of Vint,k, so by Lemma

2.54 A1 is µ2-Knaster in Vdef . Now we show by induction on m that A[1,m] is µm+1-

Knaster in Vdef : if A[1,m] is µm+1-Knaster in Vdef then Vdef [A[1,m]] is a (µm+1, µm+2)-

good extension of Vint,m+1, so that Am+1 is µm+2-Knaster in Vdef [A[1,m]] and hence

A[1,m+1] is µm+2-Knaster.

Remark 4.3. Lemma 4.2 leaves us only with the problem of showing that A[0,ω] is

< µ0-distributive and A[0,m] is µm+1-cc.

To make the hypotheses of the forthcoming Lemma 4.5 more digestible, we use

some notational conventions:

• We will show that the tree property at µn+2 holds in generic extensions

of Vdef [A ∗ U ∗ S] by products of posets that can be written in the form

Dsmall×D0×D1×D2×D3, where the factors satisfy some hypotheses to be
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listed later. We write this product Ds,0,1,2,3, and denote subproducts and

generic objects for subproducts in the natural way.

• W is Vdef [A ∗ U ∗ S][Ds,0,1,2,3].

• j is any embedding witnessing the χ-supercompactness of µn+2 in Vdef [H]

where H = A[n+2,ω) ×D2 and χ = max(µω, |Ds,0,1,2,3|)+. Our hypotheses

will ensure that µn+2 is supercompact in Vdef [H], so that such embeddings

j will exist. Note that Vdef [H] ⊆W .

• If Q ∈ Vdef is a µn+2-cc poset with |Q| ≤ χ which remains µn+2-cc in

Vdef [H], j is an embedding as above (so that in Vdef [H], j ↾ Q is a complete

embedding of Q into j(Q)), and Q is Q-generic over Vdef [H], then j(Q)/j[Q]

is the natural poset defined in Vdef [H][Q] to produce a j(Q)-generic object

Q̂ with j[Q] ⊆ Q̂.

We note that in the proof of Lemma 4.5 we will construct and lift a highly specific

embedding j, which is not known in advance and depends on the inputs to the

Lemma.

Remark 4.4. The posets Dsmall,D0, D1, D2, D3 are enumerated roughly in order

of increasing distributivity. They appear in a different order in the hypotheses of

Lemma 4.5 because the hypotheses about D0 and D1 mention D2 and D3, and the

hypothesis about D0 mentions D1.

Lemma 4.5. With the hypotheses on n, Vinn, Vdef and A∗U∗S as above, let Dsmall,

D0, D1, D2, D3 be forcing posets such that, setting W = Vdef [A ∗ U ∗ S][Ds,0,1,2,3]

and H = A[n+2,ω) ×D2:

(1) µn+1 and µn+2 are regular cardinals in W .

(2) An is µn+1-Knaster in Vdef [H], and An+1 is µn+2-Knaster in Vdef [H].

(3) D2 ∈ Vinn, and Vinn |= “D2 is < µn+2-directed closed”.

(4) D3 ∈ Vdef [A ↾ µn+2 ∗ U ↾ µn+2] and Vdef [A ↾ µn+2 ∗ U ↾ µn+2] |=
“D3 is < µn+2-directed closed”.

(5) D1 ∈ Vdef .

(a) D1 is µn+2-Knaster in Vdef [H].

(b) D1 is < µn+1-distributive in Vdef [A ∗ U ∗ S][D2,3].

(6) For any j which is the unique lift a to Vdef [H] of an embedding witnessing

the χ-supercompactness of µn+2 in Vinn[H], if P2b = j(An+1×D1)/j[An+1×
D1] then:

(a) P2b is µn+2-Knaster in W .

(b) P2b is < µn+1-distributive in W .

(7) D0 ∈ Vdef , and D0 is µn+1-Knaster in Vdef [A ∗ U ∗ S][D1,2,3][P2b].

aNote that by the indestructibility of µn+2 in Vinn and the hypotheses on A[n+2,ω) and D2, µn+2 is

χ-supercompact in Vinn[H]. Since Vdef [H] = Vinn[H][X] and X is generic for forcing of cardinality
at most µ1, any embedding witnessing χ-supercompactness for µn+2 in Vinn[H] lifts uniquely in

a trivial fashion to an embedding witnessing χ-supercompactness for µn+2 in Vdef [H].
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(8) For any W ′ which is an extension of W [P2b] by a forcing which is < µn+1-

closed in Vdef [A ∗ U ∗ S ↾ [µn+1, µω)][D2], and any j as in Hypothesis 6, if

P2a = j(An × D0)/j[An ×D0] then P2a is µn+1-Knaster in W ′.

(9) Dsmall ∈ Vdef [A ∗ U ∗ S], and Vdef [A ∗ U ∗ S] |= |Dsmall| ≤ µn.

Then W |= “µn+2 has the tree property”.

Before proving Lemma 4.5, we make some remarks about its hypotheses and

show that these hypotheses entail some additional properties.

Remark 4.6.

• In applications D0 will often be a Cohen poset adding subsets to µn defined

in some inner model of Vdef , and similarly D1 will often be a Cohen poset

adding subsets to µn+1 defined in some inner model of Vdef .

• P2a and P2b are so named because they will be used successively in Step 2

of the construction for Lemma 4.5. P2a and P2b are defined respectively in

the submodels Vdef [H][An ×D0] and Vdef [H][An+1 ×D1] of the model W .

• In connection with Dsmall, we recall that µn+1 is the successor of µn in

Vdef [A∗U ∗S] for n > 0. In the intended applications it is often the case that

Dsmall is defined in a submodel of Vdef [A∗U ∗S] where µn < |Dsmall| < µn+1.

• Some cardinals (notably µn) may be collapsed in W , for example we could

set Dsmall = Coll(ω, µn).

• Hypotheses 2, 5a and 7 jointly imply that both An×D0 and An+1×D1 are

µn+2-cc in Vdef [H]. It follows that the posets P2a and P2b are guaranteed

to be well-defined.

• It is implicit in the hypotheses that j(An)/j[An] and j(An+1)/j[An+1] have

rather robust chain condition and distributivity properties.

The following auxiliary lemma, which we will use in the proof of Lemma 4.5,

provides a good example of the use of term forcing and “quotient to term forcing”

to analyze complicated generic extensions.

Lemma 4.7. Under the hypotheses of Lemma 4.5:

• Vdef [A ∗ U ∗ S] |= “D2,3 is µn+1-distributive”.

• Vdef [A ∗ U ∗ S] |= “D1,2,3 is < µn+1-distributive”.

Proof. We begin by analyzing the model Vdef [A∗U ∗S][D2,3] = Vdef [A∗U ∗S][D2×
D3]. Recalling that Vdef = Vinn[X] and that D2 ∈ Vinn, this model is Vinn[(X ∗ A ∗
U ∗ S ∗D3) ×D2]. Since D3 ∈ Vdef [A ↾ µn+2 ∗ U ↾ µn+2], we may form in Vinn the

term forcing T3 = AVinn(X ∗ A ↾ µn+2 ∗ U ↾ µn+2, Ḋ3). By hypothesis 4 of Lemma

4.5, D3 is < µn+2-directed closed in Vdef [A ↾ µn+2 ∗ U ↾ µn+2], and it follows from

Lemma 2.33 that (just like D2) the poset T3 is < µn+2-directed closed in Vinn.

Now we force over Vdef [A ∗U ∗ S][D2 ×D3] with the “quotient to term” forcing

T3/(A ↾ µn+2∗U ↾ µn+2)∗D3, which is computed in the submodel Vdef [A ↾ µn+2∗U ↾
µn+2 ∗D3]. By Lemma 2.39 we obtain T 3 such that (X ∗A ↾ µn+2 ∗U ↾ µn+2)×T 3
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induces X ∗ A ↾ µn+2 ∗ U ↾ µn+2 ∗D3, and D2 × T 3 is generic over Vdef [A ∗ U ∗ S]

for D2 × T3. In particular Vdef [A ∗ U ∗ S][D2 ×D3] ⊆ Vdef [A ∗ U ∗ S][D2 × T 3].

Recall from Lemma 3.13 that in Vdef we may write A ∗ U ∗ S as the projection

of P∗
0 × P̄∗

1 × P∗
1, where P∗

0 = A[0,n+1] ∗ U[0,n] ∗ S[0,n], P̄∗
1 = A[n+2,ω), and P∗

1 =

B[n+1,ω) × C[n+1,ω). Under our current hypotheses P∗
0 is defined and µn+2-cc in

Vdef , P̄∗
1 is defined and < µn+2-directed closed in Vinn, while P∗

1 is defined and

< µn+2-directed closed in Vdef .

Let T∗ = AVinn(X,P∗
1), so that T∗ is defined and < µn+2-directed closed in

Vinn. With another round of quotient to term forcing and another appeal to Lemma

2.39, we produce a generic extension Vinn[(X ∗ P ∗
0 ) × A[n+2,ω) × T ∗ ×D2 × T 3] ⊇

V [A ∗ U ∗ S][D2 × T 3]. Now A[n+2,ω) × T ∗ × D2 × T 3 is generic over Vinn for

< µn+2-closed forcing and X ∗ P ∗
0 is generic for µn+2-cc forcing. Appealing to

Easton’s Lemma, every µn+1-sequence of ordinals in Vdef [A ∗ U ∗ S][D2 ×D3] is in

Vinn[X ∗P ∗
0 ] = Vdef [A[0,n+1]∗U[0,n]∗S[0,n]], in particular D2×D3 is µn+1-distributive

in Vdef [A ∗ U ∗ S]. By hypothesis 5b of Lemma 4.5, D1 is < µn+1-distributive in

Vdef [A∗U ∗S][D2×D3], so that D1×D2×D3 is < µn+1-distributive in Vdef [A∗U ∗S]

as required.

Remark 4.8. For use in Lemma 4.9 below, we note that no hypotheses involving

either D0 or D1 were used to prove the distributivity of D2,3, and that for the

distributivity of D1,2,3 we used only that D1 is < µn+1-distributive in Vdef [A ∗ U ∗
S][D2 ×D3].

With these preliminaries out of the way, we are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. Recall that W = Vdef [A ∗ U ∗ S][Ds,0,1,2,3]. We will show

that the cardinal µn+2 has the tree property in W . This involves constructing a

generic embedding with domain W and critical point µn+2, and then arguing that

the forcing which adds the embedding will not add a branch to a µn+2-tree. The

forcing to add the embedding will be constructed in several steps.

Recall that µn+2 is indestructibly supercompact in Vinn, and H = A[n+2,ω) ×
D2 which is generic for < µn+2-directed closed forcing in Vinn, so that µn+2 is

supercompact in Vinn[H]. We will eventually choose an embedding j defined in

Vinn[H] witnessing that µn+2 is sufficiently supercompact, and having some other

desirable properties, but we defer this choice for the moment. When we choose j it

will trivially lift onto Vdef [H], because Vdef is a small generic extension of Vinn.

To help motivate the lifting construction below, we list relevant generic objects

which must be added to Vdef [H] to obtain W . In the following list the “small”

group consists of generic objects for posets of size less than µn+2 where the lifting

is essentially trivial.

• Small: A ↾ µn+1, U ↾ µn+1, S ↾ µn+1 and Dsmall.

• Large or potentially large: A ↾ [µn+1, µn+3), U ↾ [µn+1, µω), S ↾ [µn+1, µω)

and the posets Di for i = 0, 1, 3.
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At several steps in the following construction we record some closure and chain

condition information about the posets which appear in that step. This information

will be used in the proof of the tree property.

• Step 1a: (“Remove dependence of U ↾ [µn+2, µω) on A ↾ [µn+2, µω)”). Recall

that U ↾ [µn+2, µω) = B+F ′
↾ [µn+2, µω), where F ′ = A ∗ (U ↾ µn+2). Let

F = A ↾ µn+2 ∗ U ↾ µn+2, and note that F ⊆ F ′. Let P1a be the “quotient

to term” forcing which adds a filter B1a on B1a = B+F ↾ [µn+2, µω), so that

B1a induces U ↾ [µn+2, µω) as in Fact 3.3. We force over W with P1a. We

see that

Vdef [A ∗ U ][P1a] = Vdef [F ][A ↾ [µn+2, µω) ×B1a] = Vdef [A ∗ U ↾ µn+2][B1a]

and arguing as in b Lemma 2.39 S ∗ Ds,0,1,2,3 is S ∗ Ds,0,1,2,3-generic over

Vdef [A ∗ U ↾ µn+2][B1a]. We have

W [P1a] = Vdef [A ∗ U ↾ µn+2][B1a][S ∗Ds,0,1,2,3].

Now B1a ∈ Vdef [F ], and it follows from Fact 3.5 that B1a is < µn+2-

directed closed in this model. On the other hand P1a ∈ Vdef [A ∗ U ], and

appealing to Fact 3.12 it is actually < µn+1-closed in the larger model

Vdef [A ∗U ∗S ↾ [µn+1, µω)]. This closure still holds in the further extension

Vdef [A ∗ U ∗ S ↾ [µn+1, µω)][D1,2,3], since by Lemma 4.7 D1,2,3 is < µn+1-

distributive in Vdef [A ∗ U ∗ S].

• Step 1b: (“Remove dependence of S ↾ [µn+2, µω) on A ↾ [µn+2, µω) ∗ U ↾
[µn+2, µω)”). Recall that S ↾ [µn+2, µω) = C+F ′′

↾ [µn+2, µω) where F ′′ =

A ∗U , and F = A ↾ µn+2 ∗U ↾ µn+2 ⊆ F ′′. Let P1b be the quotient forcing

which adds a filter C1b on C1b = C+F ↾ [µn+2, µω), inducing S ↾ [µn+2, µω).

We force over W [P1a] with P1b, and let P1 = P1a × P1b. As in Step 1a,

W [P1] = Vdef [A ∗ U ↾ µn+2 ∗ S ↾ µn+2][B1a][C1b][D
s,0,1,2,3],

and Ds,0,1,2,3 continues to be Ds,0,1,2,3-generic over the slightly larger model

Vdef [A ∗ U ↾ µn+2 ∗ S ↾ µn+2][B1a][C1b].

Similarly to step 1a, C1b ∈ Vdef [F ], and it follows from Fact 3.11 that

C1b is < µn+2-directed closed in this model. On the other hand P1b ∈
Vdef [A∗U ∗S ↾ [µn+2, µω)], and appealing to Fact 3.12 it is actually < µn+1-

closed in the larger model V [A ∗ U ∗ S ↾ [µn+1, µω)]. As in Step 1a, this

closure still holds in the further extension Vdef [A∗U ∗S ↾ [µn+1, µω)][D1,2,3].

• Choosing j: Recall that we defined A ∗ U using a Laver function ϕ in Vdef ,

obtained from a universal indestructible Laver function ψ in Vinn, setting

ϕ(α) = ψ(α)[X] whenever ψ(α) is an X-name. Working in Vinn[H] we choose

j such that

bB1a is not literally the termspace forcing AVdef [F ](A ↾ [µn+2, µω),U ↾ [µn+2, µω)), but it does

add an A ↾ [µn+2, µω)-name for a filter which is U ↾ [µn+2, µω))-generic over Vdef [A ∗ U ↾ µn+2]
and this is sufficient. See Remark 2.40.
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– j ↾ ON is definable in Vinn.

– j witnesses µn+2 is χ-supercompact where χ = max(µω, |D0,1,2,3|)+.

– The next point in dom(j(ψ)) past µn+2 is greater than χ.

– j(ψ)(µn+2) = Z̈, where Z̈ is an X-name in Vinn for an A ↾ µn+2 ∗ U ↾
µn+2-name in Vdef for B1a × C1b × D3.

Since Vdef is a generic extension of Vinn by forcing of size at most µ1,

we trivially lift j to obtain j : Vdef [H] → MH . Note that j(ϕ)(µn+2) = Ż,

where Ż is a A ↾ µn+2 ∗ U ↾ µn+2-name in Vdef for B1a × C1b × D3.

Since B1a × C1b × D3 ∈ Vdef [A ↾ µn+2 ∗ U ↾ µn+2] and is < µn+2-

directed closed in this model, the choice of j implies that µn+2 is in the

support of the U-coordinate of j(A∗U) and the forcing which appears there

is B1a × C1b × D3.

• Step 2a: (“Stretch An ×D0”)

Let P2a = j(An × D0)/j[An ×D0]. We force over W [P1] with P2a and

add a j(An×D0)-generic object Ân× D̂0 such that j[An×D0] ⊆ Ân× D̂0.

• Step 2b: (“Stretch An+1 × D1”) Let P2b = j(An+1 × D1)/j[An+1 × D1].

We force over W [P1][P2a] with P2b and add a j(An+1 × D1)-generic object

Ân+1 × D̂1 such that j[An+1 ×D1] ⊆ Ân+1 × D̂1.

We let P2 = P2a × P2b. Then

W [P1][P2] = Vdef [Â ∗ U ↾ µn+2 ∗ S ↾ µn+2][B1a][C1b][D̂
s,0,1,2,3],

where Â = A[0,n−1) × Ân × Ân+1 × A[n+2,ω) and D̂s,0,1,2,3 = Ds × D̂0 ×
D̂1 ×D2 ×D3.

• Step 3 (“Stretch the term forcing for S ↾ [µn+1, µn+2)”) Recall that S ↾
[µn+1, µn+2) = C+F̄ ↾ [µn+1, µn+2), where F̄ = A ↾ µn+2 ∗ U ↾ µn+1. Let

P3 = j(C)+F̄ ↾ [µn+2, j(µn+2)). We force with P3 over W [P1][P2].

Note that P3 is defined in Vdef [H][F̄ ] ⊆ V [A ∗U ↾ µn+1][D2]. Modifying

the proof of [16, Claim 4.31] to account for D2, P3 is < µn+1-closed in

V [A ∗ U ∗ S ↾ [µn+1, µω)][D2]. By distributivity, P3 retains this closure in

the larger model V [A ∗ U ∗ S ↾ [µn+1, µω)][D1,2,3].

We now extend j : Vdef [H] → MH to a generic embedding with domain W ,

working (ultimately) in the extension W ′ = W [P1,2,3] where P1,2,3 collects the

generic objects we added in the steps above.

• Stage 1: Recall that B1a×C1b is the generic object added by P1 = P1a×P1b

for B1a × C1b, a poset which is defined and is < µn+2-directed closed in

Vdef [F ], where F = A ↾ µn+2 ∗ U ↾ µn+2. By our choice of j, j(A ∗ U ∗ S)

has a “U-component” in which B1a × C1b × D3 appears at stage µn+2.

Modifying the proof of Fact 3.7 from [16], we may lift j onto Vdef [A∗U ↾
µn+2][B1a × C1b][D

0,1,2,3]. We outline the modified proof, with a focus on

where to find the compatible generic objects on the “j-side”.

– H = A[n+2,ω) × D2 ∈ Vdef [H], so that if Ĥ = j(H) = j(A[n+2,ω)) ×
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j(D2) then Ĥ ∈MH and MH = j(Vdef)[Ĥ].

– j(A[0,n)) = A[0,n).

– j(An ×D0) is obtained by combining An ×D0 and the generic object

P2a for the “stretching” poset P2a.

– j(D1 × An+1) is obtained by combining D1 × An+1 and the generic

object P2b for the “stretching” poset P2b.

– j(U ↾ µn+2) is obtained by concatenating U ↾ µn+2,B1a×C1b×D3 (the

generic object at µn+2), and a generic object for j(U) ↾ (µn+2, j(µn+2))

which is constructed using closure under χ-sequences.

– j(B1a×C1b×D3) is constructed using closure under χ-sequences and

a master condition argument.

• Stage 2: S ↾ µn+1 is generic for forcing of size less than µn+2, so we may

trivially lift j onto Vdef [A ∗ U ↾ µn+2][B1a × C1b][D
0,1,2,3][S ↾ µn+1].

• Stage 3: As we noted above in the definition of P3, S ↾ [µn+1, µn+2) =

C+F̄ ↾ [µn+1, µn+2) where F̄ = A ↾ µn+2 ∗ U ↾ µn+1. When we apply j to

S ↾ [µn+1, µn+2) it is only the “A-component” which gets stretched: more

precisely j(A ↾ µn+2) = A[0,n) ∗ Ân, j(F̄ ) = (A[0,n) ∗ Ân) ∗ U ↾ µn+1 and

j(S ↾ [µn+1, µn+2)) = j(C)+(A[0,n)∗Ân)∗U↾µn+1 ↾ [µn+1, j(µn+2)).

Let Sn = S ↾ [µn+1, µn+2). Recall that P3 = j(C)+F̄ ↾ [µn+2, j(µn+2)),

and note that:

– F̄ ⊆ j(F̄ ) = (A[0,n) ∗ Ân) ∗ U ↾ µn+1.

– P3 is generic over W [P1,2] which contains all relevant generic objects.

– j(C)+F̄ ↾ [µn+1, j(µn+2)) ≃ j(C)+F̄ ↾ [µn+1, µn+2) × P3 ≃ Sn × P3.

We may therefore form the upwards closure Ŝn of Sn × P3 in j(S ↾
[µn+1, µn+2)), to produce Ŝn such that Ŝn is generic for j(S ↾ [µn+1, µn+2)).

Since crit(j) = µn+2, and conditions in Sn have supports which are bounded

subsets of µn+2, it is easy to see that j[Sn] ⊆ Ŝn and so we may lift j onto

Vdef [A ∗ U ↾ µn+2][B1a × C1b][D
0,1,2,3][S ↾ µn+2].

• Stage 4: Recall that P1a added a filter B1a on B1a = B+F ↾ [µn+2, µω), such

that B1a induces U ↾ [µn+2, µω). This used the description of U ↾ [µn+2, µω)

as B+F ′
↾ [µn+2, µω), where F ′ = A ∗ (U ↾ µn+2).

Since we have lifted j onto a model which contains both B1a and F ′, we

may use j(B1a) and j(F ′) to induce a filter Û[µn+2,µω) on j(U ↾ [µn+2, µω))

with j[U ↾ [µn+2, µω))] ⊆ Û[µn+2,µω). This lets us lift j onto Vdef [A∗U ][B1a×
C1b][D

0,1,2,3][S ↾ µn+2].

• Stage 5: Similarly to Stage 4, P1b added a filter C1b on C1b = C+F ↾
[µn+2, µω), inducing S ↾ [µn+2, µω). This used the description of S ↾
[µn+2, µω) as C+F ′′

↾ [µn+2, µω), where F ′′ = A ∗ U .

Since we have lifted j onto a model which contains both C1b and F ′′, we

may use j(C1b) and j(F ′′) to induce a filter Ŝ[µn+2,µω) on j(S ↾ [µn+2, µω))

with j[S ↾ [µn+2, µω))] ⊆ Ŝ[µn+2,µω). This lets us lift j onto Vdef [A ∗ U ∗
S][B1a × C1b][D

0,1,2,3]
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• Stage 6: Since Dsmall ∈ Vdef [A ∗ U ∗ S] and |Dsmall| ≤ µn, we may trivially

lift j onto Vdef [A ∗ U ∗ S][B1a × C1b][D
s,0,1,2,3] = W [B1a × C1b].

To verify the tree property, we need to check that the forcing posets used to

extend j onto W can not add a branch to a µn+2-tree. Recall that the lifting of j is

defined in W ′ = W [P1,2,3]. As we already mentioned, µn+1 and µn+2 are preserved

in W but it is possible that µn has been collapsed.

The proof which follows involves a number of auxiliary models. See the diagram

which follows the proof and its legend for a picture of how they are related.

• Let M0 = W and M1 = M0[P2b]. By hypothesis 6a of Lemma 4.5, P2b is

µn+2-Knaster in M0, so by Lemma 2.11 no tree of height µn+2 in M0 has

a new branch in M1. By hypothesis 6b, P2b is < µn+1-distributive in M0,

so that both µn+1 and µn+2 are regular in M1.

• Let M2 = M1[P1×P3]. We claim that no µn+2-tree in M1 has a new branch

in M2.

Recall the closure property which we noted for P1a, P1b and P3. They

are all < µn+1-closed in a certain submodel M− of M0, where M− =

Vdef [A∗U ][S ↾ [µn+1, µω)][D1,2,3]. Our aim is ultimately to make an appeal

to Fact 2.12 with τ = |µn| and η = µn+2. Note that in the model M− we

have 2|µn| ≥ µn+2.

Since M0 = M−[(D0×S ↾ µn+1)∗Ds], we have M1 = M−[P2b][(D
0×S ↾

µn+1) ∗Ds]. Now P2b ∈M− and by hypothesis 6b it is < µn+1-distributive

in M0, so P2b is < µn+1-distributive in M− and hence P1a × P1b × P3 is

< µn+1-closed in M−[P2b].

By hypothesis 7, D0 is µn+1-Knaster in Vdef [A ∗ U ∗ S][D1,2,3][P2b], so

it is µn+1-cc in M−[P2b]. It is easy to see that S ↾ µn+1 is µn+1-Knaster in

M−[P2b], and by hypothesis |Dsmall| ≤ µn. So (D0 × S ↾ µn+1) ∗ Dsmall is

µn+1-cc in M−[P2b].

We are exactly in the situation of Fact 2.12 where the forcing posets

live in M−[P2b]:

(1) Since M−[P2b] ⊆M1, µn+1 and µn+2 are regular in M−[P2b].

(2) 2|µn| ≥ µn+2 in M−[P2b].

(3) P1 × P3 is < µn+1-closed in M−[P2b].

(4) M1 = M−[P2b][Y ], where Y = (D0 × S ↾ µn+1) ∗Ds and Y is generic

for µn+1-cc forcing over M−[P2b].

Since M2 = M1[P1a × P1b × P3], M2 is an extension of M1 by “formerly

closed” forcing in the sense of Fact 2.12 and we are done.

• Before the last step we need to analyze the cardinals of M2. By Easton’s

Lemma, µn+1 is preserved in this model. We claim that in M2 the cardinal

µn+2 is collapsed so that (by Easton’s Lemma again) it has cofinality µn+1.

To see this note that at coordinate µn+2, conditions in j(C) have A ↾
µn+2 × U ↾ µn+1-terms for conditions in Add(µn+1, 1)V [A↾µn+2×U↾µn+1].
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Since we are augmenting with A ↾ µn+2 × U ↾ µn+1 to form P3, we add a

generic object for Add(µn+1, 1)V [A↾µn+2×U↾µn+1], and collapse µn+2 because

µn+2 = (2µn)V [A↾µn+2×U↾µn+1].

• We also need to analyze the chain condition of P2a inM2.M2 = M1[P1×P3],

and as we saw above P1 × P3 is defined and < µn+1-closed in M−, hence

it is formerly < µn+1-closed in M−[S ↾ µn+1] = V [A ∗ U ∗ S][D1,2,3]. By

hypothesis 8, P2a is µn+1-Knaster in M2 = M1[P1 × P3].

• Let M3 = W ′ = M2[P2a]. We claim that no tree of height µn+1 in M2

has a new branch in M3. This is immediate by Lemma 2.11 because P2a is

µn+1-Knaster in M2.

M− M−[P2b]

M0 M1 M2 M3

P2b

Y Y

P2b P1×P3 P2a

• M− = Vdef [A ∗ U ][S ↾ [µn+1, µω)][D1,2,3].

• M0 = W = Vdef [A ∗ U ∗ S][D0,1,2,3,s] = M−[Y ], where Y = (D0 × S ↾
µn+1) ∗Ds.

• M1 = M0[P2b].

• M2 = M1[P1 × P3].

• M3 = M2[P2a] = W [P1,2,3] = W ′.

The following lemma will enable us to satisfy the hypotheses of Lemma 4.5 in

most instances. We are assuming all the background hypotheses listed at the start

of this section, notably A[s,t] is < µs-distributive and µt+1-cc in Vdef .

Lemma 4.9. Let V a, V b, V c, V d be inner models with Vinn ⊆ V x ⊆ Vdef for x =

a, b, c, d. Assume that:

• n > 0.

• Dsmall is any poset in Vdef [A ∗ U ∗ S] with Vdef [A ∗ U ∗ S] |= |Dsmall| ≤ µn.

• D0 = AddV a

(µn̄, σ) for some σ and some n̄ ≤ n.

• An = AddV b

(µn, σ
′) for some σ′.

• D1 = AddV c

(µn+1, τ) for some τ .

• An+1 = AddV d

(µn+1, τ
′) for some τ ′.

• D2 is any poset in Vinn with Vinn |= “D2 is < µn+2-directed closed”.

• D3 is any poset in Vdef [A ↾ µn+2 ∗ U ↾ µn+2] with Vdef [A ↾ µn+2 ∗ U ↾
µn+2] |= “D3 is < µn+2-directed closed”.
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Then the hypotheses of Lemma 4.5 are satisfied.

Proof. Hypotheses 3, 9 and 4 are immediate. Since Dsmall ∈ Vdef [A ∗ U ∗ S] and

|Dsmall| ≤ µn, we may assume that Dsmall ∈ Vdef [A ↾ µn+2 ∗ U ↾ µn+1 ∗ S ↾ µn+1].

As we noted in Remark 4.8, our hypotheses imply that D2,3 is µn+1-distributive in

Vdef [A ∗ U ∗ S].

Since H is generic over Vdef for forcing which is defined and < µn+2-closed in

Vinn, and Vdef is a µ1-cc generic extension of Vinn, by Easton’s Lemma Vdef [H] is

a < µn+2-distributive extension of Vdef . Since Vdef is a µ1-cc generic extension of

V b and V d, and both µn+1 and µn+2 are inaccessible in any submodel of Vdef , it

follows that Vdef [H] is a (µn, µn+1)-good extension of V b and a (µn+1, µn+2)-good

extension of V d, so that by Lemma 2.54 An and An+1 are respectively µn+1-Knaster

and µn+2-Knaster in Vdef [H]. We have satisfied Hypothesis 2. Similarly D1 is µn+2-

Knaster in Vdef [H] and we have satisfied Hypothesis 5a.

We need some analysis of P2a and P2b. Let Xx ∈ Vinn and Xx ∈ V x be such

that V x = Vinn[Xx] and Vdef = V x[Xx] for x = a, b, c, d. Note that we may assume

that Xx is µ1-cc in Vinn and Xx is µ1-cc in V x. Recall that j is an embedding

witnessing that µn+2 is highly supercompact in the model Vdef [A[n+2,ω) ×D2], and

is the trivial lift (keeping in mind that |X| ≤ µ1 < µn+2) of such an embedding

defined in Vinn[A[n+2,ω) ×D2]. It is easy to see that V a and j(V a) have the same

< µn-sequences of ordinals, so that j(D0) = AddV a

(µn̄, j(σ)) and j(D0)/j[D0] =

AddV a

(µn̄, j(σ) \ j[σ]) and similarly for An, D1 and An+1.

Now we revisit the argument for Lemma 4.7, but we need a slightly different

decomposition for A ∗U ∗ S. A ∗U ∗ S may be written in Vdef as a projection of the

product

(A[0,n] ∗ U[0,n) ∗ S[0,n)) × An+1 × A[n+2,ω) × B[n,ω) × C[n,ω)

where:

• A[0,n] ∗ U[0,n) ∗ S[0,n) is defined and µn+1-cc in Vdef .

• An+1 is defined and < µn+1-closed in V d = Vinn[Xd].

• A[n+2,ω) is defined and < µn+2-closed in Vinn.

• B[n,ω) × C[n,ω) is defined and < µn+1-closed in Vdef .

As in the proof of Lemma 4.7 (and keeping in mind that D1 is defined and

< µn+1-closed in V c = Vinn[Xc]) we may force with a series of quotient to term

forcings to extend Vdef [A∗U ∗S][D1,2,3] to a model of the form Vinn[(X ∗P ′′
0 )×T ×

A[n+2,ω) ×D2 × T 3], where:

• P′′
0 = A[0,n] ∗ U[0,n) ∗ S[0,n), so that X ∗ P′′

0 is µn+1-cc in Vinn.

• T = AVinn(Xd, Ȧn+1) ×AVinn(Xc, Ḋ1) ×AVinn(X, Ḃ[n,ω) × Ċ[n,ω)), so that T
is < µn+1-closed in Vinn.

• As before T3 = AVinn(X ∗ A ↾ µn+2 ∗ U ↾ µn+2, Ḋ
3), so that T3 is < µn+2-

closed in Vinn.
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By Easton’s Lemma all < µn+1-sequences of ordinals from Vdef [A∗U ∗S][D1,2,3]

lie in Vinn[X ∗P ′′
0 ] = Vdef [P

′′
0 ] ⊆ Vdef [A ∗U ∗ S], so that in particular D1 is < µn+1-

distributive in Vdef [A ∗ U ∗ S][D2,3] and we satisfied Hypothesis 5b.

By Lemma 3.15 and the hypothesis that Vdef is a µ1-cc extension of Vinn, Vdef [A∗
U ∗S] is both a (µn, µn+1)-good extension of V a and a (µn+1, µn+2)-good extension

of V c. Since D2,3 is < µn+2-distributive in Vdef [A ∗ U ∗ S], Vdef [A ∗ U ∗ S][D2,3] is

a (µn+1, µn+2)-good extension of V c, so that D1 is µn+2-Knaster in Vdef [A ∗ U ∗
S][D2,3]. Since D1 is < µn+1-distributive in Vdef [A∗U∗S][D2,3], Vdef [A∗U∗S][D1,2,3]

is a (µn, µn+1)-good extension of V a, so that D0 is µn+1-Knaster in Vdef [A ∗ U ∗
S][D1,2,3]. In fact D0 ×Dsmall is µn+1-Knaster in Vdef [A ∗U ∗S][D1,2,3], from which

it follows easily that both µn+1 and µn+2 are regular in W . We have satisfied

Hypothesis 1.

The analysis of the last paragraph also shows that W is a (µn+1, µn+2)-good

extension of V c and of V d. From the analysis of j(An+1) and j(D1), it follows readily

that P2b is µn+2-Knaster in W . We have satisfied Hypothesis 6a.

Now we do another analysis in the same style as Lemma 4.7, but this time

we expand the model W [P2b] = Vdef [A ∗ U ∗ S][Ds,0,1,2,3][P2b] to Vinn[(X ∗ P ′′
0 ∗

(D0 ×Ds)) × T × A[n+2,ω) ×D2 × T 3 × T ′], where T′ = AVinn(Xc, j(D1)/j[D1]) ×
AVinn(Xd, j(An+1)/j[An+1]). We recall from our earlier analysis that Dsmall ∈
Vdef [P

′′
0 ] and that D0 is µn+1-cc in Vdef [A∗U ∗S], so that easily X∗P′′

0 ∗(D0×Dsmall)

is µn+1-cc in Vinn. By Easton’s lemma all < µn+1-sequences of ordinals in W [P2b]

lie in the submodel Vinn[X ∗ P ′′
0 ∗D0,s] of W , so that P2b is < µn+1-distributive in

W . We have satisfied hypothesis 6b.

We saw already that Vdef [A∗U ∗S][D1,2,3] is a (µn, µn+1)-good extension of V a.

Since P2b is < µn+1-distributive in W it has this property in Vdef [A ∗U ∗S][D1,2,3],

so Vdef [A ∗ U ∗ S][D1,2,3][P2b] is a (µn, µn+1)-good extension of V a, and thus D0 is

µn+1-Knaster in Vdef [A ∗ U ∗ S][D1,2,3][P2b]. We have satisfied hypothesis 7.

Finally let Q be defined and < µn+1-closed in Vdef [A ∗ U ][S ↾ [µn+1, µω)][D2],

and let W ′ = W [P2b][Q] = Vdef [A∗U ∗S][D1,2,3][D0,s][Q][P2b]. Arguing as before we

expand Vdef [A∗U ∗S][D1,2,3][Q][P2b] to a model Vinn[(X ∗P ′′
0 )×T ×A[n+2,ω)×D2×

T 3 × T ′ × T ′′], where T ′′ = AVinn(X ∗A ∗U ∗ S ↾ [µn+1, µω) ∗D2, Q̇), and use this to

argue that all < µn+1-sequences of ordinals from Vdef [A∗U ∗S][D1,2,3][Q][P2b] lie in

Vdef [P
′′
0 ]. It follows that Vdef [A∗U ∗S][D1,2,3][Q][P2b] is a (µn, µn+1)-good extension

of each model V x, so that easily D0 × Dsmall × P2a is µn+1-Knaster in Vdef [A ∗ U ∗
S][D1,2,3][Q][P2b]. So P2a is µn+1-Knaster in Vdef [A ∗ U ∗ S][D1,2,3][Q][P2b][D

0,s] =

W ′, and we have satisfied hypothesis 8.

It will be useful later (in the n = 0 cases from Sections 9.1 and 9.3, and again

in Section 10.2) to know that certain initial segments of Vdef [A ∗U ∗S] have similar

indestructibility properties to those in Lemma 4.5. The following lemma is stated

under the same hypotheses as that lemma, and as far as possible with the same no-

tation. Although the construction of the relevant generic embedding is very similar

to that for Lemma 4.5, we have given it in some detail as a service to readers of
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Section 10.2. We have not stated the Lemma in the maximum possible generality,

in particular we have dispensed with D1 and have only some specific instances of

D0.

Lemma 4.10. Let µn+2 ≤ η < µω and let V ′ = Vdef [A ↾ η ∗ U ↾ µn+2 ∗ S ↾ µn+2].

Let D2,D3,D0,Dsmall be forcing posets such that

(1) D2 ∈ Vinn and D2 is < µn+2-directed closed in Vinn.

(2) D3 ∈ Vdef [A ↾ µn+2∗U ↾ µn+2] and D3 is < µn+2-directed closed in Vdef [A ↾
µn+2 ∗ U ↾ µn+2]

(3) D0 = AddVdef (µn, σ) for some σ, or D0 = Coll(ω, ρ) for some ρ < µ1.

(4) Dsmall ∈ V ′ and V ′ |= |Dsmall| ≤ µn.

Then the tree property holds at µn+2 in V ′[Ds,0,2,3].

Proof. Let W = V ′[Ds,0,2,3]. Let Ā = A ↾ [µn+2, η), so that Ā is generic for < µn+2-

directed closed forcing defined in Vinn. µn+2 is indestructibly supercompact in Vinn,

we will construct a supercompactness embedding j defined in Vinn[D2 × Ā] and lift

it to such an embedding defined in Vdef [D
2 × Ā].

We can dispense with Steps 1a and 1b from the previous construction, so there

is no P1. We choose χ suitably large and then work in Vinn[D2× Ā] to choose j such

that j ↾ ON is defined in Vinn, j witnesses µn+2 is χ-supercompact, the next point

in dom(j(ψ)) past µn+2 is greater than χ, and j(ψ)(µn+2) is a name in Vinn for an

A ↾ µn+2 ∗ U ↾ µn+2-name for D3. Then after lifting j to Vdef [D
2 × Ā], j(ϕ)(µn+2)

is an A ↾ µn+2 ∗ U ↾ µn+2-name in Vdef for D3.

P2a is chosen as before, with the simplification that it is now just a forcing in

Vdef adding Cohen subsets to µn. As before P2a is µn+1-Knaster in a robust way.

P2b is also as before, with the simplification that there is no D1 and so this poset is

just “stretching” An+1: as before P2b is < µn+1-distributive and µn+2-cc.

P3 is chosen essentially as before. P3 is defined in Vdef [A ↾ η ∗ U ↾ µn+1][D2],

and is < µn+1-closed in Vdef [A ↾ η ∗ U ↾ µn+2][S ↾ [µn+1, µn+2)][D2,3].

In the lifting argument we lift j onto Vdef [A ↾ η ∗ U ↾ µn+2][D0,2,3] (like Stage

1), extend to Vdef [A ↾ η ∗ U ↾ µn+2 ∗ S ↾ µn+1][D0,2,3] (like Stage 2), extend to

Vdef [A ↾ η ∗ U ↾ µn+2 ∗ S ↾ µn+2][D0,2,3] (like Stage 3), and finally extend to

Vdef [A ↾ η ∗ U ↾ µn+2 ∗ S ↾ µn+2][Ds,0,2,3] (like Stage 6). The argument for the tree

property is essentially identical, as we still have the relevant cardinal arithmetic

and all the posets Pi are either missing or have the same properties as before.

Remark 4.11. As we mentioned in the preamble to Lemma 4.5, there are a couple of

instances where we would like to apply the Lemma but the hypotheses are not quite

satisfied. To be more precise, we want to prove that µn+2 has the tree property in

some extension W ′ = Vdef [A∗U ∗S][D′] where D′ is a product of posets which does

not quite meet the hypotheses of Lemma 4.5. In this case we can sometimes use

mutual genericity to our advantage.
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More specifically, assume that by forcing over W ′ with some poset P′, we obtain

a generic embedding with domain W ′ and critical point µn+2. Let T ∈ W ′ be a

µn+2-tree, so that T has a branch b ∈ W ′[P ′]. Assume further that E is mutually

generic with P ′ over W ′, and that our previous arguments can be adapted to show

that every branch of T from W ′[E][P ′] lies in W ′[E]. Then b ∈W ′[E]∩W ′[P ′], and

by the mutual genericity of E and P ′ we have b ∈W ′ as required.

Remark 4.12. A particular instance of the idea of Remark 4.11 can be used to

handle more posets of cardinality µn+1 in the setting of Lemma 4.5. It is clear

that in general a forcing poset of size µn+1 can destroy the tree property at µn+2,

for example Coll(ω, µn+1) will always do this. In the language of Lemma 4.5, such

a poset may not be a viable choice for D0 (insufficient chain condition) or D1

(insufficient distributivity).

Suppose that D ∈ Vdef and let W ∗ = W [D] where W = Vdef [A∗U ∗S][Ds,0,1,2,3]

as in Lemma 4.5. Assume that:

(1) |D| = µn+1.

(2) D is the projection of a two-step iteration P ∗ Q̇ where P forces that Q is

the union of fewer than µn+1 filters, and |P ∗Q| = µn+1.

(3) P2a is µn+1-Knaster in W [P1 × P2b × P3 × P ].

(4) P2b is < µn+1-distributive in Vdef [A ∗ U ][S ↾ [µn+1, µω)][D1,2,3][P ].

(5) P is < µn+1-distributive in Vdef [A ∗ U ][S ↾ [µn+1, µω)][D1,2,3].

Then we claim that Lemma 4.5 remains true if we add D as a factor to the

product of posets which preserves the tree property at µn+2, that is to say we claim

that µn+2 has the tree property in W ∗. As for Lemma 4.5, the proof is followed by

a picture with a legend to help the reader keep track of all the models and forcing

posets.

Let T be a µn+2-tree in W ∗. We define the embedding j and lift it to W in the

model W [P1,2,3] just as in Lemma 4.5. Since |D| = µn+1, we may trivially lift the

embedding onto W [D] = W ∗, working in the model W ∗[P1,2,3]. As usual we obtain

a branch b in W ∗[P1,2,3].

To cope with the problem that D is not necessarily µn+1-cc, force over W ∗[P1,2,3,]

with P ∗ Q/D to obtain P ∗ Q which induces D, and is mutually generic over W

with P1,2,3. Let W ∗∗ = W [P ∗ Q], so that W ∗ ⊆ W ∗∗ and b ∈ W ∗∗[P1,2,3] =

W [P1,2,3 × P ∗Q].

Now let M0 = W ∗∗, M1 = M0[P2b], M2 = M1[P1 × P3], M3 = M2[P2a] =

W ∗∗[P1,2,3]. We aim to argue that b ∈ M0. Since |P ∗ Q| = µn+1, P2b is µn+2-

Knaster in M0, so there is no change in the step from M1 to M0.

Let M− = Vdef [A ∗ U ][S ↾ [µn+1, µω)][D1,2,3][P ]. By hypothesis P is < µn+1-

distributive in Vdef [A ∗ U ][S ↾ [µn+1, µω)][D1,2,3], so that P1 × P3 is < µn+1-closed

in M−.

By hypothesis P2b is< µn+1-distributive inM−. It follows that P1×P3 is< µn+1-

closed in M−[P2b]. Finally (S ↾ µn+1×Q×D0)∗Dsmall is µn+1-cc in M−[P2b], where
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the factor Q causes no problems because Q is the union of fewer than µn+1 filters,

so P1 × P3 is formerly closed in M1 = M−[P2b][(S ↾ µn+1 ×Q ×D0) ∗Ds] and we

finish the step from M2 to M1 as before.

Finally our hypotheses imply that P2a is µn+1-Knaster in W [P1 × P2b × P3 ×
P ][Q] = M2, and we finish the step from M3 to M2 as before. It follows that

b ∈ W ∗∗ = W ∗[P ∗ Q/D]. Since b ∈ W ∗[P1,2,3] and P ∗ Q/D is mutually generic

with P1,2,3, b ∈W ∗ and we are done.

W W ∗ M0 M−

M1 M−[P2b]

M2

W [P1,2,3] W ∗[P1,2,3] M3

D

P1,2,3

P∗Q/D

P1,2,3

P2b

Y

P2b

P1×P3

Y

P2a

D P∗Q/D

The blue arrow for P ∗ Q/D and the violet arrow for P1,2,3 indicate mutually

generic objects over W ∗.

• W = Vdef [A ∗ U ∗ S][D0,1,2,3,s].

• W ∗ = W [D].

• M− = Vdef [A ∗ U ][S ↾ [µn+1, µω)][D1,2,3][P ].

• M0 = W ∗∗ = W ∗[P ∗Q/D] = W [P ∗Q] = Vdef [A∗U ∗S][D0,1,2,3,s][P ∗Q] =

M−[Y ], where Y = (S ↾ µn+1 ×Q×D0) ∗Ds.

• M1 = M0[P2b].

• M2 = M1[P1 × P3].

• M3 = M2[P2a] = W ∗∗[P1,2,3].

Remark 4.13. The main construction for Theorem 1.1 contains many instances of

“quotient to term” posets, for instance in the definitions of Q1(τ, τ∗) and Q2(τ, τ∗)

in Section 7.1. The role of these quotient to term posets is typically to produce

generic objects which fit into one of the indestructibility schemes from the current

section.
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5. Initial hypotheses

We are now ready to begin the main construction. As we mentioned in the introduc-

tion, we will be introducing many pieces of notation which will have fixed meanings

for the rest of the paper. Every time we introduce one or more of these important

pieces of notation, we will flag it as “Global notation” and add a corresponding

entry in the index of notation.

5.1. Preparing V

We start with a model V0 with the following properties:

(1) θ is the least supercompact cardinal.

(2) There exist cardinals κα for α < θ+ such that θ < κ0 and each κα is

supercompact. We let κ = κ0 and δ = supα<θ+ κα.

(3) There is an elementary embedding j0 : V0 → M0 such that j0 witnesses

that κ is δ+-supercompact, and in addition κα is supercompact in M0 for

all α < θ+.

(4) There is a universal indestructible Laver function ϕ0 defined up to δ, in

particular θ and the κα’s are all indestructibly supercompact. Every element

of dom(ϕ0) is an inaccessible closure point of ϕ0.

(5) j0(ϕ0) ↾ δ = ϕ0.

Global notation: V0, θ, κα, κ, δ, j0, M0, ϕ0.

Remark 5.1. Given a model V ′
0 where hypotheses 1-3 hold we may arrange that

hypotheses 1-5 hold in a suitable extension V0 of V ′
0 . To see this let 1-3 hold in V ′

0

where hypothesis 3 is witnessed by j′0 : V ′
0 →M ′

0. The main point is that in V ′
0 we

may choose ϕ′0 a universal Laver function defined up to δ such that j′0(ϕ′0) ↾ δ = ϕ′0:

doing the corresponding Laver preparation will give a model V0 for hypotheses 1-5.

To see that we can choose a suitable function ϕ′0, recall that to define ϕ′0(α) we

choose a counterexample to ϕ′0 ↾ α being a Laver function which is minimal with

respect to some well-ordering. We will fix a well-ordering ≺ of Vκ such that ≺↾ Vα
is an initial segment of ≺ for all α < κ, and define ϕ′0 using ≺∗= j′0(≺) ↾ Vδ: this

works because ≺∗↾ Vκ =≺ and j′0(≺∗) ↾ Vδ = j′0(≺∗↾ Vκ) ↾ Vδ = j′0(≺) ↾ Vδ =≺∗.

It will be important later that all Laver functions used during the construction

are derived from the initial Laver function ϕ0 as in 2.9 and 2.6. Let E0 be defined

in V0 as the set of inaccessible closure points of ϕ0 in the interval (θ, δ), and let

α∗ = min(E0 \ (α+ 1)) for α < δ.

Global notation: E0, α∗.

Our first step is to produce an extension V of V0 in which the κα’s retain the

properties listed above, θ is the continuum, and θ is “generically indestructibly

supercompact via Cohen reals”. To be more precise:

Lemma 5.2. There is a generic extension V of V0 in which:
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• 2ℵ0 = θ.

• For every < θ-directed closed generic extension V [H] and every γ > θ,

there exists a generic γ-supercompactness embedding π : V [H] → N with

critical point θ. The embedding π exists in an extension of V [H] obtained

by adding π(θ) Cohen reals.

• The embedding π lifts an embedding i : V0 → N0 defined in V0, where

crit(i) = θ and i may be chosen to witness an arbitrarily high degree of

supercompactness for θ in V0.

• There is a universal indestructible Laver function ϕ defined on (θ, δ), in

particular every supercompact cardinal up to δ is indestructible.

• There is an elementary embedding j : V → M such that j witnesses κ is

δ+-supercompact and in addition each κα is supercompact in M .

Global notation: V , j, M , ϕ

Proof. The construction will be reminiscent of that of A ∗ U̇ from Section 3. This

resemblance is not coincidental and will be used later, see Section 7.2. We will freely

use the notation and ideas of Section 3. Objects in the current construction typically

have names as in Section 3 decorated with a superscript 0

We work in V0. Let A0 be the poset of finite partial functions a from δ to 2

with dom(a) ⊆ θ. Of course A0 is equivalent to Add(ω, θ), and A0 ↾ α = A0 for

θ ≤ α < δ: defining A0 in this artificial way just makes the following definitions

more uniform. Let A0 be A0-generic. As in Section 3 we define posets B0 ∈ V and

U0 ∈ V [A0] such that:

• B0 and U0 have the same set of conditions.

• The support of B0 consists of α < δ such that ϕ0(α) is a pair (ψ0(α), ψ1(α))

with the following properties:

– ψ0(α) is an A0 ↾ α ∗ U0 ↾ α-name for a < α-directed closed forcing

poset.

– ψ1(α) is an A0 ↾ α ∗ U0 ↾ α-name.

• An element b ∈ B0 is a function such that dom(b) is an Easton subset of

the support of B0, and b(α) is an A0 ↾ α ∗ U0 ↾ α-name for an element of

ψ0(α).

• For b0, b1 ∈ B0, b1 ≤ b0 if and only if dom(b0) ⊆ dom(b1) and (0, b1 ↾ α) ⊩
b1(α) ≤ b0(α) for all α ∈ dom(b0).

• For u0, u1 ∈ U0, u1 ≤ u0 if and only if dom(u0) ⊆ dom(u1) and there is

a ∈ A0 such that (a ↾ α, u1 ↾ α) ⊩ u1(α) ≤ u0(α) for all α ∈ dom(u0).

Global notation: A0, B0, U0

Let V = V0[A0 ∗ U0] where A0 ∗ U0 is A0 ∗U0-generic over V0. We record a few

remarks:

• a ↾ α = a ↾ min(α, θ) for all a ∈ A0, and similarly for A0 and A0.
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• Since θ is supercompact, θ /∈ dom(ϕ0).

• We can view A0∗U0 as a two-step iteration, forcing first with Add(ω, θ)∗U̇0 ↾
θ and then with a forcing poset L0 defined in V0[A0 ∗ U0 ↾ θ].

• The forcing poset L0 is essentially a Laver preparation on the interval (θ, δ),

with the minor modification that the guessing function is just guessing

names for forcing posets rather than pairs consisting of a name for a forcing

poset and an ordinal: in the standard Laver preparation the role of the

ordinals is to “space out” the support of the image of the preparation

under supercompactness embeddings, and in our context this is handled by

the properties of ϕ0.

• In V we have a universal indestructible Laver function ϕ on (θ, δ), given by

ϕ : α 7→ ψ1(α)[A0 ∗ U0 ↾ α].

• 2ω = θ in V .

• A0 ∗ U0 ↾ θ is θ-cc in V0.

• The poset L0 is θ-directed closed in V0[A0 ∗ U0 ↾ θ].

Global notation: L0,

The main point is to establish that θ is indestructibly generically supercompact

via adding Cohen reals. Since the argument is essentially that for [16, Claim 4.12]

with certain simplifications, we have relegated it to Appendix Appendix A. For

use in Lemma 5.7, we note that if Q ∈ V is < θ-directed closed and our goal is

generic supercompactness for θ via Cohen reals in the extension by Q, then we lift

i : V0 → N0 where i witnesses a high degree of supercompactness for θ in V0, and

the forcing at θ in the second coordinate of i(A0 ∗ U∗) is L0 ∗Q.

It remains to lift j0 onto V , which is comparatively straightforward. Let V1 =

V0[A0 ∗ U0 ↾ θ] and M1 = M0[A0 ∗ U0 ↾ θ], so that easily j0 lifts to j1 : V1 → M1.

It is easy to verify that j1(L0) ↾ δ = L0. We construct a compatible generic object

L∗ ∈ V1 for j1(L0) as follows:

• L∗ ↾ δ = L0.

• L∗ ↾ (δ, j0(κ)) is constructed by counting antichains and closure.

• L∗ ↾ (j0(κ), j0(δ)) is constructed by counting antichains and closure, work-

ing below a master condition chosen as a lower bound for j0[L0 ↾ (κ, δ)].

Now we lift as usual to get j : V →M = M1[L∗] = M1[L0][L∗ ↾ (δ, j(δ))]. Each

κα is (indestructibly) supercompact in M by the Levy-Solovay theorem and the

fact that L∗ is generic for a Laver preparation over M1.

Remark 5.3. If λ < δ and λ is supercompact in either V or M , and α is such that

λ < κα, then (by the agreement between V and M) λ is κα-supercompact in both

V and M . Since κα is supercompact in both V and M , λ is supercompact both in

V and in M .
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Remark 5.4. The reader may be wondering why we need the κα’s to be super-

compact in M . The point is that we will eventually be doing a version of Prikry

forcing at κ, so that each Prikry point τ comes with reflections of the κα’s which

are fully supercompact. This is convenient because when τ and τ∗ are successive

Prikry points, so that τ∗ is far above the reflections of the κα’s attached to τ , we

need these reflections to be supercompact for a long way past τ∗.

Remark 5.5. Our starting hypotheses are consistent relative to the existence of a

2-huge cardinal, and in fact relative to the hypothesis that there is a cardinal which

is both supercompact and huge, which we will show is weaker.

• Let κ be 2-huge, and fix i : V → N such that crit(i) = κ, i(κ) = λ, i(λ) =

µ and µN ⊆ N . Then easily Vµ |= “κ is huge with target λ”. Also κ is

supercompact up to λ, by elementarity and closure λ is supercompact up to

µ, so that κ is supercompact up to µ and hence Vµ |= “κ is supercompact”.

• Suppose now that κ is supercompact and also is huge with target λ, as

witnessed by i : V → N with crit(i) = κ, i(κ) = λ, λN ⊆ N . By elemen-

tarity, λ is supercompact in N . By the agreement between V and N , κ is

supercompact up to λ in N , so by reflection there are unboundedly many

α < κ with α supercompact up to κ. Applying i, in N there are unbound-

edly many β < λ which are supercompact up to λ. Let B be the set of

such β, where since λ is supercompact in N it follows that every β ∈ B is

supercompact in N .

For any η with κ < η < λ, let U be the supercompactness measure on

Pκη derived from i. It is easy to see that every β ∈ B ∩ η is supercompact

in Ult(V,U). In the universe Vλ every β ∈ B is supercompact, and every

β ∈ B ∩ η is supercompact in the ultrapower by U . It is now easy to get

the starting hypotheses.

5.2. Raux(λ) and Laux(ρ, λ)

We now work in the universe V constructed in the last section, and construct

auxiliary posets Raux(λ) and Laux(ρ, λ). The subscript “aux” is to underline that

we will not actually force with these posets during the main construction. Their

role is to help us choose parameters for the main construction, which we will do in

Section 5.3.

Let λ be a supercompact cardinal with λ < δ. We define:

• λ0 = λ.

• For n < ω, λn+1 is the least supercompact cardinal greater than λn.

• λω = supn<ω λn.

• λω+1 = λ+ω .

• For 0 < n < ω, λω+n+1 is the least supercompact cardinal greater than

λω+n.

In V we define a poset Raux(λ) to be the product of the following three posets:
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(1) EastE0(λω+1, < λω+2) ×
∏

n<ω EastE0(λn, < λn+1). Here East is the Eas-

ton collapse defined above in Section 2.7 and E0 is the set of inaccessible

closure points in the interval (θ, δ) of our initial Laver function ϕ0: note

that elements of E0 are inaccessible closure points of ϕ, dom(ϕ) ⊆ E0, and

E0 is stationary in every supercompact cardinal up to δ.

(2) Coll(λω+1, < λω+2) ×
∏

n<ω Coll(λn, < λn+1).

(3) Add(λ17, λω+2) ×
∏

n<ω Add(λn, λn+2) × Add(λω+1, λω+2).

Global notation: λi, Raux(λ)

Recall that in V0 the cardinal θ is supercompact, and ϕ0 ↾ θ is an indestructible

Laver function for θ. We claim that there are many cardinals ρ < θ such that in

V0 the cardinal ρ is a limit of ω many inaccessible cardinals, and there is an active

stage θ̄ < ρ of the preparation forcing from Section 5.1 such that ρ becomes an

ω-successor cardinal in V0[A0 ↾ θ̄ ∗ (U0 ↾ θ̄ + 1)]. To see this let ρ′ be the limit

of the first ω V0-inaccessible cardinals greater than θ. Use the guessing property

of ϕ0 ↾ θ to anticipate a suitable < θ-directed closed collapsing forcing defined in

V0[A0 ∗ U0 ↾ θ] which makes ρ′ into an ω-successor cardinal.

Let Index be the set of all such ρ. For each ρ ∈ Index let θ̄(ρ) be the least ordinal

such that ρ is an ω-successor cardinal in V0[A0 ↾ θ̄(ρ) ∗ (U0 ↾ θ̄(ρ) + 1)], let W (ρ) =

V0[A0 ↾ θ̄(ρ) ∗ (U0 ↾ θ̄(ρ) + 1)], and define Laux(ρ, λ) to be the poset Coll(ω, ρ) ×
CollW (ρ)(ρ+, λ1). It is routine to check that CollW (ρ)(ρ+, λ1) is ρ-distributive in any

λ-closed extension of V , a fact which will be used in the proof of Lemma 5.7.

Global notation: Index, θ̄(ρ), W (ρ), Laux(ρ, λ)

Remark 5.6. The proof of Lemma 5.7 uses ideas from unpublished work of Hayut.

Lemma 5.7. For each supercompact cardinal λ with κ < λ < δ, there is ρ ∈ Index

such that ⊩V
Laux(ρ,λ)×Raux(λ) “the tree property holds at λω+1”

Proof. For technical reasons we will prove a slightly different (but equivalent) ver-

sion of the conclusion. Let Raux
′(λ) be the result of replacing Add(λ17, λω+2) by

Add(λ17, λω+1) in the product that defines Raux(λ). We will show that for some ρ,

⊩V
Laux(ρ,λ)×Raux

′(λ) “the tree property holds at λω+1”. This is good enough because

if H ×G is Laux(ρ, λ) ×Raux(λ)-generic over V and T ∈ V [H ×G] with T a λω+1-

tree, then by chain condition and homogeneity there is a submodel V [H×G′] where

T ∈ V [H ×G′] and H ×G′ is Laux(ρ, λ) × Raux
′(λ)-generic over V

Let G be Raux
′(λ)-generic over V . We will use Fact 2.58 in V [G] with the pa-

rameters set as follows:

• κ2 is θ

• κn is λn−3 for n > 2.

• ν is λω and ν+ is λω+1.

• Index is the set Index we just defined.

• M(ρ) is Laux(ρ, λ).
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Once we have verified that the hypotheses of Fact 2.58 hold in V [G] the con-

clusion will be immediate. For the first hypothesis, let n ≥ 18 and observe that

Raux
′(λ) can be factored as R0×R1 where R0 is λn+2-cc and R1 is < λn+2-directed

closed. We decompose G accordingly as G0 × G1. By indestructibility, there is an

embedding j defined in V [G1] witnessing that λn+2 is ν+-supercompact in that

model. Forcing over V [G1] with P = j(R0)/j[G0] will add a generic object which

enables us to lift j onto V [G].

Clearly R0 is a product of terms of the form Coll(λm, < λm+1), EastE0(λm, <

λm+1) and Add(λm, λm+2) for m ≤ n + 1, together with Add(λ17, λω+1). Since

many factors in R0 are fixed by j, the corresponding factors in j(R0)/G0 are triv-

ial. It follows that j(R0)/G0 is the product of the factors Coll(λn+1, [λn+2, j(λn+2)),

Eastj(E0)(λn+1, [λn+2, j(λn+2)), Add(λn, j(λn+2) − λn+2), Add(λn+1, j(λn+3) −
j[λn+3]) and Add(λ17, j(λω+1) − j[λω+1]).

Now we let Q be the product of λn copies of j(R0)/G0 with the following sup-

ports: full support for the < λn+1-closed components, supports of size less than

λn for the components of form Add(λn, j(λn+2) − λn+2) and supports of size less

than λ17 for the components of form Add(λ17, j(λω+1) − j[λω+1]). It is routine

to check that Q preserves cardinals up to and including λn+1 and forces that

cf(λω+1) = λn+1, so that Q is as required.

For the second hypothesis, we will use the indestructible generic supercompact-

ness of θ in V secured by Lemma 5.2 to define a certain generic embedding, and

then reflect the existence of this embedding to a well-chosen elementary substruc-

ture X ≺ R where R is a suitable rank initial segment of V [G].

More precisely, let π : V [G] → V ∗ be a generic embedding added by the forcing

poset Add(ω, π(θ) − θ) such that:

• crit(π) = θ

• π(θ) > λω+1

• π is discontinuous at λω+1.

From the proof of Lemma 5.2 we recall that

• V = V0[A0 ∗ U0 ↾ θ ∗ L0], so that V [G] = V0[A0 ∗ U0 ↾ θ ∗ L0 ∗G].

• π is a lift of a supercompactness embedding i : V0 → N0 with critical point

θ defined in V0, with the property that the forcing at coordinate θ in i(U0)

is L0 ∗ Raux
′(λ).

• The embedding i may witness an arbitrarily high degree of supercompact-

ness for θ in V0.

We claim that λω ∈ π(Index): this is easy because λω is a limit of supercompact

cardinals in N0[A0 ∗ U0] but becomes λ+ω in N0[A0 ∗ U0 ∗ L0 ∗ G]. By definition

π(M)(λω) = π(Laux)(λω, π(λ)) = Coll(ω, λω) × CollN0[A
0∗U0∗L0∗G](λω+1, π(λ1)).

Recalling that V [G] = V0[A0 ∗ U0 ∗ L0 ∗ G] and that i can witness arbitrary lev-

els of supercompactness, we may arrange that CollN0[A
0∗U0∗L0∗G](λω+1, i(λ1)) =
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CollV [G](λω+1, π(λ1)), in particular it is defined and λω-closed in V [G].

In summary, we have shown that there is a generic embedding π : V [G] → V ∗

added by Add(ω, π(θ)−θ) such that crit(π) = θ, π(θ) > λω+1, π is discontinuous at

λω+1, λω ∈ π(Index) and π(Laux)(λω, π(λ)) = Coll(ω, λω) × CollV [G](λω+1, π(λ1)).

Observe that 2λω = λω+1 in V [G] (it was for this reason that we replaced Raux(λ)

by Raux
′(λ)). We choose R a long enough rank initial segment of V [G] that for any

algebra of finitary functions on R, we may find X ≺ R which has size λω+1, is closed

under λω-sequences, and reflects the statement asserting the existence of a suitable

generic embedding π

Let M be the collapse of X, and let A × h be generic over V [G] for PX =

Add(ω, π(θ) − θ) × Coll(ω, λω). Using A, we may define in M [A] a generic em-

bedding πX : M → M∗ ⊆ M [A] such that crit(πX) = θ, πX(θ) > λω+1, πX is

discontinuous at λω+1, λω ∈ πX(Index) and πX(Laux)(λω, πX(λ)) = Coll(ω, λω) ×
CollM (λω+1, πX(λ1)). Since |M | = λω+1 and λωM ⊆ M , we may build a filter

C ∈ V [G] which is generic over M for CollM (λω+1, πX(λ1)).

Now M [C] ⊆ V [G] and A × h is generic over V [G], so A × h is generic over

M [C], and since M∗ ⊆ M [A] we see that h × C is generic over M∗. It follows

that forcing over V [G] with the λω+1-Knaster poset PX = Add(ω, πX(θ) − θ) ×
Coll(ω, λω) has added the embedding πX : M → M∗ and a filter h × C which is

πX(Laux)(λω, πX(λ))-generic over M∗. Since we constructed X to be closed under

an arbitrary algebra on R, there are stationarily many X and we have fulfilled the

second clause in the hypotheses of Fact 2.58.

5.3. Selecting ρ

Using the fact that there are θ+ supercompact cardinals above κ, we choose super-

compact cardinals λa and λb above κ such that λaω+3 < λb and the cardinals λa, λb

select the same cardinal ρ from Lemma 5.7. We can assume that (ρ, λa, λb) is the

lexicographically least such triple with this property: recalling that j : V → M is

a δ+-supercompactness embedding with critical point κ, we see that (ρ, λa, λb) is

definable from κ in M using the same definition.

Having fixed ρ, we also fix some related parameters. We set θ̄ = θ̄(ρ) and W̄ =

W (ρ). It follows that for λ = λa, λb we have:

• Laux(ρ, λ) = Coll(ω, ρ) × CollW̄ (ρ+, λ1).

• It forced by Laux(ρ, λ) × Raux(λ) that the tree property holds at λω+1.

It follows that there is a measure one set of points τ below κ with reflected

versions Λa(τ) and Λb(τ) of the cardinals λa and λb. To be more specific:

(1) j(Λx
i )(κ) = λxi for x ∈ {a, b}.

(2) θ < τ < Λa(τ) < Λb(τ) < κ. where Λa(τ) and Λb(τ) are supercompact.

(3) Setting Λx
i (τ) = Λx(τ)i for x ∈ {a, b} and i < ω + ω, Λa

ω+3(τ) < Λb(τ).

(4) It is forced by Laux(ρ,Λx(τ))×Raux(Λx(τ)) that the tree property holds at

Λx
ω+1(τ) for x ∈ {a, b}.
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Global notation: λa, λb, ρ, θ̄, W̄ , Λa(τ), Λb(τ), Λa
i (τ), Λb

i (τ)

6. More preparation

Let Y be the set of supercompact cardinals τ less than κ which are such that Λa(τ)

and Λb(τ) are defined, and are closed under the function σ 7→ Λb
ω+3(σ). We define

an Easton support iteration L which is nontrivial only at each τ ∈ Y ∪ {κ}. For

ease of notation we specify the forcing at step κ and note that the forcing at τ can

be obtained by replacing κ with τ and λzi by Λz
i (τ) (for z ∈ {a, b} and i ∈ ω + ω).

Global notation: Y , L
The forcing L(τ) at stage τ will be < Λa

17(τ)-closed. Since 2ω = θ in V , and Y

is a set of supercompact cardinals, the forcing L will be much more than θ+-closed.

This will be important in Section 9.3.

Of course we define the forcing at κ in V [L ↾ κ] where L ↾ κ is Lκ-generic.

The preparation forcing at κ will be defined in stages, and will ultimately have

components Lb, Ib, and Ae × Jc.
Global notation: Lb, Ib, Ae, Jc

Note that by Fact 2.8, the cardinals λbn are supercompact but no longer inde-

structible in V [L ↾ κ]. Let Lb ∈ V [L ↾ κ] be a Laver preparation for the interval

(λaω+1, λ
b
ω), defined using the Laver function α 7→ ϕ(α)[L ↾ κ] on this interval. Let

Lb be Lb-generic over V [L ↾ κ], and let ψ be the universal indestructible Laver

function added by Lb on the interval (λaω+1, λ
b
ω).

Global notation: ψ

Working in V [(L ↾ κ) ∗ Lb], we define posets Ab, Bb, Cb, Sb = (Cb)+Ab∗Ub

following the recipe in Section 3 with the parameters set as follows:

• µ0 = λa17, µ1 = λaω+1, µ2 = λaω+2, µn+3 = λbn for n < ω.

• The universal indestructible Laver function is the function ψ which we just

added using Lb.

Global notation: Ab, Bb, Cb, Sb

Remark 6.1. Since Lb is defined on the interval (λaω+1, λ
b
ω), it is < λaω+1-closed, so

that Ab
0 = AddV [L↾κ](µ0, [µ1, µ2)) and Ab

1 = AddV [L↾κ](µ1, [µ2, µ3)).

Let Ib be generic over V [(L ↾ κ) ∗Lb] for Ib = Ab ∗Ub ∗Sb, where Ib decomposes

in the obvious way as Ab ∗U b ∗Sb. For the record, in V [L ↾ κ ∗Lb ∗ Ib] we have the

following situation:

• The cardinals λaω+1, λ
a
ω+2, λ

b
0, λ

b
1, . . . λ

b
ω, λ

b
ω+1 form a block of ω+ 2 consec-

utive cardinals.

• 2λ
a
17 = λaω+2, 2λ

a
ω+1 = λb0, 2λ

a
ω+2 = λb1, 2λ

b
n = λbn+2 for n < ω.

Global notation: Ib, Ib, Ab, U b, Sb
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Working over the model V [(L ↾ κ) ∗ Lb ∗ Ib] (but using some Cohen posets

defined in inner models of this model) we will define a poset Ae × Jc, where Ae =

AddV [(L↾κ)∗Lb](λb17, λ
b
ω+3). We digress briefly to prove that Ae has reasonable chain

condition and distributivity properties in V [(L ↾ κ) ∗Lb ∗ Ib]. The point of defining

Ae in the submodel V [(L ↾ κ) ∗Lb] is that after forcing with Ib we have 2λ
b
16 = λb18,

so that AddV [(L↾κ)∗Lb∗Ib](λb17, λ
b
ω+3) collapses λb18.

Lemma 6.2. Ae is < λb17-distributive and λb18-Knaster in V [(L ↾ κ) ∗ Lb ∗ Ib].

Proof. By item 7 of Lemma 3.13, we may force to expand V [(L ↾ κ)∗Lb ∗ Ib][Ae] to

V [(L ↾ κ)∗Lb][P b
0 ×P b

1 ×Ae], where Pb
0,Pb

1 ∈ V [(L ↾ κ)∗Lb], with Pb
0 a λb17-cc initial

segment of Ib and Pb
0 being < λb17-closed in V [(L ↾ κ) ∗ Lb]. By Easton’s Lemma

applied to Pb
0 and Pb

1×Ae, all < λb17-sequences of ordinals in V [(L ↾ κ)∗Lb ∗ Ib][Ae]

lie in V [(L ↾ κ) ∗ Lb][P b
0 ] ⊆ V [(L ↾ κ) ∗ Lb ∗ Ib].

Since λb18 is supercompact in V [L ↾ κ][Lb], it follows that in this model η<λb
17 <

λb18 for all η < λb18. By item 2 of Lemma 3.15, V [(L ↾ κ) ∗ Lb ∗ Ib] is a (λb17, λ
b
18)-

good extension of V [(L ↾ κ) ∗Lb]. Appealing to Lemma 2.54, Ae is λb18-cc in V [(L ↾
κ) ∗ Lb ∗ Ib].

In the sequel, there will be many situations where we use Cohen conditions

chosen from inner models, for example the Cohen posets Ac
0 and Ac

1 used below in

the definition of Jc. We generally leave the verification of the needed chain condition

and distributivity properties, which can all be proved along the lines of of the proof

of Lemma 6.2, to the reader.

The generic functions added by Ae will be used below in the lifting arguments

of Section 7.3. The poset Jc will be an initial segment of the kind of “two-phase

A∗U∗S construction” discussed in Remark 3.23, using different cardinal parameters

from the ones we used for Ib. We first force with a poset Ac
0 ∗ Uc

0 ∗ Sc0, and then do

the rest of the construction over the extension by Ac
0 ∗ Uc

0 ∗ Sc0: an important new

point is that the remainder of the construction now involves Sc
0. This will be used

to get some extra closure in Lemma 7.1 below.

To define Jc we proceed as follows:

• µ0 = λb17, µ1 = λbω+1, µ2 = λbω+2, µ3 = λbω+3.

• Jc will have the form (Ac
0 ∗ Uc

0 ∗ Sc0) ∗ (Ac
1 ∗ Uc

1 ∗ Sc1), so all its components

have supports contained in µ3.

• Ac
0 = AddV [(L↾κ)∗Lb](µ0, [µ1, µ2))

• To define Uc
0 we use a Laver function on (µ1, µ2) derived from ϕ as in Fact

2.9, that is the function α 7→ ϕ(α)[(L ↾ κ)∗Lb ∗Ib] defined at those α where

this makes sense.

• Bc ↾ µ2 and Uc
0 = Uc ↾ µ2 are defined as in Section 3.

• As we noted in Remark 3.9, Sc0 = (Cc
0)+Ac

0∗U
c
0 ↾µ1 = (Cc

0)+Ac
0 , so that Ac

0 ∗Sc0
is just the standard Mitchell forcing to force that 2µ0 = µ2 = µ+

1 and µ2

has the tree property.
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• For the definition of Ac
1∗Uc

1∗Sc1, we work in V [(L ↾ κ)∗Lb∗Ib][Ac
0∗U c

0 ∗Sc
0].

We use the Laver function α 7→ ϕ(α)[(L ↾ κ) ∗ Lb ∗ Ib][Ac
0 ∗ U c

0 ∗ Sc
0] on the

interval (µ2, µ3). The posets Bc
1 and Cc

1 are defined in V [(L ↾ κ) ∗ Lb ∗
Ib][Ac

0 ∗ U c
0 ∗ Sc

0], so that for example a condition b ∈ Bc
1 has domain a

subset of [µ2, µ3) lying in V [(L ↾ κ) ∗ Lb ∗ Ib][Ac
0 ∗ U c

0 ∗ Sc
0], and b(α) is a

name which lies in this model.

• Ac
1 = AddV [(L↾κ)∗Lb](µ1, [µ2, µ3)), and we define Uc

1 and Sc1 by feeding in

information from Ac
1 working over the model V [(L ↾ κ)∗Lb∗Ib][Ac

0∗U c
0 ∗Sc

0].

In particular Uc
1 and Sc1 are both defined in the model V [(L ↾ κ) ∗ Lb ∗

Ib][Ac
[0,1] ∗ U

c
0 ∗ Sc

0].

The last stage of the preparation forcing L at κ is to force with Ae × Jc over

V [L ↾ κ ∗ Lb ∗ Ib], where Jc = (Ac
0 ∗ Uc

0 ∗ Sc0) ∗ (Ac
1 ∗ Uc

1 ∗ Sc1). We write the generic

object as Ae × Jc where Jc = (Ac
0 ∗ U c

0 ∗ Sc
0) ∗ (Ac

1 ∗ U c
1 ∗ Sc

1). We note that L is

λbω+3-cc.

Again we record some information about cardinals and cardinal arithmetic. In

V [L ↾ κ ∗ Lb ∗ Ib ∗ (Ae × Jc)] we have:

• The cardinals λaω+1, λaω+2, λb0, λb1, . . . λ
b
ω, λbω+1, λbω+2, λbω+3 form a block of

ω + 4 consecutive cardinals.

• 2λ
a
17 = λaω+2, 2λ

a
ω+1 = λb0, 2λ

a
ω+2 = λb1, 2λ

b
n = λbn+2 for n < 17, 2λ

b
n = λbω+3

for 17 ≤ n ≤ ω + 2.

Let V [L] be the model obtained after forcing with L. The generic object added

by L at a stage τ ∈ Y is written as L(τ) = Lb(τ) ∗ Ib(τ) ∗ (Ae(τ)× Jc(τ)) with the

obvious notation for the components of Ib(τ) and Jc(τ).

Global notation: L(τ), Lb(τ), Ib(τ), Ae(τ), Jc(τ)

We will ultimately do a lifting argument to show that κ is still a large cardinal

in V [L]. This will enable us to choose some supercompactness measures and other

data, which will be ultimately be used to define the Prikry forcing P̄ in Section 8.

The lifting argument involves some objects introduced in Section 7.1, so we defer

it until the start of Section 7.3.

Remark 6.3. It follows readily from Lemma 3.18 that L(τ) is < Λa
17(τ)-closed in

V [L ↾ τ ]. For the purposes of Section 9.4 we note that as a consequence all initial

segments of L are ρ-closed in V .

7. The interleaved forcing posets

7.1. Between successive Prikry points

We now work in V [L] to define the forcing Q(τ, τ∗) which the Prikry-type forcing

P̄ will interleave between successive Prikry points τ and τ∗. A few points to note:

• The points τ and τ∗ will be elements of Y .
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• The poset P̄ is defined in a certain generic extension V [L][Agg] of V [L],

but each poset Q(τ, τ∗) will actually be defined in the extension of V by a

certain initial segment of L which we specify shortly.

• The filter on Q(τ, τ∗) added by forcing with P̄ will be generic over V [L ∗
Agg ∗E], where E is the product of the finitely many generic objects added

by P for the preceding interleaved forcing posets.

• Q(τ, τ∗) will be quite large (bigger than τ∗) and will have an effect on

the universe past τ∗, and by the same token E will have an effect on the

universe past τ . On the other hand Q(τ, τ∗) does not start to have an effect

till some way past τ , so that if τ, τ∗, τ∗∗ are successive points on the Prikry

sequence then there is a large gap between the intervals where Q(τ, τ∗)

and Q(τ∗, τ∗∗) are each doing their work: this is crucial to later arguments,

particularly in Section 9.

• P̄ will also have to act between ω and the first Prikry point. This will require

special treatment, see Section 7.2 below.

Ultimately the Prikry-type forcing of Section 8 will add (mutually) generic ob-

jects over V [L] for the posets Q(τn, τn+1) where τn and τn+1 are successive points

on the Prikry sequence, together with a generic object for Q∗(τ0) where Q∗(τ) is

defined in Section 7.2.

Notation: In the sequel it will be convenient to have a compact notation for

certain initial segments of V [L]. For τ ∈ Y ∪ {κ} we will let:

• V l(τ) = V [L ↾ τ ].

• V lb(τ) = V [L ↾ τ ][Lb(τ)].

• V lbi(τ) = V [L ↾ τ ][Lb(τ)][Ib(τ)].

Global notation: V l(τ), V lb(τ), V lbi(τ).

Recall that:

• Part of the the final step of the preparation at stage τ was a forcing Jc(τ),

which added a generic object Jc(τ) for an initial segment of the kind of

two-phase construction discussed in Remark 3.23. The cardinal parameters

were Λb
17(τ), Λb

ω+1(τ), Λb
ω+2(τ), Λb

ω+3(τ).

• One of the first steps of the preparation at stage τ∗ was to add a generic

object Ib(τ∗) for a version of the construction of Section 3 whose first

few cardinal parameters were Λa
17(τ∗),Λa

ω+1(τ∗),Λa
ω+2(τ∗),Λb

0(τ∗): this was

computed in V lb(τ∗). In particular we added a generic object Ab
0(τ∗) where

Ab
0(τ∗) = AddV lb(τ∗)(Λa

17(τ∗), [Λa
ω+1(τ∗),Λa

ω+2(τ∗))).

• Lb(τ∗) is generic over V l(τ∗) for a forcing which is sufficiently closed that

actually Ab
0(τ∗) = AddV l(τ∗)(Λa

17(τ∗), [Λa
ω+1(τ∗),Λa

ω+2(τ∗))).

As we construct Q(τ, τ∗), we will keep track of the models in which its various

components are computed. This information will be used later in Lemma 7.5. We

will also keep track of some closure properties of the components. This is mostly for
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use in Section 9.4, where all we will need is that certain components are ρ-closed.

Q(τ, τ∗) is the product of three factors Qi(τ, τ
∗) for i < 3.

Global notation: Q(τ, τ∗)

The first factor Q0(τ, τ∗) completes Jc(τ) to a generic object for a certain forcing

poset defined in the model V lbi(τ), which we now describe:

• The forcing poset is a two-phase A∗U∗S construction of the type discussed

in Remark 3.23, and it has the form (Ac
0(τ)∗Uc

0(τ)∗Sc0(τ))∗ (Ac
[1,ω)(τ, τ

∗)∗
Uc

[1,ω)(τ, τ
∗) ∗ Sc[1,ω)(τ, τ

∗)), where Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗)

is computed in the extension by Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ).

• The first two steps were added as the component Jc(τ) of L(τ), explicitly

Jc(τ) = Jc
0(τ) ∗ Jc

1(τ) = (Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)) ∗ (Ac

1(τ) ∗ U c
1 (τ) ∗ Sc

1(τ)).

• µ0 = Λb
17(τ), µ1 = Λb

ω+1(τ), µ2 = Λb
ω+2(τ), µ3 = Λb

ω+3(τ), then µ4+n =

Λa
n(τ∗) for n < ω.

• The forcing Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) is computed in the

model V lbi(τ)[Jc
0(τ)] with parameters set as follows:

– Ac
1(τ) = AddV lb(τ)(µ1, [µ2, µ3)).

– Ac
n(τ, τ∗) = AddV (µn, [µn+1, µn+2)) for 2 ≤ n < ω.

– We define Bc
[1,ω)(τ, τ

∗) and Uc
[1,ω)(τ, τ

∗) using the Laver function α 7→
ϕ(α)[L ↾ τ ∗Lb(τ)∗Ib(τ)][Ac

0(τ)∗Sc
0(τ)∗U c

0 (τ)] on the interval (µ2, µω).

– The supports of conditions in Bc
[1,ω)(τ, τ

∗) and Cc
[1,ω)(τ, τ

∗) are defined

in V lbi(τ)[Jc
0(τ)].

Global notation: Q0(τ, τ∗)

Keeping in mind that Jc(τ) has already added Jc(τ) = (Ac
0(τ) ∗U c

0 (τ) ∗Sc
0(τ)) ∗

(Ac
1(τ) ∗ U c

1 (τ) ∗ Sc
1(τ)), Q0(τ, τ∗) will add a generic object Q0(τ, τ∗) composed of:

An-generic objects Ac
n(τ, τ∗) for n ≥ 2, together with generic objects U c

[2,ω)(τ, τ
∗)

for Uc
[2,ω) and Sc

[2,ω)(τ, τ
∗) for Sc[2,ω).

The last claim in the following Lemma is similar to some closure facts from

Neeman’s paper [16], notably Claim 4.7, but the setting is a bit different and we

give a few more details.

Lemma 7.1. Q0(τ, τ∗) is a forcing poset of cardinality Λa
ω+1(τ∗) defined in the

model V lbi(τ)[Jc(τ)]. Ac
[2,ω)(τ, τ

∗) is defined and < Λb
ω+2(τ)-closed in V , and is

< Λb
ω+2(τ)-distributive in V lbi(τ)[Jc(τ)]. Uc

[2,ω)(τ, τ
∗) ∗ Sc[2,ω)(τ, τ

∗) is defined and

< Λb
ω+2(τ)-closed in V lbi(τ)[Jc(τ)][Ac

[2,ω)(τ, τ
∗)].

Proof. It is easy to see that L ↾ τ ∗ Lb(τ) ∗ Ib(τ) ∗ Jc0(τ) ∗ Ac
1(τ) is Λb

ω+2(τ)-cc in

V . In the model V lbi(τ)[Jc
0(τ)], U c

1 (τ) ∗ Sc
1(τ) is the projection of the < Λb

ω+2(τ)-

closed poset Bc
1(τ)×Cc

1(τ). So by a suitable quotient-to-term forcing we may extend

V lbi(τ)[Jc(τ)] to V lbi(τ)[Jc
0(τ) ∗Ac

1(τ)×T ], where T is generic for the term forcing

AV (L ↾ τ ∗Lb(τ) ∗ Ib(τ) ∗ Jc0(τ),Bc
1(τ)×Cc

1(τ)) which is < Λb
ω+2(τ)-closed in V . By
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a standard application of Easton’s lemma, Ac
[2,ω)(τ, τ

∗) is < Λb
ω+2(τ)-distributive

in V lbi(τ)[Jc(τ)].

For the closure of Uc
[2,ω)(τ, τ

∗) ∗ Sc[2,ω)(τ, τ
∗), start by noting that by Corollary

3.15 every < Λb
ω+2(τ) sequence of ordinals from V lbi(τ)[Jc(τ)][Ac

[2,ω)(τ, τ
∗)] lies in

the submodel V lbi(τ)[Jc
0(τ) ×Ac

1(τ)].

Let V ′ = V lbi(τ)[Jc
0(τ)]. To lighten the notation we drop the parameters τ

and τ∗, and use the “µi notation” for the cardinal parameters. We will only prove

closure for Uc
2, since this proof contains all the ideas. Note that the underlying set

Bc ↾ (µ3, µ4) of Uc
2 lies in V ′, the ordering on Uc

2 is defined in V ′[Ac
[1,2] ∗ U

c
1 ], and

the relevant decreasing < µ2-sequences from Uc
2 lie in V ′[Ac

1].

We work for the moment in V ′. Let η < µ2 and let (ḃi)i<η be a sequence of

Ac
1-names for elements of Bc ↾ (µ3, µ4), where without loss of generality the trivial

condition in Ac
[1,2] ∗ U

c
1 forces that the bi’s form a decreasing sequence in Uc

2.

We will construct b ∈ Bc ↾ (µ3, µ4) which is forced to be a lower bound for the

bi’s. We let dom(b) be the union over i of the possible values of dom(bi), where it

is easy to see that this is an Easton subset of (µ3, µ4). Suppose that α ∈ dom(b),

we have defined b ↾ α, and b ↾ α is forced to be a lower bound for the bi ↾ α’s.

Force with Ac ↾ (µ2, α) ∗ Uc ↾ (µ2, α) below the condition (0, b ↾ α) to obtain

a generic object FA
α ∗ FU

α . Let ci = ḃi[F
A
α ↾ (µ2, µ3)] ∈ Bc ↾ (µ3, µ4), and let

di = ci(α)[FA
α ∗ FU

α ] ∈ ϕ(α)[FA
α ∗ FU

α ] if α ∈ dom(ci). We note that dom(ci)

increases with i, so that either di is never defined or it is defined for all large i < η.

Let i < j < η where di and dj are both defined, we claim that dj ≤ di. Since it is

forced that the bi’s are decreasing in Uc
2, there is a condition in FA

α ∗FU
α forcing that

cj(α) ≤ ci(α), and so dj ≤ di as required. Since ϕ(α) is forced to be < α-directed

closed, we may choose b(α) as a name such that (0, b ↾ α) forces b(α) ≤ ḋi for all i.

Now let F̄ = Ac
1 ∗ Ac

2 ∗ U c
1 be Ac

[1,2] ∗ Uc
1-generic over V ′, let α ∈ dom(b) and

let ci = ḃi[A
c
1]. By the induction hypothesis b ↾ α ≤ ci ↾ α for all i in the version

of Uc
2 computed by V ′[F̄ ]. If α /∈ dom(ci) there is nothing to do, so assume that

α ∈ dom(ci) and choose a condition (a1, a2, u1) ∈ F̄ where a1 ↾ (µ2, µ3) forces

ḃi = či. Consider the condition (a1, a2 ↾ (µ3, α), u1, b ↾ α): it forces that ḋi = ci(α)

by the choice of a1, and so forces that b(α) ≤ ci(α) because it refines (0, b ↾ α).

So b ↾ α + 1 ≤ ci ↾ α + 1, with (a1, a2 ↾ (µ3, α), u1) as the witnessing condition at

coordinate α.

As we mentioned earlier in Section 6, Lemma 7.1 depends critically on the

definition of Jc as a two-phase construction where we defined everything past stage

zero using Sc
0.

Recall that Ab
0(τ∗) = AddV l(τ∗)(Λa

17(τ∗), [Λa
ω+1(τ∗),Λa

ω+2(τ∗))). By the discus-

sion in Section 2.6, we may force over V l(τ∗)[Ab
0(τ∗)] to produce a generic object

AV
0 (τ∗) for AddV (Λa

17(τ∗),Λa
ω+2(τ∗)) so that V l(τ∗) ⊆ V l(τ∗)[Ab

0(τ∗)] ⊆ V [(L ↾
τ∗) ×AV

0 (τ∗)]. Q1(τ, τ∗) is the “quotient to term” forcing to produce AV
0 (τ∗) from

Ab
0(τ∗).
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Global notation: Q1(τ, τ∗)

Lemma 7.2. Q1(τ, τ∗) is defined in V l(τ∗)[Ab
0(τ∗)] and has size Λa

ω+2(τ∗).

Proof. Clearly the definition of Q1(τ, τ∗) only needs L ↾ τ∗ and Ab
0(τ∗), and we can

compute its cardinality by counting terms.

To define Q2(τ, τ∗), recall that at stage τ in L we force with L(τ) = Lb(τ)∗Ib(τ)∗
(Ae(τ)×Jc(τ)) over V [L ↾ τ ]. Of course L ↾ (τ, τ∗) ∈ V [L ↾ τ +1], and is easily seen

to be τ∗-cc forcing of cardinality τ∗ which is at least < Λb
ω+3(τ)-directed closed.

Working in V lbi(τ)[Jc(τ)] we can compute the term forcing T(τ, τ∗) = A(Ae(τ),L ↾
(τ, τ∗)). We note that T(τ, τ∗) is a < Λb

ω+3(τ)-directed closed and τ∗-cc forcing

poset of cardinality τ∗. Q2(τ, τ∗) is the quotient to term forcing (see Section 2.6)

to produce a generic object T (τ, τ∗) for the term forcing such that Ae(τ)×T (τ, τ∗)

induces Ae(τ) ∗ L ↾ (τ, τ∗): we write Q2(τ, τ∗) for the generic object for Q2(τ, τ∗).

Global notation: Q2(τ, τ∗) T(τ, τ∗)

Lemma 7.3. Q2(τ, τ∗) is a forcing poset of cardinality τ∗ defined in V l(τ∗).

Proof. Clearly the definition of Q2(τ, τ∗) only needs L ↾ τ∗, and the cardinality can

be calculated by counting terms.

Remark 7.4. By Remark 6.3 and Lemma 2.44, Q1(τ, τ∗) and Q2(τ, τ∗) are both

ρ-closed.

It is clear from Lemmas 7.1, 7.2 and 7.3 that Q(τ, τ∗) is a forcing poset of

cardinality Λa
ω+2(τ∗) defined in V [L ↾ τ∗ + 1]. To clarify what Q(τ, τ∗) is doing

we record some information about cardinals and cardinal arithmetic after forcing

with this poset. Since Q(τ, τ∗) ∈ V [L ↾ τ∗][Ab
0(τ∗)] and it has cardinality less than

Λb
0(τ∗), to analyze the extension of V [L] by Q(τ, τ∗) it is sufficient to analyze the

extension of V [L ↾ τ∗ + 1] by Q(τ, τ∗).

Recall from Section 6 that in V [L ↾ τ∗ + 1]:

• Λa
ω+1(τ), Λa

ω+2(τ), Λb
0(τ), Λb

1(τ), . . .Λb
ω(τ), Λb

ω+1(τ), Λb
ω+2(τ), Λb

ω+3(τ)

form a block of ω + 4 consecutive cardinals, and similarly for τ∗.

• 2Λ
a
17(τ) = Λa

ω+2(τ), 2Λ
a
ω+1(τ) = Λb

0(τ), 2Λ
a
ω+2(τ) = Λb

1(τ), 2Λ
b
n(τ) = Λb

n+2(τ)

for n < 17, 2Λ
b
n(τ) = Λb

ω+3(τ) for 17 ≤ n ≤ ω + 2, and similarly for τ∗.

After forcing with Q(τ, τ∗) we have that:

• The cardinals Λb
ω+3(τ) , Λa

0(τ∗), Λa
1(τ∗), Λa

2(τ∗), . . .Λa
ω(τ∗) form a block of

ω successive cardinals.

• 2Λ
b
ω+2(τ) = Λa

0(τ∗), 2Λ
b
ω+3(τ) = Λa

1(τ∗), 2Λ
a
n(τ

∗) = Λa
n+2(τ∗) for 0 ≤ n < 17.

To help analyze Q(τ, τ∗), we embed the generic extension by this poset into

something more tractable. This will be useful immediately in the proof of distribu-

tivity for Q(τ, τ∗) in Lemma 7.6, and again in Section 7.3. The poset Q(τ, τ∗) is
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defined in V [L ↾ τ∗][Ab
0(τ∗)], but for our purposes we work over the slightly larger

model V [L ↾ τ∗ + 1].

Lemma 7.5. Let τ, τ∗ ∈ Y with τ < τ∗ and let Q be Q(τ, τ∗)-generic over V [L ↾
τ∗ + 1]. Let Ac

2(τ, τ∗) be the AddV (Λb
ω+2(τ), [Λb

ω+3(τ),Λa
0(τ∗)))-generic filter added

by Q as the Ac
2(τ, τ∗)-component. Let λ = Λb

ω+3(τ). Then in some generic extension

of V [L ↾ τ∗ + 1][Q] there exists L′ such that:

(1) V [L ↾ τ∗ + 1][Q] ⊆ V [L ↾ τ + 1 ×Ac
2(τ, τ∗) × L′].

(2) Ac
2(τ, τ∗) × L′ is generic for the product of Ac

2(τ, τ∗) and some < λ-closed

forcing L′ lying in V , where L′ has cardinality Λb
ω+3(τ∗).

Proof. Decompose Q in the natural way as Q0 × Q1 × Q2. We recall that

Q0(τ, τ∗) ∈ V lbi(τ)[Jc(τ)], Q1(τ, τ∗) ∈ V l(τ∗)[Ab
0(τ∗)], and Q2(τ, τ∗) ∈ V l(τ∗) =

V lbi(τ)[Jc(τ)][Ae(τ) ∗ L ↾ (τ, τ∗)].

We recall also that Q0 = Ac
[2,ω)(τ, τ

∗) ∗ (U c
[2,ω)(τ, τ

∗) ∗ Sc
[2,ω)(τ, τ

∗)) where:

• Ac
[2,ω)(τ, τ

∗) is generic for a product Ac
[2,ω)(τ, τ

∗) = Ac
2(τ, τ∗)×Ac

[3,ω)(τ, τ
∗)

of Cohen posets defined in V .

• Ac
2(τ, τ∗) = AddV (Λb

ω+2(τ), [Λb
ω+3(τ),Λa

0(τ∗))).

• Ac
[3,ω)(τ, τ

∗) is defined and < λ-closed in V .

We will produce V [L ↾ τ + 1 ×Ac
2(τ, τ∗) × L′] from V [L ↾ τ∗ + 1][Q] by a series

of rearrangements and quotient to term forcings. We will be making several appeals

to the Product Lemma and Lemma 2.39, but we will not make these explicit: the

point is that each generic object will be generic for the forcing which originally

introduced it over various larger models than the model where that forcing was

originally defined.

• We may rearrange Ib(τ∗) as Ab
0(τ∗) ∗ Ib−(τ∗) where Ib−(τ∗) collects the

remaining components of Ib(τ∗). Recall from Remark 6.1 that Ab
0(τ∗) ∈

V [L ↾ τ∗]. Forcing with an appropriate series of quotient to term forcing

posets we extend V [L ↾ τ∗ + 1][Q] to V [T0][L ↾ τ∗][Ab
0(τ∗)[Q] where T0 is

generic for the product T0 of the following term forcings:

– AV (L ↾ τ∗,Lb(τ∗)).

– AV (L ↾ τ∗ ∗ Lb(τ∗) ∗ Ab
0(τ∗), Ib−(τ∗)).

– AV (L ↾ τ∗ ∗ Lb(τ∗),Ac
0(τ∗))

– AV (L ↾ τ∗ ∗ Lb(τ∗),Ac
1(τ∗))

– AV (L ↾ τ∗ ∗ Lb(τ∗),Ae(τ
∗))

– AV (L ↾ τ∗ ∗ Lb(τ∗) ∗ Ib(τ∗) ∗ Ac
0(τ∗),Uc

0(τ∗) ∗ Sc0(τ∗)).

– AV (L ↾ τ∗ ∗ Lb(τ∗) ∗ Ib(τ∗) ∗ Jc0(τ∗) ∗ Ac
1(τ∗),Uc

1(τ∗) ∗ Sc1(τ∗)).

• V [T0][L ↾ τ∗][Ab
0(τ∗)[Q] = V [T0][(L ↾ τ∗) ∗ Ab

0(τ∗) ∗ Q1][Q0 × Q2] =

V [T0][(L ↾ τ∗) × AV
0 (τ∗)][Q0 × Q2], using the definition of Q1 as a quo-

tient to term forcing. It will be convenient to reorganize AV
0 (τ∗) as T1
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which is generic for T1 = A(L ↾ τ∗,Ab
0(τ∗)), so our model becomes

V [T0][T1][L ↾ τ∗][Q0 ×Q2],

• V [T0][T1][L ↾ τ∗][Q0 ×Q2] = V [T0][T1][L ↾ τ ][Lb(τ) ∗ Ib(τ) ∗ Jc(τ)][Ae(τ) ∗
L ↾ (τ, τ∗) ∗ Q2][Q0] = V [T0][T1][L ↾ τ ][Lb(τ) ∗ Ib(τ) ∗ Jc(τ)][Ae(τ) ×
T (τ, τ∗)][Q0] = V [T0][T1][L ↾ τ ][Lb(τ) ∗ Ib(τ) ∗ Jc(τ)][T (τ, τ∗)][Ae(τ)][Q0].

using the definition of Q2 as a quotient to term forcing.

• By Lemma 2.36 AV (L ↾ τ∗Lb(τ)∗Ib(τ)∗Jc(τ),T(τ, τ∗)) ≃ AV (L ↾ τ+1,L ↾
(τ, τ∗)). So forcing with an appropriate quotient to term forcing we extend

to obtain V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ) ∗ Jc(τ)][Ae(τ)][Q0], where T2 is

generic for T2 = AV (L ↾ τ + 1,L ↾ (τ, τ∗)).

• By the definition of Q0(τ, τ∗),

V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ) ∗ Jc(τ)][Ae(τ)][Q0] =

V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ)][Ae(τ)][Ac(τ, τ∗) ∗ U c(τ, τ∗) ∗ Sc(τ, τ∗)]

• We defined Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) as an A ∗ U ∗ S con-

struction as in Section 3, performed in the model V [L ↾ τ ∗ Lb(τ) ∗
Ib(τ)][Ac

0(τ) ∗ U c
0 (τ) ∗ Sc

0(τ)]. In particular the construction involved aux-

iliary posets Bc
[1,ω)(τ, τ

∗) and Cc
[1,ω)(τ, τ

∗) constructed in this model.

Cc
[1,ω)(τ, τ

∗) breaks down as Cc
[1,ω)(τ, τ

∗) = Cc
1(τ, τ∗) × Cc

[2,ω)(τ, τ
∗) where

C[2,ω)(τ, τ
∗) is < λ-closed in V [L ↾ τ ∗ Lb(τ) ∗ Ib(τ)][Ac

0(τ) ∗ U c
0 (τ) ∗

Sc
0(τ)]. The forcing poset Sc[2,ω)(τ, τ

∗) is defined from Cc
[2,ω)(τ, τ

∗) and

Ac
[1,ω)(τ, τ

∗)∗U c
[1,ω)(τ, τ

∗) as (Cc
[2,ω)(τ, τ

∗))+Ac
[1,ω)(τ,τ

∗)∗Uc
[1,ω)(τ,τ

∗) as in Sec-

tion 3, so that in V [L ↾ τ ∗ Lb(τ) ∗ Ib(τ)][Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)] we may

view Ac
[1,ω)(τ, τ

∗)∗Uc
[1,ω)(τ, τ

∗)∗Sc[2,ω)(τ, τ
∗) as a projection of the product

Ac
[1,ω)(τ, τ

∗)∗Uc
[1,ω)(τ, τ

∗)×Cc
[2,ω)(τ, τ

∗). In V [L ↾ τ ∗Lb(τ)∗ Ib(τ)][Ac
0(τ)∗

Sc
0(τ) ∗ U c

0 (τ)][Ac
1(τ) ∗ U c

1 (τ)] we may view Ac
[2,ω)(τ, τ

∗) ∗ U c
[2,ω)(τ, τ

∗) as

a projection of Ac
[2,ω)(τ, τ

∗) × (Bc
[2,ω)(τ, τ

∗))+Ac
1(τ)∗U

c
1 (τ). By Lemma 3.5

for Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) with α = α′ = λ (so that

F ′ in the lemma is Ac
1 ∗ U c

1 ), (Bc
[2,ω)(τ, τ

∗))+Ac
1(τ)∗U

c
1 (τ) is < λ-closed in

V [L ↾ τ ∗ Lb(τ) ∗ Ib(τ)][Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)][Ac

1(τ) ∗ U c
1 (τ)].

• Since Sc
[1,ω)(τ, τ

∗) is a product,

V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ)][Ae(τ)][Ac(τ, τ∗) ∗ U c(τ, τ∗) ∗ Sc(τ, τ∗)]

=V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ)][Ae(τ)][Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)]

[Ac
[1,ω)(τ, τ

∗) ∗ U c
[1,ω)(τ, τ

∗) ∗ Sc
[2,ω)(τ, τ

∗)][Sc
1(τ)]

Forcing with a suitable quotient to term forcing, we may extend to
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obtain a model

V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ)][Ae(τ)][Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)]

[Ac
[1,ω)(τ, τ

∗) ∗ U c
[1,ω)(τ, τ

∗) × Cc
[2,ω)(τ, τ

∗)][Sc
1(τ)],

and then reorganize as

V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ)][Ae(τ)][Jc(τ)]

[Ac
[2,ω)(τ, τ

∗) ∗ U c
[2,ω)(τ, τ

∗) × Cc
[2,ω)(τ, τ

∗)].

Forcing with another quotient to term forcing, we may extend to obtain a

model V [T0][T1][T2][L ↾ τ ][Lb(τ) ∗ Ib(τ)][Ae(τ)][Jc(τ)][Ac
[2,ω)(τ, τ

∗) × X ×
Cc

[2,ω)(τ, τ
∗)] where X is (Bc

[2,ω)(τ, τ
∗))+Ac

1(τ)∗U
c
1 (τ)-generic. This model may

be rewritten as V [T0][T1][T2][L ↾ τ + 1][Ac
[2,ω)(τ, τ

∗) ×X × Cc
[2,ω)(τ, τ

∗)].

• Now let

T3

= AV (L ↾ τ ∗ Lb(τ) ∗ Ib(τ) ∗ Jc0(τ) ∗ Ac
1(τ) ∗ Uc

1(τ), (Bc
[2,ω)(τ, τ

∗))+Ac
1(τ)∗U

c
1 (τ))

×AV (L ↾ τ ∗ Lb(τ) ∗ Ib(τ) ∗ Ac
0(τ) ∗ Uc

0(τ) ∗ Sc0(τ),Cc
[2,ω)(τ, τ

∗)),

where T3 is < λ-closed in V . With one more round of quotient to term forc-

ing we may extend V [T0][T1][T2][L ↾ τ + 1][Ac
[2,ω)(τ, τ

∗)×X ×Cc
[2,ω)(τ, τ

∗)]

to obtain V [T0][T1][T2][T3][L ↾ τ + 1][Ac
[2,ω)(τ, τ

∗)]

We set L′ = Ac
[3,ω)(τ, τ

∗) × T0 × T1 × T2 × T3. It is routine to check that L′ is

< λ-closed and has cardinality λbω+3(τ∗).

Lemma 7.6. The poset Q(τ, τ∗) is < Λb
ω+2(τ)-distributive in V [L].

Proof. By the agreement between V [L] and V [L ↾ τ∗ + 1], it is enough to show that

Q(τ, τ∗) is < Λb
ω+2(τ)-distributive in V [L ↾ τ∗ + 1]. Let Q be Q(τ, τ∗)-generic over

V [L ↾ τ∗ + 1], then by Lemma 7.5 V [L ↾ τ∗ + 1][Q] ⊆ V [L ↾ τ + 1 × Ac
2(τ, τ∗) ×

L′], where Ac
2(τ, τ∗) × L′ is generic for the product of AddV (Λb

ω+2(τ),Λa
0(τ∗)) and

some < Λb
ω+3(τ)-closed forcing L′ lying in V . The conclusion is now immediate by

Easton’s lemma.

A minor elaboration of this argument shows:

Lemma 7.7. Let τ0 < . . . < τn with τi ∈ Y for all i. Then
∏

0≤i<n Q(τi, τi+1) is

< Λb
ω+2(τ0)-distributive in V [L].

Since Q(τn, τn+1) is distributive over the cardinality of
∏

0≤i<n Q(τi, τi+1), we

immediately deduce:
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Lemma 7.8. Let τ0 < . . . < τn < τn+1 with τi ∈ Y for all i, and let E be∏
0≤i<n Q(τi, τi+1)-generic over V [L] Then Q(τn, τn+1) is < Λb

ω+2(τn)-distributive

in V [L][E].

7.2. The first Prikry point

In this section we define a forcing poset Q∗(τ) which will be used in the Prikry

forcing P̄ when τ is the first Prikry point.

Recall from Section 5.1 that V = V0[A0 ∗ U0 ↾ θ ∗ L0] where A0 ∗ U0 ↾ θ forces

that 2ω = θ and makes θ indestructibly generically supercompact via Cohen reals,

and L0 is generic over V0[A0 ∗ U0 ↾ θ] for what is essentially a standard Laver

indestructibility iteration in the interval (θ, δ). Let V1 = V0[A0 ∗ U0 ↾ θ]. Recall

from the discussion preceding Lemma 5.7 that there is a unique stage θ̄ < ρ of the

preparation such that ρ is a limit of supercompact cardinals in V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄]
and ρ is an ω-successor in V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄ + 1].

Recall from Remark 6.1 that Ab
0(τ) = AddV [L↾τ ](Λa

17(τ), [Λa
ω+1(τ),Λa

ω+2(τ)))

and is part of the component of L at stage τ . The poset Q∗(τ) will ultimately be

defined in V [L ↾ τ ][Ab
0(τ)] and will have three components Q∗

i (τ) for i ∈ {0, 1, 2}.

The idea for defining Q∗
0(τ) is that we view the forcing A0 ∗ U0 ↾ θ ∗  L0 which

produces V from V0 as the first phase of a two-phase A ∗ U ∗ S construction, and

that Q∗
0(τ) is defined in V and implements the second phase. Here are the details

of the two-phase construction.

• The cardinal parameters are µ0 = ω, µ1 = ρ+, µ2 = θ, µ3+n = Λa
n(τ) for

all n ∈ ω.

• A0 = A0 = A0 ↾ θ, B0 = B0 ↾ θ and U0 = U0 ↾ θ were already defined in

V0, and the construction of Section 5.1 already gave us the generic object

A0 ∗ U0.

• C0 is also defined in V0 as in Section 3, in particular it adds generic objects

for Add(ρ+, 1)V0[A0↾α∗U0↾α] only for α with µ1 < α < θ.

• A1 = Add(µ1, [µ2, µ3))W̄ , where we recall that W̄ = V0[A0 ↾ θ̄ ∗U0 ↾ θ̄+ 1].

• An = Add(µn, [µn+1, µn+2))V for 2 ≤ n < ω.

• The Laver function is the universal indestructible function ϕ from Lemma

5.2.

• For n ≥ 1, Bn and Cn are defined over V . To be more precise condi-

tions in Bn are functions b ∈ V with supports which are Easton subsets

of (µn+1, µn+2), consisting of points α where the Laver function returns

an A ↾ α ∗ U ↾ α name in V for a forcing which is < α-directed closed in

V [A ↾ α ∗ U ↾ α]. As usual b(α) will name an element of this poset. The

definition of Cn is similar.

The first component Q∗
0(τ) of Q∗(τ) prolongs A0 ∗U0 ∗L0 to a generic object for

this two=phase construction. The second component Q∗
1(τ) is defined over V [L ↾

τ ][Ab
0(τ)] and adds AV

0 (τ) which is AddV (Λa
17(τ),Λa

ω+2(τ))-generic over V [L ↾ τ ]
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and is such that V [L ↾ τ ] ⊆ V [L ↾ τ ][Ab
0(τ)] ⊆ V [(L ↾ τ) × AV

0 (τ)]. The third

component Q∗
2(τ) is Coll(ω, ρ). We note that Q∗(τ) has cardinality Λa

ω+2(τ).

Remark 7.9. By contrast with Q(τ, τ∗), not all components of Q∗(τ) are ρ-closed

posets defined in V or some ρ-closed extension of V . For use in Section 9.4, we

categorize the components of Q∗(τ).

• A[2,ω) is ρ-closed in V .

• A1 is ρ-closed in W̄ which is a proper submodel of V . By the usual argu-

ments with Easton’s lemma, it is ρ-distributive in V .

• U[1,ω) ∗ S[1,ω) is ρ-closed in V [A[1,ω)].

• As in the case of Q(τ, τ∗), Q∗
1(τ) is ρ-closed in V [L ↾ τ ][Ab

0(τ)].

• Of course, Q∗
2(τ) is not even ω-distributive.

Global notation: Q∗(τ), Q∗
0(τ), Q∗

1(τ), Q∗
2(τ)

7.3. Some auxiliary computations

Recall that j : V →M has critical point κ and witnesses that κ is δ+-supercompact.

We derive a supercompactness extender E from j witnessing that κ is < λbω+3-

supercompact: to be more concrete, for each η with κ ≤ η < λbω+3 we let Wη be

the supercompactness measure on Pκη derived from j, and let E be the system of

measures ⟨Wη : κ ≤ η < λbω+3⟩, with projection maps πηζ : Pκζ → Pκη given by

πηζ : x 7→ x ∩ η.

Let jE : V → Ult(V,E) be the limit ultrapower by E, so that by standard

arguments crit(jE) = κ and Ult(V,E) is closed under < λbω+3-sequences. As usual

there is a an elementary embedding kE : Ult(V,E) →M such that kE ◦ jE = j and

crit(kE) ≥ λbω+3. Using kE it is easy to see that jE(Λz
i )(κ) = j(Λz

i )(κ) = λzi for

z ∈ {a, b} and i < ω + 3.

Global notation: E, Wη, jE

We will need to iterate the ultrapower by E, but only for two steps. To simplify

the notation let j01 = jE and M1 = Ult(V,E). Then as usual j12 : M1 → M2 is

the ultrapower map computed in M1 using the extender j01(E), and j02 = j12 ◦ j01.

Note that by the usual chain condition argument, V [L] |= <λb
ω+3M1[L] ⊆M1[L].

We will use the identity j01 ↾ M1 ◦ j01 = j02. The proof is quite easy: by the

elementarity of jVE and the fact that jVE is defined in V , j01(j01(x)) = jVE (jVE (x)) =

jM1

jVE (E)
(jVE (x)) = j12(j01(x)) = j02(x).

Global notation: j01, j12, j02, M0, M1, M2

It is easy to see that:

• crit(j12) = j01(κ) > λbω+3.

• M1 |= <j01(λ
b
ω+3)M2 ⊆M2.
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• For any function g : κ → κ, j02(g)(κ) = j12(j01(g)(κ)) = j01(g)(κ) and

j02(g)(j01(κ)) = j01(j01(g)(κ)). In particular j02(Λz
i )(κ) = λzi , and also

j02(Λz
i )(j01(κ)) = j01(λzi ), for z ∈ {a, b} and i < ω + 3.

Lemma 7.10. Let Agg = AddV (λbω+2, j01(λa0)). There exists L∗ ∈ V [L] and K ∈
V [L][Agg] such that:

(1) L∗ is j01(L)-generic over M1.

(2) j01[L] ⊆ L∗.

(3) L∗ ↾ κ+ 1 = L.

(4) If we lift j01 to obtain j∗01 : V [L] → M∗
1 = M1[L∗], let j∗12 = j∗01(j∗01) :

M∗
1 → M∗

2 and j∗02 = j∗12 ◦ j∗01, and define Q∞ = QM∗
2 (κ, j01(κ)), then K

is Q∞-generic over M∗
1 .

Proof. We start with some easy remarks:

(1) By Easton’s Lemma, Agg is < λbω+2-distributive in V [L].

(2) Since L∗ ↾ κ+1 = L, it will follow thatM∗
1 is closed under< λbω+3-sequences

in V [L]. By elementarity M∗
2 will be closed under < j01(λbω+3)-sequences

in M∗
1 , in particular M∗

1 and M∗
2 will agree for a long way past the rank of

Q∞.

We now appeal to Lemma 7.5 in the modelM2 with τ = κ and τ∗ = j01(κ). Using

the fact that M2 is closed under < j01(λbω+3)-sequences in M1, we get a projection in

M1 from L×Agg×L′ to j01(L)∗Q(κ, j01(κ)), where Agg = AddM2(λbω+2, j01(λa0)) =

AddV (λbω+2, j01(λa0)) and L′ is the product of various term forcing posets. The most

relevant factors in L′ are:

• L′
0 = AM1(L, j01(L) ↾ (κ, j01(κ)).

• L′
1 = AM1(j01(L ↾ κ), j01(Lb)).

• L′
2 = AM1(j01(L ↾ κ), j01(Ab

0)).

• L′
3 = AM1(j01(L ↾ κ ∗ Ab

0), Ib−), where Ib = Ab
0 ∗ Ib−.

• L′
4 = AM1(j01(L ↾ κ ∗ Lb), j01(Ac

0)).

• L′
5 = AM1(j01(L ↾ κ ∗ Lb), j01(Ac

1)).

• L′
6 = AM1(j01(L ↾ κ ∗ Lb), j01(Ae)).

• L′
7 = AM1(j01(L ↾ κ ∗ Lb ∗ Ib ∗ Ac

0), j01(Uc
0 ∗ Sc0)).

• L′
8 = AM1(j01(L ↾ κ ∗ Lb ∗ Ib ∗ Jc0 ∗ Ac

1), j01(Uc
1 ∗ Sc1)).

In the proof of Lemma 7.5 L′
2 corresponds to T1, L′

0 corresponds to T2, and the

remaining factors correspond to factors in T0. The projection uses L and the factors

L′
i listed above in the obvious way to prolong the L-generic to a j01(L)-generic

object.

It is straightforward to verify that the set of maximal antichains of L′ which

lie in M1 has cardinality λbω+3 in V . Since L′ is < λbω+3-closed in M1, and M1 is

closed under < λbω+3-sequences in V , we may readily work in V to build L′ which

is L′-generic over M1, but since we will ultimately use L′ to build L∗ we need to
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build L′ more carefully. The construction will involve successively lifting j01 onto

larger and larger initial segments of V [L]: to lighten the notation we will denote

all the embeddings by “j01” and resolve any ambiguity by making the domain and

codomain explicit.

To start we choose L′
0 ∈ V which is L′

0-generic over M1, and combine it with

L to construct L∗
0 ∈ V [L] which is j01(L) ↾ (κ, j01(κ))-generic over M1[L]. Note

that by the closure of L′
0, V |= <λb

ω+3M1[L′
0] ⊆ M1[L′

0]. As usual we may lift to

obtain j01 : V [L ↾ κ] →M1[L∗
0]. The next stage is slightly harder, because we must

choose L′
1 so that it combines with L ∗L∗

0 to produce L∗
1 so that we may lift j01 to

V [L ↾ κ][Lb].

To this end, let H be any filter which is j01(L ↾ κ)-generic over M1, so that we

may lift to obtain j01 : V [H ↾ κ] →M1[H]. Since |Lb| < λbω+3, it is easy to see that

if H ′ is the generic filter on Lb added by H then j01[H ′] ∈M1[H], and j01[H ′] has

a lower bound in j01(Lb). Let ṁ be a j01(L ↾ κ)-name for such a lower bound, so

that we may view ṁ as a condition in L′
1 and build L′

1 ∈ V which is L′
1-generic

over M1[L′
0] with ṁ ∈ L′

1. We combine L′
1 with L ∗ L∗

0 to obtain L∗
1 ∈ V [L] which

is j01(Lb)-generic over M1[L∗
0]. By construction j01[Lb] ⊆ L∗

1, so that we may lift

and obtain j01 : V [L ↾ κ ∗ Lb] →M1[L∗
0 ∗ L∗

1].

Similar arguments will handle the other factors of size less than λbω+3, but the

factors of size λbω+3 will need more care because we do not have closure under

λbω+3-sequences. We will handle this problem using ideas of Magidor [11].

We will only do the argument for Ae, which has an extra twist: the arguments for

Ac
1 and Uc

1 ∗ Sc1 are similar but simpler. Recall that Ae = AddV [L↾κ][Lb](λb17, λ
b
ω+3):

forcing with Ae adds λbω+3 many generic functions from λb17 to λb17, and for α < λbω+3

we let fα be the function with index α.

As we noted in the previous paragraph, j01[Ae ↾ η] ∈M1[j01(L ↾ κ ∗ Lb)] for all

η < λbω+3. We will use the following easy remark:

Remark 7.11. For every dense subset D of A(L ↾ κ ∗ Lb,Ae), there is f : λbω+3 →
λbω+3 such that if γ is an inaccessible closure point of f and ⊩ σ̇ ∈ Ȧe ↾ γ, there is

τ̇ ∈ D such that ⊩ τ̇ ≤ σ̇ and ⊩ τ̇ ∈ Ȧe ↾ γ.

Since |j01(λb17)| = λbω+3, we enumerate the elements of j01(λb17) as γj for j <

λbω+3. Let η = sup j01[λb17], and note that if p ∈ Ae then the support of j01(p) is

contained in j01(λbω+3) × η. We will arrange the lifting construction so that in the

end j∗01 : V [L] →M∗
1 has the property that j∗01(fi)(η) = γi for every i < λbω+3. This

idea originates in unpublished work of Woodin, and was used in a construction

similar to ours by Gitik and Sharon [5].

We will construct L′
2 as the upwards closure of a decreasing λbω+3-sequence in

L′
2. View ṁ as a condition in j01(L ↾ κ ∗ Lb), and let H be an arbitrary filter

which is j01(L ↾ κ ∗Lb)-generic over M1 and contains this condition. Let H ′ be the

L ↾ κ ∗ Lb-generic filter induced by H, so that j01[H ′] ⊆ H by the choice of ṁ and

we may lift to obtain j01 : V [H] →M1[H ′]. Much as in the construction for L′
1, we

will use this embedding to define suitable conditions in L′
2.
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We will build a decreasing λbω+3-sequence of conditions in L′
2, with the aim

of generating a filter which is generic over M1, and induces a filter L∗
2 which is

compatible with j′01 and Ae and assigns the right values to j∗01(fi)(η). Suppose that

we have reached a stage of the construction where we built a condition q̇ ∈ L′
2 with

the following properties:

• ⊩ q̇ ∈ j01(Ae ↾ α).

• ⊩ q̇ ≤ j01[Ae ↾ α].

• ⊩ q̇(j01(i), η) = γi for all i < α.

Suppose that the next dense set in L′
2 to be handled is D ∈ M1, and note that

(since E is a supercompactness extender) D = j01(d)(j01[σ]) for some σ < λbω+3

and function d ∈ V with dom(d) = Pκσ. We may assume that d(x) is a dense subset

of A(L ↾ κ ∗ Lb,Ae) for all x: it is now easy to produce a function f which satisfies

the conclusion of Remark 7.11 for all the dense sets d(x) simultaneously.

Let γ > α be an inaccessible closure point of f . We build a name ṙ for a condition

extending q̇ in stages, making sure that ṙ names a condition in j01(Ae ↾ γ):

• Let ṙ1 name q ∪
⋃
j01[Ae ↾ [α, γ)], so that r1 names a lower bound for

j01[Ae ↾ γ].

• Let ṙ2 name r1 ∪ {(j01(i), η, γi) : α ≤ i < γ}.

• Let ṙ ∈ D with ⊩ ṙ ≤ ṙ2, where it is possible to arrange that ⊩ ṙ ∈ j01(Ae ↾
γ) by the careful choice of γ.

The condition ṙ will be the next entry in our descending chain.

By construction, if we induce L∗
2 using L ∗L∗

0 ∗L∗
1 then j01[Ae] ⊆ L∗

2. We lift to

obtain j01 : V [L ↾ κ][Lb][Ae] → M1[L ∗ L∗
0 ∗ L∗

1 ∗ L∗
2], where j01(fi)(η) = γi for all

i. Continuing in the same way we build the remainder of L′, induce L∗, and finally

lift to get j∗01 : V [L] →M∗
1 = M1[L∗].

Let Agg be Agg = AddV (λbω+2, j01(λa0))-generic over V [L], so that Agg is generic

over M1[L × L′]. Using the projection map in M1 from L × Agg × L′ to j01(L) ∗
Q(κ, j01(κ)), we get K ∈ V [L][Agg] which is Q(κ, j01(κ))-generic over M1[L∗].

Global notation: j∗01, M∗
1 , j∗02, M∗

2 , Q∞, Agg, K

Working in V [L] we derive for each n ≥ 17 a supercompactness measure Un on

Pκλ
b
n using the embedding j∗01. We do some computations in V [L] which will be

useful when we define the Prikry forcing P̄ in Section 8. For n with 17 ≤ n < ω let

Nn = Ult(V [L], Un) and jn = j
V [L]
Un

, so that jn : V [L] → Nn and we obtain as usual

a factor map kn : Nn →M∗
1 with j∗01 = kn ◦ jn.

We will show that kn has a very large critical point, in fact crit(kn) > j01(λb17).

To see this observe that the range of kn is the set of elements in M∗
1 of the form

j∗01(f)(j01[λbn]) where f ∈ V [L] and dom(f) = Pκλ
b
n. If we let f(x) = fi(sup(x∩λb17))

then j∗01(f)(j01[λbn]) = j∗01(fi)(η) = γi, so that easily j01(µ1)+1 ⊆ rge(kn) and hence

crit(kn) > j01(λb17).

We will use the observations that since crit(kn) > j01(λb17) for n ≥ 17:
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• j∗01(η) = jn(η) for all η ≤ λb17.

• j∗01(Λb
k)(κ) = λbk = jn(Λb

k)(κ) for k ≤ 17 ≤ n.

Global notation: Un, Nn, jn, kn

We are interested in comparing the two-step iteration j∗02 defined above, and

the iteration in where we apply jn and then jn(jn+1). We use the easy equations

in = jn(jn+1) ◦ jn = jn ◦ jn+1 and j∗02 = j∗01 ◦ j∗01.

Global notation: in

Lemma 7.12. For all n ≥ 17, Q∞ = in(Q)(κ, jn(κ)).

Proof. We will produce a map k such that k ◦ in = j∗02 and crit(k) > j01(λb17).

This will suffice because in(Q)(κ, jn(κ)) can be coded as a bounded subset of

in(Λb
17)(jn(κ)), and in(Λb

17)(jn(κ)) = jn(jn+1(Λb
17))(jn(κ)) = jn(jn+1(Λb

17)(κ)) =

jn(λb17) = j01(λb17).

Start by applying the embedding jn to the equation j∗01 = kn+1 ◦ jn+1, to get

jn(j∗01) = jn(kn+1) ◦ jn(jn+1). Here jn(j∗01) : Nn → jn(M∗
1 ), jn(jn+1) : Nn →

jn(Nn+1), and jn(kn+1) : jn(Nn+1) → jn(M∗
1 ). By elementarity crit(jn(kn+1)) >

jn(j01(λb17)).

Since M∗
1 is a class of V [L], jn(M∗

1 ) is a class of Nn and we may form the

restriction kn ↾ jn(M∗
1 ). Since kn◦jn = j∗01, it is routine to check that kn(jn(M∗

1 )) =

j∗01(M∗
1 ) = M∗

2 and that kn ↾ jn(M∗
1 ) : jn(M∗

1 ) →M∗
2 is elementary.

To finish, we set k = kn ◦ jn(kn+1). To confirm this works, recall first that

jn(j∗01) = jn(kn+1) ◦ jn(jn+1). Now

k ◦ in = kn ◦ jn(kn+1) ◦ jn(jn+1) ◦ jn
= kn ◦ jn(j∗01) ◦ jn
= kn ◦ jn ◦ j∗01
= j∗01 ◦ j∗01
= j∗02

where the first equation holds because k = kn ◦ jn(kn+1) and in = jn(jn+1) ◦ jn,

the second equation holds because jn(j∗01) = jn(kn+1)◦jn(jn+1), the third equation

holds because jn ◦ j∗01 = jn(j∗01)◦ jn, the fourth equation holds because kn ◦ jn = j∗01
and the last equation holds because j∗02 = j∗01 ◦ j∗01.

As for the critical point, crit(kn) > j01(λb17) for all n, so that crit(jn(kn+1)) =

jn(crit(kn+1)) > j01(λb17), and since k = kn ◦ jn(kn+1) we have that crit(k) >

j01(λb17).
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M∗
2 jn(M∗

1 ) jn(Nn+1)

M∗
1 Nn

V [L]

kn↾jn(M
∗
1 ) jn(kn+1)

k

j∗12 jn(jn+1)jn(j
∗
01)

jnj∗01

inj∗02

jn◦j∗01

The two-step iteration in can be viewed as a one-step ultrapower by the measure

Un ×Un+1 on Pκλ
b
n ×Pκλ

b
n+1, where A ∈ Un ×Un+1 if and only if {x : {y : (x, y) ∈

A} ∈ Un+1} ∈ Un. We define product measures Un × Un+1 × . . . × Un+i−1 with i

factors in a similar way. The following Lemma is an immediate consequence of the

normality of the measures Uj .

Lemma 7.13. A ∈ Un×Un+1× . . .×Un+i−1 if and only if there exist sets Aj ∈ Uj

for n ≤ j < n+ i such that every ≺-increasing sequence from
∏

n≤j<n+iAi lies in

A.

Motivated by the i = 2 case of Lemma 7.13 we define a modified version of the

Cartesian product.

Definition 7.14. Let A ⊆ Pκλ
b
n and B ⊆ Pκλ

b
n+1, then A×≺B = {(x, y) ∈ A×B :

x ≺ y}.

With this definition, the i = 2 case of Lemma 7.13 states that Un × Un+1 =

{X ⊆ Pκλ
b
n × Pκλ

b
n+1 : ∃A ∈ Un ∃B ∈ Un+1 A×≺ B ⊆ X}.

Global notation: ×≺

We will need the following version of Rowbottom’s theorem, which also follows

easily from the normality of the measures Uj .

Lemma 7.15. Let m < n < ω, let (Aj)m≤j<n be a sequence of sets with Aj ∈ Uj

and let F be a coloring of the ≺-increasing sequences from
∏

m≤j<nAj in fewer

than κ colors. Then there exists a sequence (Bj)m≤j<n with Bj ⊆ Aj and Bj ∈ Uj

such that F ↾
∏

m≤j<nBj is constant.
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Now that we have defined j∗01, we can define an auxiliary poset that will be

useful in Section 8. Recall that Y is a measure one set of cardinals which are less

than κ and reflect some properties of κ, which we can think of as the “potential

Prikry points”. By the agreement between j∗01 and jn, j∗01(Q)(α, κ) = jn(Q)(α, κ)

for α ∈ Y . In a mild abuse of notation, we will write Q(α, κ) for this poset.

The following Lemma is immediate from Lemmas 7.6 and 7.7, together with the

elementarity of j∗01 and the agreement between V [L] and M∗
01.

Lemma 7.16. Let τ0 < . . . < τn with τi ∈ Y for all i. Then
∏

0≤i<n Q(τi, τi+1) ×
Q(τn, κ) is < Λb

ω+2(τ0)-distributive. In particular, in the case n = 0, Q(τ0, κ) is

< Λb
ω+2(τ0)-distributive.

Global notation: Q(α, κ)

8. Prikry forcing

Let Agg = AddV (λbω+2, j01(λa0)), let Agg be Agg-generic over V [L], and let K ∈
V [L][Agg] be the Q∞-generic filter over M∗

1 constructed in Section 7.3. Working in

V [L][Agg] we will define a Prikry-type forcing P̄. Conditions in P̄ will each lie in V [L],

but K will be required to recognize the set of conditions, so that P̄ ∈ V [L][Agg].

Since Agg is generic over V [L] for < λbω+2-distributive forcing, the models V [L] and

V [L][Agg] agree on bounded subsets of λbω+2. We will use this agreement without

comment at several points below.

8.1. Defining the forcing

The definition of P̄ will use the measures Un for n ≥ 17. A typical point for Un is

a set x ∈ Pκλ
b
n with κ(x) = x ∩ κ ∈ Y . In a mild abuse of notation we write (for

example) “Λb
n(x)” as a shorthand for “Λb

n(κ(x))”.

The poset P̄ will add a sequence ⟨xn : 17 ≤ n < ω⟩ where:

• xn ∈ Pκλ
b
n.

• κ(xn) ∈ Y .

• The sequence is ≺-increasing, that is xn ⊆ xn+1 and ot(xn) < κ(xn+1).

We call the xn’s the “supercompact Prikry points”, and the associated cardinals

κ(xn) “the Prikry points”.

When x and y are successive supercompact Prikry points, the forcing poset P̄ will

add a generic object for the poset Q(κ(x), κ(y)) as defined in Section 7.1. Recall from

Section 7.1 that since κ(x), κ(y) ∈ Y the preparation forcing L did some collapsing

in a block of cardinals associated with κ(x), and some more collapsing at a higher

block of cardinals associated with κ(y): the point of forcing with Q(κ(x), κ(y))

is to “close the gap” between these two blocks of cardinals. When x is the first

supercompact Prikry point P̄ will add a generic object for the poset Q∗(κ(x)) as
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defined in Section 7.2. In the sequel we will lighten the notation by writing “Q(x, y)”

for Q(κ(x), κ(y)) and “Q∗(x)” for Q∗(κ(x)).

Global notation: Q(x, y), Q∗(x)

Conditions in P̄ have the form

p = ⟨q17, x17, . . . qn−1, xn−1, fn, An, Fn+1, An+1, Fn+2, An+2, . . . ⟩

where:

(1) n ≥ 17 (so that for n = 17 the condition p is of the form ⟨f17, A17, F18, . . .⟩).
(2) Aj ∈ Uj for all j ≥ n.

(3) For all i ≥ n + 1, Fi is a function with domain Ai−1 ×≺ Ai, such that

Fi(x, y) ∈ Q(x, y) for all (x, y) ∈ Ai−1 ×≺ Ai and [Fi]Ui−1×Ui
∈ K.

(4) ⟨xi | 17 ≤ i < n⟩ is a ≺-increasing sequence where xi ∈ Pκ(λbi ) and

κ(xi) ∈ Y .

(5) If n > 17, then

(a) For all m ≥ n and all y ∈ Am, xn−1 ≺ y.

(b) q17 ∈ Q∗(x17).

(c) qi ∈ Q(xi−1, xi) for all i with 17 < i < n.

(d) dom(fn) = An and fn(x) ∈ Q(xn−1, x) for all x ∈ An.

(6) If n = 17, then fn is a function with dom(fn) = An such that fn(x) ∈ Q∗(x)

for all x ∈ An.

Global notation: P̄
The length lh(p) of p is 1 plus the index of the last xi entry in p, so that lh(p) = n

for the condition displayed above. Note that the length of a condition is the index

of the measure one set from which the next “x point” will be drawn when the

condition is extended.

For p as above, the lower part of p is the initial segment

⟨q17, x17, . . . qn−1, xn−1⟩

and the stem (written stem(p)) of the condition p is

⟨q17, x17, . . . qn−1, xn−1, [fn]Un
⟩

The length lh(h) of a stem h is the length of the corresponding condition, so that

the stem displayed above has length n. The upper part or constraint part is

⟨fn, An, Fn+1, An+1, Fn+2, . . .⟩.

Global notation: lh(p), stem(p)

Remark 8.1. The point of distinguishing stems and lower parts is that the function

fn can be a source of incompatibility between two conditions of the same length.

Remark 8.2. Since |Q(τ, τ∗)|, |Q∗(τ∗)| < Λb
0(τ∗), there are fewer than λb0 possibilities

for [fn]Un
. Since (λbn)<κ = λbn for all n, it follows that there are λbn possible stems

for conditions of length n+ 1.
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Suppose that

p′ = ⟨q′17, x′17, . . . q′m−1, x
′
m−1, f

′
m, A

′
mF

′
m+1, A

′
m+1, . . . ⟩

is another condition. Then p′ ≤ p if:

(1) m ≥ n.

(2) x⃗′ end-extends x⃗, that is to say xi = x′i for 17 ≤ i < n.

(3) For all i such that n ≤ i < m, x′i ∈ Ai.

(4) For all i ≥ m, A′
i ⊆ Ai.

(5) If m > n, then

(a) q′n ≤ fn(xn),

(b) for all i such that n < i < m, q′i ≤ Fi(xi−1, xi) and

(c) for all x ∈ A′
m, f ′m(x) ≤ Fm(x′m−1, x).

(6) If m = n, then for all x ∈ A′
m, f ′m(x) ≤ fm(x).

(7) For all i < n, q′i ≤ qi.

(8) For all i ≥ m+ 1 and all (x, y) ∈ A′
i−1 ×≺ A′

i, F
′
i (x, y) ≤ Fi(x, y).

Remark 8.3. Since the definition of P̄ includes the demands that Ai ∈ Ui and

[Fi] ∈ K, incompatibility between conditions of the same length can only arise from

the stems.

In the case when q ≤ p with lh(q) = lh(p) we say that q is a direct extension of p

and write q ≤∗ p. When lh(q)− lh(p) = t we say that q is a t-step extension of p. As

is typical for Prikry-type forcing posets, when q ≤ p we may view q as obtained by

first adding the points xi for lh(p) ≤ i < lh(q), and then taking a direct extension

of the result.

More formally:

Definition 8.4. Let

p = ⟨q17, x17, . . . qn−1, xn−1, fn,

An, Fn+1, An+1, Fn+2, An+2, . . . ⟩

and let x⃗ = (xn, . . . xn+t−1) be a ≺-increasing non-empty sequence such that xj ∈ Aj

for n ≤ j < n + t and xn−1 ≺ xn. Then p
⌢x⃗ (the minimal extension of p by x⃗) is

the condition

⟨q17, x17, . . . qn−1, xn−1, qn, xn, . . . qn+t−1, xn+t−1, fn+t,

A∗
n+t, F

∗
n+t+1, A

∗
n+t+1 . . . ⟩

where qn = fn(xn), qn+k = Fn+k(xn+k−1, xn+k) for 0 < k < t, A∗
n+k = {y ∈

An+k : xn+t−1 ≺ y} for k ≥ t, F ∗
n+k = Fn+k ↾ A∗

n+k−1 × A∗
n+k for k > t, and

fn+t(y) = Fn+t(xn+t−1, y) for y ∈ A∗
n+t.
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Global notation: p⌢x⃗

By convention p⌢x⃗ = p for x⃗ empty, and we abuse notation by writing p⌢x for

p⌢⟨x⟩ for sequences of length one. The following Lemma is routine:

Lemma 8.5. p⌢x⃗ ≤ p, and if q ≤ p then there is a unique x⃗ such that q ≤∗ p⌢x⃗.

Lemma 8.6. Let p, q ∈ P̄ with stem(p) = stem(q) = h. Then there is a lower bound

r ≤ p, q with stem(r) = h.

Proof. Let the common length of p and q be n. We choose the lower part of r to

agree with the common lower part of p and q. The main point is that [fpn]Un
=

[fqn]Un
, so that {x : fpn(x) = fqn(x)} ∈ Un. We may therefore choose frn such that

frn(x) = fpn(x) = fqn(x) for all x ∈ dom(fnr ). It is now easy to choose the remaining

entries of r to ensure that r ≤ p, q.

Lemma 8.7. In V [L][Agg] the poset P̄ is λbω-centered, in particular it has the (λbω)+-

cc.

Proof. It follows from Remark 8.2 that the total number of stems is λbω. The con-

clusion is now immediate from Lemma 8.6.

Essentially the same proof as for Lemma 8.6 shows:

Lemma 8.8. Let h be a stem, let ν < κ, and let pi ∈ P̄ for i < ν, with stem(pi) = h

for all i. Then there is r such that stem(r) = h and r ≤ pi for all i.

Remark 8.9. We only need Lemma 8.8 in the case where ν = ω. It will be used to

verify Hypothesis 6 when we appeal to Lemma 2.21.

We define P to be the set of p which satisfy all the conditions for membership

in P̄, except the condition that [Fi]Ui−1×Ui
∈ K. Note that P ∈ V [L]. We can view

P as the set of potential elements of P̄.

It will be convenient to factor the forcing poset P̄ ↓ p for p ∈ P̄ in various ways.

Let

p = ⟨q17, x17, . . . qn−1, xn−1, fn, An, Fn+1, An+1, Fn+2, . . .⟩

Let τj = κ(xj) for 17 ≤ j < n, and let 17 ≤ m < n−1. Then P̄ below p is isomorphic

to Plow ↓ p0 × Phigh ↓ p1 where:

(1) Plow = Q∗(τ17) ×
∏

17<j≤m Q(xj−1, xj).

(2) p0 = (q17, . . . , qm).

(3) Phigh is defined in a similar way to P̄, with conditions of the form

⟨q′m+1, x
′
m+1, . . . q

′
n′−1, x

′
n′−1, f

′
n′ , A′

n′ , F ′
n′+1, A

′
n′+1, F

′
n′+2, . . .⟩

ordered in the natural way.

(4) p1 = ⟨qm+1, xm+1, . . . qn−1, xn−1, fn, An, Fn+1, An+1, Fn+2, . . .⟩
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It follows that if G is P̄-generic and ⟨τj : 17 ≤ j < ω⟩ is the Prikry sequence

added by G, then for every m ≥ 17 the generic object G induces a Q∗(τ17) ×∏
17<j≤m Q(xj−1, xj)-generic filter.

Remark 8.10. Formally the posets Plow,Phigh and conditions p0, p1 depend on the

choice of m. When we use this kind of factorization in the sequel, the value of m

should always be clear from the context.

8.2. The Prikry lemma

Recall from section 7.3 that in V [L] we derived measures Un on Pκλ
b
n for 17 ≤ n < ω

from the embedding j∗01 : V [L] → M∗
1 , and formed ultrapower maps jn : V [L] →

Nn = Ult(V [L], Un). We arranged that if kn : Nn → M∗
1 is the natural factor map

with j∗01 = kn ◦ jn, then crit(kn) > j01(λb17). It follows that for α ≤ λb17 we have

j01(α) = jn(α).

Recall also that in = jn(jn+1)◦jn, and that Q∞ = in(Q)(κ, jn(κ)) for all n ≥ 17.

Now Q∞ ∈ M∗
01, and in M∗

01 we have |Q∞| = j01(λaω+2) and 2j01(λ
a
ω+2) = j01(λb1).

It follows that Q∞ ∈ Nn and K is Q∞-generic over Nn for all n ≥ 17. By similar

arguments, if we let N+
n = Ult(Nn, jn(Un+1)), so that in : V [L] → N+

n , then

Q∞ ∈ N+
n and K is Q∞-generic over N+

n .

Global notation: N+
n

For each n with 17 ≤ n < ω, |Pκλ
b
n| = λbn in V [L], so that Un is still a super-

compactness measure on Pκλ
b
n in the < λbω+2-distributive extension V [L][Agg]. It

follows that jn lifts to the ultrapower map computed from Un in V [L][Agg], and

we write jAn : V [L][Agg] → NA
n = Nn[jAn (Agg)]. Similarly in lifts, and we obtain

iAn : V [L][Agg] → NA+
n = N+

n [iAn (Agg)]. By distributivity it is easy to see that K

is still Q∞-generic over the models NA
n and NA+

n . We also note that Q∞ is still

< λbω+2-distributive in each of the models Nn, N+
n , NA

n and NA+
n .

Global notation: jAn , iAn , NA
n , NA+

n

Fix E a dense open subset of P̄ with E ∈ V [L][Agg], and let E(k) be the dense

open set of conditions whose every k-step extension lies in E. We describe a series

of steps to “canonize” membership in E.

Global notation: E(k)

For each n > 17 we define Fn to be the set of functions of two variables F such

that dom(F ) = A×≺B for some A ∈ Un−1 and B ∈ Un, and F (x, y) ∈ Q(κ(x), κ(y))

for all (x, y) ∈ dom(F ): that is to say, Fn is the set of functions which can appear

as F p
n for some p ∈ P. In this situation, for each x ∈ A we define F (x,−) to be the

function with domain {y ∈ B : x ≺ y} given by F (x,−)(y) = F (x, y).

Global notation: Fn, F (x,−)

We define Ln to be the set of lower parts s of the form q17 . . . xn−1. When n > 17

and s = q17 . . . xn−1 ∈ Ln we let κ(s) = κ(xn−1), and for x ∈ Pκλ
b
n we write s ≺ x

for xn−1 ≺ x. By convention L17 is the singleton set containing the empty sequence,

⟨⟩ ≺ x for all x ∈ Pκλ
b
17, and Q(⟨⟩, x) = Q∗(κ(x)) for all x ∈ Pκλ

b
17.
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Global notation: Ln

It easy to see that if L ⊆ Ln and (As)s∈L is an L-indexed family of sets in Un,

then {x ∈ Pκλ
b
n : ∀s ∈ L s ≺ x =⇒ x ∈ As} ∈ Un. In the sequel we use this form

of normality for Un without comment.

Lemma 8.11. There exist functions (F 0
n)n>17 and sets (A0

n)n≥17 such that:

• A0
n ∈ Un.

• dom(F 0
n) = A0

n−1 ×≺ A0
n.

• [F 0
n ]Un−1×Un ∈ K.

• For every k, every n ≥ 17, every x ∈ A0
n, every lower part s ∈ Ln with

s ≺ x, and every condition q ∈ Q(κ(s), κ(x)), one of the two mutually

exclusive conditions holds:

– There is a condition in E(k) with an initial segment of the form

s⌢q⌢x⌢F 0
n+1(x,−).

– There is no condition in E(k) with an initial segment of the form

s⌢q⌢x⌢fn+1

where fn+1 ≤ F 0
n+1(x,−).

Proof. Fix n for the moment. Recall that jAn : V [L][Agg] → NA
n is the ultrapower

map computed from Un in V [L][Agg], and jAn is a lift of jn. Let x1n = jn[λbn], so that

Un = {X ⊆ Pκλ
b
n : x1n ∈ jn(X)}. Observe that {t ∈ jn(Ln) : t ≺ x1n} = jn[Ln] ∈

Nn.

The key point is now to observe that if F ∈ Fn+1 then jn(F )(x1n,−) ∈ Nn,

and is a function which can be integrated in Nn with respect to jn(Un+1) to obtain

[F ]Un×Un+1
∈ Q∞. For each k, each s ∈ Ln and each Q ∈ QNn(κ(s), κ) we define

in NA
n a dense open set of conditions in Q∞, namely the set of conditions r ∈ Q∞

such that one of the following mutually exclusive conditions holds:

• There is a condition in jn(E(k)) with an initial segment of the form

jn(s)⌢Q⌢x1n
⌢
fn+1

where [fn+1]jn(Un+1) = r.

• There is no condition in jn(E(k)) with an initial segment of the form

jn(s)⌢Q⌢x1n
⌢
fn+1

where [fn+1]jn(Un+1) ≤ r.

By the genericity of K over NA
n and the distributivity of Q∞ in NA

n , there

is rn ∈ K which is in the dense set defined above for every s and Q. We choose

F ′
n+1 ∈ Fn+1 such that [F ′

n+1]Un×Un+1
= rn, that is [jn(F ′

n+1)(x1n,−)]jn(Un+1) = rn.

Working in V [L][Agg], let A′
n be the set of x ∈ Pκλ

b
n such that for every k,

every s ∈ Ln with s ≺ x, and every q ∈ Q(κ(s), κ(x)) one of the following mutually

exclusive conditions holds:
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1x) There is a condition in E(k) with an initial segment of the form

s⌢q⌢x⌢fn+1

where [fn+1]Un+1
= [F ′

n+1(x,−)]Un+1
.

2x) There is no condition in E(k) with initial segment of the form

s⌢q⌢x⌢fn+1

where [fn+1]Un+1
≤ [F ′

n+1(x,−)]Un+1
.

By  Loś’s theorem A′
n ∈ Un.

For each k, x ∈ A′
n, s ≺ x, and q ∈ Q(κ(s), κ(x)) such that 1x holds, let

B′
n+1(k, s, q, x) ∈ Un+1 be such that there is a condition in E(k) with initial segment

s⌢q⌢x⌢F ′
n+1(x,−) ↾ B′

n+1(k, s, q, x).

Let B′
n+1 be the set of y ∈ Pκλ

b
n+1 such that y ∈ B′

n+1(k, s, q, x) for every k, every

x ∈ A′
n with x ≺ y and every relevant s and q, so that B′

n+1 ∈ Un+1 by normality.

Now we choose A0
n ∈ Un so that A0

n ⊆ A′
n ∩ B′

n for every relevant n, let F 0
n =

F ′
n ↾ A0

n−1 ×≺ A0
n, and verify that this satisfies the desired property. Let n ≥ 17

and suppose that k < ω, x ∈ A0
n, s ∈ Ln with s ≺ x, and q ∈ Q(κ(s), κ(x)). By

construction x ∈ A′
n.

Suppose first that 1x holds, so that we defined B′
n+1(k, s, q, x). By definition

dom(F 0
n+1(x,−)) ⊆ dom(F ′

n+1(x,−)) ⊆ {y ∈ B′
n+1 : x ≺ y} ⊆ B′

n+1(k, s, q, x), so

that F 0
n+1(x,−) ≤ F ′

n+1(x,−) ↾ B′
n+1(k, s, q, x) and hence there is a condition in

E(k) with initial segment

s⌢q⌢x⌢F 0
n+1(x,−).

If alternatively 2x holds then a fortiori there is no condition in E(k) with an initial

segment of the form

s⌢q⌢x⌢fn+1

where fn+1 ≤ F 0
n+1(x,−), because in this case we have

[fn+1]Un+1
≤ [F ′

n+1(x,−)]Un+1
= [F 0

n+1(x,−)]Un+1
.

Lemma 8.12. There exist functions (F 1
n)n>17 and sets (A1

n)n≥17 such that:

• A1
n ∈ Un with A1

n ⊆ A0
n.

• dom(F 1
n) = A1

n−1 ×≺ A1
n with F 1

n ≤ F 0
n .

• [F 1
n ]Un−1×Un ∈ K.

• For every k, every n ≥ 17, every x ∈ A1
n, and every t ∈ Ln+1 with t =

s⌢q⌢x, if there is a condition in E(k) with initial segment

t ⌢ F 0
n+1(x,−)
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then

t ⌢ F 0
n+1(x,−)

⌢
(A1

m−1, F
∗
m)m>n+1 ∈ E(k),

where F ∗
m = F 1

m ↾ {(y, z) ∈ A1
m−1 ×A1

m : x ≺ y ≺ z}.

Proof. Fix n for the moment. For every k, x ∈ A0
n, s ∈ Ln with s ≺ x, and

q ∈ Q(κ(s), κ(x)), let t = s⌢q⌢x (so that t ∈ Ln+1) and if there is a condition

in E(k) with initial segment t ⌢ F 0
n+1(x,−) then choose such a condition pt,k. To

lighten the notation let F t,k
m = F pt,k

m for m > n+ 1.

For all k, t, and m, [F t,k
m ]Um−1×Um

∈ K. Since K is generic over M∗
1 , it fol-

lows from the closure properties of M∗
1 and the distributivity of Q∞ that there

exists a sequence (Gn
m)m>n+1 such that Gn

m ∈ Fm, [Gn
m]Um−1×Um

∈ K and

[Gn
m]Um−1×Um

≤ [F t,k
m ]Um−1×Um

for all t and k. Using closure and distributivity

again there exists a sequence (Gm) such that Gm ∈ Fm, [Gm]Um−1×Um
∈ K,

[Gm]Um−1×Um
≤ [F 0

m]Um−1×Um
, and [Gm]Um−1×Um

≤ [Gn
m]Um−1×Um

for all n >

m+ 1.

By taking appropriate diagonal intersections to define the sets A1
m and setting

F 1
m = Gm ↾ A1

m−1×≺A
1
m, we may arrange that for every k, n, t ∈ Ln+1, m > n+ 1

and (y, z) ∈ dom(F 1
m) with t ≺ y ≺ z, we have F 1

m(y, z) = Gm(y, z) ≤ Gn
m(y, z) ≤

F t,k
m (y, z) and F 1

m(y, z) ≤ F 0
m(y, z). To verify that this works, let t = s⌢q⌢x ∈ Ln+1

with x ∈ A1
n and assume that there is a condition in E(k) with initial segment t ⌢

F 0
n+1(x,−), so that we chose pt,k ∈ E(k). The desired conclusion is immediate.

Lemma 8.13. There exist functions (F 2
n)n>17 and sets (A2

n)n≥17 such that:

• A2
n ∈ Un with A2

n ⊆ A1
n.

• dom(F 2
n) = A2

n−1 ×≺ A2
n with F 2

n ≤ F 1
n .

• [F 2
n ]Un−1×Un ∈ K.

• For every k, every n ≥ 17, every (x, y) ∈ dom(F 2
n+1), every s ∈ Ln with

s ≺ x, and every q ∈ Q(κ(s), κ(x)), one of the following mutually exclusive

statements holds:

– There is a condition in E(k) with initial segment

s⌢q⌢x⌢F 2
n+1(x, y)

⌢
y⌢F 1

n+2(y,−).

– There is no condition in E(k) with initial segment of the form

s⌢q⌢x⌢r̄⌢y⌢F 1
n+2(y,−)

where r̄ ≤ F 2
n+1(x, y).

Proof. As in the proof of Lemma 8.11, let x1n = jn[λbn]. Let x2n = jn(jn+1)(x1n) =

in[λbn], and let y2n+1 = jn(jn+1)[jn(λbn+1)]. By a routine calculation Un × Un+1 =

{X ⊆ Pκλ
b
n × Pκλ

b
n+1 : (x2n, y

2
n+1) ∈ in(X)}. It is easy to see that in[Ln] = {t ∈

in(Ln) : t ≺ x2n}.

Let k < ω, s ∈ Ln, and Q ∈ QN+
n (κ(s), κ). Working in N+A

n define the dense

open set of conditions r ∈ Q∞ such that one of the following mutually exclusive

conditions holds:
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• There is a condition in in(E(k)) with initial segment

in(s)⌢Q⌢x2n
⌢
r⌢y2n+1

⌢
in(F 1

n+2)(y2n+1,−).

• There is no condition in in(E(k)) with initial segment of the form

in(s)⌢Q⌢x2n
⌢
r̄⌢y2n+1

⌢
in(F 1

n+2)(y2n+1,−)

where r̄ ≤ r.

Using the genericity of K over NA+
n and the distributivity of Q∞ in this model,

we find rn ∈ K which lies in this dense open set for every k, s, and Q, and fix

F ′′
n+1 ∈ Fn+1 such that [F ′′

n+1]Un×Un+1
= in(F ′′

n+1)(x2n, y
2
n) = rn.

By  Loś’s theorem there is a set Cn+1 ∈ Un × Un+1 such that for every k,

(x, y) ∈ Cn+1, s ∈ Ln with s ≺ x, and every q ∈ Q(κ(s), κ(x)) one of the following

mutually exclusive conditions holds:

• There is a condition in E(k) with initial segment

s⌢q⌢x⌢F ′′
n+1(x, y)

⌢
y⌢F 1

n+2(y,−).

• There is no condition in E(k) with an initial segment of the form

s⌢q⌢x⌢r̄⌢y⌢F 1
n+2(y,−)

where r̄ ≤ F ′′
n+1(x, y).

Now we choose F 2
n ≤ F ′′

n , F
1
n and A2

n ⊆ A1
n so that dom(F 2

n+1) = A2
n×≺A2

n+1 ⊆
Cn+1. Clearly this satisfies the requirements.

Lemma 8.14. There exist sets (A3
n)n≥17 such that:

• A3
n ∈ Un with A3

n ⊆ A2
n.

• For every k, every n ≥ 17, and every t ∈ Ln+1, one of the following mutu-

ally exclusive conditions holds:

– For every y ∈ A3
n+1 with t ≺ y, there is a condition in E(k) with initial

segment

t⌢F 2
n+1(x, y)

⌢
y⌢F 2

n+2(y,−).

– For every y ∈ A3
n+1 with t ≺ y, there is no condition in E(k) with

initial segment

t⌢F 2
n+1(x, y)

⌢
y⌢F 2

n+2(y,−).

Proof. For every k, n and t = s⌢q⌢x ∈ Ln+1 partition {y ∈ A2
n+1 : t ≺ y} as

follows:

• A+
n+1(t, k) is the set of y ∈ A2

n+1 such that t ≺ y and there is a condition

in E(k) with initial segment

t⌢F 2
n+1(x, y)

⌢
y⌢F 2

n+2(y,−).
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• A−
n+1(t, k) is the set of y ∈ A2

n+1 such that t ≺ y and there is no condition

in E(k) with initial segment

t⌢F 2
n+1(x, y)

⌢
y⌢F 2

n+2(y,−).

Let A3
n+1(t, k) be whichever of the sets A+

n+1(t, k) and A−
n+1(t, k) lies in Un+1,

and then let A3
n+1 = {y ∈ A2

n+1 : ∀k ∀t ∈ Ln+1 t ≺ y =⇒ y ∈ A3
n+1(t, k)}. Clearly

this satisfies the requirements.

To keep the indices in step, we define F 3
m = F 2

m ↾ A3
m−1 ×≺ A3

m.

Lemma 8.15. Let n ≥ 17, let x ∈ Pκλ
b
n, and let fn+1 be a function such that

An+1 = dom(fn+1) ∈ Un+1, where x ≺ y and fn+1(y) ∈ Q(κ(x), κ(y)) for all

y ∈ An+1. Then there exist Bn+1 ⊆ An+1 and f ′n+1 with domain Bn+1 such that:

• f ′n+1(y) ≤ fn+1(y) for all y ∈ Bn+1.

• For every k and every t ∈ Ln+1 of the form s⌢q⌢x, one of the two following

mutually exclusive conditions holds:

– For every y ∈ Bn+1, there is a condition in E(k) with initial segment

t⌢f ′n+1(y)
⌢
y⌢F 3

n+2(y,−).

– For every y ∈ Bn+1 and every r ≤ f ′n+1(y), there is no condition in

E(k) with initial segment

t⌢r⌢y⌢F 3
n+2(y,−).

Proof. Shrinking An+1 if necessary, we may assume that An+1 ⊆ A3
n+1. Note that

Q(κ(x), κ(y)) is < Λb
ω+2(κ(x))-distributive, and the set of elements of Ln+1 of form

s⌢q⌢x is of cardinality at most Λb
n(κ(x)). It follows that for each y ∈ An+1 there

is r ≤ fn+1(y) such that for every k and every t in Ln+1 of the form s⌢q⌢x one of

the two following mutually exclusive conditions holds:

1t,k) There is a condition in E(k) with initial segment

t⌢r⌢y⌢F 3
n+2(y,−).

2t,k) There is no condition in E(k) with an initial segment of the form

t⌢r̄⌢y⌢F 3
n+2(y,−)

where r̄ ≤ r.

For each y ∈ An+1 choose f ′n+1(y) be some r ≤ fn+1(y) as above. For each t

and k, let An+1(t, k) be whichever of the sets {y ∈ An+1 : fn+1(y) satisfies 1t,k}
and {y ∈ An+1 : fn+1(y) satisfies 2t,k} is measure one for Un+1. Let Bn+1 =⋂

t,k An+1(t, k).

Remark 8.16. Lemma 8.15 is only useful for conditions of length n > 17, because

for a condition ⟨f17, A17, F18⟩ of length 17, f17(x) ∈ Q∗(x) for all x ∈ A17. This
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explains why the following Lemma 8.17 is restricted to conditions of length greater

than 17.

Lemma 8.17 (Strong Prikry Lemma). For every dense open subset E of P̄ and

every condition p ∈ P̄ of length greater than 17, there exist q a direct extension of p

and k ∈ ω such that q ∈ E(k).

Proof. Let the condition p be ⟨q17, x17 . . . xn−1, fn, An, Fn+1, . . .⟩ where n > 17, and

as usual dom(fn) = An and dom(Fm) = Am−1 ×≺ Am for n < m < ω.

Appealing to Lemma 8.15, we refine fn to f ′n ≤ fn with dom(f ′n) = A′
n ⊆ An

such that for every k and every t ∈ Ln with last entry xn−1, one of the following

holds:

• For every y ∈ A′
n there is a condition in E(k) with initial segment

t⌢f ′n(y)
⌢
y⌢F 3

n+1(y,−).

• For every y ∈ A′
n there is no condition in E(k) with an initial segment of

the form

t⌢r⌢y⌢F 3
n+1(y,−) where r ≤ f ′n(y).

We then form a direct extension p′ of p, where p′ has the form

⟨q17, x17 . . . xn−1, f
′
n, A

′
n, F

′
n+1, . . .⟩

with F ′
m ≤ Fm, F

3
m for all m > n. Since E is a dense open set, there is a condition

p′′ ≤ p′ such that p′′ ∈ E. Let p′′ be a k-step extension of p′. If k = 0 we are done

setting q = p′′, so assume that k > 0.

The condition p′′ has the form

⟨q′′17, x17 . . . xn−1, q
′′
n, xn . . . q

′′
m−1, xm−1, f

′′
m, A

′′
m, F

′′
m+1, . . .⟩

where m = n+ k > n. We note that:

• q′′n ≤ f ′n(xn).

• xj ∈ A3
j for n ≤ j < m.

• f ′′m ≤ F 3
m(xm−1,−).

• F ′′
j ≤ F 3

j for j > m.

Claim 8.18. If p∗∗ is the condition

⟨q′′17, x17 . . . xn−1, q
′′
n, xn, F

′
n+1(xn,−), A′

n+1, F
′
n+2, F

′
n+3, . . .⟩

then p∗∗ ∈ E(k−1).

Proof. We will show by induction on i that for 0 ≤ i ≤ k− 1, if p∗ is the condition

⟨q′′17, x17 . . . q′′m−i−1, xm−i−1, F
′
m−i(xm−i−1,−), A′

m−i, F
′
m−i+1, . . .⟩

then p∗ ∈ E(i).
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(Base case) i = 0: Since f ′′m ≤ F ′
m(xm−1) ≤ F 0

m(xm−1) and xm−1 ∈ A0
m−1, it follows

from Lemma 8.11 that there is a condition in E with initial segment

⟨q′′17, x17 . . . q′′m−1, xm−1, F
0
m(xm−1,−)⟩

Since E is open, it follows from the choice of the functions F ′
j and Lemma 8.12 that

p∗ = ⟨q′′17, x17 . . . q′′m−1, xm−1, F
′
m(xm−1), A′

m+1, F
′
m+1, . . .⟩ ∈ E = E(0).

(Successor step) i = i0 + 1 for 0 ≤ i0 < k− 1. By the induction hypothesis if p∗− is

the condition

⟨q′′17, x17 . . . q′′m−i, xm−i, F
′
m−i+1(xm−i,−), A′

m−i+1, F
′
m−i+2, . . .⟩

then p∗− ∈ E(i−1).

Since q′′m−i ≤ F ′
m−i(xm−i−1, xm−i) ≤ F 2

m−i(xm−i−1, xm−i), xm−i−1 ∈ A2
m−i−1,

and xm−i ∈ A2
m−i, it follows from Lemma 8.13 that there is a condition in E(i−1)

with initial segment

⟨q′′17, x17 . . . xm−i−1, F
2
m−i(xm−i−1, xm−i), xm−i, F

1
m−i+1(xm−i,−)⟩.

Since E(i−1) is open there is a condition in E(i−1) with initial segment

⟨q′′17, x17 . . . xm−i−1, F
2
m−i(xm−i−1, xm−i), xm−i, F

2
m−i+1(xm−i,−)⟩.

Since xm−i ∈ A3
m−i, it follows from Lemma 8.14 that for every y ∈ A3

m−i with

xm−i−1 ≺ y, there is a condition in E(i−1) with initial segment

⟨q′′17, x17 . . . xm−i−1, F
3
m−i(xm−i−1, y), y, F 3

m−i+1(y)⟩.

It follows from the choice of the functions F ′
j that for every such y

⟨q′′17, x17 . . . xm−i−1, F
′
m−i(xm−i−1, y), y, F ′

m−i+1(y), A′
m−i+1, F

′
m−i+2, . . .⟩

∈ E(i−1).

So every 1-step extension of p∗ lies in E(i−1), so by definition p∗ ∈ E(i).

Since q′′n ≤ f ′n(xn), it follows from the choice of f ′n that for every y ∈ A′
n, there

is a condition in E(k−1) with initial segment

⟨q′′17, x17 . . . xn−1, f
′
n(y), y, F 3

n+1(y,−)⟩.

Let q be the condition

⟨q′′17, x17 . . . xn−1, f
′
n, A

′
n, F

′
n+1, . . .⟩

By the choice of the functions F ′
j and Lemma 8.15, it follows that q⌢y ∈ E(k−1)

for all y ∈ A′
n, that is to say q ∈ E(k).

Lemma 8.19 (Prikry Lemma). Let b be a Boolean value for P̄ and let p ∈ P̄ be a

condition of length greater than 18. Then there is s ≤∗ p such that s decides b.
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Proof. Let E be the dense open set of conditions which decide b and let q ≤∗ p

and k be as in the conclusion of Lemma 8.17. For each appropriate k-tuple x⃗, define

F (x⃗) = 0 if q⌢x⃗ ⊩ ¬b and F (x⃗) = 1 if q⌢x⃗ ⊩ b. By Lemma 7.15, we may find r ≤∗ q

such that all k-step extensions of r decide b the same way: since every extension of

r is compatible with some k-step extension, r decides b.

Recall from the end of Section 8.1 that given a condition

p = ⟨q17, x17, . . . qn−1, xn−1, fn, An, Fn+1, An+1, Fn+2, . . .⟩

and m < n − 1, we factored P̄ ↓ p as Plow ↓ p0 × Phigh ↓ p1, where Phigh is defined

in a very similar way to P̄ with the associated Prikry sequence starting at xm+1.

The proofs of Lemmas 8.17 and 8.19 can easily be adapted to prove the parallel

assertions for Phigh.

Lemma 8.20. Let p, m, Plow, Phigh, p0 and p1 be as above. Let τ = κ(x′m) and

λ = Λb
ω+2(τ). Then:

(1) Forcing with Phigh ↓ p1 adds no new bounded subsets of λ.

(2) Forcing with P̄ ↓ p, all bounded subsets of λ are in the intermediate exten-

sion by Plow.

Proof. To show the first claim, let γ < λ and let Ẋ name a subset of γ. Let p′ be a

condition in Phigh ↓ p1, and let

p′ = ⟨q′m+1, x
′
m+1, . . . q

′
n′−1, x

′
n′−1, f

′
n′ , A′

n′ , F ′
n′+1, A

′
n′+1, F

′
n′+2, . . .⟩,

where x′j = xj for m < j < n.

Let τj = κ(x′j) for m < j < n′. For each α < γ we will define a subset Dα of

Q(τ, τm+1)×
∏

m+1<j<n′ Q(τj−1, τj)×Q(τn′−1, κ) as follows: Dα is the set of tuples

(q′′m+1, . . . , q
′′
n′−1, q

′′
n′) such that there is a direct extension p′′ ≤∗ p′ deciding α ∈ Ẋ

where

p′′ = ⟨q′′m+1, x
′
m+1, . . . q

′′
n′−1, x

′
n′−1, f

′′
n′ , A′′

n′ , F ′′
n′+1, A

′′
n′+1, F

′′
n′+2, . . .⟩,

and q′′n′ = [f ′′n′ ].

Clearly Dα is open. It follows by Lemma 8.19 for Phigh that Dα is dense be-

low (q′m+1, . . . q
′
n′−1, [f

′
n′ ]) for each α. By Lemma 7.16

⋂
α<γ Dα is dense below

(q′m+1, . . . q
′
n′−1, [f

′
n′ ]), so we find (q′′m+1, . . . q

′′
n′−1, q

′′
n′) ≤ (q′m+1, . . . q

′
n′−1, [f

′
n′ ]) with

(q′′m+1, . . . q
′′
n′−1, q

′′
n′) ∈

⋂
α<γ Dα.

For each α < γ, choose a condition

pα = ⟨q′′m+1, x
′
m+1, . . . q

′′
n′−1, x

′
n′−1, f

α
n′ , Aα

n′ , Fα
n′+1, A

α
n′+1, F

α
n′+2, . . .⟩

witnessing that (q′′m+1, . . . q
′′
n′−1, [f

′′
n′ ]) ∈ Dα. Since [fαn′ ] = q′′n′ for each α, by κ-

completeness there is a large set where all the functions fαn′ agree, so refining their

domains we may as well assume that there is a fixed function f∗n′ with fαn′ = f∗n′ for

all α < γ.
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For each j > n′ and α < γ, [Fα
j ]Uj−1×Uj

∈ K. Since K is generic over a highly

closed inner model, we may find F ∗
j for j > n such that [F ∗

j ]Uj−1×Uj
∈ K and

[F ∗
j ] ≤ [Fα

j ] for all α. Since γ < κ, by κ-completeness we may refine the domains

of the functions F ∗
j and assume that F ∗

j ≤ Fα
j for all α. In summary we have

constructed a condition

p∗ = ⟨q′′m+1, x
′
m+1, . . . q

′′
n′−1, x

′
n′−1, f

∗
n′ , A∗

n′ , F ∗
n′+1, A

∗
n′+1, F

∗
n′+2, . . .⟩

which refines p′ and decides α ∈ Ẋ for all α < γ.

For the second claim we observe that |Plow| < λ, so that all Plow-names for

bounded subsets of λ are coded by bounded subsets of λ, and we are done by the

factorization of P̄ ↓ p and the first claim.

The following corollary is immediate.

Corollary 8.21. Let G be P̄-generic and let ⟨τj : 17 ≤ j < ω⟩ be the Prikry

sequence added by G. Let γ < κ, and let m > 17 be least such that γ <

Λb
ω+2(τm), and let X ∈ P (γ)V [L][Agg][G]. Then X ∈ V [L][G0] where G0 is the

Q∗(τ17) ×
∏

17<j≤m Q(xj−1, xj)-generic filter induced by G.

For the purposes of the analysis in Section 9, we record some more refined

information about how much of the various generic objects we need to define some

bounded subsets of κ. We remind the reader that Q(τ, τ∗) is < Λb
ω+2(τ)-distributive,

and that only the Ab
0 component of Ib(τ) adds any subsets of Λa

ω(τ). The proof of

the following easy Lemma uses these facts and Corollary 8.21.

Lemma 8.22. In the generic extension by P̄:

• If τ and τ∗ are successive Prikry points, the cardinals between τ and τ∗ are

Λa
j (τ) for j < ω + 3 and Λb

k(τ) for k < ω + 4. If E is the generic object

added by the interleaved forcing between Prikry points up to τ , and Q(τ, τ∗)

is the generic object added by the forcing between τ and τ∗, then:

– All bounded subsets of Λb
ω(τ) lie in V lbi(τ)[E][Ae(τ) × Jc

0(τ)].

– All subsets of Λb
ω+1(τ) lie in V lbi(τ)[E][Jc

0(τ)][Ae(τ) ×Ac
1(τ)].

– All bounded subsets of Λa
ω(τ∗) lie in V [L ↾ τ∗][E][Q(τ, τ∗)][Ab

0(τ∗)].

– All subsets of Λa
ω+1(τ∗) lie in

V [L ↾ τ∗][E][Q(τ, τ∗)][Lb(τ∗) ↾ λaω+2(τ∗)][Ab
[0,1](τ

∗) ∗U b
0(τ∗) ∗ Sb

0(τ∗)].

• If τ is the first Prikry point then the infinite cardinals below τ are ω, ρ+ =

ω1, θ = ω2. If Q∗(τ) is the generic object added by the first interleaved

forcing then:

– All bounded subsets of Λa
ω(τ) lie in V [L ↾ τ ][Q∗(τ)][Ab

0(τ)].

– All subsets of Λa
ω+1(τ) lie in

V [L ↾ τ ][Q∗(τ)][Lb(τ) ↾ λaω+2(τ)][Ab
[0,1](τ) ∗ U b

0(τ) ∗ Sb
0(τ)].

Lemma 8.23. κ = (ℵω2)V [L][Agg][P̄ ] and (λbω)+ = (κ+)V [L][Agg][P̄ ].
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Proof. It follows immediately from 8.22 that κ = ℵω2 in V [L][Agg][P̄ ]. By Lemma

8.7, (λbω)+ is a cardinal in this model. An easy density argument shows that λbω =⋃
n≥17 xn where the xn’s are the supercompact Prikry points added by P̄ , and it

follows immediately that λbω is collapsed to have cardinality κ in V [L][Agg][P̄ ].

The following Lemma gives an analysis of names for sequences of ordinals, in a

similar spirit to Lemma 8.20 and Corollary 8.21.

Lemma 8.24. Let p ∈ P̄, where

p = ⟨q17, x17, . . . qn−1, xn−1, fn, An, Fn+1, An+1, Fn+2, . . .⟩.

Let τj = κ(xj), let γ < Λb
ω+2(τn−1), and let ḟ be a P-name for a function from γ to

ON . Let Plow = Q∗(τ17) ×
∏

17<j<n Q(xj−1, xj), and let p0 = (q17, . . . qn−1). Then

there are a direct extension

p′ = ⟨q17, x17, . . . qn−1, xn−1, f
′
n, A

′
n, F

′
n+1, A

′
n+1, F

′
n+2, . . .⟩.

of p, conditions (pα0 )α<γ in Plow and natural numbers (kα)α<γ such that for all

α < γ:

• pα0 ≤ p0.

• If pα0 = (qα17, . . . q
α
n−1), then every kα-step extension of

pα = ⟨qα17, x17, . . . qαn−1, xn−1, f
′
n, A

′
n, F

′
n+1, A

′
n+1, F

′
n+2, . . .⟩

decides ḟ(α).

Proof. For each α, let Dα be the set of q ∈ Q(τn−1, κ) such that there exist a direct

extension p̄ of p with [f p̄n] = q and k < ω such that every k-step extension of p̄

decides ḟ(α). Clearly Dα is open, and by Lemma 8.17 Dα is dense below [fn]. Since

γ < Λb
ω+2(τn−1) and Q(τn−1, κ) is < Λb

ω+2(τn−1)-distributive, we may find q ≤ [fn]

with q ∈
⋂

α<γ Dα.

For each α < γ we choose p̄α ≤∗ p witnessing that q ∈ Dα. Arguing exactly as

in the proof of Lemma 8.20, we may assume that all the entries of pα past xn−1 are

independent of α. This defines a suitable condition p′.

9. The tree property below ℵω2 in the final model

We now establish the various instances of the tree property below ℵω2 needed to

prove Theorem 1.1. The instances above ℵω2 require different techniques and will

be discussed in Section 10.

Let ⟨τi : 17 ≤ i < ω⟩ be the Prikry-sequence added by P̄, that is τi = κ(xi) in

the notation of Section 8. As we noted in Lemma 8.22, it follows from the Prikry

lemma that bounded subsets of κ in the final model live in extensions of V [L] by

posets of the form Q∗(τ17) ×Q(τ17, τ18) × . . .×Q(τi, τi+1) for some i < ω.

Global notation: τi
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The general plan is based on the fact that all the cardinals of interest are ei-

ther double successor cardinals or successors of singular cardinals. To handle the

double successors we will use the fact that the forcing posets Q∗(τ0), Ib(τi) and

Jc(τi) ∗ Q0(τi, τi+1) establish instances of the tree property at all the cardinals

which concern us, but only in submodels of our final model. We will use Lemma

4.5 to show that these instances of the tree property persist into our final model.

To handle the successors of singulars we will exploit the fact that all the cardi-

nals of concern have the form λω+1 where λ = Λa,b(τi), and that it is forced over

V by Laux(ρ, λ) × Raux(λ) that the tree property holds at λω+1: the extension by

Laux(ρ, λ)×Raux(λ) collapses so many cardinals that λω+1 = ℵω+1, the point is that

this extension absorbs enough of our final model to argue that the tree property

also holds at λω+1 in our final model.

Let τi and τi+1 be successive Prikry points. To lighten notation we make the

following definitions:

• τ = τi.

• τ∗ = τi+1.

• σa
n = Λa

n(τ), σb
n = Λb

n(τ).

• σa∗
n = Λa

n(τ∗), σb∗
n = Λb

n(τ∗).

We will discuss the cardinals in groups, roughly corresponding to the various

instances of the A ∗ U ∗ S construction which are used below κ. Recall that one

instance of this construction was done entirely by the Ib(τ) component of L(τ) at

stage τ with cardinal parameters µ0 = σa
17, µ1 = σa

ω+1, µ2 = σa
ω+2, µn+3 = σb

n

for n < ω. Another “two -phase” version was done partly by the Jc(τ) component

of L(τ) and partly by Q(τ, τ∗) with cardinal parameters µ0 = σb
17, µ1 = σb

ω+1,

µ2 = σb
ω+2, µ3 = σb

ω+3, µn+4 = σa∗
n for n < ω. When τ is the first Prikry point yet

a third version was done partly by the construction of V and partly by the forcing

Q∗(τ), this time with cardinal parameters µ0 = ω, µ1 = ρ+, µ2 = θ, µ3+n = σa
n for

n < ω.

We let E = Q∗(τ17) ×
∏

17≤k<i Q(τk, τk+1), so that E accounts for the forcing

posets interleaved between the Prikry points up to and including τ . Let E be the

E-generic object added to V [L] by P̄ .

9.1. Group I: σb
ω+2, σb

ω+3, σa∗
n for n < ω

Recall from Section 6 that L(τ) = Lb(τ) ∗ Ib(τ) ∗ (Ae(τ) × Jc(τ)) and is generic

over V [L ↾ τ ]. Recall also from Section 7.1 that Q(τ, τ∗) ∈ V [L ↾ τ∗][Ab
0(τ∗)] and

adds Q(τ, τ∗) =
∏

i<3Qi(τ, τ
∗) which is generic over V [L][E]. The generic objects

Jc(τ) and Q0(τ, τ∗) combine as described in Section 7.1. The cardinal parameters

are µ0 = σb
17, µ1 = σb

ω+1, µ2 = σb
ω+2, µ3 = σb

ω+3, µn+4 = σa∗
n for n < ω.

To help the reader keep track, here is a picture of some the most relevant cardi-

nals for this group under the various names that they go by in the proof . Cardinals
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in each row are equal, cardinals in each column are strictly increasing.

...
...

...
...

... Λa
1(τ∗) σa∗

1 µ5

... Λa
0(τ∗) σa∗

0 µ4

τi+1 τ∗
...

...
...

...
...

...
... Λb

ω+3(τ) σb
ω+3 µ3

... Λb
ω+2(τ) σb

ω+2 µ2

... Λb
ω+1(τ) σb

ω+1 µ1

...
...

...
...

... Λb
17(τ) σb

17 µ0

...
...

...
...

τi τ
...

...

As we noted in Lemma 8.22 above, all the relevant trees for cardinals in Group

I exist in the model WI = V [L ↾ τ∗][Ab
0(τ∗)][E][Q(τ, τ∗)]. So to cover the cardinals

in Group I it will suffice to prove:

Lemma 9.1. For all n < ω, µn+2 has the tree property in WI .

Proof. Expanding L ↾ τ∗,

WI = V lbi(τ)[Ae(τ) × Jc(τ)][L ↾ (τ, τ∗)][Ab
0(τ∗)][E][Q(τ, τ∗)].

With a view to rearranging WI we note that:

• By similar considerations as for Q(τ, τ∗), E ∈ V l(τ)[Ab
0(τ)].

• Ae(τ) ∈ V lb(τ).

• Jc(τ) ∈ V lbi(τ).

• Q0(τ, τ∗) ∈ V lbi(τ)[Jc(τ)].

• Q1(τ, τ∗) ∈ V lbi(τ)[Ae(τ) × Jc(τ)][L ↾ (τ, τ∗)][Ab
0(τ∗)].

• Q2(τ, τ∗) ∈ V lbi(τ)[Ib(τ)][Ae(τ) × Jc(τ)][L ↾ (τ, τ∗)].

So we may rearrange WI as

V lbi(τ)[E][Jc(τ)][Ae(τ)][L ↾ (τ, τ∗)][Q0(τ, τ∗) ×Q2(τ, τ∗)][Ab
0(τ∗) ∗Q1(τ, τ∗)].

By the definition of Q1(τ, τ∗), we may rearrange Ab
0(τ∗) ∗ Q1(τ, τ∗) as AV

0 (τ∗)

which is generic for AV
0 (τ∗) = AddV (σa∗

17 , σ
a∗
ω+2). We note that σa∗

17 = µ21 in our list

of cardinal parameters.

So WI is

V lbi(τ)[E][Jc(τ)][Ae(τ)][L ↾ (τ, τ∗)][Q0(τ, τ∗) ×Q2(τ, τ∗)][AV
0 (τ∗)].
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Since AV
0 (τ∗) ∈ V we may rearrange WI as

V lbi(τ)[E][Jc(τ)][Q0(τ, τ∗)][AV
0 (τ∗)][Ae(τ)][L ↾ (τ, τ∗)][Q2(τ, τ∗)].

Recalling that Q2(τ, τ∗) adds a term generic T (τ, τ∗) such that Ae(τ) × T (τ, τ∗)

projects to Ae(τ) ∗ L ↾ (τ, τ∗), we may rearrange WI as

V lbi(τ)[E][Jc(τ)][Q0(τ, τ∗)][AV
0 (τ∗)][Ae(τ) × T (τ, τ∗)],

and then as

V lbi(τ)[Jc(τ) ∗Q0(τ, τ∗)][T (τ, τ∗)][AV
0 (τ∗)][Ae(τ)][E]

We recall that Jc(τ) = (Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)) ∗ (Ac

1(τ) ∗ U c
1 (τ) ∗ Sc

1(τ)), while

Q0(τ, τ∗) adds Ac
[2,ω)(τ, τ

∗), U c
[2,ω)(τ, τ

∗) and Sc
[2,ω)(τ, τ

∗). The reader is advised to

keep in mind that µj for j ≤ 3 depends on τ while µj for j ≥ 4 depends on τ∗, so

there is a “seam” between µ3 and µ4.

Bearing in mind that Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) is defined in the

extension by Jc0(τ) = Ac
0(τ) ∗ Uc

0(τ) ∗ Sc0(τ), we reorganize Jc(τ) ∗ Q0(τ, τ∗) as

Jc
0(τ) ∗ (Ac

[1,ω)(τ, τ
∗) ∗ U c

[1,ω)(τ, τ
∗) ∗ Sc

[1,ω)(τ, τ
∗)). So WI is

V lbi(τ)[Jc
0(τ)∗(Ac

[1,ω)(τ, τ
∗)∗U c

[1,ω)(τ, τ
∗)∗Sc

[1,ω)(τ, τ
∗)][T (τ, τ∗)][AV

0 (τ∗)][Ae(τ)][E].

The general idea is now to use the indestructibility guaranteed by Lemma 4.5,

but there are a couple of obstacles:

• Since Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) was defined in an extension

by Ac
0(τ) ∗ Uc

0(τ) ∗ Sc0(τ), we need to treat µ2 separately.

• For n = 2, T(τ, τ∗) × AV
0 (τ∗) × Ae(τ) × E does not fit perfectly into the

hypotheses of Lemma 4.5 as applied to µ4 and Ac
[1,ω)(τ, τ

∗) ∗Uc
[1,ω)(τ, τ

∗) ∗
Sc[1,ω)(τ, τ

∗), and extra arguments are required.

With a view to applying Lemma 4.5 to Ac
[1,ω)(τ, τ

∗) ∗Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗)

in V lbi(τ)[Jc
0(τ)], recall that:

• E is generic for a poset E ∈ V lbi(τ), where |E| < µ0.

• Ae(τ) is generic for a Cohen poset adding µ3 subsets of µ0, defined in

V lb(τ).

• AV
0 (τ∗) is generic for a Cohen poset adding many subsets of µ21, defined

in V .

• T (τ, τ∗) is generic for a < µ3-directed closed poset T(τ, τ∗) defined in

V lbi(τ)[Jc(τ)], with µ3 < |T(τ, τ∗)| < µ4.

• Ac
[2,ω)(τ, τ

∗) is a product of Cohen posets defined in V .

• The cardinals µj for j ≥ 3 are indestructibly supercompact in V , and

ϕ is an indestructible Laver function there. They remain supercompact

in V lbi(τ)[Jc
0(τ)], and Ac

[1,ω)(τ, τ
∗) ∗ Uc

[1,ω)(τ, τ
∗) ∗ Sc[1,ω)(τ, τ

∗) was defined

using a Laver function derived from ϕ.

• V lbi(τ)[Jc
0(τ)], is an extension of V by a poset of size µ2.
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Now we verify that µn+2 has the tree property in WI for all n. For most n

we can directly apply Lemma 4.5 to Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) in

V lbi(τ)[Jc
0(τ)]. In this context Vdef = V lbi(τ)[Jc

0(τ)], and Vinn = V . The reader is

warned that since we are working with indices in the interval [1, ω), µk+1 in our

current context plays the role of µk in Lemma 4.5. In most cases, our appeals to

Lemma 4.5 are justified by Lemma 4.9.

The proof involves various auxiliary models, which we have sought to name in

a consistent way. The models W x
I where x = i, ii, iii are submodels of WI which

isolate some families of trees, and W x∗
I is a generic extension of W x

I obtained by

some form of quotient to term forcing.

Claim 9.2. µn+2 has the tree property in WI for all n ≥ 21.

Proof. Use Lemma 4.5 with D0 = AV
0 (τ∗), Dsmall = T(τ, τ∗) × Ae(τ) × E, and the

other factors trivial. The hypotheses of Lemma 4.5 are satisfied by appealing to

Lemma 4.9, where we note that AV
0 (τ∗) is a Cohen poset defined in V (which is

Vinn) adding subsets of µ21, so that it is a reasonable value for D0.

Claim 9.3. µn+2 has the tree property in WI for n = 20

Proof. Use Lemma 4.5 with D1 = AV
0 (τ∗), Dsmall = T(τ, τ∗) × Ae(τ) × E, and the

other factors trivial. Again we use Lemma 4.9 to justify the appeal to Lemma 4.5,

where this time AV
0 (τ∗) is a Cohen poset defined in V adding subsets of µn+1, so

that it is a reasonable value for D1.

Claim 9.4. µn+2 has the tree property in WI for 3 ≤ n ≤ 19.

Proof. Use Lemma 4.5 with D2 = AV
0 (τ∗), Dsmall = T(τ, τ∗) × Ae(τ) × E, and the

other factors trivial. In this range of values of n, AV
0 (τ∗) is < µn+2-directed closed

forcing defined in V , hence it is a reasonable value for D2.

Claim 9.5. µn+2 has the tree property in WI for n = 2.

Proof. This case is slightly harder because we need the factor T (τ, τ∗), but this

doesn’t fit smoothly into Lemma 4.5. We will use the mutual genericity idea from

Remark 4.11.

All the relevant µ4-trees lie in the model W i
I = V lbi(τ)[Jc

0(τ)][Ac
[1,ω)(τ, τ

∗) ∗
Uc

[1,ω)(τ, τ
∗) ∗ Sc[1,ω)(τ, τ

∗)][E ×Ae(τ) × T (τ, τ∗)]. Let T ∈W i
I be a µ4-tree.

Now while |E| < µ0 (so E would a reasonable value for Dsmall), and Ae(τ) is

Cohen forcing defined in a model between Vinn and Vdef adding Cohen subsets to

µ0 (so would be a reasonable value for D0), the poset T(τ, τ∗) does not fit into our

indestructibility scheme.

Proceeding exactly as in the proof of Lemma 4.5, we construct a generic em-

bedding j with critical point µ4 in an extension W i
I [P1−3]. Since |T(τ, τ∗)| < µ4, no

additional forcing is needed to handle T (τ, τ∗). Using j we obtain a branch b of the

tree T with b ∈W i
I [P1−3], and aim to show that b ∈W i

I .
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To this end we force over W i
I [P1−3] with a “quotient to term” forcing QTT to

remove the dependence of T (τ, τ∗) on Sc
1, obtaining a generic object TT for the term

forcing poset TT = AV lbi(τ)[Jc
0 (τ)][A

c
1(τ)∗U

c
1(τ)](Sc1(τ),T(τ, τ∗)) such that Sc

1(τ) × TT

induces Sc
1(τ) ∗ T (τ, τ∗).

Note that:

(1) TT is generic for the term forcing poset TT which is < µ3-closed in the

model V lbi(τ)[Jc
0(τ)][Ac

1(τ) ∗ U c
1 (τ)], and by routine calculations this term

poset is still < µ3-distributive in V lbi(τ)[Jc
0(τ)][Ac

[1,ω)(τ, τ
∗)∗U c

[1,ω)(τ, τ
∗)∗

Sc
[1,ω)(τ, τ

∗)].

(2) It follows from Lemma 2.44 that QTT is defined and < µ2-closed in

the model V lbi(τ)[Ac
[0,1](τ) ∗ U c

[0,1](τ) ∗ Sc
[0,1](τ)][T (τ, τ∗)], and by the

usual distributivity arguments QTT remains < µ2-closed in the model

V lbi(τ)[Ac(τ, τ∗) ∗ U c(τ, τ∗) ∗ Sc(τ, τ∗)][T (τ, τ∗)].

Let W i∗
I = W i

I [QTT ] = V lbi(τ)[Ac(τ, τ∗)∗U c(τ, τ∗)∗Sc(τ, τ∗)][E×Ae(τ)×TT ],

so that b ∈ W i∗
I [P1−3]. We now proceed to argue that b ∈ W i∗

I by a similar line of

argument to that in Lemma 4.5.

Let M0 = W i∗
I , M1 = M0[P2b], M2 = M1[P1a × P1b × P3], M3 = M2[P2a]. The

arguments that b ∈ M1 =⇒ b ∈ M0 and b ∈ M3 =⇒ b ∈ M2 work exactly as

before. To complete the argument we need only to argue to argue that M2 is an

extension of M1 by “formerly < µ3-closed” forcing in the sense of Fact 2.12.

Arguing as before, P1a × P1b × P3 is < µ3-closed in V lbi(τ)[Ac
0(τ) ∗ U c

0 (τ) ∗
Sc
0(τ)][Ac

[1,ω)(τ, τ
∗) ∗ U c

[1,ω)(τ, τ
∗) ∗ Sc(τ, τ∗) ↾ [µ3, µω)], and it remains < µ3-closed

in M− = V lbi(τ)[Ac
0(τ) ∗ U c

0 (τ) ∗ Sc
0(τ)][Ac

[1,ω)(τ, τ
∗) ∗ U c

[1,ω)(τ, τ
∗) ∗ Sc(τ, τ∗) ↾

[µ3, µω)][TT ]. Now M0 = M−[Sc(τ, τ∗) ↾ [µ2, µ3) × E × Ae(τ)] and M1 =

M−[P2b][S
c(τ, τ∗) ↾ [µ2, µ3) × E × Ae(τ)]. Since Sc(τ, τ∗) ↾ [µ2, µ3) × E × Ae(τ)

is µ3-cc in M−[P2b], P1a × P1b × P3 is formerly < µ3-closed, and we see that

b ∈M2 =⇒ b ∈M1.

We have shown that b ∈M0 = W i∗
I = W i

I [QTT ]. Since QTT is mutually generic

with P1−3 and b ∈W i
I [P1−3], b ∈W i

I and we are done.

Claim 9.6. µn+2 has the tree property in WI for n = 1.

Proof. Again this case needs a slightly different argument, using some of the in-

gredients from the proof of Claim 9.5, but appealing directly to Lemma 4.5 and

avoiding the use of mutual genericity.

As in the preceding case, all the relevant µ3-trees lie in the model W ii
I =

V lbi(τ)[Ac(τ, τ∗) ∗U c(τ, τ∗) ∗ Sc(τ, τ∗)][E ×Ae(τ)× T (τ, τ∗)], and the troublesome

factor is T (τ, τ∗). Let T ∈W ii
I be a µ3-tree.

Exactly as in the proof of Claim 9.5, we force over W ii
I with the quotient to term

forcing QTT to obtain a term forcing generic TT such that Sc
1(τ, τ∗) × TT induces

Sc
1(τ, τ∗)∗T (τ, τ∗). Since TT is generic for a term forcing poset TT which is defined

and < µ3-directed closed in V lbi(τ)[Ac
[0,1](τ, τ

∗) ∗ U c
[0,1](τ, τ

∗) ∗ Sc
0(τ, τ∗)], we may
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appeal to Lemma 4.5 for Ac
[1,ω)(τ, τ

∗) ∗ Uc
[1,ω)(τ, τ

∗) ∗ Sc[1,ω)(τ, τ
∗) with Dsmall = E,

D0 = Ae(τ), and D3 = TT. As before, Lemma 4.9 ensures that we satisfied the

hypotheses of Lemma 4.5. We conclude that µ3 has the tree property in W ii
I [QTT ],

so that our tree has a branch b in W ii
I [QTT ].

Since QTT is < µ2-closed in V lbi(τ)[Ac(τ, τ∗) ∗ U c(τ, τ∗) ∗ Sc(τ, τ∗)][T (τ, τ∗)],

and E × Ae(τ) is µ2-cc in this model, QTT is formerly < µ2-closed in W ii
I and so

b ∈W ii
I by Fact 2.12.

Claim 9.7. µn+2 has the tree property in WI for n = 0.

Proof. Routine calculation shows that all the relevant µ2-trees lie in W iii
I , where

W iii
I = V lbi(τ)[Jc(τ)][Ac

2(τ, τ∗) × E × Ae(τ)]. The key point is that Ac
[0,2](τ, τ

∗) ∗
U c
0 (τ) ∗ Sc

0(τ) is a forcing poset which is in the scope of Lemma 4.10.

We need to extend W iii
I before applying Lemma 4.10. Let

TBC = AV lbi(τ)[Ac
0(τ)∗U

c
0 (τ)](Sc0(τ),Bc

1(τ) × Cc
1(τ)),

so by Lemma 2.33 TBC is < µ2-directed closed in V lbi(τ)[Ac
0(τ) ∗ U c

0 (τ)].

Forcing over V lbi(τ)[Jc(τ)] with an appropriate quotient forcing QTT0, we may

obtain an extension of the form V lbi(τ)[Ac
[0,1](τ) ∗ U c

0 (τ) ∗ Sc
0(τ)][Bc

1(τ) × Cc
1(τ)].

Since Ac
1(τ) ∗Uc

1(τ) ∗ Sc1(τ) is the first stage of an A ∗U ∗ S construction defined in

V lbi(τ)[Jc
0 ], it follows from Remark 3.10 that QTT0 is < µ1-closed in V lbi(τ)[Jc(τ)].

Forcing with another quotient forcing QTT1, we may further extend to obtain a

model V lbi(τ)[Ac
[0,1](τ) ∗U c

0 (τ) ∗ Sc
0(τ)][TBC]: by Lemma 2.44 we see that QTT1 is

< µ1-closed in V lbi(τ)[Jc
0(τ)][Bc

1(τ) ×Cc
1(τ)]. By the distributivity of Ac

1(τ), QTT1

is < µ1-closed in V lbi(τ)[Ac
[0,1](τ) ∗ U c

0 (τ) ∗ Sc
0(τ)][Bc

1(τ) × C1
c (τ)], so that if we set

QTT = QTT0 ∗QTT1 then QTT is < µ1-closed in V lbi(τ)[Jc(τ)].

Forcing with QTT over W iii
I , we get

W iii
I = V lbi(τ)[Jc(τ)][Ac

2(τ, τ∗) × E ×Ae(τ)]

⊆W iii∗
I = V lbi(τ)[Ac

[0,2](τ, τ
∗) ∗ U c

0 (τ) ∗ Sc
0(τ)][TBC × E ×Ae(τ)].

Now we use Lemma 4.10 to show that µ2 has the tree property in W iii∗
I . To save

the reader some work we record how the parameters from that Lemma should be

set:

• n is 0.

• η is µ4, so that A ↾ η is Ac
0(τ) ×Ac

1(τ) ×Ac
2(τ, τ∗).

• Vinn is V .

• Vdef is V lbi(τ).

• Dsmall is E.

• D3 is TBC.

• D0 is Ae(τ).
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We claim that the quotient-to-term forcing which we used to obtain W iii∗
I from

W iii
I is formerly < µ1-closed in W iii

I . To see this note that W iii
I is obtained from

V lbi(τ)[Jc(τ)] by adding Ac
2(τ, τ∗) (which is generic for highly distributive forcing

and preserves the closure) and then E ×Ae(τ) (which is generic for µ1-cc forcing).

It follows that µ2 has the tree property in W iii
I .

This concludes the proof of Lemma 9.1

9.2. Group II: σa
ω+2, σb

n for n < ω.

Recall from Section 6 that L(τ) = Lb(τ)∗Ib(τ)∗ (Ae(τ)×Jc(τ)) and is generic over

V [L ↾ τ ]. Here Lb(τ) is making the cardinals Λb
n(τ) = σb

n for n < ω indestructible,

and Ib(τ) is a forcing of the form A∗U∗S defined in V [L ↾ τ ][Lb(τ)] with parameters

set as follows: µ0 = σa
17, µ1 = σa

ω+1, µ2 = σa
ω+2, µ3+n = σb

n. The poset Ib(τ) uses

the indestructible Laver function added by Lb(τ).

...
...

...
...

... Λb
1(τ) σb

1 µ4

... Λb
0(τ) σb

0 µ3

... Λa
ω+2(τ) σa

ω+2 µ2

... Λa
ω+1(τ) σa

ω+1 µ1

...
...

...
...

... Λa
17(τ) σa

17 µ0

...
...

...
...

τi τ
...

...

By the design of Ib(τ), all the cardinals in Group II have the tree property in

the model V [L ↾ τ ][Lb(τ)][Ib(τ)]. As in Group I, to see that the cardinals in Group

II have the tree property in our final model V [L][Agg][P̄ ] we have to account for

various generic objects added by L ↾ [τ, κ) and by P̄ . The objects of potential

concern are:

• E, which we recall is added by the interleaved posets between Prikry points

up to and including τ . This object is slightly more troublesome in this group

because it is generic for forcing of size µ2 = σa
ω+2.

• Ae(τ) × Jc(τ), where Ae(τ) is adding subsets to σb
17 = µ20 and Jc(τ) is

doing the first two steps of an A∗U∗S construction whose first few cardinal

parameters are σb
17, σb

ω+1, σb
ω+2: since we only care about trees up to σb

ω,

the only relevant part of Jc(τ) is Ac
0.

• Q(τ, τ∗), which we can safely ignore since it is generic for σb
ω-distributive

forcing.
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So all the relevant trees lie in the model WII = V lbi(τ)[E][Ae(τ) ×Ac
0(τ)].

We need a slightly finer analysis of E:

• If τ is not the first Prikry point, let τ− be the preceding Prikry point. Then

E = E0 ×Q(τ−, τ) where E0 represents the product of interleaved forcing

posets up to τ−. It is easy to see that E0 ∈ V [L ↾ τ ] and |E0| < τ < µ0.

Furthermore Q(τ−, τ) =
∏

i<3 Qi(τ
−, τ) where:

– Q0(τ−, τ) is defined in V lbi(τ−)][Jc(τ−)] (which is a submodel of V [L ↾
τ ]) and Q0(τ−, τ) is generic for a version of A ∗ U ∗ S forcing of size

σa
ω+1 = µ1 defined in V lbi(τ−)][Jc(τ−)]. Appealing to Lemma 3.21, in

V lbi(τ−)][Jc(τ−)] the poset Q0(τ−, τ) embeds into a two-step iteration

where the first step is < µ1-distributive and the second step is µ1-cc.

– Q1(τ−, τ) is a “quotient to term” forcing defined in V [L ↾ τ ][Ab
0(τ)], re-

fining Ab
0(τ) to AV

0 (τ) which is a generic object for AddV (σa
17, σ

a
ω+2) =

AddV (µ0, µ2), so that V [L ↾ τ ][Ab
0(τ)][Q1(τ, τ∗)] = V [(L ↾ τ)×AV

0 (τ)].

– Q2(τ−, τ) is generic for a forcing of cardinality τ < µ0, defined in

V [L ↾ τ ].

• If τ is the first Prikry point then E =
∏

i<3Q
∗
i (τ) where:

– Q∗
0(τ) is again generic for a version of A∗U∗S forcing of size µ1, which

embeds into an iteration where < µ1-distributive forcing is followed

by µ1-cc forcing.

– Q∗
1(τ) is generic for a quotient-to-term forcing defined exactly as

above.

– Q∗
2(τ) is generic for Coll(ω, ρ), where we note that ρ < τ < µ0.

In summary, many of the factors in E are forcing posets which lie in V lb(τ) and

have size less than µ0.

Now we argue that all the cardinals in Group II have the tree property in WII .

We mostly do this by applying Lemma 4.5 to Ib(τ), with Vinn = Vdef = V lb(τ). As

before, most appeals to Lemma 4.5 are justified by Lemma 4.9.

Lemma 9.8. For all n < ω, µn+2 has the tree property in WII .

Proof. As before we break the proof into several claims.

Claim 9.9. µn+2 has the tree property in WII for n ≥ 20.

Proof. Appeal to Lemma 4.5 with Dsmall = E, D0 = Ae(τ) × Ac
0(τ), and the re-

maining factors trivial.

Claim 9.10. µn+2 has the tree property in WII for n = 19.

Proof. Appeal to Lemma 4.5 with Dsmall = E, D1 = Ae(τ) × Ac
0(τ), remaining

factors trivial.

Claim 9.11. µn+2 has the tree property in WII for 2 ≤ n ≤ 18.
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Proof. Appeal to Lemma 4.5 with Dsmall = E, D2 = Ae(τ) × Ac
0(τ), remaining

factors trivial.

Before we handle the last two cases, we need to discuss some issues involving

the Q0 and Q1 factors in the posets Q(τ−, τ) and Q∗(τ).

• The Q0 factor: Let Q0 = Q∗
0(τ) if τ is the first Prikry point, and

Q0 = Q0(τ−, τ) otherwise. In either case Q0 is defined in some model V [L′]

intermediate between V and V [L ↾ τ ]. By the analysis from Section 3.2, in

V [L′] we may write Q0 as the projection of a two-step iteration Qdist
0 ∗Qcc

0 ,

where:

– |Qdist
0 ∗Qcc

0 | = µ1 = σa
ω+1.

– For all large n < ω, Qdist
0 is the projection of some σa

n-closed forcing

poset (so that Qdist
0 is < µ1-distributive).

– It is forced by Qdist
0 that Qcc

0 is the union of σa
ω filters, so that it is

µ1-cc in any outer model of V [L′][Qdist
0 ] where µ1 is still a cardinal.

• The Q1 factor: Let Q1 = Q∗
1(τ) if τ is the first Prikry point, and Q1 =

Q1(τ−, τ) otherwise. In either case Q1 is a quotient to term poset defined in

V [L ↾ τ ][Ab
0(τ)], refining Ab

0(τ) to AV
0 (τ) which is generic for AddV (µ0, µ2):

in the notation from Lemma 2.42 P is L ↾ τ and Q is Ab
0(τ). We would like

to set D0 equal to Q1 but there are some obstacles:

– The definition of the poset involves Ab
0(τ), so it is not in Vdef (which

is V [L ↾ τ ][Lb(τ)]) and thus hypothesis 7 of Lemma 4.5 is definitely

not satisfied.

– Hypotheses 7 and 8 require that D0 and some related posets have quite

a robust chain condition, which in our context should be the µ1-cc since

we plan to deal with µ2 as well as µ3. We need to verify versions of

these hypotheses, appropriately modified to handle the dependence on

Ab
0(τ), for the poset Q1.

The cure for the first of these issues is to modify the statement and

proof of Lemma 4.5 to permit some dependence of D0 on A. In the version

appropriate for Claim 9.12 (resp. 9.13) we modify the hypotheses concerning

D0 as follows:

(1) D0 ∈ Vdef [An−1] (resp. D0 ∈ Vdef [An]), and D0 is µn+1-Knaster in

Vdef [A ∗ U ∗ S][D1,2,3][P2b].

(2) For any W ′ which is an extension of W [P2b] by a forcing which is

< µn+1-closed in Vdef [A ∗ U ∗ S ↾ [µn+1, µω)][D2], and any j as in

hypotheses 6 of Lemma 4.5, if P2a = j(An−1 ∗ D0)/j[An−1 × D0])

(resp. P2a = j(An×D0)/j[An×D0]) then P2a is µn+1-Knaster in W ′.

It is straightforward to modify the proof of Lemma 4.5 for these slightly

more general hypotheses.
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In our specific context we can use the following observations to satisfy

these hypotheses:

– By Lemmas 2.43 and 2.42, to verify that Q1 is µ1-Knaster in some

outer model it is sufficient to verify that AV
0 (τ) = AddV (µ0, µ2) is

µ1-Knaster in the same model.

– By Lemma 2.41, Ab
0(τ) ∗Q1 is equivalent to AV

0 (τ) in V [L ↾ τ ], so as

for Q1 it is enough to check that AV
0 (τ) is µ1-Knaster.

– |Ab
0(τ)∗Q1| = µ2, so that in the case n = 1 this poset is fixed by j and

the technical hypothesis involving stretching by j is vacuously true.

– In the case n = 0, j(Ab
0(τ)∗Q1)/j[Ab

0(τ)∗Q1) is easily seen to be equiv-

alent to AddV (µ0, j(µ2) \ µ2), so that again verifying µ1-Knasterness

amounts to verifying this property for a Cohen poset adding subsets

of µ0 and defined in V .

Claim 9.12. µn+2 has the tree property in WII for n = 1.

Proof. Appeal to Lemma 4.5 (modified as above to permit D0 to depend on A)

where D2 is Ae(τ) × Ac
0(τ), D0 is Q1(τ−, τ) or Q∗

1(τ), and Dsmall is the product of

the remaining factors in E.

Claim 9.13. µn+2 has the tree property in WII for n = 0.

Proof. Appeal to Lemma 4.5 in the more general version from Remark 4.12. Here

D2 = Ae(τ) × Ac
0(τ), the factor D from Remark 4.12 is Q0(τ−, τ) or Q∗

0(τ), D0 is

Q1(τ−, τ) or Q∗
1(τ), and Dsmall is the product of the remaining factors in E.

To see that this is legitimate we need to verify that the hypotheses from Remark

4.12 are satisfied. Since D1 is trivial and |D0| < µ0, P2a and P2b are Cohen posets

computed in Vdef adding subsets to µ0 and µ1 respectively, so that by the usual ar-

guments we can establish the necessary Knasterness and distributivity hypotheses.

As we already discussed, Qcc
0 has a very robust form of µ1-cc, so it remains to show

that Qdist
0 is < µ1-distributive in V lbi(τ)[Ae(τ) ×Ac

0(τ)].

Since |Qdist
0 | = µ1 and Ae(τ)×Ac

0(τ) is generic for highly distributive forcing, it

is enough to verify the distributivity in V lbi(τ). In fact by article 7 of Lemma 3.13

it will be enough to verify it in V lb(τ)[Ab
[0,1](τ) ∗ U b

0(τ) ∗ Sb
0(τ)].

Recall from Remark 6.1 that since Lb(τ) is µ1-closed, Ab
0(τ) and Ab

1(τ) are

Cohen posets defined in V [L ↾ τ ], moreover Ab
0(τ) is µ+

0 -cc (where µ0 = σa
17)

and Ab
1(τ) is < µ1-closed. In V lb(τ), Ab

[0,1](τ) ∗ Ub
0(τ) ∗ Sb0(τ) is the projection of

Ab
[0,1](τ) × Bb

0(τ) × Cb
0(τ), where Bb

0(τ) × Cb
0(τ) is < µ1-closed.

By the usual methods we may extend V lb(τ)[Ab
[0,1](τ) ∗U b

0(τ) ∗ Sb
0(τ)]. to V [L ↾

τ ][Ab
0(τ) × T ], where Ab

0(τ) is generic over V [L ↾ τ ] for µ+
0 -cc forcing, and T is

generic over V [L ↾ τ ] for some < µ1-closed term forcing. By Easton’s lemma, for

all large n we have that Qdist
0 is σa

n-distributive in V [L ↾ τ ][Ab
0(τ) × T ]. So Qdist

0 is

< µ1-distributive in V lbi(τ)[Ae(τ) × Ac
0(τ)], as required for an appeal to Remark

4.12.
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This concludes the proof of Lemma 9.8

9.3. Group III (At the first Prikry point): θ, σa
n for n < ω

Let τ ′ be the first Prikry point, and define σa
n = Λa

n(τ ′) and so on as usual. We

recall some salient facts and definitions from Section 7.2.

• V = V0[A0 ∗ U0 ∗ L0], V1 = V0[A0 ∗ U0].

• L ↾ τ ′ is generic over V for θ+-directed τ ′-cc forcing of cardinality τ ′.

• L0 ∗ L ↾ τ ′ is generic for θ+-directed closed forcing defined in V1.

• θ̄ < ρ < θ < τ ′ < σa
0 .

• ρ is a limit of supercompact cardinals in V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄], but becomes

an ω-successor cardinal in V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄ + 1],

• Ab
0(τ ′) is generic for AddV [L↾τ ′](σa

17, [σ
a
ω+1, σ

a
ω+2)). This is added as part of

L(τ ′).

• Q∗
0(τ ′) ∈ V . A0 ∗ U0 combines with Q∗

0(τ ′) to give us a generic object

A ∗ U ∗ S for a two-phase A ∗ U ∗ S construction with cardinal parameters

µ0 = ω, µ1 = ρ+, µ2 = θ, and µ3+n = σa
n for n < ω. So Q∗

0(τ ′) adds A[1,ω),

U[1,ω) and S = S0 ∗ S[1,ω).

• C0 is defined in V0, while Bn and Cn for n ≥ 1 are defined in V . The

definition of S0 does not depend on U0.

• θ is indestructibly supercompact in V0. A0 ∗ U0 ∗ S0 may be viewed as

generic for the first stage of an A ∗U ∗ S construction defined over V0 with

parameters ω, ρ+, θ and using the indestructible Laver function ϕ0 from V0.

• The cardinals µk for k ≥ 3 are indestructibly supercompact in V , with an

indestructible Laver function ϕ which was added by L0. It was ϕ which

was used to define A[1,ω) ∗ U[1,ω) ∗ S[1,ω). So A[1,ω) ∗ U[1,ω) ∗ S[1,ω) may be

viewed as generic for a version of the A ∗ U ∗ S construction defined in V

with parameters µ1, µ2, µ3 . . . and ϕ.

• A1 is defined in V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄ + 1], An for n ≥ 2 is defined in V .

• Q∗
1(τ ′) ∈ V [L ↾ τ ′][Ab

0(τ ′)]. Q∗
1(τ ′) is a “quotient to term” forcing poset,

and refines Ab
0(τ ′) to AV

0 (τ ′) which is AV
0 (τ ′)-generic where AV

0 (τ ′) =

AddV (σa
17, σ

a
ω+2)-generic.

• Q∗
2(τ ′) = Coll(ω, ρ), we call the generic object h.
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...
...

...
...

... Λa
1(τ ′) σa

1 µ4

... Λa
0(τ ′) σa

0 µ3

τ0 τ ′
...

...
... θ µ2

... ρ+ µ1

... ω µ0

Arguing as in Sections 9.1 and 9.2, all the relevant trees for Group III lie in

WIII where WIII = V [L ↾ τ ][A[1,ω) ∗ U[1,ω) ∗ S][AV
0 (τ ′)][h].

Lemma 9.14. For all n < ω, µn+2 has the tree property in WIII .

Proof. We will break the problem of establishing the tree property at µn+2 into two

parts. For n ≥ 1 we will apply Lemma 4.5 to A[1,ω) ∗U[1,ω) ∗S[1,ω), working over V ,

which makes sense because A[1,ω) ∗U[1,ω) ∗S[1,ω) is an A∗U∗S construction defined

in V which establishes the tree property from µ3 onwards. In this setting we have

to account for the effects of L ↾ τ , S0, AV
0 (τ ′) and h.

Claim 9.15. µn+2 has the tree property in WIII for n ≥ 20.

Proof. Appeal to Lemma 4.5 with Dsmall = L ↾ τ × S0 × h, D0 = AV
0 (τ ′).

Claim 9.16. µn+2 has the tree property in WIII for n = 19.

Proof. Appeal to Lemma 4.5 with Dsmall = L ↾ τ × S0 × h, D1 = AV
0 (τ ′).

Claim 9.17. µn+2 has the tree property in WIII for 2 ≤ n ≤ 18.

Proof. Appeal to Lemma 4.5 with Dsmall = L ↾ τ ′ × S0 × h, D2 = AV
0 (τ ′).

Claim 9.18. µn+2 has the tree property in WIII for n = 1.

Proof. Note that AV
0 is generic for highly distributive forcing, so adds no µ3-trees

and can be ignored in this context. Appeal to Lemma 4.5 with Dsmall = Coll(ω, ρ),

D0 = S0, D1 = L ↾ τ ′.

Claim 9.19. µn+2 has the tree property in WIII for n = 0.

Proof. We are concerned with µ2 = θ. By the usual distributivity arguments,

the only relevant part of A[1,ω) ∗ U[1,ω) ∗ S[1,ω) is (A1 ∗ U1 ∗ S1) × A2. Note that

A2 = Add(µ2, [µ3, µ4))V = Add(µ2, [µ3, µ4))V1 , where the last equality holds by the

distributivity of L0.

We aim to apply Lemma 4.10 but we need to be careful because A1 is only

defined in the model V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄ + 1], so we view this as the ground model

Vdef in our appeal to the lemma. This is not a problem because the remaining part
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of A0 ∗U0 is A0 ↾ [θ̄, θ) ∗U0 ↾ (θ̄, θ), and by the definition of Q∗
0(τ) the definition of

S0 only uses A0 ↾ α where α > µ1 > ρ > θ̄.

Working over V0[A0 ∗ U0 ∗ S0], we have to account for the effects of L0 (which

prolongs V1 to V ) plus L ↾ τ , h and A[1,ω) ∗ U[1,ω) ∗ S[1,ω).

As usual we may force over V [A1 ∗ U1 ∗ S1] with a suitable quotient to term

forcing to remove the dependence of U1 ∗ S1 on A1. We obtain B1 × C1 which

is B1 × C1-generic over V [A1], so that A1 × B1 × C1 induces A1 ∗ U1 ∗ S1 and

V [A1 ∗ U1 ∗ S1] ⊆ V [A1 × B1 × C1]. B1 × C1 is generic for < µ2-directed closed

forcing defined in V , and by Remark 3.10 the forcing which produces B1 × C1 is

generic for < µ1-closed forcing defined in V [A1 ∗ U1 ∗ S1].

At this point we recall that S0 is added as part of Q∗(τ), is generic for S0 ∈
V0[A0], and is mutually generic with U0 ∗ L0 ∗ L ↾ τ ∗ (A[1,2] ∗ U1 ∗ S1 × h). We will

use Lemma 4.10 with the non-trivial parameters set as follows:

• Vdef = Vinn = V0[A0 ↾ θ̄ ∗ U0 ↾ θ̄ + 1].

• η = µ3

• D3 = L0 ∗ (L ↾ τ × A2 × B1 × C1)

• D0 = Coll(ω, ρ).

It follows from Lemma 4.10 that θ has the tree property in

V0[A0 ∗ U0 ∗ S0][A1][L0][L ↾ τ ×A2 ×B1 × C1][h]

=V [L ↾ τ ][S0][A1 ×A2 ×B1 × C1][h].

The forcing which produces B1 × C1 is < µ1-closed in V [A1 ∗ U1 ∗ S1], and retains

this closure in V [L ↾ τ ][A1 ∗U1 ∗S1×A2]. Since A0 ∗S0 is the projection of A0×C0

where C0 is < µ1-closed in V0, the usual arguments show that S0 is < µ1-distributive

in V [L ↾ τ ][S0][A1 ∗ U1 ∗ S1 × A2], so that the forcing which produces B1 × C1 is

< µ1-closed in V [L ↾ τ ′][S0][A1 ∗ U1 ∗ S1 × A2], and so is formerly < µ1-closed

in V [L ↾ τ ′][S0][A1 ∗ U1 ∗ S1 × A2][h] because Coll(ω, ρ) trivially has µ1-cc. So by

Fact 2.12 µ2 has the tree property in V [L ↾ τ ][S0][A1 ∗ U1 ∗ S1 ×A2][h] and we are

done.

This concludes the proof of Lemma 9.14.

9.4. Group IV (Successors of singulars)

: σa
ω+1, σb

ω+1

Finally we treat the cardinals below κ which are successors of singular cardinals.

Such cardinals are either of the form σa
ω+1 = Λa

ω+1(τ) or σb
ω+1 = Λb

ω+1(τ) for some

Prikry point τ . The case of Λa
ω+1(τ ′) for τ ′ the first Prikry point, which becomes

ℵω+1 in the final model, requires special attention.

Recall from Section 5.3 that we chose the cardinals, ρ, λa and λb so that for

λ ∈ {λa, λb} the cardinal λω+1 has the tree property in the extension of V by
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Laux(ρ, λ) × Raux(λ), where λω+1 becomes ℵω+1. We defined the reflected versions

Λa(τ) and Λb(τ) of λa and λb to secure the following key property: for every potential

Prikry point τ , if λ ∈ {Λa(τ),Λb(τ)} then λω+1 is forced to have the tree property

in the extension of V by Laux(ρ, λ) × Raux(λ).

The key idea in this section is that for every relevant λ, we can establish the tree

property at λω+1 in our final model V [L][P̄ ] by embedding an appropriate submodel

of V [L][P̄ ] into the extension of V by Laux(ρ, λ) × Raux(λ). It is important that

the quotient to term posets that accomplish this embedding are ρ-closed, and this

consideration played a role in the design of our construction. The posets Laux(ρ, λ)

and Raux(λ) were designed to absorb the many different posets which will appear

in these embedding arguments. We will make repeated use of the term forcing and

absorption arguments from Sections 2.6 and Section 2.7.

At this point it becomes important that all of the Laver functions used in our

construction were derived from the initial Laver function ϕ0. It is for this reason that

various products of term forcings which will be used in the absorption arguments

fit the hypotheses of Lemma 2.50.

9.4.1. The cardinal σb
ω+1

: By the usual arguments, all relevant trees in the final model lie in the submodel

V lbi(τ)[E][Jc
0(τ)][Ae(τ) × Ac

1(τ)]. Since any particular σb
ω+1-tree only involves at

most σb
ω+1 coordinates in the (highly homogeneous) generic object Ae(τ)×Ac

1(τ), it

will suffice to establish the tree property in M , where M = V lbi(τ)[E][Jc
0(τ)][Ae(τ) ↾

σb
ω+2 ×Ac

1(τ)′] and Ac
1(τ)′ is AddV [L↾τ ][Lb(τ)](σb

ω+1, σ
b
ω+2)-generic.

For the purposes of absorbingM into an extension of V by Laux(ρ, σb
0)×Raux(σb

0),

we note that:

• V = V0[A0 ∗ U0 ∗ L0] = W̄ [A0 ↾ [θ̄, θ) ∗ U0 ↾ (θ̄ + 1, θ)][L0], where we note

that the first element in the support of U0 ↾ (θ̄ + 1, θ)] is much larger than

ρ.

• E breaks down as h×A1 × E′, where:

– h× A1 is part of the generic object for the forcing at the first Prikry

point τ ′ as described in Section 7.2. h is Coll(ω, ρ)-generic and A1 is

AddW̄ (ρ+, µ′)-generic, where µ′ = Λa
0(τ ′).

– E′ collects the rest of E, that is the remainder of Q∗(τ ′) together with

generic objects for the interleaved forcing posets up to and including

τ . E′ is generic for a poset of cardinality σa
ω+2.

• Ib(τ) is generic for an A ∗U ∗ S construction defined in V lb(τ) with param-

eters σa
17, σ

a
ω+1, σ

a
ω+2, σ

b
0, . . ..

• Jc
0(τ) is the first phase of a two-phase A ∗ U ∗ S construction defined in

V lbi(τ) where the relevant parameters are σb
17, σb

ω+1 and σb
ω+2. Ac

0(τ) is

generic for AddV lb(τ)(σb
17, [σ

b
ω+1, σ

b
ω+2)), and the support of U c

0 (τ) ∗ Sc
0(τ)

is contained in the interval (σb
ω+1, σ

b
ω+2).
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To help the reader keep track of the indices, we note that σb
n is playing the role

of µn+3 in Ib(τ), and that the components of this forcing with index n have supports

in the interval [µn+1, µn+2) as usual.

As a first step we set aside h (which will eventually be absorbed by the Coll(ω, ρ)

component of L(ρ, σb
0)), to obtain a model M̄ = V lbi(τ)[A1][E′][Jc

0(τ)][Ae(τ) ↾
σb
ω+2 ×Ac

1(τ)′]. We note that M̄ is a ρ-distributive extension of V . Then we isolate

the generic objects which we plan to absorb into Raux(σb
0): these are Lb(τ) ↾ [σb

0, σ
b
ω),

Ab
[3,ω)(τ), U b

[2,ω)(τ) = U b(τ) ↾ [σb
0, σ

b
ω), Sb

[2,ω)(τ) = Sb(τ) ↾ [σb
0, σ

b
ω), Ac

0(τ), U c
0 (τ),

Sc
0(τ), Ae(τ) ↾ σb

ω+2 and Ac
1(τ)′.

We now need to specify how these various objects are to be absorbed into

Raux(σb
0) by doing a series of quotient to term forcings, which in every case will

be ρ-closed in the models where they are defined. The closure of these forcings will

follow by appealing to Fact 2.47, Lemma 2.50 and Lemma 2.52.

• Lb(τ) ↾ [σb
0, σ

b
ω) is a Laver-type iteration defined in the model V [L ↾

τ ][Lb(τ) ↾ σb
0)].

We claim that L ↾ τ ∗ Lb(τ) ↾ σb
0 ∗ Lb(τ) ↾ [σb

0, σ
b
ω) can be written as

a projection of the product of L ↾ τ ∗ Lb(τ) ↾ σb
0 and an Easton support

product of term posets of the form AV (L ↾ τ ∗ Lb(τ) ↾ α, ϕ(α)), taken over

α ∈ (σb
0, σ

b
ω) such that α ∈ dom(ϕ) and ϕ(α) is an appropriate name. The

only tricky point is that since L ↾ τ ∗ Lb(τ) ↾ σb
0 has cardinality σb

0, taking

Easton supports in V suffices.

Since dom(ϕ) consists of inaccessible closure points of ϕ, and ϕ(α) names

a < α-directed closed poset for all relevant α, it follows from Lemma 2.50

that the Easton product of term forcing posets can be absorbed by the

component
∏

n<ω EastE0(σb
n, < σb

n+1) of Raux(σb
0).

• Ab
[3,ω) =

∏
n≥3 Ab

n,

where Ab
n = AddV [L↾τ∗Lb(τ)](σb

n, [σ
b
n+1, σ

b
n+2)), and so by closure of tails

of Lb(τ) in fact Ab
n = AddV [L↾τ∗Lb(τ)↾σb

n](σb
n, [σ

b
n+1, σ

b
n+2))

For each n, L ↾ τ ∗ Lb(τ) ↾ σb
n ∗ Ab

n is the projection of the product of

L ↾ τ ∗ Lb(τ) ↾ σb
n and AV (L ↾ τ ∗ Lb(τ) ↾ σb

n,
˙Add(σb

n, [σ
b
n+1, σ

b
n+2)). By

Lemma 2.42 the term poset at n is equivalent to AddV (σb
n, σ

b
n+2), and can

be absorbed by the component Add(σb
n, σ

b
n+2) of Raux(σb

0).

• We claim that L ↾ τ ∗Lb(τ) ∗Ab(τ) ∗Ub(τ) is the projection of the product

of L ↾ τ ∗ Lb(τ) ∗ Ab(τ) ∗ Ub
[0,1](τ) and an Easton support product of term

posets of the form AV (L ↾ τ ∗Lb(τ) ↾ γα ∗Ab(τ) ↾ α ∗Ub(τ) ↾ α, U̇b(τ)(α)),

where σb
0 < α < σb

ω, γα < α∗ and γα is chosen large enough that Ab(τ) ↾
α ∗ Ub(τ) ↾ α+ 1 can be defined in V [L ↾ τ ∗ Lb(τ) ↾ γα].

This is a variation on Lemma 3.16, adjusted to take account of the fact

that Ib(τ) is defined in the generic extension V [L ↾ τ ][Lb(τ)] of V . The only

subtle points here are that we restricted Lb(τ) to make the term forcing

small enough, and that we used Lemma 2.53 to ensure that we may take
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an Easton support product in V .

This product of term forcing posets can be absorbed by the component∏
n<ω EastE0(σb

n, < σb
n+1) of R(σb

0).

• L ↾ τ ∗ Lb(τ) ∗ Ab(τ) ∗ Ub(τ) ∗ Sb(τ)[2,ω) is the projection of the product

of L ↾ τ ∗ Lb(τ) ∗ Ab(τ) ∗ Ub(τ) and a full support product of term posets

defined for n < ω, where at n we take the product with < σb
n supports

over α ∈ (σb
n, σ

b
n+2) of posets of the form AV (L ↾ τ ∗ Lb(τ) ↾ γα ∗ Ab(τ) ↾

α∗Ub(τ) ↾ σb
n,

˙Add(σb
n, 1)) and δα < α∗ is chosen large enough that Ab(τ) ↾

α ∗ Ub(τ) ↾ σb
n+1 ∗ Add(σb

n+1, 1) can be defined in V [L ↾ τ ∗ Lb ↾ δα].

The issue about supports is easier here than for Ub(τ)[2,ω). Given a set

of ordinals of size less than ρbn in V [L ↾ τ ][Lb(τ)], we use closure to cover

it by a small set in V [L ↾ τ ][Lb(τ) ↾ ρbn], and then chain condition to cover

the covering set by a small set in V .

Here the product of term forcing posets can be absorbed by the com-

ponent
∏

n<ω Coll(σb
n, σ

b
n+1) of Raux(σb

0).

• Ac
0(τ) = AddV [L↾τ ][Lb(τ)](σb

17, [σ
b
ω+, σ

b
ω+2)), and by the closure of tails of

Lb(τ), Ac
0(τ) = AddV [L↾τ ][Lb(τ)↾σb

17](σb
17, [σ

b
ω+, σ

b
ω+2)).

L ↾ τ ∗ Lb(τ) ↾ σb
17 ∗ Ac

0(τ) is a projection of the product of L ↾ τ ∗
Lb(τ) ↾ ρb17 and AV (L ↾ τ ∗ Lb(τ) ↾ σb

17,
˙Add(σb

17, [σ
b
ω+, σ

b
ω+2))), which is

equivalent to AddV (σb
17, σ

b
ω+2) by Lemma 2.42. The term forcing poset can

be absorbed by the component AddV (σb
17, σ

b
ω+2) of Raux(σb

0).

• L ↾ τ ∗ Lb(τ) ∗ Ib(τ) ∗ Ac
0(τ) ∗ Uc

0(τ) is the projection of the product of

L ↾ τ ∗Lb(τ) ∗ Ib(τ) ∗Ac
0(τ) and an Easton support product of term forcing

posets of the form AV (L ↾ τ ∗Lb(τ)∗Ib(τ)∗Ac
0(τ) ↾ α∗Uc

0(τ) ↾ α, U̇c
0(τ)(α))

for relevant α ∈ (σb
ω+1, σ

b
ω+2). By similar arguments to those above,

this product of term forcing posets can be absorbed by the component

EastE0(σb
ω+1, < σb

ω+2) of Raux(σb
0).

• L ↾ τ ∗ Lb(τ) ∗ Ib(τ) ∗ Ac
0(τ) ∗ Sc0(τ) is the projection of the product of

L ↾ τ ∗ Lb(τ) ∗ Ib(τ) ∗ Ac
0(τ) with < σb

ω+1 supports of term posets of the

form AV (L ↾ τ∗Lb(τ)∗Ib(τ)∗Ac
1(τ) ↾ α, ˙Add(σb

ω+1, 1)) for α ∈ (σb
ω+1, σ

b
ω+2).

By similar arguments to those above, this product of term forcing posets

can be absorbed by the component Coll(σb
ω+1, < σb

ω+2) of Raux(σb
0).

• Ae(τ) ↾ σb
ω+2 = Ac

0(τ), and in exactly the same way it may be written as

the projection of the product of L ↾ τ ∗Lb(τ) ↾ ρb17 and a term forcing, and

the term forcing may be absorbed into the component AddV (σb
17, σ

b
ω+2) of

Raux(σb
0).

• Ac
1(τ)′ = AddV [L↾τ∗Lb(τ)](σb

ω+1, σ
b
ω+2), and L ↾ τ ∗ Lb(τ) ∗ Ac

1(τ)′ is

the projection of the product of L ↾ τ ∗ Lb(τ) and AV (L ↾ τ ∗
Lb(τ), ˙Add(σb

ω+1, σ
b
ω+2)). By Lemma 2.42 this term poset is equiva-

lent to AddV (σb
ω+1, σ

b
ω+2), and so can be absorbed by the component

AddV (σb
ω+1, σ

b
ω+2) of Raux(σb

0).

Remark 9.20. Note that we have used some components of Raux(σb
0) to absorb
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multiple term forcing posets. This is not problematic, we may easily write (for

example) EastE0(σb
n, < σb

n+1) as the product of two copies of itself and use it to

absorb two Easton iterations in the interval [σb
n, σ

b
n+1).

Forcing over M̄ with an appropriate iteration of quotient to term forcings, we

may absorb all the generic objects for these forcing posets which we isolated above

into a generic object Raux for Raux(σb
0). Since M̄ is a ρ-distributive extension of V

and each step in our iteration is ρ-closed in the model where it is defined, the whole

iteration is ρ-closed. We produce M∗
0 = V [L ↾ τ ][Lb(τ) ↾ σb

0][Ab
[0,2](τ) ∗ U b

[0,1](τ) ∗
Sb
[0,1](τ)][A1][E′][Raux], where M∗

0 is a ρ-closed extension of M̄ . Let M∗ = M∗
0 [h],

so that M∗ is an extension of M = M̄ [h]: by Lemma 2.13 the passage from M to

M∗ does not add branches to σb
ω+1-trees in M .

We need to absorb the generic objects other than Raux used to obtain M∗
0 .

The generic objects L ↾ τ , Lb(τ) ↾ σb
0, Ab

[0,2] ∗ U
b
[0,1] ∗ S

b
[0,1] and E′ are generic for

ρ-closed forcing posets of cardinality at most σb
1, each defined in some (possibly

trivial) generic extensions of V . We note that all these posets actually exist in some

generic extension of V ′ = V0[A0 ∗U0 ∗L0 ↾ σb
1] = W̄ [Q], where Q = A0 ↾ [θ̄, θ)∗U0 ↾

(θ̄ + 1, θ) ∗ L0 ↾ ρb1, and that in W̄ the poset Q is σb
1-cc with cardinality σb

1.

Let M∗
1 = V ′[L ↾ τ ][Lb(τ) ↾ σb

0][Ab
[0,2](τ)∗U b

[0,1](τ)∗Sb
[0,1](τ)][A1][E′] = W̄ [Q][L ↾

τ ][Lb(τ) ↾ σb
0][Ab

[0,2](τ) ∗ U b
[0,1](τ) ∗ Sb

[0,1](τ)][A1][E′]. We may perform a series of

quotient to term forcings to embed M∗
1 into a model of the form W̄ [Q × T × A1],

where T is generic for some ρ-closed product of term forcings defined in W̄ , and

we may assume that T is generic for forcing of size σb
1 (it was for this reason that

we truncated V to V ′). Since A1 is generic for small ρ-closed forcing defined in W̄ ,

we may do more forcing to embed M∗
1 into a model W̄ [Q × Lcoll

aux], where Lcoll
aux is

generic for CollW̄ (ρ+, σb
1) which forms part of Laux(ρ, σb

0). The quotient to term

forcing used to produce W̄ [Q× Lcoll
aux] from M∗

1 also has cardinality at most σb
1.

Performing the same quotient to term forcing over the larger model M∗, we

obtain a model M∗∗ = V [Lcoll
aux×h×Raux] = V [Laux×Raux], where Laux = Lcoll

aux×h is

Laux(ρ, σb
0)-generic. By construction σb

ω+1 has the tree property in M∗∗. By Lemma

2.11 the passage from M∗ to M∗∗ does not add branches to σb
ω+1-trees in M∗. So

σb
ω+1 has the tree property in M and we are done.

9.4.2. The cardinal σa
ω+1 above the first Prikry point

:

Let τ and τ∗ be successive Prikry points, we will establish the tree property at

σa∗
ω+1 = Λa

ω+1(τ∗) in the final model. We can do a similar analysis to that in Section

9.1 to find a submodel M of the final model in which all the relevant trees will lie.

As in Section 9.4.1 we decompose E as h×A1 × E′.

We need slightly more of the generic object Lb(τ∗)∗Ib(τ∗) than we did in Section

9.1, because there we only considered σa∗
n -trees for n finite. Recalling that Ib(τ∗)

is an A ∗ U ∗ S construction whose first few parameters are σa∗
17 , σa∗

ω+1, σa∗
ω+2 we
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see that the relevant parts of Lb(τ∗) ∗ Ib(τ∗) are Ab
[0,1](τ

∗), U b
0(τ∗), Sb

0(τ∗) and

Lb(τ∗) ↾ σa∗
ω+2 (which is enough of Lb(τ∗) to define Ab

[0,1](τ
∗) ∗ U b

0(τ∗) ∗ Sb
0(τ∗)).

By the same considerations as in Section 9.4.1, we may replace Ab
1(τ∗) by Ab

1(τ∗)′

which is generic for AddV [L↾τ∗](σa∗
ω+1, σ

a∗
ω+2).

We see that all the relevant trees lie in the model

M =V [E][L ↾ τ ][Ac
[2,ω)(τ, τ

∗) ∗ U c
[2,ω)(τ, τ

∗) ∗ Sc
[2,ω)(τ, τ

∗)]

[AV
0 (τ∗) × T (τ, τ∗)][Lb(τ∗) ↾ σa∗

ω+2][Ab
1(τ∗) ↾ σa∗

ω+2 × U b
0(τ∗) ∗ Sb

0(τ∗)]

To help keep track of the indices, we note that σa∗
n plays the role of µn+4 in the

construction Ac(τ, τ∗) ∗ Uc(τ, τ∗) ∗ Sc(τ, τ∗).

As in Section 9.4.1, we start by breaking out the generic objects which may be

absorbed by Raux(σa∗
0 ). In this case they are Ac

[4,ω), U
c
[3,ω), S

c
[3,ω) A

V
0 (τ∗), Lb(τ∗) ↾

σa∗
ω+2, Ab

1(τ∗)′ and U b
0(τ∗)∗Sb

0(τ∗). The argument that these generic objects may be

absorbed using a ρ-closed quotient to term forcing into an Raux(σa∗
0 )-generic object

Raux are exactly as in Section 9.4.1. After the absorption process we obtain a model

M∗ = V [E][L ↾ τ ][Ac
[2,3](τ

∗) ∗ U c
2 (τ∗) ∗ Sc

2(τ∗)][T (τ, τ∗)][Raux]

and just as before the passage from M to M∗ does not add branches to σa∗
ω+1-trees.

Arguing as in Section 9.4.1, the generic objects E′×A1, L ↾ τ , Ac
[2,3](τ

∗)∗U c
2 (τ∗)∗

Sc
2(τ∗) and T (τ, τ∗) may be absorbed into a generic object Lcoll

aux for CollW (ρ+, σa∗

1 )

where the quotient forcing has cardinality σa∗

1 . Exactly as before we obtain a model

M∗∗ = V [Lcoll
aux×h][Raux] = V [Laux×Raux], where the tree property holds at σa∗

ω+1,

and the passage from M∗ to M∗∗ does not add branches to σa∗
ω+1-trees. So σa∗

ω+1

has the tree property in M and we are done.

9.4.3. The cardinal σa
ω+1 at the first Prikry point

:

Let τ ′ be the first Prikry point, so that σa
ω+1 = Λa

ω+1(τ ′). We use the same

notation as in Section 9.3. By the usual analysis, all the relevant trees lie in the

model

M =V [h][L ↾ τ ′][A[1,ω) ∗ U[1,ω) ∗ S][AV
0 (τ ′)][Lb(τ ′) ↾ σa

ω+2]

[Ab
1(τ ′) ↾ σa

ω+2 ∗ U b
0(τ ′) ∗ Sb

0(τ ′)]

To help keep track of the indices, recall that A[1,ω) ∗ U[1,ω) ∗ S comes from

an A ∗ U ∗ S construction with parameters ω, ρ+, θ, σa
0 , . . .. So the generic objects

that we will absorb into Raux(σa
0 ) are A[3,ω), U[2,ω), S[2,ω), A

V
0 (τ ′), Lb(τ ′) ↾ σa

ω+2,

Ab
1(τ ′) ↾ σa

ω+2, U b
0(τ ′), and Sb

0(τ ′). Forcing with a suitable quotient to term forcing
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to absorb these generic objects into an Raux(σa
0 )-generic object Raux, we obtain a

model

M∗ = V [h][L ↾ τ ][A[1,2] ∗ U1 ∗ S[0,1]][Raux]

such that the passage from M to M∗ adds no branches to σa
ω+1-trees from M .

We then force to absorb L ↾ τ , A[1,2], U1, S0 and S1 into a CollW̄ (ρ+, σa
1 )-generic

object Lcoll
aux. Most of these objects are generic for ρ-closed forcing posets defined in

V or generic extensions of V . The exception is S0, which we may absorb because

(by the careful choice of C0 in Section 7.2) it is the projection of a ρ-closed term

forcing defined in W̄ . As usual we have absorbed M∗ into

M∗∗ = V [Lcoll
aux × h×Raux] = V [Laux ×Raux],

without adding branches to σa
ω+1-trees from M∗, and σa

ω+1 has the tree property

in M∗∗. So σa
ω+1 has the tree property in M and we are done.

10. The tree property above ℵω2 in the final model

10.1. The tree property at ℵω2+1

We argue that in our final model the tree property holds at ℵω2+1. The arguments

are parallel to those in Sinapova’s paper [18, Section 4], and also use ideas from

work of Sinapova and Unger [20], but there are some additional complications: the

relevant generic supercompactness embeddings are added by a more complex forcing

poset, and there are extra issues with the constraint functions in the Prikry-type

poset P̄.

Recall that P̄ ∈ V [L][Agg] where Agg is generic over V [L] for the auxiliary forcing

Agg = AddV (λbω+2, j01(λa0)), and Agg is < λbω+2-distributive in V [L]. We defined P̄
using a filter K ∈ V [L][Agg] which is Q∞-generic over M∗

1 .

Before starting the proof, we derive some auxiliary filters Fn from K, working

in V [L][Agg]. We recall from the discussion at the end of Section 7.3 that for α ∈ Y ,

Q(α, κ) = j∗01(Q)(α, κ).

Definition 10.1. Let Bn = {(x, q) : x ∈ Pκ(λbn), q ∈ Q(κ(x), κ)}.

Note that |Bn| = λbn.

Definition 10.2. Let Cn be the set of functions F such that dom(F ) ∈ Un−1×Un,

F (x, y) ∈ Q(x, y) for all x and y and [F ]Un−1×Un
∈ K.

If F ∈ Cn+1, and x ∈ Pκλ
b
n is such that {y : (x, y) ∈ dom(F )} ∈ Un+1, then

[F (x,−)]Un+1 ∈ Q(κ(x), κ).

Remark 10.3. In the sequel we will often drop the subscript for the measure in

expressions like “[F (x,−)]Un+1”, where the relevant measure should be clear from

the context.

Note that Cn includes the functions which can appear as F p
n for some p ∈ P̄.
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Definition 10.4. A subset E of Bn is downwards closed if whenever (x, q) ∈ E

and q′ ≤ q then (x, q′) ∈ E

Definition 10.5. Let Fn be the filter on Bn defined as follows. E ∈ Fn if and only

there exist a set D ∈ Un and a function F ∈ Cn+1 such that (x, q) ∈ E for all x ∈ D

and all q ≤ [F (x,−)]Un+1
.

Global notation: Fn

The following Lemma is immediate from the definition and the agreement be-

tween jn and j∗01:

Lemma 10.6. E ∈ Fn if and only if there is a condition r ∈ K such that

(j01[λbn], q) ∈ j∗01(E) for all q ≤ r.

The following Lemma should be viewed as expressing an “ultrafilter-like” prop-

erty of Fn.

Lemma 10.7. Let E ⊆ Bn and let E be downwards closed. Then E ∈ Fn or

Bn \ E ∈ Fn.

Proof. Let D be the dense set of conditions r in Q∞ such that either (j01[λbn], r) ∈
j∗01(E) or there is no q ≤ r with (j01[λbn], q) ∈ j∗01(E). Since D ∈ M∗

1 and K is

Q∞-generic over M∗
1 , there is r ∈ K ∩D, and the conclusion follows.

It is easy to see that Fn is a κ-complete filter on Bn. We will also need a version

of normality for families of Fn-large sets indexed by lower parts.

Recall that for p = ⟨q17, x17, ...qn−1, xn−1, fn, An, Fn+1, An+1, Fn+2, An+2, ...⟩ a

condition in P̄, the stem of p is stem(p) = ⟨q17, x17, ...qn−1, xn−1, [fn]Un
⟩, the lower

part of p is ⟨q17, x17, ...qn−1, xn−1⟩, the length of p is lh(p) = n, and Ln is the set

of lower parts of conditions with length n.

Definition 10.8. Let (Es)s∈L be a family of subsets of Bn indexed by some set

L ⊆ Ln of lower parts. Then the diagonal intersection ∆s∈LEs is {(x, q) ∈ Bn :

∀s ∈ L(s ≺ x =⇒ (x, q) ∈ Es)}.

Lemma 10.9. Let (Es)s∈L be such that Es ∈ Fn for all s ∈ L. Then ∆s∈LEs ∈ Fn.

Proof. By the characterization of Fn, for each s ∈ L we choose rs ∈ K such that

(j01[λbn], q) ∈ j∗01(Es) for all q ≤ rs. Since (rs)s∈L ∈M∗
1 by closure, and K is generic

over M∗
1 , there is r ∈ K such that r ≤ rs for all s. As usual j∗01[L] = {t ∈ j01(L) :

t ≺ j01[λbn]}. For q ≤ r we have (j01[λbn], q) ∈ j∗01(E)t for all t ∈ j∗01[L], so that

(j01[λbn], q) ∈ j∗01(∆s∈LEs). It follows that ∆s∈LEs ∈ Fn.

Definition 10.10. Let h be a stem. h ⊩∗ ϕ if and only if there is a condition p

such that stem(p) = h and p ⊩ ϕ.

Global notation: ⊩∗
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Let ν = λbω, µ = λbω+1. The strategy of the proof will be to introduce an auxiliary

forcing R ∈ V [L][Agg], show that every µ-tree in V [L][Agg][P̄ ] has a branch in

V [L][Agg][R][P̄ ], and use Lemma 2.21 to show there is a branch in V [L][Agg][P̄ ].

Let Ṫ in V [L][Agg] be a P̄-name for a µ-tree. We assume that T ⊆ µ× κ, and that

level α is a subset of {α} × κ: this makes sense because µ = κ+ in V [L][Agg][P̄ ].

For the following lemma we work in V [L][Agg]. Before stating and proving the

lemma we make a remark on compatibility of conditions in P̄ which explains some

complications in the proof.

Remark 10.11. If p and q are compatible conditions in P̄ with lh(p) = lh(q) = n,

it does not follow in general that p and q have a common lower bound r with

lh(r) = n. The issue is that possibly [fpn]Un
and [fqn]Un

are incompatible, so there

is no reasonable choice for frn: compatibility of p and q only guarantees that fp(x)

and fq(x) are compatible for at least one value of x. If p and q have the same stem

h, then they are compatible and there is r ≤ p, q with stem(r) = h.

Lemma 10.12. Let p ∈ P̄. There are n < ω and cofinal I ⊆ µ, such that for all

α < β both in I, there are a condition p′ ≤ p in P̄ of length n, and ξ, δ < κ such

that: p′ ⊩ ⟨α, ξ⟩ <Ṫ ⟨β, δ⟩.

Proof. Recall from Section 7.3 that we defined an embedding j∗01 in V [L] witnessing

that κ is < λbω+3-supercompact, and used this to derive the supercompactness

measures Un on Pκλ
b
n. Let Uµ be the supercompactness measure on Pκµ derived

from j∗01.

Observe that |Pκµ| = µ [21]. Since Agg is generic for < λbω+2-distributive forcing,

it is easy to see that Uµ is still a supercompactness measure on Pκµ in V [L][Agg], and

that taking the ultrapower of V [L][Agg] by Uµ gives an embedding j∗µ : V [L][Agg] →
N which lifts the ultrapower of V [L] by Uµ. It follows that j∗µ induces the measure

Un for every n.

Let p ∈ P̄ have length m, so that the first measure one set appearing in p is

Ap
m ∈ Um. By the choice of j∗µ we have that j∗µ[λbm] ∈ j∗µ(Ap

m), so we may form in

j∗µ(P̄) a one point extension q of j∗µ(p) which forces that κ is the Prikry point with

index m.

Let τ17, . . . τm be the Prikry points determined by q, so that τm = κ, and let

Qlow =
∏

17≤i<m QN (τi, τi+1). We observe that |Qlow| = λaω+2 < µ, and that every

extension r of q determines a condition rlow ∈ Qlow.

Now let u = (sup(j∗µ[µ]), 0) and for all α < µ let ξ̇α name the unique ordinal

ξα < j∗µ(κ) such that (j∗µ(α), ξα) <j∗µ(Ṫ ) u.

By elementarity and Lemma 8.24, we may find r ≤∗ q together with (sα)α<µ,

(kα)α<µ such that:

• rlow = qlow.

• sα ∈ Qlow with sα ≤ rlow.

• kα < ω.
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• If rα is the condition obtained from r by extending rlow to sα, then every

kα-step extension of rα decides ξ̇α.

Let I ⊆ µ be an unbounded set such that for some k < ω and s ∈ Qlow, kα = k

and sα = s for all α ∈ I. Let r′ be obtained from r by extending rlow to s, let r′′ be

some k-step extension of r′, and for each α ∈ I let ξα be the value of ξ̇α determined

by r′′.

Let r′′ have length n. By construction r′′ ≤ j∗µ(p), and for α < β both in I

we have r′′ ⊩N
j∗µ(P̄)

(j∗µ(α), ξα) <j∗µ(Ṫ ) (j∗µ(β), ξβ). The desired conclusion follows by

elementarity.

Lemma 10.13. There is a forcing poset R ∈ V [L] such that, for all sufficiently

large n̄ < ω, there is a forcing poset P1 × P2 × P3 ∈ V [L][R] such that:

• λbn̄ is generically µ-supercompact in V [L][Agg][R] via P1 × P2 × P3.

• R is countably closed and < µ-distributive in V [L][Agg].

• Agg is < λbω+2-distributive in V [L][R].

• P1 × P2b × P3 is < λbn̄−1-distributive in V [L][R][Agg].

• In V [L][R][Agg][P1 × P2b × P3], µ has cardinality and cofinality λbn̄−1, and

P2a has the λbn̄−1-Knaster property.

• For λ′ = λbn̄−3, there is a forcing poset in V [L][R][Agg] which adds λ′

mutually generic filters for P1×P2×P3, preserves the regularity of λ′, and

forces that cf(µ) > λ′.

Before starting the proof, we make a remark about how the generic embedding

from the conclusion interacts with the supercompactness measures Um for 17 ≤
m < n̄. The key points are that |Pκλ

b
m| = λbm and 2λ

b
m = λbω+3, so that subsets of

Pκλ
b
m are fixed, while the power set of Pκλ

b
m and the measure Um are stretched.

Proof. We will use ideas from the proof of Lemma 4.5, in a context which is quite

similar to that of Section 9.2. The analogy with Section 9.2 is slightly imperfect,

because there we only needed to define the embedding on a submodel which contains

all the subsets of the critical point. In the discussion below this means that we need

to deal with the whole of the last component Jc in L(κ), rather than just Ac
0.

Recall that V [L] = V [L ↾ κ][L(κ)], where L(κ) = Lb∗Ib∗(Ae×Jc). Decomposing

further:

• Ib = Ab∗U b∗Sb, and is generic for an A∗U∗S construction with parameters

µ0 = λa17, µ1 = λaω+1, µ2 = λaω+2, µn+3 = λbn.

• Ae = AddV lb(κ)(λb17, λ
b
ω+3).

• Jc = Jc0 ∗ Jc1 = (Ac
0 ∗ Uc

0 ∗ Sc0) ∗ (Ac
1 ∗ Uc

1 ∗ Sc1), where the parameters are

µ0 = λb17, µ1 = λbω+1, µ2 = λbω+2, µ3 = λbω+3.

• Ac
1 ∗ Uc

1 ∗ Sc1 is defined over V lbi(κ)[Ac
0 ∗ U c

0 ∗ Sc
0].

• Ac
0 = AddV lb(κ)(λb17, [λ

b
ω+1, λ

b
ω+2)).

• Ac
1 = AddV lb(κ)(λbω+1, [λ

b
ω+2, λ

b
ω+3)).
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The idea is now to construct a generic embedding as in the proof of Lemma 4.5,

where:

• V lb(κ) plays the role of Vdef (which coincides with Vinn).

• Ib plays the role of A ∗ U ∗ S.

• λbn̄ plays the role of µn+2.

Before we can do this we have to embed Ae × Jc into a generic object for a poset

which meets the specifications of Lemma 4.5. This is the job of the auxiliary poset

R. In the terminology of Lemma 4.5 we will embed Ae × Jc into D0 × D2, where

D0,D2 ∈ V lb(κ). The poset D0 will be λbn̄−1-Knaster in V lb(κ), and D2 will be

< λbω+1-directed closed in this model.

We let D0 = Ae ×Ac
0. Before defining D2, we recall from the analysis in Section

3.2 that in V lbi(κ) the poset Jc0 is a projection of Ac
0 × Bc

0 × Cc
0, where Bc

0 × Cc
0

is < λbω+1-directed closed. Similarly in V lbi(κ)[Jc
0 ] the poset Jc1 is a projection of

Ac
1 × Bc

1 × Cc
1, where Bc

1 × Cc
1 is < λbω+2-directed closed.

We let D2 = Ac
1 ×AV lb(κ)(Ib,Bc

0 × Cc
0) ×AV lb(κ)(Ib ∗ Jc0,Bc

1 × Cc
1).

Definition 10.14. Let R ∈ V [L] be the (iterated) quotient to term forcing to add

generic objects for the second and third factors in D2 inducing generic filters Bc
0×Cc

0

and Bc
1×Cc

1, such that in turn Bc
0×Cc

0 induces U c
0 ∗Sc

0 and Bc
1×Cc

1 induces U c
1 ∗Sc

1.

Claim 10.15. Let D2, R and Agg be as above.

(1) D2 is < λbω+1-directed closed in V lb(κ).

(2) R is countably closed and < µ-distributive in V [L][Agg].

(3) Agg is < λbω+2-distributive in V [L][R].

Proof. We take each claim in turn.

(1) D2 is the product of three factors. The first term Ac
1 is clearly < λbω+1-

directed closed in V lb(κ). The second factor is < λbω+1-directed closed by

items 5 and 6 of Lemma 3.13 together with Lemma 2.33. and similarly the

third factor is < λbω+2-directed closed.

(2) R can be viewed as the product of two (iterated) quotient-to-term forcing

posets, and each factor is countably closed by Lemma 2.44. Since λbω is

singular, it will suffice for distributivity to show that R is λbt-distributive in

V [L][Agg] for all large enough t < ω.

By the definition of R, V [L][Agg][R] = V lb(κ)[Ib ×D0 ×D2 ×Agg]. By

item 7 of Lemma 3.13, in V lb(κ) we may view Ib as a projection of Ib0 × Ib1
where Ib0 is an initial segment of Ib with λbt+1-cc and Ib1 is < λbt+1-closed.

We extend V [L][Agg][R] to obtain V lb(κ)[Ib0 × Ib1 ×D0 ×D2 ×Agg].

Since L ↾ κ ∗ Lb ∗ (Ib0 ×D0) is generic for λbω+2-cc forcing, by Easton’s

lemma Agg is < λbω+2-distributive in V lb(κ)[Ib0 × D0], so that Ib1 × D2 is

λbt-distributive in V [L ↾ κ][Lb][Ib0 × D0 × Agg]. It follows that every λbt-
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sequence of ordinals from V [L][Agg][R] lies in V lb(κ)[Ib0 ×D0×Agg], which

is a submodel of V [L][Agg].

(3) By items 2 and 3 of Lemma 3.13, Bc
0 ×Cc

0 is λbω+2-cc in V lbi(κ). Also λbω+2

is supercompact in V lb(κ), and |Ib| < λbω+2, so it follows by Lemma 2.35

that AV lb(κ)(Ib,Bc
0 × Cc

0) is λbω+2-cc in V lb(κ). So D2 is the product of a

λbω+2-cc poset D2
low and a < λbω+2-closed poset D2

high in the model V lb(κ).

Recall that V [L][R][Agg] = V lb(κ)[Ib ×D0 ×D2
low ×D2

high ×Agg]. Since

L ↾ κ ∗Lb is generic over V for λbω+2-cc forcing, by Easton’s Lemma Agg is

< λbω+2-distributive in V lb(κ), so that D2
high is< λbω+2-closed in V lb(κ)[Agg].

Since L ↾ κ ∗ Lb ∗ (Ib × D0 × D2
low) is generic over V for λbω+2-cc forcing,

by Easton’s Lemma L ↾ κ ∗ Lb ∗ (Ib × D0 × D2
low) is λbω+2-cc in V [Agg], so

that Ib × D0 × D2
low is λbω+2-cc in V lb(κ)[Agg].

By Easton’s Lemma D2
high is < λbω+2-distributive in V lb(κ)[Ib × D0 ×

D2
low × Agg] and Agg is < λbω+2-distributive in V lb(κ)[Ib × D0 × D2

low]. It

follows that every < λbω+2-sequence of ordinals in V lb(κ)[Ib ×D0 ×D2
low ×

Agg×D2
high] lies in V lb(κ)[Ib×D0×D2

low], so that Agg is < λbω+2-distributive

in V [L][R].

For use later, we record some information about forcing with P̄ over

V [L][Agg][R].

Claim 10.16. µ = κ+ in V [L][Agg][R][P̄ ].

Proof. By Lemma 10.15 the poset R is < µ-distributive and countably closed in

V [L][Agg], and the proof of Lemma 8.7 easily shows that P̄ is µ-cc in V [L][Agg][R].

The claim follows.

By construction V [L][R] = V lbi(κ)[D0 ×D2]. Choosing n̄ large enough, we may

arrange that in the model V lb(κ), D0 is generic for λbn̄−1-cc forcing, and D2 is

generic for < λbn̄-directed closed forcing. In fact since D0 is adding Cohen subsets

to λb17 and D2 is < λbω+1-directed closed, any n̄ ≥ 19 will work.

We will perform the construction from the proof of Lemma 4.5 to obtain a

generic embedding with domain V [L][R], and then derive a generic embedding with

domain V [L][Agg][R]. The construction in the proof involves a regular cardinal χ

which in our case is max(ν, |D0|, |D2|)+. We note for the record that χ > µ.

We summarize the key features of the construction from Lemma 4.5 in our

current setting:

• Working in V lb(κ)[D2 × Ab
[n̄,ω)], we use the indestructible Laver function

added by Lb to choose an embedding j which witnesses that λbn̄ is χ-

supercompact and satisfies some technical conditions. We may assume that

j is the ultrapower by some supercompactness measure W on Pλb
n̄
χ, where

we note that (Pλb
n̄
χ)V

lb(κ)[D2×Ab
[n̄,ω)] = (Pλb

n̄
χ)V

lb(κ).
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• The lifting of j to V [L][R] takes place in a generic extension V [L][R][P1 ×
P2 × P3].

• P1×P3 ∈ V lb(κ)[Ab ∗U b ∗Sb ↾ [λbn̄−1, λ
b
ω)][D2] and is < λbn̄−1-closed in this

model.

• P2 = P2a × P2b where P2a = j(Ab
n̄−2 × D0)/j[Ab

n̄−2 × D0] and P2b =

j(Ab
n̄−1)/j[Ab

n̄−1].

• P2a = Plow
2a × Phigh

2a , where Phigh
2a is a Cohen poset adding subsets to λbn̄−2,

and Plow
2a is a Cohen poset adding subsets to λb17, both defined in V lb(κ).

• P2b is a Cohen poset adding subsets to λbn̄−1, again defined in V lb(κ).

Let λ′ = λbn̄−3. With a view to using Fact 2.15 in the proof of Lemma 10.19, we

construct an auxiliary forcing P∗
1 × (Plow

2a )∗ × (Phigh
2a )∗ × P∗

2b × P∗
3 ∈ V [L][R] whose

aim is to add λ′ many mutually generic filters for P1 × P2 × P3.

• P∗
1 (resp P∗

3) is the product of λ′ copies of P1 (resp P3) computed with full

support in V lb(κ)[Ab ∗U b ∗ Sb ↾ [λbn̄−1, λ
b
ω)][D2]. As noted above P1 × P3 is

defined and < λbn̄−1-closed in this model, so P∗
1×P∗

3 is also < λbn̄−1-closed in

this model, and since Agg is generic over this model for highly distributive

forcing P∗
1×P∗

3 is < λbn̄−1-closed in V lb(κ)[Ab∗U b∗Sb ↾ [λbn̄−1, λ
b
ω)][D2][Agg].

• (Plow
2a )∗ is the product of λ′ copies of Plow

2a computed with < λb17 support in

V lb(κ). Since Plow
2a is a Cohen poset adding subsets to λb17 defined in V lb(κ),

(Plow
2a )∗ is a similar poset in this model.

• (Phigh
2a )∗ (resp P∗

2b) is the product of λ′ copies of Phigh
2a (resp P2b) computed

with full support in V lb(κ). Since Phigh
2a (resp P2b) is a Cohen poset adding

subsets to λbn̄−2 (resp λbn̄−1) defined in V lb(κ), (Phigh
2a )∗ (resp P∗

2b) is a similar

poset in this model.

Claim 10.17. It is forced over V [L][R][Agg] by P∗
1×P∗

2×P∗
3 that λ′ remains regular

and cf(µ) > λ′.

Proof. Recall that V [L][Agg][R] = V lb(κ)[Ib ×D0 ×D2 × Agg], D0 = Ae × Ac
0 is a

Cohen poset adding subsets to λb17 defined in V lb(κ), while D2 is < λbω+1-directed

closed forcing again defined in V lb(κ).

Since P∗
1 × P∗

3 is defined and < λbn̄−1-closed in a generic extension of V lb(κ), we

may force to extend the model V lb(κ)[Ib × D0 × D2 × Agg][P ∗
1 × P ∗

2 × P ∗
3 ] to a

model V lb(κ)[Ib × D0 × D2 × Agg][P ∗
2 × T ] where T is generic for a term forcing

T which is defined and < λbn̄−1-closed in V lb(κ). By more forcing we may use item

7 of Lemma 3.13 to extend to a model V lb(κ)[Ib0 × Ib1 × D0 × D2 × Agg][P ∗
2 × T ]

where Ib0 and Ib1 are defined in V lb(κ), and in that model Ib0 is λbn̄−3-Knaster and Ib1
is < λbn̄−3-closed.

We reorganize our expanded model as

V lb(κ)[D2 ×Agg][Ib0 ×D0 × (P low
2a )∗][Ib1 × (P high

2a )∗ × (P2b)
∗ × T ].

Note that Ib0×D0×(Plow
2a )∗ is λbn̄−3-cc in V lb(κ). Since D2×Agg is highly distributive,

(Phigh
2a )∗ × (P2b)

∗ ×T is < λbn̄−3-closed in V lb(κ)[D2 ×Agg], and (since its definition
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does not change) Ib0 × D0 × (Plow
2a )∗ is λbn̄−3-cc in V lb(κ)[D2 ×Agg].

It follows by Easton’s Lemma that λbn̄−3 is still regular in V lb(κ)[Ib0 × Ib1 ×D0 ×
D2×Agg][P ∗

2 ×T ], and so a fortiori it is regular in V lb(κ)[Ib×D0×D2×Agg][P ∗
1 ×

P ∗
2 × P ∗

3 ]. To finish we note that by taking Ib as the projection of the product of a

λbn̄−2-Knaster poset and a < λbn̄−2-closed poset, we may repeat the argument with

λbn̄−2 in place of λbn̄−3. This allows us to conclude that λbn̄−2 is also still regular in

V lb(κ)[Ib×D0×D2×Agg][P ∗
1 ×P ∗

2 ×P ∗
3 ], and that cf(µ) ≥ λbn̄−2 in this model.

Claim 10.18. The poset P1 × P2b × P3 is < λbn̄−1-distributive in V [L][R][Agg].

Proof. The argument is very similar to that for Claim 10.17 so we just sketch it.

We force to extend V lb(κ)[Ib×D0×D2×Agg][P1×P2b×P3] to a model V lb(κ)[Ib×
D0×D2×Agg][P2b×T ] where T is generic for a term forcing T which is defined and

< λbn̄−1-closed in V lb(κ), and then to a model V lb(κ)[D2×Agg][Ib0×D0][Ib1×P2b×T ]

where Ib0 and Ib1 are defined in V lb(κ), and in that model Ib0 is λbn̄−1-Knaster and

and Ib1 is < λbn̄−1-closed.

In the model V lb(κ)[D2 × Agg] we appeal to Easton’s lemma to see that all

< λbn̄−1-sequences of ordinals from V [L][R][Agg][P1 × P2b × P3] lie in V lb(κ)[D2 ×
Agg][Ib0 ×D0].

It is now easy to see that µ has cardinality and cofinality λbn̄−1 in the model

V [L][R][Agg][P1 × P2b × P3], and that P2a is λbn̄−1-Knaster in this model.

At this point we have produced a generic χ-supercompactness embedding

j : V [L][R] → N with critical point λbn̄ which exists in V [L][R][P1,2,3]. By con-

struction N = {j(F )(a) : F ∈ V [L][R],dom(F ) = Z} where a = j[χ] and

Z = (Pλb
n̄
χ)V [L↾κ][Lb].

Now let Z0 = (Pλb
n̄
µ)V [L↾κ][Lb]. Factoring j in the standard way we obtain

a generic µ-supercompactness embedding j0 : V [L][R] → N0, such that N0 =

{j0(F0)(a0) : F0 ∈ V [L][R],dom(F ) = Z0} where a0 = j0[µ]. Since Agg is generic

for µ-distributive forcing in V [L][R] and |Z0| = µ, it is easy to see that j0[Agg]

generates an N -generic filter and we may lift j0 onto V [L][R][Agg]. Note that the

lifted j0 exists in V [L][Agg][R][P1,2,3].

Lemma 10.19. There exist in V [L][Agg][R] a set J , a stem h and a sequence

⟨uα | α ∈ J⟩ such that:

• J ⊆ I and J is unbounded.

• h has length n.

• uα is a node of level α.

• For all α, β ∈ J with α < β, h ⊩∗ uα < uβ.

Proof. We work for the moment in V [L][Agg]. Let n̄ be so large that an elementary

embedding with critical point λbn̄ is guaranteed to fix each stem for a condition of

length n, together with the set of all such stems. Let j0 be an elementary embedding

with critical point λbn̄ constructed as in Lemma 10.13.
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Let S be the set of stems for conditions of length n in P̄. Define relations (Rh)h∈S

on I × κ as follows: (α, η)Rh(β, ζ) if and only if there is a condition p ∈ P̄ with

length n and stem h such that p ⊩ (α, η) <Ṫ (β, ζ). Since Ṫ names a tree and

conditions with the same stem are compatible, it is easy to verify that this set of

relations forms a system.

We will show that forcing with R∗P1,2,3 adds a system of branches (bh,i)(h,i)∈S×κ.

Let γ ∈ j0(I) with sup j0[µ] < γ. By the choice of n̄ we have |S| < λbn̄ and j0(S) = S.

Let α ∈ dom(bh,i) if and only if there exist η < κ and p ∈ j0(P̄) with stem h such

that p ⊩ (j0(α), η) <j0(Ṫ ) (γ, i), and in this case let bh,i(α) be the unique η for

which this holds. It is easy to see that this is a system of branches with bh,i forming

a branch through Rh.

Using Claim 10.17 and appealing to Fact 2.15 in the model V [L][Agg][R], there

exists (h, i) ∈ S×κ such that bh,i ∈ V [L][Agg][R] and dom(bh,i) is unbounded in µ.

Now let J = dom(bh,i), and for α ∈ J let uα = (α, bh,i(α)). If α < β with α, β ∈ J

there is a condition p ∈ j0(P̄) with stem h such that p ⊩ j0(uα), j0(uβ) <j(Ṫ ) (γ, i),

so p ⊩ j0(uα) <j0(Ṫ ) j0(uβ). Since j0(h) = h, by elementarity there is p ∈ P̄ with

stem h such that p ⊩ uα <Ṫ uβ .

Suppose that a stem h′ has the form ⟨q17, x17, ...qm−1, xm−1, [g]Um
⟩, and that

(x, q) ∈ Bm. We write h′ + (x, q) for the stem ⟨q17, x17, ...qm−1, xm−1, g(x), x, q⟩.
This is technically illegal because it depends on the choice of g, but we will only

use this notation in a context where the choice of g is explicit.

Global notation: h′ + (x, q)

Fix J , h and ⟨uα : α ∈ J⟩ as in the conclusion of Lemma 10.19.

Lemma 10.20. Let h′ be a stem of the form ⟨q17, x17, ...qm−1, xm−1, [g]Um⟩. Assume

that there exists in V [L][Agg][R] an unbounded set J̄ ⊆ J , such that h′ ⊩∗ uα < uβ
for all α, β ∈ J̄ with α < β.

Then there exist ρ < µ and a sequence (Eα)α∈J̄\ρ in V [L][R][Agg] such that:

(1) Eα ⊆ Bm and Eα ∈ Fm.

(2) For all α, β ∈ J̄ \ρ with α < β and all (x, q) ∈ Eα∩Eβ, h
′ +(x, q) ⊩∗ uα <

uβ, where h
′ + (x, q) is computed using the function g.

Before proving Lemma 10.20, we rewrite the conclusion in a way that is less

concise but will be useful later. Refining Eα if necessary, we may fix Dα ∈ Um

and Fα ∈ Cm+1 such that Eα = {(x, q) ∈ Bm : x ∈ Dα, q ≤ [Fα(x,−)]}. Now

([Fα])α∈J̄\ρ ∈ M∗
1 by the distributivity of Agg and the closure of M∗

1 , [Fα] ∈ K

for all α, and K is generic over M∗
1 . It follows that there is F ∗ ∈ Cn such that

[F ∗] ≤ [Fα] for all α, and shrinking Dα we may assume that [F ∗(x.−)] ≤ [Fα(x,−)]

for all x ∈ Dα. Refining Eα again we may assume that Eα = {(x, q) ∈ Bm : x ∈
Dα, q ≤ [F ∗(x,−)]}.

Then (x, q) ∈ Eα ∩ Eβ if and only if x ∈ Dα ∩Dβ and q ≤ [F ∗(x,−)], and the

conclusion amounts to saying that if x ∈ Dα∩Dβ then h′ + (x, [F ∗(x,−)]) ⊩∗ uα <
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uβ . Readers of [15] and [18] will notice that Lemma 10.20 is parallel to [15, Lemma

3.5] and [18, Lemma 16].

Proof. Choose n∗ such that m + 20 < n∗ < ω, and let j1 : V [L][R][Agg] → N1 be

a generic µ-supercompactness embedding with critical point λbn∗ constructed as in

Lemma 10.13 The embedding is added by a certain product P1 × P2 × P3. We will

work for the moment in V [L][R][Agg][P1 × P2 × P3].

Let γ ∈ j1(J̄) be such that sup j1[µ] < γ, and let v = j1(u)γ . By elementarity,

for every α ∈ J̄ there is a condition rα ∈ j1(P̄) such that rα has stem h′ and

rα ⊩ j1(uα) <j1(T ) v. Now j1(g) = g, and [g]Um = [j1(g)]j1(Um) = [frαm ]j1(Um).

Shrinking Arα
m if necessary, we may assume that Arα

m ⊆ dom(g) and frαm = g ↾ Arα
m .

For each y ∈ Arα
m , the minimal one-point extension of rα by y forces j1(uα) <j1(T )

v. Since g(y) = j1(g)(y) = frαm (y), the stem of the minimal one-point extension is

⟨q17, x17, ...qm−1, xm−1, g(y), y, r⟩ where r = [F rα
m+1(y,−)]Um+1

. We conclude that

there is a j1(Fm)-large set Xα such that h′ + (y, r) ⊩∗
j1(P̄) j1(uα) <j1(T ) v for all

(y, r) ∈ Xα. Membership of Xα in j1(Fm) is witnessed by Arα
m and F rα

m+1.

For (x, q) ∈ Bm, let J̄x,q = {α ∈ J̄ : h′ + (x, q) ⊩∗
j1(P̄) j1(uα) < v}. It is easy to

see that for β ∈ J̄x,q, we have that α ∈ J̄x,q ∩β if and only if h′ +(x, q) ⊩∗
P̄ uα < uβ ,

so that J̄x,q ∩ β ∈ V [L][Agg].

Since µ has cardinality and cofinality λbn∗−1 in in V [L][R][Agg][P1×P2b×P3], and

P2a has the λbn∗−1-approximation property in this model, it follows that whenever

J̄x,q is unbounded in µ we have J̄x,q ∈ V [L][R][Agg][P1 × P2b × P3]. It is important

to notice that even in this case the definition of j1 (and hence J̄x,q) requires P2a.

Working in V [L][R][Agg][P1×P2b×P3], let Jx,q be the set of unbounded subsets

C of µ such that some condition in P2a forces J̄x,q = C. It is easy to see that

• |Jx,q| < λbn∗−1.

• The function (x, q) 7→ Jx,q is in V [L][R][Agg][P1 × P2b × P3].

• If C ∈ Jx,q and β ∈ C, then C∩β is the set of α < β such that h′+(x, q) ⊩∗
P̄

uα < uβ .

• If C1, C2 ∈ Jx,q with C1 ̸= C2 then C1 ∩ C2 is bounded in µ.

Let ρ < µ be such that C1 ∩ C2 ⊆ ρ for all (x, q) ∈ Bm and all C1, C2 ∈ Jx,q

with C1 ̸= C2. For (x, q) ∈ Bm and α ∈ J̄ \ ρ, let f(x, q, α) be the unique C ∈ Jx,q

such that α ∈ C if such a C exists, and let it be undefined otherwise.

Let α0 = min(J̄ \ ρ), and let A∗
α be the set of (x, q) ∈ Bm such that:

• f(x, q, α) and f(x, q, α0) are both defined.

• f(x, q, α) = f(x, q, α0).

Claim 10.21. A∗
α ∈ Fm.

Proof. Otherwise Bm \ A∗
α ∈ F+

m, so that applying j1 we have Bm \ A∗
α = j1(Bm \

A∗
α) ∈ j1(Fm)+. For each β ∈ J̄ \ ρ, choose (xβ , qβ) ∈ Xα0

∩Xα ∩Xβ ∩ (Bm \A∗
α).

Since cf(µ) > |Bm| in V [L][Agg][R][P1 × P2b × P3], we may find (x, q) ∈ Bm

such that (xβ , qβ) = (x, q) for unboundedly many β. For all such β we have by the
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choice of Xβ that h′ + (x, q) ⊩∗
j1(P̄) j1(uβ) <j1(T ) v, so J̄x,q is unbounded and hence

J̄x,q = C for some C ∈ Jx,q.

Since (x, q) ∈ Aα, α ∈ J̄x,q = C so that f(x, q, α) is defined and f(x, q, α) = C.

The same is true for α0, so f(x, q, α) = f(x, q, α0) = C, and (x, q) ∈ A∗
α. This is a

contradiction since by construction (x, q) ∈ Bm \A∗
α.

Define relations (Rx,q)(x,q)∈Bm
on (J̄ \ ρ) × 1 as follows: (α, 0)Rx,q(β, 0) if and

only if h′ + (x, q) ⊩∗ uα <T uβ . It is easy to see that these relations form a system

on (J̄ \ ρ) × 1 in the sense of Definition 2.14: the main point is that if α, β ∈ J̄ \ ρ
with α < β then by hypothesis h′ ⊩∗ uα < uβ , and any minimal one-point extension

of a suitable condition witnessing this will witness that h′ + (x, q) ⊩∗ uα < uβ for

some (x, q) ∈ Bm.

For every (x, q) ∈ Bm, let bx,q = {α ∈ J̄ \ ρ : (x, q) ∈ A∗
α}. If α, β ∈ bx,q with

α < β, then (x, q) ∈ A∗
α ∩ A∗

β , so f(x, q, α) = f(x, q, β) = C ∈ Jx,q and hence

h′ +(x, q) ⊩∗ uα < uβ , that is (α, 0)Rx,q(β, 0). Let b∗x,q be the function with domain

bx,q and b∗x,q(α) = (α, 0) for all α ∈ bx,q.

Claim 10.22. (b∗x,q) is a system of branches through (Rx,q) in the sense of Defini-

tion 2.14.

Proof. Let β ∈ bx,q and let α < β be such that h′ + (x, q) ⊩∗ uα <T uβ . As

(x, q) ∈ A∗
β , we have f(x, q, β) = f(x, q, α0) = C where C ∈ Jx,q. By the properties

of Jx,q we have α ∈ C, so that f(x, q, α) = C = f(x, q, α0) and (x, q) ∈ A∗
α, hence

α ∈ bx,q. Finally for every α ∈ J̄ \ ρ we have α ∈ bx,q for any (x, q) ∈ A∗
α.

Let E be the set of (x, q) ∈ Bm such that bx,q ∈ V [L][Agg][R] and bx,q is

unbounded. By the distributivity of P1 × P2b × P3, we have E ∈ V [L][Agg][R]. We

now work below a condition in P1 × P2b × P3 that determines the value of E.

Claim 10.23. E ∈ Fm.

Proof. Suppose for a contradiction that Bm \ E ∈ F+
m. The set {b∗x,q : (x, q) ∈

Bm \ E} is still a system of branches through (Rx,q), since for every α ∈ J̄ \ ρ we

may choose (x, q) ∈ (Bm \ E) ∩A∗
α to witness that α ∈ dom(b∗x,q).

Now we appeal to Fact 2.15 with λ = λbn∗−3, P = P1 × P2b × P3, and Q =

P∗
1 × P∗

2b × P∗
3 defined as in the discussion preceding Claim 10.17. It follows that

there is (x, q) ∈ Bm \ E such that bx,q ∈ V [L][Agg][R] and bx,q is unbounded, an

immediate contradiction.

By distributivity, (bx,q)(x,q)∈E ∈ V [L][Agg][R]. For every α ∈ J̄ \ ρ, let Eα =

{(x, q) ∈ E : α ∈ bx,q}. Since Eα = E ∩ A∗
α, Eα ∈ Fm. For all α, β ∈ J̄ \ ρ with

α < β and all (x, q) ∈ Eα ∩ Eβ , α, β ∈ bx,q and hence h′ + (x, q) ⊩∗ uα < uβ .

Lemma 10.24. There exist ρ < µ and a sequence of conditions (pα)α∈J\ρ in

V [L][Agg][R] such that:

• For all α the stem of pα is h.
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• For all α and β with α < β, pα ∧ pβ ⊩ uα < uβ.

Proof. Let the stem h from the conclusion of Lemma 10.19 be q17, . . . xn−1, [g].

We will construct an increasing sequence (ρm)n≤m<ω of ordinals less than µ,

together with sets (Aα
m)n≤m,α∈J\ρm+1

and functions (F ∗
m+1)n≤m such that the fol-

lowing properties hold, along with another one to be stated below:

• Aα
m ∈ Um.

• F ∗
m+1 ∈ Cm+1.

• Aα
m ×≺ Aα+1

m+1 ⊆ dom(F ∗
m+1).

For m ≥ n, α ∈ J \ ρm say that a lower part s is good for α at m if and only if:

• s has the the form q′17, . . . x
′
m−1.

• q′k ≤ qk and x′k = xk for 17 ≤ k < n.

• x′k ∈ Aα
k for n ≤ k < m.

• q′k ≤ F ∗
k+1(x′k, x

′
k+1) for n < k < m− 1.

• q′n ≤ g(x′n) if m > n.

The final key property is that:

• For α, β ∈ J \ ρm, if a lower part s of form q′17, . . . x
′
m−1 is good for both α

and β at m, then s + [g] ⊩∗ uα < uβ if m = n, and s + [F ∗
m(x′m−1,−)] ⊩∗

uα < uβ if m > n.

To initialize the construction we set ρn = 0, and verify that the key property

holds for m = n. Suppose that α, β ∈ J with α < β, and s is good for both α and β

at n. That is to say s has the the form q′17, . . . xn−1 where q′k ≤ qk for 17 ≤ k < n.

Therefore s+[g] ≤∗ h, and so by the conclusion of Lemma 10.19 s+[g] ⊩∗ uα < uβ .

Continuing the initialization apply Lemma 10.20 to the stem h, set J and se-

quence (uα)α∈J . Let ρn+1 be the ordinal ρ from the conclusion of that lemma, and

choose sets (Aα
n)α∈J\ρn+1

and a function F ∗
n+1 ∈ Cn+1 as in the discussion following

the statement of Lemma 10.20. We verify that the key property holds for m = n+1.

Suppose that α, β ∈ J \ ρn+1 with α < β, and s is good for both α and β

at n + 1. That is to say s has the the form q′17, . . . xn−1, q, x where q′k ≤ qk for

17 ≤ k < n, q ≤ g(x), x ∈ Aα
n ∩ Aβ

n. Let t = q17, . . . xn−1, so that by construction

h+(x, [F ∗
n+1(x,−)]) = t+g(x)+x+[F ∗

n+1(x,−)] ⊩∗ uα < uβ . Since s ≤∗ t+g(x)+x,

s+ [F ∗
n+1(x,−)] ⊩∗ uα < uβ as required.

Now suppose that m ≥ n and we have constructed ρk for k ≤ m + 1,

(Aα
k )α∈J\ρk+1

for k ≤ m and F ∗
k for k ≤ m + 1. Let s be a lower part of form

q′17, . . . x
′
m and let Js be the set of α ∈ J \ ρm+1 such that s is good for α at m+ 1.

By construction s+ [F ∗
m+1(x′m,−)] ⊩∗ uα < uβ for α, β ∈ Js with α < β.

For every lower part s such that Js is bounded, let ρs = sup(Js). For s such

that Js is unbounded, we apply Lemma 10.20 to the unbounded set Js and the

stem s + [F ∗
m+1(x′m,−)]. We obtain ρs < µ and sets (Es

α)α∈Js\ρs
in Fm+1, such
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that s+ F ∗
m+1(x′m, x) + (x, q) ⊩∗ uα < uβ for all α, β ∈ Js \ ρs with α < β and all

(x, q) ∈ Es
α ∩ Es

β .

Now let ρm+2 = sups ρ
s, and for α ∈ J \ ρm+2 let Em+1

α = ∆s,α∈JsEs
α, that is

Em+1
α = {x : ∀s ≺ x α ∈ Js =⇒ x ∈ Es

α}. It follows that for α, β ∈ J \ ρm+2 with

α < β, (x, q) ∈ Em+1
α ∩ Em+1

β , and s as above such that s ≺ x and s is good for

both α and β at m+ 1 we have s+ F ∗
m+1(x′m, x) + (x, q) ⊩∗ uα < uβ .

As in the discussion following Lemma 10.20, we now (shrinking Em+1
α if neces-

sary) choose (Aα
m+1)α∈J\ρm+2

and F ∗
m+2 such that Em+1

α = {(x, q) : x ∈ Aα
m+1, q ≤

[F ∗
m+2(x,−)]}. To finish the construction we verify that we have maintained the key

property. So let s be a lower part of form q′17, . . . x
′
m, q

′
m+1, x

′
m+1 which is good for

both α and β at m+2. Let t be the initial segment q′17, . . . x
′
m of s, so that t ≺ x′m+1

and t is good for α and β at m + 1. By definition qm+1 ≤ F ∗
m+1(x′m, x

′
m+1) and

x′m+1 ∈ Am+1
α ∩Am+1

β , by construction t+ F ∗
m+1(x′m, x

′
m+1) + x+ [F ∗

m+2(x,−)] ⊩∗

uα < uβ , so s+ [F ∗
m+2(x,−)] ⊩∗ uα < uβ as required.

Now let ρ = supn≤m<ω ρn, and for α ∈ J \ ρ define pα as follows:

• pα has q17, . . . xn−1 as an initial segment.

• fpα
n = g ↾ Aα

n.

• F pα

k = F ∗
k ↾ Aα

k−1 ×≺ Aα
k for n < k < ω.

Let α, β ∈ J \ ρ with α < β, and suppose for a contradiction that there is

q ≤ pα, pβ such that q ⊩ uα ≮ uβ . Let the lower part of q be t = q′17, . . . x
′
m−1,

where without loss of generality m > n. By definition t is good for both α and β

at m, and fqm ≤ F ∗(x′m−1,−), so that a fortiori [fqm] ≤ [F ∗(x′m−1,−)] The stem

of q is h = t + [fqm], and so by construction h ⊩∗ uα < uβ for an immediate

contradiction.

Lemma 10.25. The tree property at µ holds in the model V [L][Agg][R][P̄ ].

Proof. Let p be arbitrary. Our whole construction could have been done below p,

so that the conditions pα from the conclusion of Lemma 10.24 can be taken to

be extensions of p. Since P̄ is µ-cc, by Lemma 2.1 there is α such that pα forces

{β : pβ ∈ G} to be unbounded. But for β < γ with pβ , pγ ∈ G, we have pβ ∧pγ ∈ G,

so that uβ <T uγ . It follows that pα forces that the uβ such that pβ ∈ G form a

cofinal branch.

Lemma 10.26. The tree property at µ holds in the model V [L][Agg][P̄ ].

Proof. We need to verify that we have satisfied the hypotheses of Lemma 2.21 as

listed at the start of Section 2.5. V [L][Agg] plays the role of V , and P̄ plays the role

of P.

Hypothesis 1 is immediate. By Lemma 8.23 κ is a cardinal and µ = κ+ in

V [L][Agg][P̄ ], taking care of the first part of Hypothesis 2. Claim 10.16 takes care

of the rest of Hypothesis 2. Hypothesis 3 follows from Lemma 10.15. The remaining

hypotheses follow from Lemmas 8.6, 8.7 and 8.8.

The conclusion is now immediate from Lemmas 10.25 and 2.21.
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10.2. The tree property at λ = ℵω2+2

Recall from Section 10.1 that ν = λbω and µ = λbω+1. Let λ = λbω+2, so that in our

final model the cardinal λ is destined to become ℵω2+2. We will establish that the

tree property holds at λ in V [L][Agg][P̄ ]. The argument is quite similar to that from

[3, Theorem 3.1], but there are extra complications.

We start by constructing a suitable generic embedding with critical point λ

whose domain is a generic extension of V [L][Agg]. Now that the desired critical

point is λ the poset L ↾ κ ∗Lb ∗ Ib counts as small forcing, and the main obstacle is

to deal with Jc0 ∗ Jc1. We note that the situation here is very like the n = 0 case in

Section 9.1, in particular the proof of Claim 9.7 in that section.

We start by writing V [L][Agg] = V lbi(κ)[Jc
0 ][Jc

1 ][Ae × Agg]. Recall that Bc
1 is

defined and < λ-closed in V lbi(κ)[Jc
0 ], and Uc

1 = (Bc
1)+Ac

1 . Similarly Cc
1 is defined

and < λ-closed in V lbi(κ)[Jc
0 ], Sc1 = (Cc

1)+Ac
1 .

Parallel to the proof of Claim 9.7, let TBC = AV lbi(κ)[Ac
0∗U

c
0 ](Sc0,Bc

1×Cc
1), so that

TBC is defined and < λ-closed in V lbi(κ)[Ac
0∗U c

0 ]. Let QTT be the two-step iteration

of term forcing which adds a TBC-generic object inducing U c
1 ∗Sc

1. Exactly as in the

proof of Claim 9.7, QTT is < µ-closed in V lbi(κ)[Jc
0 ∗ Jc

1 ]. Forcing with QTT over

V [L][Agg], we obtain a model V [L][Agg][QTT ] = V lbi(κ)[Jc
0 ][Ac

1 ×TBC][Ae ×Agg].

We will do the construction for Lemma 4.10 with appropriate parameter settings.

Start by recalling that in the context of Ac
0 ∗ Uc

0 ∗ Sc0 × Ac
1 we have µ0 = λb17,

µ1 = λbω+1 = µ, µ2 = λbω+2 = λ, µ3 = λbω+3. Accordingly we will set the parameters

for Lemma 4.10 as follows:

• n = 0.

• η = µ3 = λbω+3.

• Vinn is V .

• Vdef is V lbi(κ), so that Vdef [A ↾ µn+2 ∗ U ↾ µn+2] is V lbi(κ)[Ac
0 ∗ U c

0 ].

• V ′ is V lbi(κ)[Ac
0 ∗ U c

0 ∗ Sc
0 ∗Ac

1].

• D2 = Agg.

• D3 = TBC.

• D0 = Ae.

• Dsmall is trivial forcing.

• V ′[D0,2,3] is V [L][Agg][QTT ].

Following the argument for Lemma 4.10, we will start with a suitable embedding

j : V [Agg] → N , defined in V [Agg] and witnessing that λ is χ-supercompact in

V [Agg] for some large enough value of χ. Since L ↾ κ ∗ Lb ∗ Ib is generic for small

forcing, it is easy to lift j to an embedding j : V lbi(κ)[Agg] → N [L ↾ κ][Lb][Ib],

defined in V lbi(κ)[Agg] and witnessing that λ is χ-supercompact in this model. We

note that the models V and V [Agg] agree on < λ-sequences of ordinals, as do V lbi(κ)

and V lbi(κ)[Agg].

We will force over V [L][Agg][QTT ] with a product P2 × P3 defined as in the
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proof of Lemma 4.10. To analyze P2, we note that

Ac
0 = AddV lb(κ)(λb17, [λ

b
ω+1, λ

b
ω+2))

= AddV [Agg][L↾κ][Lb](λb17, [λ
b
ω+1, λ

b
ω+2)).

By elementarity,

j(Ac
0) = AddN [L↾κ][Lb](λb17, [λ

b
ω+1, j(λ

b
ω+2))).

Since V [Agg][L ↾ κ][Lb] |= χN [L ↾ κ][Lb] ⊆ N [L ↾ κ][Lb],

j(Ac
0) = AddV [Agg ][L↾κ][Lb](λb17, [λ

b
ω+1, j(λ

b
ω+2)))

= AddV lb(κ)(λb17, [λ
b
ω+1, j(λ

b
ω+2))).

By this and similar arguments for Ac
1 and Ae we have:

• j(Ac
0)/Ac

0 = AddV lb(κ)(λb17, j(λ
b
ω+2) \ λbω+2).

• j(Ae)/Ae = AddV lb(κ)(λb17, j(λ
b
ω+3) \ j[λbω+3]).

• j(Ac
1)/Ac

1 = AddV lb(κ)(λbω+1, j(λ
b
ω+3) \ j[λbω+3]).

In summary P2a is a Cohen poset to add subsets of λb17 defined in V lb(κ), and P2b

is a Cohen poset to add subsets of λbω+1 defined in the same model.

To analyze P3, it is useful to recall that Uc ↾ µ1 and Sc ↾ µ1 are both trivial.

It follows that P3 is defined in V lbi(κ)[Ac
0 × Ac

1 × Agg] and is < λbω+1-closed in

V lbi(κ)[Ac
0∗U c

0∗Sc
0][Ac

1×Bc
1×Cc

1×Agg]. It is important that, as we noted in the proof

of Lemma 4.5, P3 collapses λ to become an ordinal of cofinality µ and cardinality

µ. We note for use later that a fortiori P3 is < µ-closed in V lbi(κ)[Jc
0 ][Jc

1 ×Agg].

As in Lemma 4.10 we lift j to obtain a generic embedding with critical point

λ which has domain V [L][Agg][QTT ] and exists in V [L][Agg][QTT ][P2 × P3]. In

the current setting we may restrict the domain to V [L][Agg], so we have a generic

embedding with domain V [L][Agg] obtained by forcing over V [L][Agg] with P2 ×
(P3 ×QTT).

By Lemma 2.54, P2 × P2 is λ-cc in V [L][Agg]. It follows from Lemma 2.11 that

P2 has the λ-approximation property in V [L][Agg]. By another similar appeal to

Lemmas 2.54 and 2.11, P2a has the µ-approximation property in V [L][Agg][P2b ×
P3 ×QTT ].

By the preceding analysis QTT is < µ-closed in V lbi(κ)[Jc], and since Agg is

highly distributive the same is true in V lbi(κ)[Jc][Agg], which is the submodel of

V [L][Agg] missing only Ae. As we noted above P3 is also < µ-closed in this model,

so that P3 ×QTT is < µ-closed in this model.

We claim that P2b is < µ-distributive in V lbi(κ)[Jc][Agg]. To see this we note

that we need to show that P2b is λbn-distributive for all n, and this will follow by

the usual arguments using term forcing and Easton’s Lemma.
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It follows that P3 ×QTT is < µ-closed in V lbi(κ)[Jc][Agg][P2b]. Therefore P3 ×
QTT is formerly < µ-closed in the sense of Fact 2.12 in the model

V lbi(κ)[Jc][Agg][P2b][P2a ×Ae] = V [L][Agg][P2].

The key points are that Ac
0 added λ subsets of λb17, and that P2a × Ae is µ-cc in

V lbi(κ)[Jc][Agg][P2b].

Let Ṫ ∈ V [L][Agg] be a P̄-name for a λ-tree. We assume that level α is a subset

of {α} × µ.

Lemma 10.27. In V [L][Agg] there exist a stem h, an unbounded set I ⊆ λ and

(uα)α∈I such that uα is a node of level α for all α ∈ I, and h ⊩∗ uα <Ṫ uβ for all

α, β ∈ I with α < β.

Proof. Let j be the generic embedding with domain V [L][Agg] and critical point λ,

added by forcing over V [L][Agg] with P2 × (P3 × QTT). Define a system on λ × µ

indexed by stems as follows: uRhv ⇐⇒ h ⊩∗ u <Ṫ v.

In V [L][Agg][P2][P3][QTT ] define a branch bh through Rh as follows: α ∈
dom(bh) if and only if there is η < µ such that h ⊩∗

j(P̄ ) (α, η) <j(Ṫ ) (λ, 0). It is

routine to check that the branches bh form a system of branches in the sense of

Definition 2.14. It is also routine that if α ∈ dom(bh) then β ∈ dom(bh) ∩ α if and

only if there is ζ such that h ⊩∗
P̄ (β, ζ) <Ṫ (α, η), and in this case bh(β) = ζ for the

unique such ζ. In particular bh ↾ α ∈ V [L][Agg] for all α ∈ dom(bh).

We now appeal to Lemma 2.16 with P3 ×QTT in place of P, P2a × Ae in place

of E, V lbi(κ)[Jc][Agg][P2b] in place of V , and λb17 in place of δ. It follows that there

is h such that bh ∈ V [L][Agg][P2] and dom(bh) is unbounded in λ. Since P2 has the

λ-approximation property in V [L][Agg], it follows that bh ∈ V [L][Agg]. Now we set

I = dom(bh) and uα = (α, bh(α)) to finish.

We can now describe the main idea of the proof that λ has the tree property. As

in the proof of the tree property for µ in Section 10.1, we will construct conditions

(pα) for all sufficiently large α in I, such that pα ∧ pβ ⊩V [L][Agg]

P̄ uα < uβ for α < β.

This time we will construct this sequence of conditions in V [L][Agg][P3 ×QTT ]: as

in Section 10.1 this will give a branch in V [L][Agg][P3 ×QTT ][P̄ ], and we will need

to use a suitable branch lemma to find a branch in V [L][Agg][P̄ ].

Let h be of the form (s̄, [g]) for some lower part s̄ and some 1-variable function

g. We note that if β ∈ I then I ∩ β = {α : h ⊩∗ uα < uβ}.

Let q̄ = [g] and let the length of h = (s̄, q̄) be t. For all relevant q, fix gq such

that q = [gq]. We take care to choose gq̄ = g.

Remark 10.28. Let F ∈ Fn, that is to say F is a potential value of F p
n for some p ∈ P.

Then for all relevant x, [F (x,−)] = [g[F (x,−)]], that is to say F (x, y) = g[F (x,−)](y)

for many y. Taking a diagonal intersection, we may shrink the domain of F to

arrange that F (x, y) = g[F (x,−)](y) for all (x, y) ∈ dom(F ). In the sequel we will

arrange that all 2-variable constraint functions have been treated in this way.
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As in Section 10.1, we can use the functions gq to prolong a stem (s, q) to stems

(s, q) + (x, r) = (s, gq(x), x, r) for each (x, r) with x ∈ dom(gq). In the natural way

we use this to define (recursively) a notion of extension for stems.

In the generic extension V [L][Agg][P2][P3][QTT ] where j is defined, let v = j(u)λ̄
where λ̄ is the λth point of j(I). We work below some condition in P2 × P3 ×QTT
which fixes the values of λ̄ and v. This condition forces “for all α ∈ I, (s̄, q̄) ⊩∗

uα < v”. So in V [L][Agg][P2][P3][QTT ] we may choose a sequence (rα)α∈I , such

that rα ∈ j(P̄) with stem (s̄, q̄) and rα ⊩ uα < v.

For all stems (s, q) extending (s̄, q̄), define

Js,q = {α ∈ I | (s, q) ⊩∗
j(P̄ ) uα <j(Ṫ ) v}.

We note that in general the definition of Js,q involves the generic embedding j,

so it takes place in V [L][Agg][P2][P3][QTT ]. However, it is clear that Js̄,q̄ = I. As

usual if β ∈ Js,q, then Js,q ∩ β = {α < β : (s, q) ⊩∗ uα < uβ}, so in particular

Js,q ∩ β ∈ V [L][Agg].

Recall that in V [L][Agg][P3 × QTT × P2b], λ has cardinality and cofinality µ,

while P2a is µ-cc and has the µ-approximation property. It follows that if Js,q is

unbounded then Js,q ∈ V [L][Agg][P3 ×QTT × P2b].

Working in V [L][Agg][P3 × QTT × P2b], let Js,q be the set of all possible un-

bounded values for Js,q. Since P2a is µ-cc, |Js,q| < µ, and for any name Ċ for a

bounded subset of λ there is β < λ such that ⊩P2a Ċ ⊆ β. We use these facts to

choose ρ < λ so large that:

• It is forced by P2a that for all (s, q), if Js,q is bounded in λ then Js,q ⊆ ρ.

• For all (s, q) and all distinct C,D ∈ Js,q, C ∩D ⊆ ρ.

For α ∈ I \ ρ, define a partial function f , by setting f((s, q), α) equal to the

unique C ∈ Js,q such that α ∈ C. We note that Js̄,q̄ = {I}, so that f((s̄, q̄), α) = I

for all α ∈ I \ ρ.

Let α0 = min(I \ ρ). Fix a length k ≥ t, we will consider stems (s, q) of this

length extending (s̄, q̄). Let α ∈ I \ ρ, and define Bk,α as the set of pairs (s, q) such

that (s, q) extends (s̄, q̄), (s, q) has length k, and f((s, q), α) = f((s, q), α0).

Given (s, q) ∈ Bk,α, define

F s,q
α = {(x, r) : (s, q) + (x, r) ∈ Bk+1α}

We note that for all α ∈ I \ ρ:

• Since f((s̄, q̄), α) = f((s̄, q̄), α0) = I, (s̄, q̄) ∈ Bt,α.

• By the distributivity of P3 × QTT × P2b, (Bk,α)t≤k<ω ∈ V [L][Agg] and

(F s,q
α )(s, q) extends (s̄, q̄) ∈ V [L][Agg].

Remark 10.29. The following Claim is an assertion in V [L][Agg][P3 ×QTT × P2b]

about sets which all lie in V [L][Agg], but are defined in terms of the function f

which only exists in V [L][Agg][P3 × QTT × P2b], and in turn is defined using the

embedding j which only exists in V [L][Agg][P3 × QTT × P2]. We will prove it (as
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one would expect) by a forcing argument involving both P3 ×QTT× P2b and P2a.

Similar remarks apply to Claim 10.31 below. Throughout we will only discuss f and

j in appropriate generic extensions, or in formulae which are being forced to hold

in such extensions.

Claim 10.30. For all α ∈ I \ ρ and all (s, q) ∈ Bk,α, F
s,q
α ∈ Fk+1.

Proof. If not then let p ∈ P3 ×QTT× P2b be such that

p ⊩V [L][Agg]
P3×QTT×P2b

“(s, q) ∈ Ḃk,α and Ḟ s,q
α /∈ Fk+1”.

Since j fixes sets of rank below λ,

(p, 1P2a
) ⊩V [L][Agg]

P3×QTT×P2
“Bk+1 \ Ḟ s,q

α ∈ j(Fk+1)+”.

Forcing below p we obtain P3×QTT ×P2b, such that (s, q) ∈ Bk,α and F s,q
α /∈ Fk+1

in V [L][Agg][P3 ×QTT × P2b].

Let f((s, q), α) = f((s, q), α0) = C. Since C ∈ Js,q, C is a possible value for

Js,q, and so we may choose p̄ ∈ P2a such that

p̄ ⊩V [L][Agg ][P3×QTT×P2b]
P2a

“C = J̇s,q”.

Forcing below p̄ we obtain P2a, such that C = Js,q in V [L][Agg][P3 ×QTT × P2].

So α0, α ∈ Js,q, that is to say (s, q) ⊩∗
j(P̄) uα0 , uα < v. We choose p′ ∈ j(P̄) with

stem (s, q) such that p′ ⊩j(P̄) uα0
, uα < v.

Take a minimal one-step extension p′′ of p′, arranging that the stem of p′′ is

(s, q)+(x, r) and (x, r) ∈ Bk+1\F s,q
α . p′′ ⊩j(P̄) uα0

, uα < v, so that (s, q)+(x, r) ⊩∗
j(P̄)

uα0 , uα < v.

We have α0, α ∈ J(s,q)+(x,r). Since α, α0 > ρ we see that J(s,q)+(x,r) is un-

bounded. So J(s,q)+(x,r) ∈ J(s,q)+(x,r), say it is D.

Returning to the model V [L][Agg][P3 × QTT × P2b], we have α0, α ∈ D, so

f((s, q)+(x, r), α) = D = f((s, q)+(x, r), α0), that is to say (s, q)+(x, r) ∈ Bk+1,α.

Therefore (x, r) ∈ F s,q
α by definition, contradicting our choice of (x, r) as an element

of Bk+1 \ F s,q
α .

The following claim will ultimately be used to create a branch using the nodes

uα.

Claim 10.31. Let α, β ∈ I \ρ and let (s, q) have length k with (s, q) ∈ Bk,α∩Bk,β.

Then (s, q) ⊩∗ uα < uβ.

Proof. We work in V [L][Agg][P3 × QTT × P2b]. By the definitions of Bk,α and

Bk,β , f((s, q), α) = f((s, q), α0) = f((s, q), β) = C say. There is p ∈ P2a forcing

that C = Js,q: if we force below p then in the extension α, β ∈ Js,q and we may

choose r ∈ j(P̄) with stem (s, q) such that r ⊩j(P̄) uα, uβ < v, from which it follows

that r ⊩j(P̄) uα < uβ . By elementarity there is r0 ∈ P̄ with stem (s, q) such that

r0 ⊩P̄ uα < uβ , so (s, q) ⊩∗ uα < uβ .
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Claim 10.32 exposes a “monotonicity” property of the sets Bk,α which will be

crucial in the proof of Lemma 10.34 below.

Let (s, q) ∈ Bk,α and (s′, q′) be a direct extension of (s, q), then (s′, q′) ∈ Bk,α.

Proof. Let f((s, q), α) = f((s, q), α0) = C and let p ∈ P2a force that Js,q = C.

Force below p, choose r ∈ j(P̄) with stem (s, q) such that r ⊩ uα0
, uα < v, and

refine r to a condition r′ with stem (s′, q′), so that r′ ⊩ uα0
, uα < v and hence

(s′, q′) ⊩∗ uα0 , uα < v. So α0, α ∈ Js′,q′ , since ρ < α0 < α we see that Js′,q′ is

unbounded, say Js′,q′ = D ∈ Js′,q′ . Then f((s′, q′), α) = f((s′, q′), α0) = D, so that

(s′, q′) ∈ Bk,α.

At this point we are ready to construct the conditions pα for α ∈ I \ ρ. We will

perform the construction of the entries in pα in V [L][Agg][P3 × QTT × P2b], and

it will follow by distributivity that pα ∈ V [L][Agg] (so that pα ∈ P̄) for each α.

However the sequence (pα)α∈I\ρ only exists in V [L][Agg][P3 ×QTT × P2b].

Define pα for α ∈ I \ ρ, where

pα = ⟨s̄, g ↾ Aα
t , A

α
t , F

α
t+1, A

α
t+1, F

α
t+2, . . .⟩.

To start the construction of pα, recall that (s̄, q̄) ∈ Bt,α, so that F s̄,q̄
α ∈ Ft+1 by

Claim 10.30. We will begin by choosing Aα
t and F̄α

t+1 so that:

• Aα
t and F̄α

t+1 witness that F s̄,q̄
α ∈ Ft+1, that is to say (x, [F̄α

t+1(x,−)]) ∈ F s̄,q̄
α

for all x ∈ Aα
t .

• Aα
t ⊆ dom(g).

• x ∈ Aα
t and g[F̄α

t+1(x,−)](y) = F̄α
t+1(x, y) for all (x, y) ∈ dom(F̄α

t+1).

We note for the record that for all x ∈ Aα
t :

• (s̄, q̄) + (x, [F̄α
t+1(x,−)]) ∈ Bt+1,α.

• Since g = gq̄, the stem of the minimal extension of pα by adding x will be

(s̄, q̄) + (x, [F̄α
t+1(x,−)]).

We will complete the choice of Fα
t+1 once we have chosen Aα

t+1, by defining Fα
t+1 =

F̄α
t+1 ↾ Aα

t ×≺ A
α
t+1. Note that Fα

t+1 retains all the properties listed above for F̄α
t+1.

Now assume that k ≥ t and we have defined sets (Aα
i ) for t ≤ i ≤ k, together

with functions Fα
i for t < i ≤ k and a function F̄α

k+1, satisfying:

• dom(Fα
i ) = Aα

i−1 ×≺ A
α
i for t ≤ i < k,

• x ∈ Aα
k for all (x, y) ∈ dom(F̄α

k+1).

• g[F̄α
k+1(x,−)](y) = F̄α

k+1(x, y) for all (x, y) ∈ dom(F̄α
k+1).

• g[F̄α
i (x,−)](y) = F̄α

i (x, y) for all (x, y) ∈ Aα
i−1 ×≺ A

α
i .

• For all ≺-increasing sequences x⃗ = (xi)t≤i≤k with xi ∈ Aα
i , let h′(x⃗) be the

stem

(s̄, q̄) + (xt, [F
α
t+1(xt,−)]) + . . . (xk−1, [F

α
k (xk−1,−)]) + (xk, [F̄

α
k+1(xk,−)]),

then:
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– h′(x⃗) ∈ Bk+1,α.

– h′(x⃗) is the stem of the minimal extension of pα by (xi)t≤i≤k.

Remark 10.33. By the choice of the functions Fα
i ,

h′(x⃗) = (s̄, g(xt), F
α
t+1(xt, xt+1), . . . , xk−1, F

α
k (xk−1, xk), xk, [F̄

α
k+1(xk,−)]).

In this round of the construction we will choose Aα
k+1 and F̄α

k+2, and will then

define Fα
k+1 as F̄α

k+1 ↾ Aα
k ×≺ Aα

k+1. For each ≺-increasing sequence x⃗ = (xi)t≤i≤k

with xi ∈ Aα
i , h′(x⃗) ∈ Bk+1,α by our induction hypothesis, and thus F

h′(x⃗)
α ∈ Fk+2

by Claim 10.30. By Lemma 10.9 we have ∆x⃗F
h′(x⃗)
α ∈ Fk+2, where

∆x⃗F
h′(x⃗)
α = {(x, r) : ∀x⃗ xk ≺ x =⇒ (x, r) ∈ Fh′(x⃗)

α }.

We choose Aα
k+1 and F̄α

k+2 so that:

• Aα
k+1 and F̄α

k+2 witness that ∆x⃗F
h′(x⃗)
α ∈ Fk+2, or to be more explicit

(x, [F̄α
k+2(x,−)]) ∈ ∆x⃗F

h′(x⃗)
α ∈ Fk+2 for all x ∈ Aα

k+1.

• x ∈ Aα
k+1 and g[F̄α

k+2(x,−)](y) = F̄α
k+2(x, y) for all (x, y) ∈ dom(F̄α

k+2).

Then we define Fα
k+1 as F̄α

k+1 ↾ Aα
k ×≺ A

α
k+1.

It remains to check that we have propagated our induction hypotheses. Only

the last clause requires any work. Let (xi)t≤i≤k+1 with xi ∈ Aα
i , and let h′ be the

stem

(s̄, q̄) + (xt, [F
α
t+1(xt,−)]) + . . . (xk, [F

α
k+1(xk,−)]) + (xk+1, [F̄

α
k+2(xk+1,−)]),

where we note that

h′ = (s̄, g(xt), xt, F
α
t+1(xt, xt+1), . . . , xk, F

α
k+1(xk, xk+1), xk+1, [F̄

α
k+2(xk+1,−)]).

Let x⃗ = (xi)t≤i≤k, and note that [F̄α
k+1(xk,−)] = [Fα

k+1(xk,−)], so that h′(x⃗) as

defined above is the stem obtained from h′ by deleting the last entry. Because xk ≺
xk+1 and (xk+1, [F̄

α
k+2(xk+1,−)]) ∈ ∆y⃗F

h′(y⃗)
α , (xk+1, [F̄

α
k+2(xk+1,−)]) ∈ F

h′(x⃗)
α , so

that h′ ∈ Bk+2,α.

To finish we consider the stem of the minimal extension of pα by the sequence

(xi)t≤i≤k+1, recalling that by our induction hypothesis h′(x⃗) is the stem of the

minimal extension of pα by (xi)t≤i≤k. Recalling that the one-variable function in the

minimal extension by (xi)t≤i≤k is Fα
k+1(xk,−), and that by our induction hypothesis

g[F̄α
k+1(xk,−)](xk+1) = Fα

k+1(xk, xk+1), it is clear that h′ is the stem of the minimal

extension of pα by (xi)t≤i≤k+1 as required.

We have now constructed in V [L][Agg][P3×QTT ×P2b] a sequence (pα)α∈I such

that

pα = ⟨s̄, g ↾ Aα
t , A

α
t , F

α
t+1, A

α
t+1, F

α
t+2, . . .⟩.

and for every minimal extension q of pα by a sequence (xi)t≤i≤k, the stem of q is

in Bk+1,α.

The following Lemma is analogous to Lemma 10.24.



September 17, 2025 16:29 treepaper˙jml

126 J. Cummings, Y. Hayut, M .Magidor, I. Neeman, D. Sinapova & S. Unger

Lemma 10.34. For α, β ∈ I \ ρ with α < β, pα ∧ pβ ⊩ uα < uβ.

Proof. Suppose for a contradiction that p ≤ pα, pβ and p ⊩ uα ̸< uβ . Assume that

p is an s-step extension of pα and pβ for some s ≥ 2. Let

p = ⟨s′, ct, xt . . . ct+s−1, xt+s−1, ft+s, At+s, Ft+s+1, At+s+1, . . .⟩.

Let x⃗ = (xi)t≤i<t+s. The stem of p directly extends the stem of the minimal

extension of pα by x⃗. By construction the stem of this minimal extension lies in

Bt+s,α, and so by Claim 10.32 stem(p) ∈ Bt+s,α. Similarly stem(p) ∈ Bt+s,β . By

Claim 10.31 stem(p) ⊩∗ uα < uβ , contradicting p ⊩ uα ̸< uβ .

Lemma 10.35. The tree T has a cofinal branch in V [L][Agg][P3 ×QTT ×P2b][P̄ ].

Proof. The proof is essentially the same as the proof of Lemma 10.25. The main

difference is that λ is no longer a cardinal in V [L][Agg][P3 ×QTT × P2b], in fact it

has become an ordinal of cofinality µ. Since P̄ has only ν stems and conditions with

the same stem are compatible, P̄ still enjoys the µ-cc in V [L][Agg][P3×QTT ×P2b],

and the argument goes through.

Lemma 10.36. The tree T has a cofinal branch in V [L][Agg][P̄ ].

Proof. We start by claiming that P3 × QTT is formerly < µ-closed in

V [L][Agg][P2b][P̄ ], with a view to using Fact 2.12. This is easy: because of the

robust µ-cc of P̄, Ae × P̄ is µ-cc in V lbi(κ)[Jc][Agg][P2b], and we can argue as in

the discussion preceding Lemma 10.27. it follows that T has a cofinal branch in

V [L][Agg][P2b][P̄ ].

Now we claim that P2b has the λ-approximation property in V [L][Agg][P̄ ]. Again

this is easy, because P̄×P2b is λ-Knaster in V [L][Agg]. It follows that T has a cofinal

branch in V [L][Agg][P̄ ] as required.

10.3. The tree property at ℵω2+3

The proof that the tree property holds at ℵω2+3 in our final model is very sim-

ilar to that for ℵω2+2, so we only sketch it. The main point is to get a suitable

generic embedding with domain V [L][Agg] and critical point λbω+3. This is much

more straightforward than it was for λbω+2 in Section 10.2, mostly because λbω+3 is

supercompact in V lbi(κ)[Jc
0 ], so that we only need to account for Jc

1 , Ae and Agg.

Moreover Ae and Agg are both adding Cohen subsets to cardinals below the critical

point.

We recall that Jc
1 is a single round of the A ∗ U ∗ S construction defined in

V lbi(κ)[Jc
0 ]. The parameters are λbω+1, λbω+2, and λbω+3.

• Ac
1 = AddV lb(κ)(λbω+1, [λ

b
ω+2, λ

b
ω+3)).

• Agg = AddV (λbω+2, λ
∗), where λ∗ = j01(λa0).

• Ae = AddV lb(κ)(λb17, λ
b
ω+3).
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We fix an embedding j witnessing that λbω+3 is highly supercompact in V , and

lift it trivially to V lbi(κ)[Jc
0 ]. We will lift j onto V [L][Agg] much as we would in

Lemma 4.5, if our goal was to prove that λbω+3 has the tree property in V [L][Agg].

We will step through the construction from the proof of Lemma 4.5, adapted to

a situation where the A ∗U ∗S construction only runs for one round. In our current

context the parameters are set as follows:

• n = 0.

• µ0 = λbω+1, µ1 = λbω+2, µ2 = λbω+3.

• A0 ∗ U0 ∗ S0 = Jc1.

• Vdef = V lbi(κ)[Jc
0 ]. There is no need for Vinn.

• D1 = Agg.

• D0 = Ae.

The generic embedding is added to V [L][Agg] by a product forcing P2 × P3 =

P2a × P2b × P3, where:

• P2b = j(Agg)/Agg, so P2b = AddV (λbω+2, j(λ
∗) \ j[λ∗]).

• P2a = j(Ae × Ac
1)/Ae × Ac

1, so P2a = AddV lb(κ)(λb17, j(λ
b
ω+3) \ λbω+3) ×

AddV lb(κ)(λbω+1, j(λ
b
ω+3) \ λbω+3).

• P3 is defined in and < λbω+2-closed in V lbi(κ)[Jc], and retains this closure

in V lbi(κ)[Jc][Agg].

As in the proof of Lemma 4.5, P3 is still < λbω+2-closed in

V lbi(κ)[Jc][Agg][P2b] = V lbi(κ)[Jc][Âgg],

where Âgg is the j(Agg)-generic object obtained by combining Agg and P2b. In this

model Ae × P2a is λbω+2-Knaster and 2λ
b
ω+1 = λbω+3.

To summarize the key points:

• P2 is λbω+3-Knaster in V [L][Agg].

• P3 is formerly < λbω+2-closed forcing in V [L][Agg][P2].

With this information in hand, we may finish the proof exactly as in Section 10.2.
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Appendix A. A lifting argument

As promised, we give here the details of the generic supercompactness for θ in the

statement of Lemma 5.2.

Let Q ∈ V be < θ-directed closed and let H be Q-generic over V . Decompose

V as V0[A0 ∗ U0 ↾ θ][L0] where L0 is generic over V0[A0 ∗ U0 ↾ θ] for the Laver

preparation L0. Let Ṙ be an Add(ω, θ) ∗ U̇0 ↾ θ-name for the two-step iteration

R = L0 ∗ Q̇. Appealing to the properties of θ and ϕ0 in V0 we fix i : V0 → N0 such

that for an appropriate γ > δ (which may be chosen arbitrarily large):

• i witnesses that θ is γ-supercompact in V0.

• γ++ is a fixed point of i.

• i(ψ0)(θ) = Ṙ.

• The first point of dom(i(ϕ0)) past θ is greater than γ.

Let A′ be Add(ω, i(θ) \ θ)-generic over V [H]. Our goal is to find a lifting of i

onto V [H] defined in V [H][A′].

The main point is that i(B0) agrees with B0 up to θ, uses the name Ṙ at stage θ,

and then has nothing in its support until past γ. By a straightforward adaptation

of the argument of [16, Claim 4.7], and using the gap in the support which we just

mentioned, i(B0) ↾ (θ, i(θ)) is γ-closed in N0. An easy counting argument shows

that the set of maximal antichains of i(B0) ↾ (θ, i(θ)) which lie in N0 has cardinality

at most γ+ in V0, so we may build B ∈ V0 which is i(B0) ↾ (θ, i(θ))-generic over N0.

Let R̂ be the term forcing AV0(Add(ω, θ) ∗ U̇0 ↾ θ, Ṙ), so that R̂ is < θ-closed in

V0, and hence i(R̂) is < i(θ)-closed in N0. Since γ < i(θ) the poset i(R̂) is γ-closed in

V0. By choosing γ large enough we may assume that the set of maximal antichains

of i(R̂) which lie in N0 has size γ+ in V0, and we may build R∗ ∈ V0 which is

i(R̂)-generic over N0. We will eventually make sure that R∗ contains a term for a

master condition but we defer the description of this term.

Let A∗ be obtained by combining A0 and A′ in the natural way, so that A∗ is

Add(ω, i(θ))-generic over V0 and i[A0] ⊆ A∗. Keep in mind that A′ was obtained

by forcing over V [H] = V0[A0 ∗ U0 ∗H], so it is mutually generic with U0 ∗H over

V0[A0]. We note for use later that by this analysis:

• A∗ ∗ U0 ↾ θ is generic over N0 for Add(ω, i(θ)) ∗ i(U0) ↾ θ.
• A′ is mutually generic with L0 ∗H over V0[A0 ∗ U0 ↾ θ].

Recall that we built B ∈ V0 to be generic over N0 for the forcing i(B0) ↾ (θ, i(θ)),

which is γ-closed in N0. It is easy to see that Add(ω, i(θ)) ∗ i(U) ↾ θ is θ-cc in N0,

and so by Easton’s Lemma B is i(B0) ↾ (θ, i(θ))-generic over N0[A∗ ∗ U ↾ θ].
Now we recall that L0 ∗H is L0 ∗Q-generic over V0[A0 ∗U0 ↾ θ], so a fortiori it is

L0 ∗Q-generic over N0[A0 ∗U0 ↾ θ]. As we noted above A′ is mutually generic with

L0∗H over V0[A0∗U0 ↾ θ], so these objects are mutually generic over N0[A0∗U0 ↾ θ]
and hence L0 ∗H is L0 ∗Q-generic over N0[A∗ ∗ U0 ↾ θ]. Since Ṙ = i(ψ0)(θ) and it

names L0 ∗Q, we see that A∗ ∗(U0 ↾ θ∗L0 ∗H) is Add(ω, i(θ))∗ i(U0) ↾ θ+1-generic
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over N0.

Choosing γ large enough we can arrange that L0 ∗ H is generic for γ+-

cc forcing, so that by Easton’s Lemma again B is i(B0)(θ, i(θ))-generic over

N0[A∗ ∗ (U0 ↾ θ ∗L0 ∗H)]. As in Fact 3.3 it follows that the upwards closure of B in

i(B0)A
∗∗(U↾θ∗L∗H)(θ, i(θ)) is generic for this forcing over N0[A∗ ∗ (U0 ↾ θ ∗L0 ∗H)]:

combining the upwards closure of B with A∗ ∗ (U0 ↾ θ ∗L0 ∗H) we obtain A∗ ∗U∗
i(θ)

which is Add(ω, i(θ)) ∗ i(U0 ↾ θ)-generic over N0. Note that we can rearrange

A∗∗(U0 ↾ θ∗L0∗H) asA0∗U0∗H∗A′, and that U∗
i(θ) ∈ V0[A0∗U0∗H∗A′] = V [H][A′].

By standard arguments we can lift i to obtain a generic embedding i : V0[A0 ∗ (U0 ↾
θ)] → N0[A∗ ∗ U∗

i(θ)].

Recall that R̂ is defined in V0 as the set of A0 ∗ U0 ↾ θ-names for elements

of Ṙ. Choosing γ large enough we may arrange that i ↾ R̂ ∈ N0, and it follows

readily that i ↾ R ∈ N0[A∗ ∗ U∗
i(θ)]. By the construction of U∗

i(θ) we have that

L0 ∗ H ∈ N0[A∗ ∗ U∗
i(θ)], so that i[L0 ∗ H] ∈ N0[A∗ ∗ U∗

i(θ)]. Since i(R) is < i(θ)-

directed closed, i[L0∗H] has a lower bound in i(R) and we claim that we can choose

a term ṙ ∈ i(R̂) which is forced to denote a lower bound: this is easy because ṙ has

a simple definition in terms of i ↾ R̂ and the i(A0 ∗ U0 ↾ θ)-generic object. At this

point we return to the choice of R∗, an object which has not been used up to now,

and make sure that ṙ ∈ R∗.

Now we can realize the set of names R∗, and obtain a filter R+ ⊆ i(R) such

that i[L0 ∗ H] ⊆ R+. In order to complete the lifting and obtain i : V [H] →
N0[A∗ ∗U∗

i(θ)][R
+], it only remains to verify that R+ is generic over N0[A∗ ∗U∗

i(θ)].

Recall that we chose R∗ ∈ V0 to be generic over N0. Since R∗ is generic over N0

for < i(θ)-closed forcing and A∗ ∗ U∗
i(θ) is generic over N0 for i(θ)-cc forcing, by

Easton’s Lemma R∗ is generic over N0[A∗ ∗U∗
i(θ)]. It follows that R+ is generic over

N0[A∗ ∗ U∗
i(θ)].
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