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1. Introduction

Let k be a regular infinite cardinal. A k-tree is a tree of height k where every level
has cardinality less than x, and k has the tree property if every k-tree has a branch
of length . A k-Aronszajn tree is a counterexample to the tree property at k, that
is to say a s-tree with no branch of length x. A A*-tree T is special if there is a
function f : T — X such that v <¢r v = f(u) # f(v): such a tree is a robust
counterexample to the tree property, in the sense that it is a A™-Aronszajn tree in
any outer model where AT remains a cardinal.

The tree property belongs to a class of compactness properties, which are of
great interest in combinatorial set theory. Significant results about the tree property
include:

(Kénig [9, 1927]) w has the tree property.
(Specker [22 1949]) If k<% = &k then there is a special xT-tree.
e If x is strongly inaccessible then:

— (Keisler and Tarski [8, 1963]) If x has the tree property then x is
weakly compact.

— (Monk and Scott [14, 1964]) If x is weakly compact then s has the
tree property.

e (Silver [13, Theorem 5.9, 1972]) If  is uncountable and has the tree prop-
erty, then x is weakly compact in L.

e (Magidor and Shelah [12, 1996]) If A is a singular limit of cardinals which
are A\T-strongly compact, then AT has the tree property.

e (Combining results of Foreman, Magidor and Schindler [4] 2001], Schim-
merling and Zeman [I7, 2004], and Jensen and Steel [7, 2013]) If £ and
kT are successive regular cardinals with the tree property, then there is an
inner model with a Woodin cardinal.

¢ (Combining results of Schimmerling and Zeman [I'7, 2004], and Jensen and
Steel [7, 2013]) If A is a singular cardinal such that A™ has the tree property,
then there is an inner model with a Woodin cardinal.

It is known to be consistent that certain small regular cardinals can have the tree
property. Mitchell [I3] showed that if A < x with A regular and x weakly compact,
then there is a generic extension by < A-closed s-cc forcing in which 2* = x = A+
and the tree property of k is preserved. Magidor and Shelah [I2] showed it to be
consistent modulo a hypothesis at the level of huge cardinals that N, ; is strong
limit and has the tree property.

A natural question, raised by Foreman and by Magidor among others, asks
whether it is consistent that all regular £ > X; should simultaneously have the tree
property. There are many obstacles to be overcome in resolving this question: in
particular we need a model where GCH fails everywhere and Jensen’s “weak square”
principle I3 fails for every A. On a closely related point, we seem to need instances
of strong compactness in order to violate weak square for singular A, but there
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is tension here with Solovay’s theorem that SCH holds above a strongly compact
cardinal.
Our main result is:

Theorem 1.1. Modulo a suitable large cardinal assumption, it is consistent that
N2 is strong limit and the tree property holds for all reqular cardinals k such that
N2 S I S NW2+3.

Theorem is the first known instance where the tree property holds on regular
cardinals in an interval which overlaps a strong limit cardinal. To be more precise,
observe that if k is a singular strong limit cardinal and SCH holds at k, then by
Specker’s theorem there is a special KT T-tree. It follows to get a model where all
regular cardinals above w; have the tree property, we are required to produce a
singular strong limit cardinal x where regular cardinals between w; and « all have
the tree property, 2 > k™, and kT has the tree property.

This has long been considered the next key step in the longstanding goal of
obtaining the tree property everywhere. Notice that in Theorem the strong limit
cardinal which is overlapped is N 2, not N,. This sidesteps another key question,
which is still open, as to whether the failure of the Singular Cardinals Hypothesis
at N, is consistent with the tree property at N, ;1.

The history behind Theorem [I.I] and the ingredients that go into its proof is
a long one. We survey this history very briefly, where the price of brevity is that
some contributions are omitted. In the light of the preceding discussion, we will be
rather specific about cardinal arithmetic.

e Building on work of Abraham [I], Cummings and Foreman [2] showed that
consistently oRn = N, 12 and N, 4o has the tree property for all n < w
simultaneously. They also showed that the tree property can hold at ¥+
where & is strong limit of cofinality w and 2% = k™.

e Neeman [I6] showed that the tree property can hold at X5 for n < w and
at N, y1. In this model 2% = X,,,5 for n < w and 2% = N, ;. Unger [25]
showed it can hold for all regular cardinals in the interval [No,R,4,). In
this model 280 = Ry, 2% = N, 5 for 1 < i < w, and 2%+ = R, ;.o for
1< w.

e Building on work of Gitik and Sharon [5], Neeman [I5] showed that the
tree property can hold at ™ where x is strong limit of cofinality w and
2% = g,

e Sinapova [19] produced a model of GCH where R, has the tree property,
using different methods from those of Magidor and Shelah together with
weaker hypotheses.

e Sinapova [I8] produced a model where N is strong limit, 282 = R 2o,
and N2 has the tree property. Sinapova and Unger [20] produced a model
where R, is strong limit, 282 = X2, 5, and both R,241 and N2, have
the tree property.
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e Unger [26] proved a result closely related to Theorem producing a
model where there is no special k-Aronszajn tree for regular x with Ny < k <
N2 3. In this model none of the cardinals N,,.,, for n finite is strong limit, in
fact 2R )+ = Ry, (nt1)+3- However N2 is strong limit, and 2Rz =R 2 5.

The proof of Theorem has several steps, which we outline here with many
technicalities omitted.

e (Section We start with a model Vj such that § and « are the first two
supercompact cardinals, there are 1 supercompact cardinals above &, and
if § is the supremum of the first #* supercompact cardinals then there is
jo : Vo — My which witnesses that & is 6 T-supercompact and is such that
supercompact cardinals up to ¢ are supercompact in M.

e (Section We build a generic extension V' of Vj, in which 6 is the con-
tinuum and exhibits a strong form of generic supercompactness. We lift j
to obtain j : V' — M with similar properties.

e (Section Working in V| we use the generic supercompactness of 6 to
show that for every supercompact cardinal A with k < A < §, there exist
an w-successor cardinal p < 6 and a forcing poset uniformly defined from p
and A, forcing (among other things) the following conclusions: p* is Ry, the
successor of the supremum of the first w supercompact cardinals above A
is W,41, and N, 41 has the tree property. We will never actually force with
this forcing, rather we will use it as a device to show that certain cardinals
in our final model have the tree property. Informally we can think of p as
being “good for A”.

e (Section Still working in V, we select cardinals p, A%, A’ such that
p<B <K< <A <§and pis good for both A* and A’ in the sense
described above. In the final model p™ will become Xy, § will become Ny,
and k will be X 2.

Using the supercompactness of k, we argue that there are many triples
(7, A%(7), Ab(7)) where 7 < A%(7) < Ab(7) < & and (7,A%(7),A%(7)) re-
flects the properties of (x, A%, A’). In particular p is good for both A%(7)
and Ab(7).

e (Section[6) We build a generic extension V[L] of V' in which & is still highly
supercompact and certain cardinals above \* are collapsed: in particular
the cardinals (A\®)™ for n € w U {w + 2,w + 3} as computed in V[L] were
all supercompact in V. A similar situation holds below « in V[L] for the re-
flected cardinals A®(7). Working in V[L] we carefully choose an embedding
j* witnessing that & is < (A®)*“*+3-supercompact, and derive supercom-
pactness measures U,, on P, (\?)*" for large enough n < w.

e (Section [8) Working in V[L] we define a forcing poset AY%9 x P where A99
is a highly distributive auxiliary forcing, and P is a diagonal supercompact
Prikry forcing with some complex forcing posets interleaved between suc-
cessive points of the generic w-sequence. Our final model is the extension
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of VL] by A% x P.

The definition of P uses the measures U,, and a “guiding generic” K
whose definition involves A%9. P has the effect of making p™ = Ry, § = Ry,
and £ = N,2. Above k all cardinals up to and including (A;) ™ are collapsed
to have cardinality «, while cardinals above this point are preserved, so that
(AB)T9F™ becomes N2y,

e (Section[d)) We verify that in our final model all regular cardinals in [Ra, R,,2)
have the tree property.

e (Section We verify that in our final model the cardinals R,z 1, N2,
and N 2,3 all have the tree property.

Our notational conventions are fairly standard. When p and ¢ are forcing con-
ditions we write “g < p” when ¢ is stronger than p. A poset is 7-closed if every
decreasing 7-sequence has a lower bound, and < 7-closed if every decreasing < -
sequence has a lower bound: note that some authors call these properties 71 -closed
and T-closed respectively. Our convention for directed closure is similar, so that a
poset is < T-directed closed if every directed subset of size less than 7 has a lower
bound. When the decreasing sequences have greatest lower bounds we describe
posets as being canonically closed: in particular a poset is canonically T-closed if
every decreasing T-sequence has a greatest lower bound, and canonically < 7-closed
if every decreasing < 7T-sequence has a greatest lower bound. Of course the Cohen
poset Add(7, p) and the Levy collapse posets Coll(r, p) and Coll(r, < p) are exam-
ples of canonically < 7-closed posets. When py and p; are compatible conditions
we will sometimes abuse notation and write “pg A p1 IF ¢”, when we should more
properly write “p I- ¢ for every common refinement p < pg, p1”. Most of the forcing
posets appearing in this paper have a top element, but we do not demand this.

In general we will name forcing posets with blackboard bold letters (for example
A) and the associated generic objects with the corresponding upper case italic letter
(for example A). When this naming convention would cause confusion we may call
the A-generic object Gu. If 7 is an A-name then 7[A] is the interpretation of 7 by
A. For z in the ground model, % is the canonical name for z, where the forcing for
which # is a name should always be clear from the context.

When & is inaccessible and A\ > x we abuse notation and write P\ for the set
of x C A with x Nk € k and |z| < k. When z,y € P, A we write z < y for the
relation “z C y and ot(x) < y N k. Of course we will also use < for the relation “is
an elementary substructure of” but in practice there is no possibility of confusion.

Once the main construction begins at the start of Section [5] we will begin to
introduce many objects which are then fixed for the whole duration of the construc-
tion. To help the reader keep track, all these “global” objects will be flagged as they
appear and will correspond to entries in the “Index of Notation” section.
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2. Preliminaries
2.1. A fact about k-cc forcing

The following Lemma is often useful.

Lemma 2.1. Let k be regular and uncountable, let P be k-cc and let (pa)a<x be a
k-sequence of conditions in P. Then there exists a < k such that p, forces {f < kK :
pg € P} to be unbounded in k.

Proof. If not, for each a we choose 7o < po such that r, forces {8 <  : pg € P} to
be bounded in k, and then use k-cc to find an ordinal 5, < x such that r, forces
{8 <k:psg€ P} Cng Let C={6:Vy<dn, <}, sothat C is club in . If
7,6 € C with v < 6 then r, forces ps ¢ P, so that r, forces rs ¢ P, which is to say
that 7, is incompatible with r5. So {r, : v € C'} is an antichain in P, contradicting
k~cc for P. O

Remark 2.2. An easy variation on this argument shows that there is a such that
pqo forces {8 < K : pg € P} to be stationary in V[P], but this is more than we need.

2.2. Laver functions and Laver indestructibility

Recall that if k is supercompact, there is a Laver function f : k — Vj, that is to say
a function such that for all x and all A there is a A-supercompactness embedding
Jj:V = M such that crit(j) = & and j(f)(x) = z.

Definition 2.3. Let f be a partial function defined on ordinals. A closure point of
f is an ordinal v such that f(a) € V, for all o € dom(f) N~.

Thinning the domain of a Laver function f, we may assume that dom(f) consists
of inaccessible closure points of f.

Given a Laver function f the Laver iteration is an Easton support iteration
L of length s, where we force with f(«)[Ls] whenever f(a) is a L,-name for a
< a-directed closed forcing poset: the poset L is k-cc and has cardinality . Laver
[10] showed that if % is supercompact then a Laver function exists, and that the
Laver iteration forces the supercompactness of k to be indestructible by subsequent
< k-directed closed forcing. With our conventions the Laver iteration defined from
f preserves the inaccessibility of all points in dom(f).

Definition 2.4. Let I be an interval of cardinals, then a partial function f on I
is a universal Laver function on I if and only if dom(f) C sup(I), and f | k is a
Laver function on k for every supercompact k € I.

Adapting the standard argument for the existence of a Laver function, it is easy
to see that every interval has a universal Laver function. Since the construction of
a Laver function f proceeds by choosing f(«) as the least counterexample to f [ «
being a Laver function, we may (and will) assume that the domain of a universal
Laver function contains no supercompact cardinals. If f is a universal Laver function
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on I then the standard Laver iteration defined from f is the Easton support iteration
L which runs from min(I) to sup([), forcing as before with f(«)[L,] whenever f(«)
is a L,-name for a < a-directed closed forcing poset. The poset L is < min(dom(f))-
directed closed and makes every supercompact cardinal in I indestructible.

We will need a strengthening of the concept of Laver indestructibility due to
Neeman [I6].

Definition 2.5. Let x be a supercompact cardinal. An indestructible Laver function
for k is a partial function ¢ from k to V. such that for every x € V, A > k
and < k-directed closed forcing extension V[E], there is an elementary embedding
7w : V[E] = N such that:

(1) The embedding 7 is defined in V[E], and witnesses that k is A-supercompact
in V[E].
(2) @ | ON is definable in V.

(3) k € dom(n(¢)) and w(¢p)(k) = x.
(4) The first point in dom(7w(@)) past k is greater than A.

Note that an indestructible Laver function for x can only exist when & is inde-
structibly supercompact. Adapting the arguments of [I6] to use a universal Laver
function, one can readily get a universal indestructible Laver function.

Fact 2.6. Let I be an interval of cardinals. Then there is a forcing poset I such
that in the extension by L, there exists a partial function ¢ such that ¢ | K is an
indestructible Laver function for every V -supercompact cardinal k € I.

Proof. We do a straightforward adaptation of the argument from the beginning of
[16, Section 4]. Let f be a universal Laver function on I, and derive functions fj
and fi from f such that f(«) = (fo(a), f1(a)) when f(a) is an ordered pair and the
values f;(«) are undefined otherwise. Let L. be the standard Laver iteration defined
from fy, and let L be L-generic over V. Define ¢(«) = f1(«)[La] at every point o
such that fi(«) is an Ly-name. O

Remark 2.7. The poset L does not create any new instances of supercompactness,
and by convention the domain of a universal Laver function does not include any
supercompact cardinals. It follows that in the extension by L, x ¢ dom(¢) and ¢ |
is an indestructible Laver function for every supercompact s € I.

Unfortunately the property of Laver indestructibility is quite fragile:

Fact 2.8 (Hamkins [6]). If & is supercompact and Q is a non-trivial forcing poset
with |Q| < k, then k is not indestructible in the extension by Q. In fact k becomes
“superdestructible”, that is to say its supercompactness (even its weak compactness)
is destroyed by any further < k-closed forcing which adds a new subset of k.

Since indestructibility plays a central role in our arguments, we will need to
make repeated appeals to Fact
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Fact 2.9. Let Q be a forcing poset, let |Q| < p and let f be a universal Laver
function defined up to p. Let Q be Q-generic over V and define F € V[Q)] by setting
F(a) = f(a)[Q] for all & such that f(a) is a Q-name. Then F is a universal Laver
function on the interval (|Q|, u) in VI]Q).

Proof. Let |Q| < k < p with k supercompact in V[Q], so that x is supercompact
in V and f | k is a Laver function. Let v > &, let z € HX[Q] and let z = £[Q]
for some © € H,. Choose j : V — M witnessing & is y-supercompact in V' with
J(f)(k) = &, then j lifts to an embedding j : V[Q] — M[Q)] such that j witnesses x
is y-supercompact in V[Q] and j(F)(k) = x. O

Remark 2.10. Note that the Laver functions ¢ and F from Facts and are
derived from an initial Laver function f in such a way that rk(¢(«)), rk(F(a)) <

rk(f(a)). It follows that closure points of f are automatically closure points of its
derived Laver functions.

2.3. Trees and systems

We will sometimes be in a situation where 7' is a tree, we know that T has a branch
in some generic extension, and we want to conclude that T has a branch in V. In
this situation we will often use one of the following preservation lemmas or branch
lemmas.

Fact 2.11 (Unger [24]). Let s be regular and uncountable. If P x P is k-cc, then P
has the k-approzimation property. In particular forcing with P cannot add a branch
through a tree of height k.

Fact 2.12 (Unger [23, Lemma 6]). Let k and n be regular and uncountable with
k<n <25 Let P be < k-closed in'V and let V' be a k-cc extension of V. Then
forcing with P over V' cannot add a branch through an n-tree in V',

If the universe is a k-cc generic extension of a submodel in which P is < k-closed,
we sometimes say that P is formerly < k-closed.

Fact 2.13 (Magidor and Shelah [I2, Theorem 2.1]). Suppose that p < v where p
is an infinite cardinal and v is a singular cardinal of cofinality w. Let V]G] be a
p-closed generic extension, and let E be generic over V[G] for a poset in 'V of size
p. If T € VIE] and T is a vt -tree, then any branch through T in V[E]|G| is already
in VIE].

The concepts of system and a system of branches will play a central role. Typ-
ically a system arises from a name for a tree T in some generic extension, and
a system of branches arises from a name for a branch of 7' in a further generic
extension.

Definition 2.14. Let D be a set of ordinals and T be a cardinal. A system on D X T
is an indezed collection (R;)icr of transitive reflexive relations on D X T such that:
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o (a,n)Ri(B,¢) and (o, 77) (B,¢) implies a < 3.

o (a,n)Ri(B,¢) and (o, )Ri(B,¢) implies that (a,m) and (o/,n') are R;-
comparable.

e For a < B both in D there exist n,( < T and i € I such that (a,n)R;(53,()-

A system of branches through such a system is an indexed collection (b;);cs of
partial functions from D to T such that:

e b; is a branch through R; for some i, that is for every S € dom(b;) and
every a € DN B, a € dom(b;) if and only if there is n with (o, n)R;(5,b;(B))
and in this case bj(c) is the unique such .

o For every a € D there is j such that o € dom(b;).

We will need the following technical fact about systems and systems of branches,
which appears in a slightly different form as [I6, Remark 3.4].

Fact 2.15. Let (R;)icr be a system on D X 7 and let v be a cardinal such that D
is a cofinal subset of vt. Let P be a poset which adds a system of branches (b;) ;e
through the system (R;);cr, and let A be a regular cardinal such that:

o max(|I|,|J],7) < A<wv.
e There is a forcing Q which adds A mutually generic filters for P, without
collapsing X or forcing that cf(vT) < A.

Then there is j € J such that bj € V' and dom(b;) is cofinal in vT.

Since the proof is quite short we sketch it here.

Proof sketch. Towards a contradiction, we may assume without loss of generality
that P forces “dom(b;) cofinal implies b; ¢ V” for all j. Force with Q and let b
be the realization of b; by the o P-generic filter. If & # 8 and both dom(b$) and
dom(bf) are cofinal, then by mutual genericity b # b]@. Since cf(¥™) > A we may
choose n < v* so large such that dom(b$) bounded implies dom(b}) C 7 for all
j € J and a < A, and also dom(b$) and dom(bf) both cofinal and « # § implies
b I # bf [ n for all j € J and distinct a, 8 < A. Let v € D\ n, then for all & < A
there exist j € J, i € I and ¢ < 7 such that v € dom(b§) (in particular dom(b5')
is cofinal), b}, is a branch through R; and b$(v) = ¢. Since A is a cardinal we may
choose a # 3 which give the same values for (j,4,(), but then b () = bf (v) and
both b7, b? are branches through R;, so that b5 [ v = b? | v in contradiction to the
choice of 7. O

2.4. A branch lemma

In Fact it is important that the “width” 7 of the system is considerably less
than the “height” v*. In Section we are forced to consider systems where the
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height is the successor of the width, and to handle these we will use an alternative
branch lemma (due to Unger) whose proof is similar to that of Fact

Let V. CW. Let § < v < p < X be cardinals in W where p and A are regular.
Assume that 2° > X inV, and W = V[E] where E is p-cc in V. Let P be < p-closed
in V, where we note that by Faston’s Lemma cf(\) > p in W[P].

Let R be a system on A x pu in W, with relations R; for i < v. Assume that
forcing with P over W adds a system of branches (b;)ic,, where b; is a branch through
R;. Then there is i such that b; € W and dom(b;) is cofinal in .

Proof. We work in V until further notice. For each i < v we fix R; an E-name
for R; and b; an E x P-name for b;. Assume for a contradiction that E x P forces
that b; ¢ W for every i with dom(b;) cofinal. Since P is < p-closed and E is
pi-cc in V[P], it is easy to find e* € E, p* € P and 1 < A such that (e*,p*) IFpyp
“dom(b;) bounded implies dom(b;) C n” for all i < v. Going forward we work below
(e*,p*).

Let e € E, po,p1 €P, i <v and v € [, A). Then (e, po,p1) forces divergence for
b; at~y if both (e, pp) and (e, p1) decide “dom(b;) is cofinal” and one of the following
holds:

e At least one of (e,pg) and (e, py) forces “dom(d;) is bounded”.
e Both (e, pp) and (e, p1) force “dom(b;) is cofinal”, and one of the following
holds:

— (e,po) IF v € dom(b;), (e,p1) IF v ¢ dom(b;).
— (e,po) IF v ¢ dom(b;), (e,p1) IF v € dom(b;).
— (e,pj) IF b;(y) = ¢ for j € 2, and (o # G1.

Claim 2.17. Let e € E, pg,p1 € P and i < v. Then there exist v € [n,\) and
(e/,p6,01) < (e,po,p1) such that (€', p(,py) forces divergence for b; at .

Proof. Extending if necessary, we may as well assume that both (e, pg) and (e, p1)
decide “dom(b;) is cofinal”. There is nothing to do unless (e,pp) and (e,p;) force
“dom(b;) is cofinal”. In this case force with E below e, and then force over V[E] with
the formerly closed forcing P x P below (po, p1) to obtain Picgs X Prignt. Now since b;
is forced over V[E] by P not to lie in V[E], b;[E X Pic ] and b;[E X Py;gn¢] are distinct
partial functions with cofinal domains, and it is easy to choose (¢/, pp, pj) € ExPxP
and v as required. O

Claim 2.18. Let po,p1 € P andi < v. Then there exist py < po, pi < p1, 7" € [, \)
and o mazimal antichain A in B such that for all e € A, (e, py, p}) forces divergence

for b; at vy for some v € [n,v*).

Proof. We construct pairwise incompatible e* € [, decreasing pg below pg and p§
below pi, and v, < A. Since E is p-cc the construction halts before p steps. If
(e%)a<p does not enumerate a maximal antichain in E, then we choose 8 cE
incomparable with all e* for « < S and lower bounds qg and qf in P for



September 17, 2025 16:29 treepaper jml

The tree property on long intervals of regular cardinals 11

the sequences (p§)a<p and (p§)a<p, and then apply Claim to the condi-
tion (fB,qg,ql*B). This gives (eﬁ,pg,p’f) < (fﬂ,q0’87qf) and 3 € [n,A) such that
(e?, poﬁ , pf ) forces divergence at . Once the construction terminates after § stages,
we let A = {e, : a < B8}, let py and pj be lower bounds for (p§)a<ps and (p$)a<p
respectively, and let v* = sup, g Va- O

Claim 2.19. Let pg,p1 € P. Then there exist py < po, p} < p1 and v* € [n, \) such
that for all i < v, there is a maximal antichain A; in E such that for all e € A;,
(e,py, py) forces divergence for b; at -y for some ~y € [n,~v*).

Proof. Apply Claim to each i < v in turn, using the < p-closure of P and the
regularity of A to find p{, pj and v* that work for all i. O

Claim 2.20. Assuming that § is minimal with 2° > X, there exist a binary tree
of decreasing sequences (Dy)se<so and an ordinal v* € [n,\) with the following
property: for all o € <°2 and all i < v, there is a mazimal antichain A7 such that
for alle € A, (€,po~0,Ps~1) forces divergence for b; at v for some y < v*.

Proof. For each o € <°2 we appeal to Claim with pg = p1 = p, to find py—o,
Do—1, antichains AY for ¢ < v, and an ordinal 7, as in the conclusion. At limit stages
we take lower bounds. Since 2<% < X and ) is regular, we may set v* = sup, v,. [

For each f € °2, let p; be a lower bound for (ps;);<s. Now force with E and
start to work in V[E], so that R = R[FE] is a system with relations R; = R;[F], and
(bZ [E])i<v is a P-name for a system of branches with b; a branch through R;.

For each f € 22, let q; < py decide a value of i such that v* € dom b;[F], and
let g also decide the value b;[E](y*) for this 4. Since A is still a cardinal in V[E],
there exist f # g and values ¢ < v and ¢ < p such that g; and g, both force that
b;[E](v*) = (. Let o be the longest common initial segment of f and g, so that
without loss of generality ¢; < p,~¢ and g4 < ps—~1. By construction there exist a
condition e € E and v < v* such that:

e (e,p5~0,ps~1) forces divergence for b; at ~.
e ¢ forces that both ¢y and g, force b;[E](v*) = (.

This is impossible as both ¢y and ¢, force that b;[E](y) = ¢’ for the unique ¢’ such
that (’77 CI)R’i (’7*7 C) O

2.5. Another branch lemma

We will require a branch lemma with the same general flavor as Fact 2.13] This
will be used in Section [I0.1] to help establish the tree property at R,»,; in our
final model. This branch lemma is quite general and has some independent interest,
so we prove it here axiomatizing the needed assumptions. It is a descendant of a
branch lemma due to Sinapova and Unger [20].

Let P and R be forcing posets and let p and v be cardinals. We assume that:
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v is a cardinal of cofinality w and u = v™.

)
2) There is a cardinal £ < v such that IFy g =x* and IF, p g = KT,
) R is < p-distributive and countably closed.

) Every condition p in P has a stem (we write it as stem(p)) and there are at
most v stems.
(5) If stem(p) = stem(p’) = h then there is ¢ < p,p’ with stem(q) = h.
(6) If (pn)new is a decreasing sequence of conditions with stem h then there is

a lower bound with stem h.

We note for the record that by assumptions [T} [4 and [5] the poset P is u-cc.

We say that stem h’ extends stem h if there are conditions p,p’ € P such that
stem(p) = h, stem(p’) = k' and p’ < p.

The motivating idea is that P is some type of Prikry forcing, and R is a “mild”
forcing poset. Our assumptions on P are quite weak, in particular we do not need
to assume any form of the Prikry lemma. In the intended application P will be a
complex Prikry-type forcing where taking a direct extension can change the stem,
and the direct extension ordering is not countably closed.

Lemma 2.21. Let P X R be P x R-generic and let T € V[P] be a p-tree. If T has
a cofinal branch in V[P][R], then T has a cofinal branch in V[P].

Proof. Suppose that 7' € V is a P-name of a u-tree. As usual, for each o < p we
assume that level « in the tree consists of pairs in {a} x k. We refer to elements
of X Kk as nodes, and if u is a node often we call ug the level of u and write it
as lev(u). Of course T' € V[R] and can be viewed as a P-name for a p-tree in this
model.

A note on notation: « and S will typically be levels of nodes. h will typically be
a stem. p and ¢ will typically be conditions in P. » and s will typically be conditions
in R. w and v will typically be nodes. Of course these letters may be decorated with
subscripts and superscripts as needed.

Without loss of generality, let b be an R x P-name which is forced by the empty
condition to be a cofinal branch though 7. Let b[R] be the P-name in V[R] for such
a branch obtained by partially realizing b.

Claim 2.22. Letp € P. Let u and v be nodes with lev(u) < lev(v). If p II—]}{[R] u,v €
b[R] then p Iy u <4 v.

Proof. Let r force that p IFI‘P/[R] u,v € Z)[R], so that (r,p) Ih}gxp u,v € b. If there is
p’ < p such that p/ IFy % v, then (r,p") |h§x1p u £ v and (r,p') Ih‘éxp u,v € b,
which is impossible as b is forced to be a branch. So P Ih}; u <; v as claimed. [J

The following definition takes place in V[R].

Definition 2.23. For a stem h, we say that T holds if there are an unbounded
JCp, &<k and (po | « € J) such that for all a € J:

e The condition p, has stem h.
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VIR ;
o palby " {a,€) € BlR].

Before reading the following remark, the reader should recall our convention
that when we write “pg A p1 IF ¢” we mean only that py and p; are compatible and
every common lower bound r < pg, p1 is such that r |- ¢. We are not asserting that
po and p; have a greatest lower bound.

Remark 2.24. Let J, € and (p, | a € J) witness f; as in Definition and
let o, € J with o < 3. Then p, and ps are compatible in P by item [5| of our

hypotheses, and po, A pg IFg (o, €) <4 (B,€) by Claim
Claim 2.25. In V[R] every stem h can be extended to a stem h' such that tps holds.

Proof. Work in V[R]. Let h be a stem, and let p € P be a condition with stem h.
For each a < p, let po, < p and u, = (@, &y) be such that p, IFp us € b[R] Since
the number of stems is less than u, there exist an unbounded set J C u, an ordinal
¢ < k and a stem I’ such that p, has stem A’ and &, = £ for all @ € J. Then b’/
extends h and fps holds. O

If 5, holds and h' extends h, it does not follow in general that fj,, will hold.
The issue is that in general not every condition with stem h can be extended to a
condition with stem A'. However we do have the following in V[R]:

Claim 2.26. If t;, holds then there is a condition p with stem h such that {p’ :
Tstem(pr) holds} is dense below p.

Proof. Let J, £ and (pa)acy witness 1. As P is u-cc, it follows from Lemma
that there is « such that p, forces the set of 8 € J with pg € P to be unbounded.
Set p equal to p, and let p < p. Then p is compatible with pg for every 5 in some
unbounded J* C J, and we may choose pj; < p,pg for all 8 € J'. Thinning out
J' we may assume that for some stem h', stem(pj;) = h' for all 3 € J'. Then the
conditions (pj;)ge s together with £ and J" witness {5/, and for any 8 € J' we have
that pj; < p and Tstem(p;;) holds. O

The following definition takes place in V.

Definition 2.27. Let h be a stem and let s € R. There is an (h, s)-splitting if there
are a condition p € P with stem h, conditions s°,s' in R, and nodes u®,u' € p x K
such that:

(1) SO) st <s.
(2) (skap) H_I}Q(X]P’ Uk S b fO’I” k € 2.
(3) p \h¥ w0 and u' are incomparable in T.”

We note that the witnessing conditions s° and s* for an (h, s)-splitting must be
incompatible. The issue is that if s* < s°, s' then (s*,p) forces that both u® and u?
lie on b, while p forces them to be incomparable in T
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Definition 2.28. b is h-new below s if and only if the set of s’ such that there is
an (h, s')-splitting is dense below s.

The following key claim takes place in V.

Claim 2.29. Suppose that s forces “fp, holds”, and b is h-new below s. There are
sequences (s; | i <v), (p; | i <wv), and (v; | i <wv), such that

(1) For alli < v, s; <s and the stem of p; is h.

(2) For alli < v, (si,p;) Fhsp vi € b.

(8) Fori<j<v,p; Apj H—]}f “v; and vj are incomparable in T”.
Proof. Suppose that s forces 1), as witnessed by &, J, and p, for a € J. Forcing
below s we pass to a generic extension V[R] where &, J and (p, : a € J) witness
Th-

The following subclaim takes place in V[R].

Subclaim 2.30. For every v € J there exist p € P with stem h, conditions v°,r!

in R below s and nodes v°,v' € p x Kk such that:

o () IF]EXIP’ (7€) € b. )

o Forke?2, (rk,p) Iy, p v* €b.

e plky % and v' are incomparable elements above (v, &) in T7.
e " cR.

Proof. We will do a density argument in V to show that suitable values for 70 are
dense below s. Let r < s force that v € J, and decide the value of p, as ¢q. Then ¢
has stem h and (r,q) lFgp (7,€) € b. Since r < s and b is h-new below s, we may
extend 7 if needed and assume that there is an (h, r)-splitting.

Fix 70,71 < r, nodes v°, v! and a condition ¢’ with stem h such that:

(1) (Tkvq,) |F£><IP’ b € b for k € 2.
(2) ¢ ”_[‘P/ “y9 and v! are incomparable in 7.7,

Since stem(q) = stem(q') = h, by item 5| of our hypotheses we may find p < ¢, ¢’
with stem(p) = h. Since (r*,p) forces that both (v,€) and v* are in b, p forces
that (7,€) and v* are comparable in 7. Since p also forces that v* and v! are
incomparable, it follows that they are both on levels above ~. O

Still working in V[R], choose a club C C p such that for all 5 € C and all
v € J N B, the conclusion of Subclaim holds with witnessing nodes %, v!
having levels below f.

We select increasing sequences y; and (; for ¢ < v such that

(1) ﬂz S Ca
(2) i € Ja
(3) v < Bi < Yig1-
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Now for each ~; the conclusion of Subclaim holds, with witnessing nodes
on levels below v;41. We record the witnesses to this splitting as p;, 7“1’? and vf. Let

U; = (’yia 5)
For i < j we claim that p; A p; forces that v} and v]l are incomparable. The
point is that we can choose a lower bound r* for r?, 7“? as both are in R. Now

(r*, i AD;) IFsp v2,u; € b, 50 piAp; IFp 00 <pouj <; vj. Since vf, v} are on levels
below v; and p; A p; forces that vy is incomparable with v}, p; A p; forces that v}
is incomparable with vjl».

Now let v; = vil and s; = ril. By the distributivity of R, the sequence (s;, p;, v; |
i < v)isin V and by construction it satisfies the desired properties. O

Claim 2.31. If s forces 1y, then b is not h-new below s.

Proof. Assume for a contradiction that s forces 1, and b is h-new below s. Note
that these properties also hold for conditions below s.

Using Claim we will construct a tree of conditions ((ry,ps) | ¢ € v<%) in
R x P and nodes (v, | 0 € v<¥) such that:

(1) For all o, p, has stem h.

(2) Ifo' D g, then (Ta/vpo’) < (Tcmpa)'

(3) For all 0, (14, p0) Fhyp Vo € b.

(4) For all ¢ and all 'i # jin v, po~i A po—~; forces that v,~; and v,~; are
incomparable in T'.

Given r, and s,, we appeal to Claim with s, in place of s to produce s;,
v; and p;. We then set r,~; = s; and v,~; = v;. Finally we set p,~; = ps A p;.

When the construction is done we choose v < u such that all the nodes v, have
levels below . We use the countable closure of R and item [6] of our hypotheses on
IP to choose (7, py) for f € v such that py has stem h, and (r¢,pf) < (Tf1n, Pfin)
for all n < w. We then choose.: (r},p}) < (r¢,py) so that (r},p’f) determines the
node on level 7 in the branch b as uy.

Since v* > v > k, there exist f # g such that uy = vy = v* and stem(p’f) =
stem(p;;) = h* for some node u* and stem h*. Let n be least such that f(n) # g(n).
Let o =fln=g|n i= f(n)and j = g(n), so that f [ n+1 = 074 and
gln+l=0"7.

By construction p} A p’g forces that v,~; and v,~; are incomparable in T. Also
(71, P Apy) forces that both v,~; and u* are in b, so P D Y vg—; < u*. Similarly
p’f A p’g II—]},( Vo~ < u*. This is a contradiction. O

For each stem h, let D;, be the set of s such that either s forces —7; or there
is no (h, s)-splitting. It is easy to see that D, is open, and we claim that it is also
dense. To see this let s be arbitrary, where by extending s we may assume that s
decides tp. If s forces =, then s € Dy, by definition. If s forces {j then b is not
h-new below s by Claim m in which case by definition there is ' < s with no
(h, s')-splitting and s’ € Dy,.
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Since R is v-distributive, ), Dy is dense and open. Let s* € (), Dj. By Claims
and and extending s* if necessary, we may assume that:

e For some stem h, s* forces that {5 holds.
e There is a condition p such that s* forces that {p’ : Tstem(p/)} is dense below

p.

Now we force below p to obtain a P-generic filter P with p € P. Working in
V[P], let

d={uepuxr:IgePIs <s* (s,q) Fpypu € b}.
Claim 2.32. d is a cofinal branch in T.

Proof. Since R x P forces that b is a cofinal branch, it is routine to check that d
contains nodes with unboundedly high levels. The key remaining point is that d is a
chain in 7. To see this, suppose for a contradiction that u° and u' are incomparable
members of d.

We may choose ¢ € P with ¢ < p, together with s°, s' < s*, such that:

e q H—I‘Ef “u4? and u! are incomparable in T..
o (s°,q) Ik, pui €b.

Forcing with R below s* over V[P] we obtain R mutually generic with P, such
that in V[R] the set {p’ : fstem(p)} is dense below p. So we may choose p’ € P
with p’ < ¢ and s** < s* such that s** forces f;, where h = stem(p’). So s*
does not force =y, and since s* € Dy, it follows that there is no (h, s*)-splitting.
However p’ together with s* and u’ form an example of an (h, s*)-splitting, which
is a contradiction. O

This completes the proof of Lemma O

2.6. Term forcing

Let P be a forcing poset and @ be a P-name for a forcing poset. Then A(P, Q) is the
set of P-names for elements of Q, where we identify names ¢y and g1 if IFp §o = ¢1.
A(P,Q) is ordered as follows: ¢; < o in A(P,Q) if and only if IFp ¢, <@ do- Term
forcing was introduced by Laver, and the theory was elaborated by Foreman.

The following Lemmas are standard:

Lemma 2.33. Let P be a forcing poset, Q be a P-name for a forcing poset, and let
R =A(P,Q).

(1) The identity function is a projection from P x R to P x Q.

(2) If P x R is P x R-generic over V and Q@ = {¢[P] : ¢ € R}, then Q is
Q[G]-generic over V[P).

(3) If PxQ is PxQ-generic and we force over V[P xQ)] with {¢ € R: ¢[P] € Q}
using the ordering inherited from R, then we obtain R such that P X R is
P x R-generic and induces P x Q.
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(4) If X\ is forced by P to be a regular uncountable cardinal and Q s forced by
P to be < A-closed (resp < A-directed closed, canonically < A-closed), then
R is < A-closed (resp < A-directed closed, canonically < A\-closed).

Lemma 2.34. Let P be a forcing poset.

(1) If it is forced by P that Q and R are forcing posets, then A(IP’,Q X R) is
canonically isomorphic to A(P, Q) x A(P, R), identifying names for pairs
with pairs of names.

(2) If it is forced by P that Q1 and Qq are forcing posets and 7 is a projection
from Q1 to Qq, then ¢ — 7(§) is a projection from A(P, Q1) to A(P,Qy).

We can view A(P, Q) as adding a “universal generic object” for Q, which can
be realized using any V-generic filter P on P as a V[P]-generic filter on Q[P]. For
use later we record some more easy facts about term forcing.

Lemma 2.35. If k is weakly compact, |P| < £ and IFp “Q is k-cc”, then A(P,Q)
18 K-cC.

Proof. Suppose for a contradiction that (7;);<, enumerates an antichain in A(P, Q),
so that for ¢ < j we have |fp “7; and 7; are compatible in Q”. Define a coloring of
[]? in |P| colors, by coloring (i,j) with some condition p(i, j) such that p(i,j) IF
“r; and 7; are incompatible in Q”.

Since k is weakly compact, there exist H € [k]"® and p such that p(i,j) = p
for all (i,7) € [H]?. But then p forces that (7;);cs enumerates an antichain in Q,
contradicting the hypothesis. O

Lemma 2.36. If R is a P x Q-name for a forcing poset then A(P Q,R)
A(P, AVIPHQ, R)).

12

Proof. This is immediate using the canonical identification between P Q-terms for
elements of R on the one hand, and P-terms for Q-terms for elements of R on the
other hand. O

It is also useful to analyze A(P,Q * R) where Q xR € V[P].
Lemma 2.37. There is a projection from A(P, Q) x A(P*Q,R) to .A(IP’,Q * ]R)

Proof. In V[P] there is a projection from Q x A(Q,R) to Q * R, and by item
of Lemma this induces a projection from A(P,Q) x A(P, AVIPI(Q,R)) to
A(P,Q % R). By Lemma m the posets A(P, AV[FI(Q,R)) and A(P % Q,R) are
canonically isomorphic. O

Remark 2.38. With suitable identifications, the projection map from the proof of
Lemma [2.37 is the identity map.

Let PxQ be Px Q—generic. In a mild abuse of notation, we sometimes denote
by “A(P,Q)/P * Q" the forcing from item |3| of Lemma which is defined in
V[P * Q] to produce an A(P, Q)-generic filter R such that P x R projects to P * Q.
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We will call this kind of forcing poset a quotient to term poset. We will often say
“force to remove the dependence of Q@ on P” or “force to refine Px @ to P x R” as
shorthand for “force with the quotient to term poset A(P, Q)/P x Q”. The forcing
A(P,Q)/PxQ is defined in V[PxQ] but we may force with it over generic extensions
of this model:

Lemma 2.39. Let P« Q be P x Q-generic over V, let K € V[P x Q] and let K be
K-generic over V[P * Q)]. Forcing with A(P,Q)/P * Q over V[P x Q x K| produces
R such that P x R induces P x Q and K is K-generic over V[P x R].

Proof. Let A be A(P,Q)/P % Q-generic over V[P % Q % K] and let V[P Q x A] =
V[P x R]. Since K and A(P,Q)/P x @ are both in V[P x @], K and A are mutually
generic over V[P * Q], so K is K-generic over V[P x R]. O

Remark 2.40. In the sequel we sometimes replace A(P, Q) by more elaborate posets
which have the similar effect of adding a P-name for a Q[P]-generic object: the
analogue of Lemma [2:39] is true for such posets by the same argument.

We record some easy but useful equivalences involving quotient to term posets.

Lemma 2.41. In V, PxQ x A(P, (@)/P * Q is equivalent to P x A(P, (@) In V[P],
Qx* (AP, Q)/P x Q) is equivalent to A(P,Q).

The idea of term forcing extends in a natural way to iterations with more than
two steps. Suppose that (Pa,(@a t o < j) is an iteration with limit P;. Then we
may form a product of term posets Ha<j A(Pg, Qa), using the same supports that
were used to form P;. We note that the poset PPy is trivial, so the first term poset
in the product is equivalent to Q.

It is easy to see that:

a<j APa, Qa) is the underlying-set of P;.
a<j A(Pa, Qa) to PJ
e There is a natural quotient to term forcing defined in V[P;] to produce a
[Io<; A(Pa, Qa)-generic object which projects to P;.

e the underlying set of ]

e The identity function is a projection from []

We will need some lemmas relating Cohen posets computed in different models.

Lemma 2.42. Let k<% = k < X and let P be a k-cc forcing poset of cardinality
at most r. Let Q be a P-name for AddVF(k,\). Then A(P,Q) is equivalent to
AddY (k, ).

Proof. We can view Add"] (k, A) as the < k-support product in V[P] of A copies
of 2, considered as a poset where 0 and 1 are incomparable elements. By the chain
condition A(P, Q) is equivalent to the < s-support product of A copies of A(P, 2).
An element { of A(P,2) is determined by the Boolean value b; of “6 = 07, and
easily IF tg < t1 <= IF o =t < b;, = b;,. So A(P,2) i's a poset with at
most x pairwise incomparable conditions, and then easily A(P, Q) is equivalent to
AddY (k, ). O
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In the situation of Lemma [2.42] let R = A(P,Q). If P x R induces P * Q then
V[P * @] and V[P x R] have the same < s-sequences of ordinals: to put it another
way the associated quotient to term forcing R/ P« @ is < k-distributive in V[P *Q)].
Since both P* Q and PP x R are k*-cc, R/P % Q is kT-cc in V[P * Q).

For use in the proofs of Claims and from Section we need an easy
lemma about R/P * Q. The point of Lemma is that chain condition properties
of R/P % @ can be deduced from corresponding properties for R.

Lemma 2.43. Let the hypotheses of Lemma hold and let R = A(P,Q). Then
in any outer model W of V[P x Q] where R is (k7)W-Knaster, P x (R/P x Q) is
also (k)W -Knaster.

Proof. Since |P| = & it is enough to show that R/P x Q is (k7)"-Knaster. We
use the description of R from the proof of Lemma Let (Ta)a<(ntyw be a
sequence in W such that r, € R/P x Q. Since R is (k7)" -Knaster in W, we may
find B € W such that B is unbounded in (k)" and (r,)acp is a sequence of
conditions which are pairwise compatible in R. Let «, 8 € B, then by definition for
every n € dom(r,) Ndom(rg) the same term appears at coordinate n in r, and rg.
It is easy to see that (rq Urg)[P] = rq[P]Urg[P] € @, so that 7o, Urg € R/P % Q
and is a common lower bound in R/P % @ for r, and 7g. O

We also record an easy fact about the closure of quotient-to-term posets.

Lemma 2.44. Let P be p-distributive and let P force “Q is canonically p-closed”.
Let P *Q be P« Q-generic over V. Then the quotient-to-term poset A(P, Q)/P * ()
is canonically p-closed in V[P x Q.

More generally, if (IP’Q,QQ s a < j) is an ileration whose supports are closed
under increasing p-sequences, Qg is p-distributive and Ik, “Qq is p-canonically p-
closed” for 0 < a < j then the associated quotient-to-term poset is canonically

p-closed in V[F;].

Proof. Let (7;)i<, € V[P * Q] be a decreasing sequence in A(P,Q)/P Q. Since
P+ Q is p-distributive, (7;)i<, € V. By the definition of A(P,Q)/P * Q, 7:[P] € Q
forall ¢ and IFp 7; < 75 for i < j < p. Let 7 be a name for a greatest lower bound for
(7:)i<, in Q, then 7[P] is a greatest lower bound for (7;[P])i<, in Q[P], so 7[P] € Q
and hence 7 € A(P,Q)/P * Q. Tt follows easily that 7 is a greatest lower bound
for (1;)i<, in A(P,Q)/P % Q. The argument for longer iterations is essentially the
same. O

2.7. Projection and absorption

We also collect some facts about projections between forcing posets and absorbing
forcing posets by collapses which will be used in the sequel. We refer the reader to
[12] for a careful discussion of these matters.
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Definition 2.45. Let P and Q be canonically < k-closed. A projection map 7 :
P — Q is < k-continuous if it preserves the greatest lower bounds assured by the
canonical closure. That is to say if (p;)i<a is decreasing in P for some o < k, and
p 1s the greatest lower bound in P for (p;)i<a, then w(p) is the greatest lower bound

in Q for (7(pi))i<a-
Facts and both form part of [12, Lemma 2.6].

Fact 2.46. Suppose that P and Q are canonically < k-closed and w : P — Q is
a < k-continuous projection. If Q is Q-generic, then in V|[Q] the quotient forcing
P/Q is canonically < k-closed.

Fact 2.47. Suppose that k < p are inaccessible cardinals. Suppose that Q is a
canonically < k-closed forcing of size at most p. Then there is a < k-continuous
projection from Coll(k, 1) to Q.

Definition 2.48. Let k < A where k is inaccessible and A is Mahlo. Let E be a set
of inaccessible cardinals such that k,\ € E, and E N [k, \) is the intersection of a
club subset of [k, \) with the set of inaccessible cardinals in this interval. For each
a € E, let o =min(E \ (o + 1)).

Let East” (k, < \) be the collection of partial functions f with dom(f) C EN[k, \)
such that

(1) dom(f) is an Easton set, that is to say it is bounded in every inaccessible
cardinal.
(2) For all o € dom(f), f(a) € Coll(a, < ™).

East”(k, < ) is ordered coordinatewise.

Note that by the hypotheses on E and A\, E N [k, \) is stationary in A, and the
Easton support condition for f is equivalent to demanding that dom(f) is bounded
in every cardinal in E'U {A}.

Lemma 2.49. East”(k, < \) is canonically < r-closed and \-Knaster.

Proof. The closure is immediate since each component is canonically < k-closed
and the union of fewer than x Easton subsets of [k, \) is Easton. Given (p;);<) we
may find a stationary set E/ C E N[k, A) such that p; | 4 is constant for i € E’,
and then a stationary E” C E’ such that dom(p;) C j for 4,j € E” with ¢ < j. The
conditions p; for 1 € E” are pairwise compatible. O

Lemma 2.50. With the same hypotheses as in Definition let (U(@))aecEnin,n)
be such that U(a) is a canonically < «-closed poset (which may be trivial) in
Vo, and let U be the Easton support product of the U(«)’s. Then there is a < k-
continuous projection from East (1, < \) to U.

Proof. By Fact for every a € AN [k, \) there is a < a-continuous projection
To = Coll(a, < o*) — U(). We define a projection 7 from East?(r, < ) to U



September 17, 2025 16:29 treepaper jml

The tree property on long intervals of reqular cardinals 21

by defining dom(w(f)) = dom(f) and 7(f)(«) = 7o (f(a)) for all . It is easy to
check that the map 7 is a < k-continuous projection since each of the maps 7, is
a < a-continuous projection. O

The point of East? (k, < A) is that it can absorb suitable Easton support itera-
tions in a reasonable way. The following lemma is a prototype for the arguments in
Section

Lemma 2.51. With the same hypotheses as in Definition let (IP’Q,QQ oS
E N[k, \)) be an Easton support iteration, assume that I+, “Qa € Vo7 and I+,
“Qy is canonically < a-closed” for all a, and let Py be the direct limit. Then Py
can be absorbed into EaStE(Ii7>\) so that the quotient forcing is canonically < k-
closed.

Proof. Let U(a) = A(P,, Qa) and let U be the Easton support product of the posets
U(«). Then there is a natural projection from U to the limit poset Py, and it routine
to check that the projection is < k-continuous. Lemma gives a < k-continuous
projection from East” (K, A) to U. It follows from Fact at the quotient forcings
for absorbing Py into U and U into East”(k, \) are both canonically < s-closed. [

There is a parallel but simpler fact for the standard Levy collapse.

Lemma 2.52. Let x and X be inaccessible with k < X, let (U(a))aelx,n) be a
sequence of canonically < k-closed posets of cardinality less than A and let U be the

product of the U(a)’s with < k-supports. Then there is a < k-continuous projection
from Coll(k, < A) to U.

2.8. FEaston sets in Faston extensions

In Section [9.4] we will need to absorb some iterations of the form L x P, where L
and P are Easton support iterations done over the same set of cardinals, into a
suitable Easton support product of term forcings. To apply the ideas of Section [2.7]
we need to analyze the Easton sets in V[L], because they will form the supports of
conditions in P.

Let E be a set of inaccessible cardinals with limit order type such that for every
inaccessible o < sup(E) with @ = sup(E Na), a is in E. For each a < sup(E),
let a* = min(F \ (a + 1)). Note that a subset of F is an Easton set if and only if
it is bounded in every element of F, together with sup(F) in case this cardinal is
inaccessible.

Let L be an iteration with Easton supports such that:

e The support of L. is contained in F.
e For every a € F, it is forced by L [ a that the iterand at « is < a-closed.
e Forevery a € E, L Ja+1| < a*.
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It is easy to see that for every 8 < sup(E), |[L [ 8+ 1| < 8*. As a consequence
it is forced by L | 8 4 1 that the tail iteration above 8 is < B*-closed. It follows
easily that every a € E remains inaccessible in V[L].

Lemma 2.53. If S € V[L] is an Easton subset of E then S is covered by an FEaston
subset of E which lies in V.

Proof. Let S be an L-name for an Easton subset of E. We will establish that a
stronger statement holds for all triples (p, 8,7) where p € L, and 8 < v < sup(E):

R(p, B,7) is the statement “There exist p’ <p withp’ [ f+1=p | 8+ 1 and an
Easton set T' C [3,7) N E such that p’' I SN[3,7) CT7.

Our desired conclusion will follow by setting 5 = 0 and v = sup(E). We prove
that R(p, 8,v) holds for all triples (p, 8,~) by induction on 7.

e Casel: Fis bounded in v, say ¥ = sup(EN7y) < . If 8 = 7 then [3,7)NE =
() and there is nothing to do. If § < 4 then we appeal to R(p, 3,7%), which
is true by induction.

e Case II: vy =sup(E N+) and cf(y) = u < 7.

— Subcase ITa: p < B. Note that the union of at most p Easton subsets of

[6,7)NE is Easton. Choose an increasing sequence (7;);<,, of ordinals
which is cofinal in (3,7). Let pp = p, and build a decreasing sequence
(pi)i<p of conditions in L with p; [ S+ 1 =po | B+ 1, together with
Easton sets T; C [8,7;) N E, such that p;11 IF SN [B,7:) C Ts.
At successor steps we choose p; 11 by appealing to R(p;, £, i), at limits
we may take lower bounds because all iterands past 8 are forced to
be p-closed and (by the remark about unions of Easton sets) there
is no problem with the supports. After u steps we let p’ be a lower
bound for the conditions p; such that p’ | 8+ 1 =1p9 | B8+ 1, and
T =U,., T;, where p’ can be chosen as in the choice of p; for i limit
and T is Easton by the remark on unions of Easton sets.

— Subcase IIb: 8 < p < . Start by appealing to R(p, 8, 1) to produce
p’ < p and Ty an Easton subset of [3, ) such that p’ [ f+1=p [ f+1
and p' IF SN [B, ) C Ty. Then replace 8 by p and argue as in Subcase
ITa to produce p” < p’ and an Easton set T7 C [u,y) N E such that
p' T p+1=p [ p+1andp” - SN[u,~) C Ti. Clearly p” and Ty UT}
will serve to witness R(p, 3,7).

e Case III: v = sup(F N +) and ~ is inaccessible, in particular v € F or
v = sup(E&). .

It is forced that S is bounded in ~. Since |[L [ 8+ 1] < 8* < v we

may build p’ < p such that p’ [ 8+1=p [ 8+ 1, and for every q < p’

such that ¢ decides sup(S N ~) we have that ¢ [ 3+ 17p" | (8 + 1,sup(A))

decides it: the key points are that all iterands past § are < f*-closed,

(B+1,y)NE =[B*,7)NE, and the union of fewer than 8* Easton subsets
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of [8*,7) N E is Easton. If we let v/ = sup{np : Ir e L | g+ 1r"p |
(B+1,7) IFsup(SN~) =n} then v < v and p' I SN~ C 4. Appealing
to R(p',3,7') we find p” < p’ and an Easton set T C [3,') such that
P/ B+1=p | B+1andp”IFSN[3,~) CT.

O

2.9. Robustness of chain condition

In the sequel we will often force over V' using the Cohen poset Add(k, A) defined
over some inner model of V. This idea is often useful in the situation where k = p*
and 2# > ;7 forcing with Add(p™, \) as defined in V' will collapse ™, so instead we
force with Add(u*, A) defined in some inner model where 2# = u+. The following
Lemma shows that the chain condition (really the Knaster property) of Cohen
forcing is quite robust. We will also need that the distributivity of Cohen forcing
is robust, but we will typically establish this by ad hoc arguments using Easton’s

Lemma and term forcing, see for instance Lemma below.

Lemma 2.54. Let k be regular and let P = Add(k, A). If n=F < u for every n < pu,
and W is an outer model in which u is reqular and every set of ordinals of size less
than k in W is covered by a set of size less than k in V', then W = “P is p-Knaster”.

Proof. We work in W, noting that our hypotheses imply that x is still regular in
W. Let (p;)i<y be a p-sequence of conditions in P. Let X = (J,_, dom(p;), so that
X C k x XA with |X] < p, and enumerate X as (2;)i<pu. Let d; = {j < p: z; €
dom(p;)}-

Let S = pNcof(k), and for i € S define f(i) = sup(d; N4). Since f is regressive
we may fix Sy C S stationary and n < p such that f(i) = for all ¢ € S. Thinning
out Sy if necessary, we may assume that if 4, j € Sy with ¢ < j then supd; < j. Let
D; € V be such that d; "n C D; C n and |D;| < k. Since n<" < p in V, we may
find S; C Sy stationary and D such that D; = D for every i € 5.

Now let z = {z; : j € D}, and use the covering hypothesis again to find Z € V
such that 2 C Z C k x A and |Z| < k. Since 217l < 1y in V, we may find Sy C Sy
stationary and a partial function p from Z to 2 such that p; [ Z = p for all i € S5.

We claim that the conditions p; for i € Sy are compatible. Let i < j with
i,j € Sa, and let (o, 8) € dom(p;) N dom(p;). Since (o, B) € X, we find k with
(a, B) = xx, so that by definition k € d; N d;. Since sup(d;) < j, k € d; N j, so

k<f()=n.
It follows that k € d;Nn, so that k € D; = D. By definition z; = (o, 8) € 2 C Z,
and since («, 8) € dom(p;) N dom(p,) we have p;(c, 8) = p(e, B) = p;(a, B). O

Remark 2.55. Similar lemmas with similar purposes appear in papers by Abraham
[1, Lemma 2.16] and Cummings and Foreman [2, Lemma 2.6]

To streamline the process of applying Lemma [2.54] we encapsulate some of the
hypotheses in a definition.
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Let k and p be reqular cardinals. Then an outer model W D'V is (k, p)-good if
and only if every set of ordinals of size less than k in W is covered by a set of size
less than k in V', and p is reqular in W.

Remark 2.57. If W7 is a (k, u)-good outer model of V and Wy is a (k, pt)-good outer
model of W7, then W5 is a (&, p)-good outer model of V. If W is a (k, u)-good outer
model of V and W’ is an intermediate model, then W' is also a (k, u)-good outer
model of V.

2.10. A technical fact

We will need a version of a technical fact from [I6]. The exact statement is slightly
different but the proof will be essentially the same, see the discussion following the
statement.

Fact 2.58 (essentially [16l Lemma 3.10]). Let (km)2<m<w be an increasing sequence
of reqular cardinals and let v = sup,, Kpy,. Let Index C ko, let N < w and let M(p)
for p € Index be forcing posets such that |M(p)| < kn for all p. Let R = V; where
¢ > vt and R satisfies a large enough finite fragment of ZFC. Assume that:

o For all sufficiently large m < w, there exist posets P and Q such that:

— P adds a generic embedding 7w : V. — V* such that crit(n) > Ky, and
7 is discontinuous at vT.

— Q adds k., mutually generic filters for P.

— Q preserves cardinals up to and including k., and forces cf(vF) > fip,.

e There are stationarily many X < R such that for some v+ -Knaster poset
]PX N

— vt CX and | X|=vT.

— Letting M be the transitive collapse of X, Px adds a generic embed-
ding © : M — M?* such that crit(n) = ko, m(ke) > v+, and 7 is
discontinuous at v+.

— v € n(Index), and Px adds L which is 7(M)(v)-generic over M*.

Then there exists p € Index such that M(p) forces “v* has the tree property”.
The only differences between the proof here and in [16, Lemma 3.10] are that:

e The forcing posets M(p) are potentially larger (cardinality xy rather than
ko) which does not materially affect the argument for choosing D and n.

e Only a tail of the cardinals x,, for m > 2 are assumed to have the necessary
properties, but we can still choose a suitable m > n, N.

3. A,B,U,CandS

We will use several versions of the main forcing construction from Neeman’s paper
[16]. To minimize repetition we describe here the simplest version that we will need,
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then later in the paper we modify the construction as needed. See Section for a
discussion of how we modify the construction.

3.1. The basic forcing

The version we describe in detail here is basically the forcing of [16] with the mi-
nor simplification that the cardinal pq is fixed from the start rather than chosen
generically. The initial setup involves an increasing w-sequence of regular cardinals
(tin)n<w, Where ,u(f“o = Lo, uf’“ = u1, and the p,’s are indestructibly supercom-
pact for n > 2, together with a universal indestructible Laver function ¢ defined on
(11, ftw), where i, = sup,, fin. We will define forcing posets A, B, U, C and S along
with a number of auxiliary forcing posets.

The basic idea is that we will define A, B,C € V and then project A x B x C to
an iteration A % U % S. Forcing with A « U % S will produce an extension in which
24 = 1, 4o for all n, 11 = ;b for all m > 0, and p,, enjoys a highly indestructible
version of the tree property for n > 2. Very roughly speaking A is responsible for
making 2% = p,4o for all n, S is responsible for collapsing cardinals so that fu,11
becomes the successor of u, for n > 0, and U is responsible for making the tree
property at p,, indestructible for n > 2. We discuss these points in more detail after
defining A « U % S.

Remark 3.1. Readers of [16] will notice that the definitions of A,, and A are slightly
different here. This makes the definitions more uniform, and is possible because the
value of u is fixed.

e A: Conditions in A,, are partial functions from the interval [fn41, fin+2)
to 2 with supports of size less than u,, ordered by extension. We will
sometimes write A, as Add(pn, [tn+1, int2)). Of course A, is equivalent
to the standard Cohen poset Add (g, tin12). The poset A, | « is defined
in the obvious way.

A is the full support product of the posets A, for n < w. Whenever
it is convenient we will regard conditions in A as partial functions p from
[1, pw) to 2, such that p | [tn+1, int2) has support of size less than .
Intuitively A is set up so that we finish adding Cohen subsets of u,, before
we begin to add Cohen subsets of fi,,41.

For a < pi,, A | o is equivalent to [],_, A; x A, [ a for the least n
such that o < iy, 12. We let A be some A-generic object, and define A,, and
A | « in the obvious way.

e B and U: B and U are two posets with the same set of conditions but differ-
ent orderings, with B € V and U € V[A]. In a sense that we make precise
later B is a term forcing for U, but its definition involves a kind of “self-
reference” not present in the simple term forcing of Section [2.6] Conditions
in B will be certain functions with domains contained in (p1, i, ), and B | «
is the set of b € B with dom(b) C «; more generally if I is an interval then
B | I is the set of b € B with dom(b) C I, and in all cases we will view
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B | I as a poset with the ordering inherited from B. U | « has the same
conditions as B [ a.

Formally speaking we will define B [ « and U [ a by simultaneous
induction on «, in such a way that U [ @ € V[A | a]. A condition b € B | «
is a function such that:

— dom(b) is an Easton subset of the set of &/ € dom(¢) N « such that
o(a')isa A | o/ «U | o/-name for a < o'-directed closed forcing poset.

— For every o’ € dom(b), b(a’) isan A | &' *U | o/-name for a condition
in ¢(a’).

B | a and U | « are ordered as follows:

— b < by in B | « if and only if dom(by) C dom(b;) and (0,b; |
o) Fajarsuar b1(e) < bp(o) for all o € dom(by).

—u; < up in U | « if and only if dom(ug) € dom(ui) and there is
a € A asuchthat (a] o, ur | &) lFajasvier w1(a’) < ug(a’) for all
o’ € dom(uy).

By going to a dense subset we may view A «U as consisting of pairs (a, u) where
a € A and u € B, ordered as follows: (a1,u1) < (ag,uo) if and only if a; < ag in A,
dom(ug) C dom(uq), and (a1 [ a,ur | @) IF ug(a) < up(a) for all @ € dom(ug). A
similar remark applies to initial segments A [ 3 * U I  where a < 8 < .

Remark 3.2.

(1) We see from the definition that U € V[A4], and that U may be viewed as
some type of iteration in V[A], where at every « in the domain of B we use
the U [ a-name ¢()[A | o]

(2) The construction of B is also iterative, so that in particular for o < § <
1 the poset B | S is not isomorphic to B [ a x B [ [a,3). However
standard term forcing arguments show that the natural concatenation map
is a projection from B [ a x B [ [, 5) to B | 3.

Let a < B < p, and let F C A [ 5% U | « be a filter, which we assume to be
generated by pairs (a,u) with a € A | 8 and u € U | a. The reader is warned that
F may only exist in a generic extension of V.

e BT | [, B): The underlying set of the poset BT | [, 3) is B | [, 8), and
it is ordered by feeding in information from F'. Formally b; < by if and only
if dom(bp) C dom(by) and there is (a,u) € F such that (a | o/, uUb; | ) IF
b1(a') < bo(’) for all o’ € dom(bp). Note that the definition makes sense
because dom(u) C « and dom(by) C [a, (), so that uUb; | &/ € B | .
Note also that F' being a filter generated by pairs (a,u) as above is sufficient
to show that the ordering on B*¥ | [, ) is transitive.

A couple of examples may help to clarify this definition, where throughout o <
B < pw:
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F =0 (the trivial filter): BT | [, 8) = B | [o, B).

ea=0and F=A[Bx0:BtAIFO1[0,8)=UTB.

F = A|B*U | a: BHAIBUle | o B) is equivalent to the natural forcing for
prolonging A [ B+U [ato A B+U | B. Welet U [ [, B) = BTAIBUla |
[a7/8)'

We quote without proof some facts from [I6]: the proofs are in every case the

same, or slightly easier because here we fixed a value for p; in advance.

Fact 3.3 ([16, Claim 4.5]). Let Fy C Fy be two filters on A | «U | «, and let Gy
be generic for BT | [, B) over a universe W DV with Fy, Fy € W. Let Gy be the
upwards closure of Gy in B | [a, ). Then Gy is generic for BY1 | [a, B) over
w.

Remark 3.4. Fact explains our comment above that B is a kind of term forcing.
As an instructive example let Gy be B¥AloxUle | (o B)-generic over V[A | axU | af.
If we force over V[A [ ax U | o][Go] with A | [, 8) and prolong A [ a* U | a to
A B+U | a,thenin V[A | B*xU | a][Go] we may induce G; which is U | [, 8) =
BHAIBUla 1 (o, B)-generic over V[A | B* U | a][Gg]. So BHAlexUle | 1o 3) serves
as a kind of term poset, adding an A | [, 8)-name for a U | [«, 3)-generic object.

Fact has a kind of reversal: if Gy is generic for BT | [, 3) over W then we
can force over W|[G1] with a suitable factor forcing to obtain Gy which induces G,
as above: the factor forcing is just G with the ordering of BT%0 | [a, 3), and is a
version of the “quotient to term” forcing discussed in Section [2.6

Fact 3.5 ([I6], Claim 4.7]). If o’ < a and F' is A | o *U | o/ -generic over V, then
BF | [a, B) is < a-directed closed in V[F').

Remark 3.6. As a useful special case of Claim we may set o/ =0 and F' =0
to see that B [ [o, 8) is < a-directed closed in V.

To lend some insight into what the forcing A * U is doing, we quote a fact from
[16]. We will not be appealing to this fact directly, but the ideas in its proof will be
used heavily in the proof of Lemma [£.5] below.

Fact 3.7 ([16, Claim 4.12]). Let AU | pint2 be AxU | ppni2-generic over V.. Then
in VA% U | pni2] the cardinal pn,12 is indestructibly generically supercompact for
< ppyo-directed closed posets lying in VA | pipnta * U | pnto], where the generic
embeddings ™ witnessing the generic supercompactness are added by posets of the

Jorm Add" (jun, 7 (1 42)) % Add” (t 1, 7 (s 3)).
Now we define more posets C € V, CT¥ for a filter F on A + U, and S:

e C: The forcing poset C is the full support product of forcing posets C,
for n < w. Conditions in C,, are functions whose domains are subsets of
(tn+1, fnt2) with domains of size less than pi,11. If ¢ € C and o € dom(c)N
(ftns1, fint2) then (@) is an A | a * U | piuq1-name for a condition in
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Add(py41,1)VATexUlens]l C is ordered like a pure term forcing, that is to
say ¢1 < ¢p if and only if dom(cy) C dom(cy) and IF ¢1(a) < ¢o(a) for all
a € dom(cp).

o CTF: Let FF C A xU be a filter, and define a forcing poset C*¥ with the
same set of conditions as C but a richer ordering: ¢; < ¢ if and only if
dom(cg) € dom(cy) and there is (a,u) € F such that for all n and all

a € dom(co) N (Unt1, Hn2), (a [ o, u [ pny1) IF er(a) < co(a).
* S = (CJrA*U.

C serves as a term forcing for S in roughly the same way that B serves as a
term forcing for U. Restrictions of the posets C and S to intervals are defined in the
natural way, and there is an analogous version of Fact [3.3] for C and S.

We let B, = B [ [tn+1,4042); Un = U | [tny1,fng2), and S, = S |
[tn+1, pint2). In connection with this we note that A, = A | [gpt1, bnte2) and
Cn = C | [ttn+1,Mnt2). It is easy to see that U | u, € V[A | p,] and
ST pn € VIAT pn][U | pin—1] for all n > 1.

Remark 3.8. Each of the posets A, B, C consists of partial functions with domains
contained in [u1, p). It is useful to note that we are using different supports in each
of these posets on the interval [f4,41, in+2), Which corresponds to the factors with
index n: supports of size less than u, for A,,, Easton supports for B,,, supports of
size less than p,41 for C,.

In the current setting, S is just a product in V[A % U] of the posets S,,. We
emphasize that U is a not a product but an iteration. We may view AU xS as a
projection of A x B x C in the natural way. Much as in Remark we may also
view B as a projection of [] B,, and so may view A« U xS as a projection of
[L, A, x B, x C,. See Lemma below for more on this.

One small difference with [16] is that here the definitions are valid for n = 0,
because we fixed the value of p; in advance. The definitions for n = 0 have some
special features that will be useful later, and which we record in the following
remarks.

Remark 3.9. Bo | 1 and Ug | p are trivial. Uy = (Bg)T4° € V[Ag]. Since Uy |
(1 is trivial, Uy is irrelevant to the definition of Sy, and Sy = (C(‘)"A" € VI]Ao].
V[Ag * Uy * So] = V[Ag * (Uy x Sp)], and we may view Ag * Uy * Sy as a projection
of Ag x By x Coy. Ag xSy is essentially Mitchell forcing [13], and Cy is essentially the
term forcing from Abraham’s product analysis of Mitchell forcing [I].

Remark 3.10. The natural forcing to add a By x Cy-generic object By x Cy such
that Ag x (Bg x Cp) induces Ag * Uy * Sp is < po-closed in V[Ag * Uy * Sp]. The
argument is essentially the same as that for Lemma conditions are pairs (b, ¢)
with (b, ¢)[Ag] € Uy x So, Ag xUp xS is < po-distributive so that decreasing < po-
sequences lie in V', hence it is easy to find a lower bound.

We quote more facts from [16].
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Fact 3.11 ([16, Claim 4.15]).

(1) Let a < pipy1 and let F = A [ a U | a. Then in V[F] the poset C* |
[nt1, o) 18 < pnt1-directed closed.

(2) Let & € (pnt1, tint2) and let F = A | a*xU | ppt1. Then in V]F| the poset
CHE | [, pina2) 8 < piny1-directed closed.

Fact 3.12 ([I6, Claim 4.30]). Let F = A | ppt2 * U | pins2, let Py be the poset
to refine U | [fini2, tho) to a generic object for BT | [i,y0, i), and let Py be the
poset to refine S | [fini2, lw) to a generic object for CY | [j, 40, pi). Then both
Py and Py are < pin41-closed in VIAJ[U][S | [n+1s pw)]-

As we already mentioned, if we force with A * U % S we obtain an extension in
which 2¢ = p,, o for all n, and p,41 = pt for all n > 0.

e A is responsible for blowing up the powersets of the u,’s.

e U is responsible for ensuring that p,42 has the indestructible generic su-
percompactness property from Fact in VAU | pnal.

e S is responsible for collapsing cardinals in the interval (g, 11, tint2) to have
cardinality fi,41.

AxTU=xS is a descendant of Mitchell’s original forcing [I3] for collapsing a
large cardinal while preserving the tree property. Exactly as in that forcing the S-
coordinate is collapsing cardinals between pi, 11 and p,42 “in parallel” with the A
coordinate adding subsets of p,, so that there is no inner model where 247 = i, 14
and fin42 = g, and we do not run afoul of Specker’s result from [22].

We record some information about A x U xS for use later.

Lemma 3.13.

(1) A
(2) B
(3) C | tint1 5 pnt1-Knaster.

(4) AT pnsoa * U g1 *S | g1 8 piny1-Knaster.

(5) B [tnt1,7) 18 < pnt1-directed closed for all~y, in particular B,, is < finy1-
directed closed.

(6) C,, is < pp41-directed closed, as is C | [tn+1, tho)-

(7) For each m, the forcing poset A x U xS is the projection of Py x Py, where
Po = A T pny2*U [ png1 *S | pngr and Py = A | [tng2, i) X B |
[nt1s tw) X C T [nt1, tw)- Po 18 piny1-Knaster and Py is < 11 -directed
closed.

(8) It is forced by Py that Py is py41-cc.

(9) Hn<w A, xB,, x C,, adds no < pg-sequences of ordinals, and preserves the
cardinals pi, for n < w together with pJ. Since A+ U xS is a projection of
[l.co An x B, x Cy, the same holds for A U 8.

fnto 18 tnr1-Knaster and A | [pnt2, o) 18 < pint1-directed closed.
n+1 1S fnt1-Knaster.

—_— — —7 —

Proof.
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(1)
(2)

This is immediate since A [ pn2 = [[,<,, A and A | [pni2,w) = [[;5,, As
For n =0, B [ p; is trivial forcing. For n > 0 the supports of conditions in
B | pny1 are Easton subsets of the Mahlo cardinal pp41, B | o < fint1
for all @ < ppy1, and the p,1-Knaster property for B | p,41 follows by
standard arguments in iterated forcing.

For n =0, C [ py is trivial forcing. For n > 0, C | i1 = (C [ i) x Cp—1,
and |C | pp| < piny1 so this factor is trivially p,1-Knaster. C,,_; is the
product taken with < p,-supports of p,+1 posets each with cardinality
less than fi,,41, and p,41 is inaccessible, so the p,41-Knaster property for
B | g1 follows by standard arguments in product forcing.

AT ppyo*U T ping1 xS | ppy1 is a projection of A [ pipio X B [ ppy1 X
C | pnt+1, which is a product of p,4+1-Knaster posets. We note that the
projection is the identity map between two posets with the same underlying
set but different orderings.

This follows from Remark

C,, is the product taken with < p,4+1-supports of < i, 41-closed term forc-
ing posets, and C [ [pn41, pw) = [[;5,, Ci-

It is routine to verify that the natural map from Py x P; to A*UxS is a pro-
jection. The claims about closure and chain condition follow immediately
from what we already proved.

This is immediate by Easton’s lemma.

The preservation of pg and the claim about < pg-sequences are immediate,
as the product is < po-closed. [[,,,<,, Am X [],,cpn Bm X [Lnepn Cm 18 ping1-
Knaster and [],,,~,, Am X [ 1,150 B X [ 1,50 Cin i < ptry1-closed, so that
Hn1 is preserved by Easton’s Lemma. If 4 were collapsed we would have
cf(p) < g in the extension, but this is impossible by Easton’s Lemma.

O

Remark 3.14. Ttem[8]is immediate in our current setting but will hold and be useful
in more general settings, as we discuss in Section below.

Corollary 3.15.

(1) Every < pny1-sequence of ordinals from V[A x U % S| lies in the submodel

VIAT ping2][U | pns1][S | pnga]-

(2) Every set of ordinals of cardinality less than p,4+1 in V[AxU % S] is covered

by such a set lying in V.

(8) If Q is py-closed in V and Q is Q-generic over V[A x U x S|, every set of

ordinals of cardinality less than pn41 in V[AxU % S][Q] is covered by such
a set lying in V.

Proof. The first two claims are immediate. For the last claim write Q x A« U xS
as the projection of Q x Py x P; where Py is py,+1-cc and Py is < pi,+1-closed, then
argue as usual by Easton’s Lemma. O
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In a similar spirit, we state some more easy projection and absorption facts
about Up, .,y and S, for use in Section

Lemma 3.16. A x U can be viewed as the projection of the product of A x Uy )
and the Easton support product of the term forcing posets AV (A | o, U | «) for
o< dom(B[n’w)).

We note that by Lemma the product of term forcing in Lemma [3.16| may
be absorbed into a suitable Easton collapse.

Lemma 3.17. AxU xS, can be viewed as the projection of the product of A + U
and C,,.

We note that C,, may be viewed as the < p,q1-support product of the term
forcing posets AV (A [ a*U | un+1,Add(un+1, 1)) for @ € (nt1, int2). As such,
by Lemma C,, may be absorbed into a suitable < p,,1-closed Levy collapse.

For use later (notably in Sections |§| and we record the fact that Uy, .,y and
Sin,w) have a very modest degree of closure in the models where they are defined.
These results are surely not optimal (and in some special cases we will need and
prove more closure) but are all we need for the purposes of Sections |§| and The
argument is similar to but easier than the proofs of Fact [3.5] or Lemma [7.1]

Lemma 3.18.
Uppw) s < po-closed in V[A x Ujg ).
Sin,w) 8 < po-closed in VA x U].

Proof. We only prove the closure of U, in V[A* U ], which is enough to illustrate
the idea. Recall that the underlying set of U, is B, = B [ (tn41, int2), and the
ordering is defined in V[Ag n1*Ujo,n]. Let n < po and let @ = (u;);<y be a decreasing
sequence in U,, where by Lemma we have & € V. We assume without loss of
generality that it is forced by Ajg ) * Ujg ) that @ is decreasing in U,.

We will construct b € B,, inductively, where b = (J, dom(u;) is easily seen to be
an Easton set, and arrange that it is forced by Apg ) * Upg ) that b is a lower bound
for @ in U,. Suppose that p,11 < o < ppy2, and we have defined b | a which is
forced by Apg ) * Ujg,n) to be a lower bound for @ [ a in U, [ a. We force with
Al axU T abelow (0,b ] @) to obtain F24 « FY.

Let d; = u;(a)[F2 « FY]. We claim that (d;);<, forms a decreasing sequence in
#(a)[F2 x FU]. To see this let i < j < 5, and force to prolong F2 to F4 which
is Ao,nj-generic. By our hypothesis on @, V[FA % F | pn1] = u; <y, w. By
the definition of U,,, there are conditions p € F(‘;‘ and ¢ € FY | ppy1 such that
(p,g ~uj | o) lFuj(a) <ui(w).

Since we forced below (0,b | ), (0,b [ o) € F2A%FY. By hypothesis V[FAxF2 |
Unt1] Eb T a <y, u; | @, so extending p and ¢ if necessary we may assume that
(p,q) IFbla<u;[a. So(pg—u;|a)eFLsFY and d; < d; as required.

Now since ¢(«) is forced to be < a-closed we may choose an A | a*U | a-name
b() such that (0,b [ a) IF b(a) < d; for all i. Let F = Ajon) * Ug,n—1y be an
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arbitrary Ajg ) * Ujg,,—1)-generic object. By induction b [ o < u; [ o for all i <n
in the version of U,, computed in V[F], and we will show that b [ a+1 < wu; [ a+1
in this poset. This is easy because for any condition (a,u) € F, (a [ a,uUb | @)
forces b(a) < u;(«). O

3.2. Further analysis

As we saw in Section A x U= S is naturally a projection of [], (A, x B, x Cy),
and this latter forcing preserves all cardinals u,, together with p}. To get more
information we will use a style of analysis sometimes called “tail forcing”, which is
often useful in the setting of a product of w many increasingly closed forcing posets.

Let f and g be elements of [] (A, x B,, x C,,). We say that f =gnite ¢ if and
only if f(n) = g(n) for all large n, and f <gnite ¢ if and only if f(n) < g(n) for all
large n. Then =gpite is an equivalence relation on ], (A, x B, x C,,).

If we let [[,, (A, x B,, x C,)/finite be the set of equivalence classes then <gpite
naturally induces a partial ordering on [[,, (A, xB,, x C,,) /finite, and it is easy to see
that f — [f]gnite is a projection from [] (A, xB, xC,,) to [],, (A, xB, xC,,) /finite.
If we define =gnite and <gnite on [],,>,,(An X B, x C,,) in the natural way, then
easily [],, (A, x B,, x C,)/finite is isomorphic to [], <, (A, x B, x C,)/finite, and
£ = [flfnite is a projection from [], <, (A, xB,, xCy,) to [1,,,,(AnxB, xC,)/finite,

Now we may represent [ [, (A, x B, x C,) as a two-step iteration Eq % E;, where
Eo =, (A, x B,, x C,)/finite, and E, is the set of elements of [ A, x B, x C,
whose classes modulo finite are in Ejy, where the ordering of E; is the the ordering
inherited from [], A, x B, x C,.

Claim 3.19. Eg is pn,-strategically closed for every m < w, so in particular it is
e -distributive.

Proof. By the discussion above, Eq is isomorphic to the projection via f +— [f]fnite
of the < pi,-closed poset ], (A, x B, x C,). O

Claim 3.20. E; is u} -cc in V[Eq].

Proof. We will show the stronger assertion that E; is the union of y, many filters
in V[Eo * E1]. Let R be the [, (A, x B, x C,)-generic object added by Eq * Eq, so
that V[Ep* E1] = V[R], Ey is the set of equivalence classes of elements of R modulo
finite, E; is the set of conditions which are equal mod finite to some element of R,
and F; = R. The key point is that pJ is still an uncountable regular cardinal in
V[R].

Now we work in V[R]. If p € E; then there are n < w and r € R such that
pl[n,w)=r][nw). ForallnandqeI ], ., (A; xB; x C;), let F}, 4 be the set of
p € E; such that p [n =¢gand p | [n,w) =7 | [n,w) for some r € R. It is easy to
see that F, , is a filter, E; = Un,q F, 4 and there are p,, possibilities for (n,q). O

We have proved:
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Lemma 3.21. V[AxU x S| C V[Ey * E1], where Eq is p,-distributive in V and Eq
is pt-cc in V[Ey).

Remark 3.22. Since Eg is un,-strategically closed for all m, the distributivity of Eg
is quite robust in mild forcing extensions of V. The argument we gave for the chain
condition of E; shows that the chain condition of E; is also robust in mild forcing
extensions of V[Ey].

3.3. Modifying the forcing

In the sequel we will need to use some modified forms of A x U x S. The main
modifications will be:

e We sometimes choose the Cohen forcing A,, from an inner model V' (which
may depend on n), that is we set A, = AddY (tony pnt2). When we do this
we will make sure to arrange that A, ) is < py,-distributive and fi5,41-
Knaster for m < n < w.

e We sometimes weaken the assumptions on the cardinals p,, for n > 2 and
the function ¢. The p,,’s will still be supercompact but may not be inde-
structibly supercompact, and (relatedly) the function ¢ [ u, may only be
a Laver function rather than an indestructible Laver function. In practice
there will typically be an inner model V' such that V is a small generic
extension of V', and ¢ is obtained from an indestructible Laver function in
V' using Lemma [2.9

With these modifications the closure assertions from Facts and
will remain true, since they only use chain condition and distributivity properties on
the A-coordinate. Most of the conclusions of Lemmas and [3.15|remain true, the
only difference is that now A [ [f,42, ) and Py are merely < p,41-distributive.
The analysis from Section [3:2] needs to be slightly modified but the conclusion is the
same: the modified version of A x U *x S embeds into a two-step iteration where the
first step has a robust form of pu,-distributivity, and the second step has a robust
form of pf-cc.

Remark 3.23. At certain points in the main construction (see Sections and
we will start with a sequence of cardinal parameters pg, i1, ft2 - . ., force with
Ap * Ug xSy (in Section or Ag x Uy x L for some preparation forcing L (in
Section , and then work over the extension to define and force with A,y *
Up1,w) * Sp1,w) (in Section or Apy ) * Upp ) # S (in Section . The resulting
iteration is broadly similar to the A x U x S construction defined from pug, p1, pi2 - - -
but is not equivalent: we will handle this situation by analyzing the two parts of the
construction separately. In the sequel we will call this kind of iteration a two-phase
A xTU xS construction. Since Ay forces 210 = o it will be important to define A;
in an inner model, so that A; does not collapse ps.

Remark 3.24. Readers of this paper and [16] will note a limited family resemblance
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between AxUxS and the constructions of Abraham [I] and Cummings and Foreman
[2], which also involve forcing posets with an “add coordinate”, a “collapse coordi-
nate” and an “indestructibility coordinate”. The key differences are that in those
earlier papers the supercompact cardinals are not assumed to be indestructible, all
three coordinates are iterations, and the “indestructibility coordinate” comes last
and uses ordinary ground model Laver functions to guess names.

4. Indestructibility results

In the proof of Theorem [I.1] we will produce a model which combines many different
instances of the construction of Section [B] Roughly speaking the double successor
cardinals below N 2 in the final model will be grouped into blocks of length w,
where cardinals in each block will be handled by an instance of that construction.
Unfortunately in each block there is interference caused by the instances that handle
the neighboring blocks. We will deal with some of this interference by proving
general indestructibility results (Lemmas and below) stating that instances
of the tree property produced by the construction of Section |[3|are somewhat robust
under further mild forcing. All the ideas needed for the indestructibility results are
already present in [16], we just need some small adjustments to the proofs.

In some cases we would like to use Lemmal[4.5]in situations where the hypotheses
do not quite apply, and this issue will be addressed by going to a further generic
extension where the hypotheses do apply, and using a mutual genericity argument
to finish. See Remarks and following Lemma for more on this. Of
course we could have incorporated this idea into the statement and proof of Lemma
at the cost of further complicating the statement and the proof.

Let A*UxS be a forcing poset of the type described in Section[3] but allowing for
the possibility that some of the posets Ax may be chosen in submodels as discussed
in Section [3.3] The poset A x U % S will be constructed in a universe Vger: this
notation is perhaps a bit cumbrous but makes it easier to specify which universe is
to play the role of Ve in the sequel. Let n < w, with a view to showing that the
tree property holds at p,12 in a wide class of generic extensions of Viet[A * U * 5],
and make the following assumptions:

e There is an inner model Vi, of Vger, such that Vier is a generic extension
Vinn [X] and Vi, E “X is w-distributive and pq-cc with [X| < p”7.

e In Vinn, (14)i<w 1S an increasing sequence of regular cardinals such that p;
is indestructibly supercompact for ¢ > 2, and there is a universal indestruc-
tible Laver function ¢ defined up to pu,. The cardinal @1 need not be a
large cardinal, and in fact is often the successor of a singular cardinal.

e The Laver function ¢ used to define U is obtained from the universal inde-
structible Laver function ¢ in Vi,, using Lemma[2.9] that is ¢(c) = () [X]
whenever ¢¥(«) is an X-name in Viy. In Vier, ¢ is a universal Laver function
on the interval (p1, to), where p,, = sup, ., t;.

e Each of the posets A, may be defined in some inner model of Vg, with
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the constraints that:

— Ay is defined in Viy, for k > n + 2.
— ILi<,, A i8S fmy1-Knaster in Vger for all m.
— [Lis Ai is < pp-distributive in Vger for all m.

Remark 4.1. With an eye to future applications, these hypotheses are slightly more
general than is needed for our purposes in this paper.

From our hypotheses Ay, 12.0) = ([T,40<i<0 Add(ps, [pis1, ig2))) "™, so that
Apgo,0) is defined and < pi,4o-directed closed in Viy,. For k < n+ 1, A will most
often be defined in some model intermediate between Vi, and Vgier, and in this case
Lemma [£.2 below will handle most of the work of checking the chain condition and
distributivity of products of the Aj’s.

Lemma 4.2. Suppose that A, = Addv‘“t*"'(uk, [tkt1, tig2)) for 1 < k < n+1,
where Vi1 is intermediate between Vin, and Vaer. Then Ay p) = H1§i§m A; is
pmy1-Knaster in Vaer and Ap, ) = ] A; is < oy -distributive in Ver for all
m > 1.

i>m

Proof. We set Vipt p = Vinn for k > n + 2, so that Ay = Addv‘““"“(uk7 [k+1, Hkt2))
for k > 1. As py, is inaccessible in Vyer for k > 2, Vipy ke = Y < pg1 0 < pg1”
for all £ > 1.

Let Vint,x = Vinn[X4] for a forcing poset Xy, € Viyn, and let A} = AVinn (Xk,Ak),
so that A} is < p-closed in Viy, by Lemma For m > n+ 2, Apy, 0y is < -
closed in Viny,, so it is < p,-distributive in Vyer by Easton’s lemma.

For 1 <m < n+1, we may write Viet[Am,w)] = Vinn[(X * Apnnt2)) X Apng2,0))s
and by a suitable quotient to term forcing we may extend to obtain a generic
extension Vinn[X X [, cicnio A7 X Apgawl Since [[ ;i pio A X Apyaw) is
< pm-closed in Vi, by Easton’s lemma it is < py,-distributive in Vger, so that
easily A, o) is < pp-distributive in Vier.

It is easy to see that Vger is a (1, t2)-good extension of Viyg i, so by Lemma
|T_57I|A1 is p12-Knaster in Vger. Now we show by induction on m that Ap ) iS ftmq1-
Knaster in Vier: if Apy ) 18 pim1-Knaster in Vaer then Vaer[Ap m] 18 @ (g1, mt2)-
good extension of Ving i1, 0 that Ay, 11 1S fiy,42-Knaster in Ver[A[1 )] and hence
A1 m41] 18 fm2-Knaster. O

Remark 4.3. Lemma leaves us only with the problem of showing that Ay, is
< po-distributive and Ao, 1S fmy1-cC.

To make the hypotheses of the forthcoming Lemma more digestible, we use
some notational conventions:

e We will show that the tree property at p,42 holds in generic extensions
of Vger[A * U % S] by products of posets that can be written in the form
Demall 5 DO x D x D? x D3, where the factors satisfy some hypotheses to be
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listed later. We write this product D*%12:3 and denote subproducts and
generic objects for subproducts in the natural way.

o W is Vdef[A * U % S] [DS’O’I’Q’?’].

e j is any embedding witnessing the y-supercompactness of fin, 42 in Vyer[H]
where H = Ap, 40y X D? and x = max(p,, [D%%H23])* Our hypotheses
will ensure that g, 42 is supercompact in Vger[H], so that such embeddings
j will exist. Note that Vges[H] C W.

o If Q € Vier is a piyyo-cc poset with |Q| < x which remains p,42-cc in
Vaet[H], j is an embedding as above (so that in Vges[H], j [ Q is a complete
embedding of Q into j(Q)), and Q is Q-generic over Vger[H], then j(Q)/5[Q)]
is the natural poset defined in Vger[H][Q] to produce a j(Q)-generic object
Q with j[Q] € Q.

We note that in the proof of Lemma [4.5] we will construct and lift a highly specific
embedding j, which is not known in advance and depends on the inputs to the
Lemma.

Remark 4.4. The posets D™ DO D! D2, D3 are enumerated roughly in order
of increasing distributivity. They appear in a different order in the hypotheses of
Lemma [4.5| because the hypotheses about D° and D' mention D? and D3, and the
hypothesis about D° mentions D!.

Lemma 4.5. With the hypotheses on n, Vinn, Vaer and AxUxS as above, let D™,
DY, DY, D2, D3 be forcing posets such that, setting W = Vget|A * U * S|[D50:123]
and H = A[n+2,w) x D?:

(1) pins1 and ppto are reqular cardinals in W.

(2) A, is pnt1-Knaster in Vaee[H], and A1 is pnto-Knaster in Vaer[H].

(3) D? € Vipn, and Vipy = “D? is < pino-directed closed”.

(4) D? € Vaet[A | piny2 * U | pnga] and Vaet[A | pnge * U | pinga]
“D3 is < pyyo-directed closed”.

(5) D! e Vet -

(a) D' is pin1o-Knaster in Ve [H].
(b) D is < puyyq-distributive in Vaer[A x U * S][D*3].

(6) For any j which is the unique lift | to Vaer[H] of an embedding witnessing
the x-supercompactness of fin12 in Vipn[H], if Pop = j(Apy1 xDY)/j[Ani1 %
D?] then:

(a) Poy is pinro-Knaster in W.
(b) Pop is < pp41-distributive in W.

(7) DY € Vier, and D is pi,11-Knaster in Vaeg[A x U % S][DY23][Pyy].

#Note that by the indestructibility of ptn+2 in Vinn and the hypotheses on A, 2 .,y and D2, pin2 is
x-supercompact in Vipy [H]. Since Vyer[H] = Vinn [H][X] and X is generic for forcing of cardinality
at most p1, any embedding witnessing x-supercompactness for pn+y2 in Vip, [H] lifts uniquely in
a trivial fashion to an embedding witnessing x-supercompactness for pip42 in Vger[H].
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(8) For any W' which is an extension of W|[Pa) by a forcing which is < pp41-
closed in Vaet[A* U % S | [tint1, o) [D?], and any j as in Hypothesis@ if
Py, = j(A, x DY) /j[A, x D°] then Py, is pin.1-Knaster in W'.

(9) D¥mall € Vi [A* U * 5], and Vaet[A* U % S| = D™ < p,.

Then W = “Unto has the tree property”.

Before proving Lemma [4.5] we make some remarks about its hypotheses and
show that these hypotheses entail some additional properties.

Remark 4.6.

e In applications D will often be a Cohen poset adding subsets to u,, defined
in some inner model of Vyer, and similarly D! will often be a Cohen poset
adding subsets to pi,41 defined in some inner model of Vjes.

e P, and Py, are so named because they will be used successively in Step 2
of the construction for Lemma Py, and Py, are defined respectively in
the submodels Vier[H][A, x D] and Vaet[H][An+1 x D] of the model W.

e In connection with D™ we recall that s, 4, is the successor of p, in
Vaet[AxU xS] for n > 0. In the intended applications it is often the case that
Dsmall is defined in a submodel of Ve[ A% U *S] where p,, < [D¥™| < 11,41,

e Some cardinals (notably u,,) may be collapsed in W, for example we could
set Dsmall = Coll(w, py,)-

e Hypotheses and [7] jointly imply that both A,, x DY and A, ; x D! are
tnto-cc in Vger[H]. Tt follows that the posets Py, and Py, are guaranteed
to be well-defined.

e It is implicit in the hypotheses that j(A,)/j[A.] and j(A,+1)/7[An+1] have
rather robust chain condition and distributivity properties.

The following auxiliary lemma, which we will use in the proof of Lemma |4.5
provides a good example of the use of term forcing and “quotient to term forcing”
to analyze complicated generic extensions.

Lemma 4.7. Under the hypotheses of Lemma[].5:

o Viet[Ax U x S| = “D?3 is pu,, 1 1-distributive”.
o Viet[AxU S| = “DY23 is < puy,y1-distributive”.

Proof. We begin by analyzing the model Vget[Ax U % S][D?3] = Vyer[A* U x S|[D? x
D3]. Recalling that Ve = Vinn[X] and that D? € Vi, this model is Vi, [(X * A *
U * S+ D3) x D?]. Since D? € Vyet[A | fini2 * U | pins2], we may form in Vi, the
term forcing T3 = AVien (X % A | fing2 * U | piny2,D3). By hypothesis 4| of Lemma
D3 is < pinyo-directed closed in Vier[A | pins2 * U | pinsz], and it follows from
Lemmam that (just like D?) the poset T3 is < pu,, 1 2-directed closed in V.
Now we force over Vger[A + U * S|[D? x D3] with the “quotient to term” forcing
T3 /(A | png2¥U | pini2)*D?, which is computed in the submodel Ve [A | ptnyo*U |
pint2 * D3]. By Lemma We obtain T° such that (X * A | g2 % U | pinie) x T3
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induces X x A | fipyo* U | finso *x D3 and D? x T3 is generic over Vgeg[A x U * S]
for D? x T3. In particular Vget[A x U * S][D? x D3] C Vget[A x U x S][D? x T3].

Recall from Lemma that in Vger we may write A « U xS as the projection
of Pg X P’{ X PT, where Pg = A[O,HJ’,]_] * U[O,n] * S[Om]a PT = A[n+27w)a and }ow =
Bri1,0) X Cug1,w)- Under our current hypotheses Pg is defined and ji,,42-cc in
Vaet, P7 is defined and < p,49-directed closed in Vi,y,, while P is defined and
< ppyo-directed closed in Ves.

Let T* = AV (X,P}), so that T* is defined and < g, o-directed closed in
Vinn. With another round of quotient to term forcing and another appeal to Lemma
we produce a generic extension Vinn[(X % P§) X Appo.0) X T* x D? x T3] D
VIA % U * S][D? x T3]. Now Ap, 42,y X T* x D? x T? is generic over Vi, for
< pingo-closed forcing and X = Py is generic for pp4o-cc forcing. Appealing to
Easton’s Lemma, every i, 1-sequence of ordinals in Vgef[A * U * S][D? x D3] is in
Vinn [X # Py ] = Vaet[Ajo,n+1)* Ujo,n) ¥ S[0,n)]; in particular D2 x D3 is pu,,41-distributive
in Vger[A * U % S]. By hypothesis of Lemma D! is < pi,41-distributive in
Viaet[A*U % S][D? x D3], so that D! x D? x D? is < pu,, 4 1-distributive in Ve[ A*U * S|
as required.

O

Remark 4.8. For use in Lemma [1.9] below, we note that no hypotheses involving
either D° or D! were used to prove the distributivity of D?3, and that for the
distributivity of D"?3 we used only that D' is < tnt1-distributive in Viee[A * U
S|[D? x D3).

With these preliminaries out of the way, we are now ready to prove Lemma |4.5

Proof of Lemma[].5 Recall that W = Vye[A * U * S][D*%1233]. We will show
that the cardinal p, o has the tree property in W. This involves constructing a
generic embedding with domain W and critical point g, 42, and then arguing that
the forcing which adds the embedding will not add a branch to a p,49-tree. The
forcing to add the embedding will be constructed in several steps.

Recall that p,42 is indestructibly supercompact in Viyn, and H = Ap,42.4) X
D? which is generic for < tn4o-directed closed forcing in Vipn, so that p,yo is
supercompact in Vi, [H]. We will eventually choose an embedding j defined in
Vinn[H] witnessing that p,1o is sufficiently supercompact, and having some other
desirable properties, but we defer this choice for the moment. When we choose j it
will trivially lift onto Viee[H], because Vger is a small generic extension of Viyy,.

To help motivate the lifting construction below, we list relevant generic objects
which must be added to Vyes[H] to obtain W. In the following list the “small”
group consists of generic objects for posets of size less than p, o where the lifting
is essentially trivial.

o Small: A [ pny1, U | fing1, S | ping1 and D¥mal,

o Large or potentially large: A | [tts1, tnt3)s U T [, fie)s S 1 [fins pheo)
and the posets D® for i = 0,1, 3.
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At several steps in the following construction we record some closure and chain
condition information about the posets which appear in that step. This information
will be used in the proof of the tree property.

e Step la: (“Remove dependence of U | [phnt2, i) 00 A | [tint2, tw)”)- Recall
that U | [tnros pew) = BT | [fngas fe), where F = A s (U | finy2). Let
F=A] pipyo*U | nso, and note that FF C F’. Let Py, be the “quotient
to term” forcing which adds a filter By, on By, = B* | [142, f1w), s that
B, induces U | [pn+2, thw) as in Fact We force over W with P;,. We
see that

Vdef[A * U] [Pla] = Vdef[F] [A F [Un—&-Qa ,Uw) X Bla] = Vdef[A *U f U7L+2][Bla]

and arguing as in [P| Lemma S x D0:1:23 is § x D123 _generic over
Vaet[A * U | pin42][Bi1a]- We have

W([Pia] = Vaet[A * U | piny2][Bra][S * D*%123].

Now B, € Vget[F], and it follows from Fact that B, is < flnio-
directed closed in this model. On the other hand P;, € Vger[A * U], and
appealing to Fact it is actually < p,41-closed in the larger model
Vaet[A*U %S | [tn+1, tw)]- This closure still holds in the further extension
Vaet[A % U % S | [fny1, po)][DY%?], since by Lemma D23 is < fiyq1-
distributive in Vges[A * U * S].

e Step 1b: (“Remove dependence of S | [tnt2,ttw) o0 A | [tnto, pw) * U |
[n+2, b)) Recall that S T [pn2, pe) = cH I [#nt2s ) where F =
AxU,and F = A | piny2*U | pinyr2 € F". Let Py, be the quotient forcing
which adds a filter Cjp on C1p = CTF | [pin12, i), inducing S | [pin12, te)-

We force over W[Py,] with Pyp, and let P; = Py, X P1p. As in Step 1la,

WP = Vaet[A % U | ping2 * S | pnt2][B1a][Crp][D50 127,

and D*%123 continues to be D*%12:3_generic over the slightly larger model
Vaet[A* U | pn2 % S | ping2][B1a)[Crs)-

Similarly to step la, Cy1p € Vaet[F], and it follows from Fact that
Cqp is < pipgo-directed closed in this model. On the other hand Py, €
Vaet[AxU*S | [tnt2, tw)], and appealing to Factit is actually < fi41-
closed in the larger model V[A « U # S | [tn+t1, fhw)].- As in Step la, this
closure still holds in the further extension Vet [A*xU S | [ttnt1, pw)][DV23].

e Choosing j: Recall that we defined A * U using a Laver function ¢ in Ve,
obtained from a universal indestructible Laver function ¢ in Vi, setting
¢(a) = 9(a)[X] whenever ¥ () is an X-name. Working in Vi, [H] we choose
7 such that

bB,, is not literally the termspace forcing AVaet[FI(A | [unt2, pw), U | [tint2, tiw)), but it does
add an A | [pn+2, e )-name for a filter which is U | [pn+2, e ))-generic over Vger[A * U | pin+2]
and this is sufficient. See Remark
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j I ON is definable in Vip,.

j witnesses pi, 12 is y-supercompact where y = max(j,,, [D%123|)*.
The next point in dom(j(v))) past pn42 is greater than x.

JW) (piny2) = Z, where Z is an X-name in Vi, for an A | pnyo U |

fnso-name in Vger for Byg x Cqp x D3,

Since Vger is a generic extension of Vin, by forcing of size at most uq,
we trivially lift j to obtain j : Vaet[H] — M. Note that 5(¢)(pni2) = Z,
where Z is a A | pinio * U | fingo-name in Viep for B x Cp x D3,

Since By, x Cip x D? € Vaer[A | pinio * U | fnyo] and is < piyio-
directed closed in this model, the choice of j implies that p,42 is in the
support of the U-coordinate of j(A+U) and the forcing which appears there
is Big x Cyp x D3,

e Step 2a: (“Stretch A, x D)
Let Py, = j(A, x D%)/j[A, x Dy]. We force over W[P;] with Py, and
add a j(A, x D)-generic object A,, x D such that j[A, x D% C A,, x DO.
e Step 2b: (“Stretch A, ;1 x D) Let Py, = j(A,11 x DV)/j[A,41 x D).
We force over W [P]|[Paq] with Pg, and add a j(A, .1 x D')-generic object
An+1 x D! such that j[Ans1 x DY C An+1 x D1.
We let PQ = ]P)QQ X Pgb. Then

WIPL)[P2] = Vaet[A % U | pinso * S | pins2)[Bia)[Crs][D3O125],

where A = Afpn—1) X Ap x Apyq Afpia,w) and Ds0:1,23 — Ds x DO x
D' x D? x D3,

e Step 3 (“Stretch the term forcing for S [ [tn11,pn+2)”) Recall that S |
[Un+1;ﬂn+2)_ =Ctr [tn+1 pn+2), where F =AY piny2 % U | piny1. Let
Py = j(C)T | [ln+2, (1nt2)). We force with Py over W[Pi][Ps].

Note that Pj is defined in Vet [H][F] C V[A*U | pin+1][D?]. Modifying
the proof of [16, Claim 4.31] to account for D?, P3 is < g, 41-closed in
VIA*U xS | [tnt1, tw)][D?]. By distributivity, P3 retains this closure in
the larger model VA x U * S | [tni1, pio)][DV23].

We now extend j : Vaer[H] = My to a generic embedding with domain W,
working (ultimately) in the extension W' = WP, 23] where Pj o3 collects the
generic objects we added in the steps above.

e Stage 1: Recall that By, x C1y is the generic object added by P; = P, x Py,
for B1, x Cyp, a poset which is defined and is < p,yo-directed closed in
Vaet[F], where F' = A | piny2 * U | pfiny2. By our choice of j, j(A x U xS)
has a “U-component” in which By, x C1; x D3 appears at stage 42

Modifying the proof of Fact [3.7] from [16], we may lift j onto Vaer[AxU |
tnt2][Bia x C1p)[D%123]. We outline the modified proof, with a focus on
where to find the compatible generic objects on the “j-side”.

- H = A[n+2,w) X D2 S Vdcf[H], SO that lf .E[ = ](H) = j(A[YL-‘rQ,w)) X
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§(D?) then H € My and My = j(Vier)[H].

—J (A 0 n)) [0 n)-

j(A, x D) is obtained by combining A,, x DY and the generic object
Ps, for the “stretching” poset Pa,.

— j(D' x A,41) is obtained by combining D! x A, ;; and the generic
object Py, for the “stretching” poset Poyp.

— §(U | pna2) is obtained by concatenating U | fi, 12, Bia XC1px D3 (the
generic object at i, 42), and a generic object for j(U) [ (ttn+2,J(fnt2))
which is constructed using closure under y-sequences.

— j(B1a x C1p x D?) is constructed using closure under y-sequences and
a master condition argument.

e Stage 2: S | pn41 is generic for forcing of size less than pi,12, so we may
trivially lift j onto Vaet[A * U | piny2][Bia X C1p)[DOV23)[S | tini1]-
e Stage 3: As we noted above in the definition of P3, S | [tnt1, tint2) =
CTE | [ftnst, finga) Where F = A | pinyo * U | pins1. When we apply j to
S | [tn+1s int2) it is only the “A-component” which gets stretched: more
precisely j(A | piny2) = Apny * Ap, §(F) = (Ajgm) * Ap) ¥ U | iy and
JS T [nt1s pnt2)) = J((C)+(AO myeAn)<U lpin 1 I [MnJrlangnJr?))'
Let Sy, = S [ [fn+1, fins2)- Recall that P3 = j(C)+F I [tnt2s J(Hn+2)),
and note that:
— FCj(F) = (Ajon) * An) U | pin1.
— P3is generlc over W[P; 2] which contains all relevant generic objects.

- J((C) [ [Hnt1, J(pny2)) = J(C)+F [ing1, iny2) X Py ~ S, x Ps.

We may therefore form the upwards closure Sn of S, x P3 in (S |
[fin41, fint2)), to produce S, such that S, is generic for j(S | [tn41, fint2)).
Since crit(j) = pint2, and conditions in S,, have supports which are bounded
subsets of fi 42, it is easy to see that j[S,] C S, and so we may lift j onto
Vaet[A * U | ping2][Bia X Crp] [DO’172’3][S [ 2]

e Stage 4: Recall that Py, added a filter By, on B1q = B | [11,4 0, fie), such
that By, induces U | [tnt2, tho)- This used the description of U [ [tn42, few)
as B | [ty 12, 1), where F' = Ax (U | fin2)-

Since we have lifted j onto a model which contains both By, and F’, we
may use j(Bi,) and j(F”) to induce a filter ﬁ[unu,uw on j(U [ [tnt2, fw))
with [U T [pnt2, tw))] € (AJ[#HQ)M). This lets us lift j onto Vaes[A*U][B1g ¥
Crp][DV29][S | pt2].

e Stage 5: Similarly to Stage 4, Py, added a filter Cy, on Cyp, = CHF |
[lnt2s pho), inducing S [ [fn42, f). This used the description of S |
[tnt2, o) 88 CTE [ [fnto, pi), where F” = Ax U.

Since we have lifted j onto a model which contains both Cy, and F”, we
may use j(C1p) and j(F") to induce a filter S[un+z,uu) on §(S | [tnt2, tw))
with j[S | [tnt2, tw))] C 5‘[%”7%). This lets us lift j onto Vger[A x U *
S][Bia x Cup)[D*H27]
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e Stage 6: Since D™ € Vy¢[A x U x S] and |D™!| < p,,, we may trivially
lift j onto Vier[A * U * S][B1q x C1p)[D*%123] = W[B1, x C1p).

To verify the tree property, we need to check that the forcing posets used to
extend j onto W can not add a branch to a p,,yo-tree. Recall that the lifting of j is
defined in W’ = W[P; 2 3]. As we already mentioned, p,+1 and p,12 are preserved
in W but it is possible that u, has been collapsed.

The proof which follows involves a number of auxiliary models. See the diagram
which follows the proof and its legend for a picture of how they are related.

e Let My =W and My = My[Py). By hypothesis @ of Lemma Py is
pin+2-Knaster in My, so by Lemma [2.11] no tree of height fi,,+2 in My has
a new branch in M;. By hypothesis @ Pop is < py41-distributive in My,
so that both p,4+1 and p,42 are regular in Mj.

e Let My = M; [Py x P3]. We claim that no i, 4o-tree in M; has a new branch
in MQ.

Recall the closure property which we noted for Py, P1; and P3. They
are all < ppqq-closed in a certain submodel M_ of My, where M_ =
Vaet[A* U[S | [tn+1, te)][DF*3]. Our aim is ultimately to make an appeal
to Fact with 7 = |g,| and 1 = g4 2. Note that in the model M_ we
have 2l#nl > 42

Since My = M_[(D°X S | piny1)*D?], we have My = M_[Pay][(D°x S |
tin+1) * D). Now Pg, € M_ and by hypothesis [6b]it is < i, 1-distributive
in My, so Py is < ppy1-distributive in M_ and hence P;, x Py, x Pg is
< pipy1-closed in M_[Pyp).

By hypothesis [7} D° is 4,,11-Knaster in Vaeg[A * U % S][D¥23][Py), so
it is pipy1-cc in M_[Py). Tt is easy to see that S | pp41 is pin1-Knaster in
M_[Py), and by hypothesis [Ds™al| < 11,,. So (DY X S | prpp1) * Dsmall ig
tnt1-cc in M_[Pay).

We are exactly in the situation of Fact where the forcing posets
live in M_[Pay):

(1) Since M_[Pa) C M1, pin+1 and p,4o are regular in M_[Pay).

(2) 2M#nl > 1,10 in M_[Pyy).

(3) Py x ]P’g is < ppt1-closed in M_[Py).

(4) My = M_[Py][Y], where Y = (D° x S | jt,,41) * D* and Y is generic
for tn+1-cc forcing over M_[Pyy].

Since My = M1[P1, X Pip X P3], My is an extension of M; by “formerly
closed” forcing in the sense of Fact [2.12] and we are done.

e Before the last step we need to analyze the cardinals of Ms. By Easton’s
Lemma, g, is preserved in this model. We claim that in Ms the cardinal
Lin+o is collapsed so that (by Easton’s Lemma again) it has cofinality ft,,41.
To see this note that at coordinate p,42, conditions in j(C) have A |
fnio X U | pinyr-terms for conditions in Add(p,q1, 1)V AR+ xUlknial,
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Since we are augmenting with A [ g0 X U | pip41 to form Ps, we add a
generic object for Add(p+1, 1)V[A lnt2xUlknsal "and collapse fin4o because
finyo = (20 )VIATEn g2 XUlunga]

e We also need to analyze the chain condition of Py, in My. My = M; [Py x Ps],
and as we saw above P; x Pj3 is defined and < p,41-closed in M_, hence
it is formerly < ppq1-closed in M_[S | pny1] = V[A* U x S][DV23]. By
hypothesis [8] Pa, is pint1-Knaster in My = M; [Py x Ps).

o Let M35 = W' = My[Ps,]. We claim that no tree of height p, 1 in My
has a new branch in Mj. This is immediate by Lemma because Py, is
tn+1-Knaster in Ms.

0
M_ — 2 M [Py
Y Y
Mo Py, M PyxPs My Pa, M;

M_ = Vaet[A* U][S | [M7z+1aﬂw)][Dl7273]'

o My = W = Vaee[A * U x S][DO1235] = M_[Y], where Y = (D° x S |
fint1) * D?.

M1 = Mo[PQb].

M2 = Ml[Pl X Pg]

M3 = Ms[Py,) = W[Py 23] = W'

The following lemma will enable us to satisfy the hypotheses of Lemma [L.5] in
most instances. We are assuming all the background hypotheses listed at the start
of this section, notably A[, ) is < ps-distributive and piy41-cc in Vier.

Lemma 4.9. Let V¢, Vb Ve V® be inner models with Vign C VE C Vet for z =
a,b,c,d. Assume that:

e n > 0.

o DMl s any poset in Vaer[A * U * S| with Vaer[A * U * S] = D™ <y,

o D° = Add"" (s, o) for some o and some i < n.

o A, = Add”’ (tin,0’) for some o’.

o D! = Add"" (juny1,7) for some 7.

e Ay = AddV’ (tbny1,7") for some 7.

o D? is any poset in Vinn with Vign = D2 4s < Wnto-directed closed”.

o D3 is any poset in Vaet[A | pinio * U | finyo] with Vaeg[A | pinie * U |
Uniz] E D3 is < pinio-directed closed”.
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Then the hypotheses of Lemma[[.5 are satisfied.

Proof. Hypotheses [3] [9] and [4] are immediate. Since D! € Vyee[A * U + S] and
|Dsmall| < 1, we may assume that DS € Vigt[A | prpao * U | fng1 * S | fng1]-
As we noted in Remark our hypotheses imply that D?3 is u,, i-distributive in
Vdef[A * U % S]

Since H is generic over Vyer for forcing which is defined and < py,o-closed in
Vinn, and Vger is a pq-cc generic extension of Vi, by Easton’s Lemma Vger[H| is
a < pnpto-distributive extension of Vyer. Since Vier is a pp-cc generic extension of
V? and V¢, and both n+1 and p,4o are inaccessible in any submodel of Vyer, it
follows that Vaer[H] is a (fn, tint1)-good extension of V® and a (i1 1, fini2)-good
extension of V¢, so that by Lemma A, and A, are respectively u,41-Knaster
and i, 2-Knaster in Vyer[H]. We have satisfied Hypothesis 2| Similarly D! is L2~
Knaster in Vger[H| and we have satisfied Hypothesis

We need some analysis of Py, and Pgp,. Let X* € Vi, and X, € V* be such
that V* = Vipn[X?] and Vi = V7[X,] for = a, b, ¢, d. Note that we may assume
that X is pj-cc in Viy, and X, is pg-cc in V*. Recall that j is an embedding
witnessing that fi,,42 is highly supercompact in the model Vie[Afn42.0) X D?], and
is the trivial lift (keeping in mind that |X| < p1 < fin42) of such an embedding
defined in Vipn[Apto,m) X D?]. It is easy to see that V* and j(V*) have the same
< pin-sequences of ordinals, so that j(D°) = Add"" (s, () and j(Do)/j[Do] =
AddY" (n, (o) \ j[o]) and similarly for A, D' and A, ;.

Now we revisit the argument for Lemma [£.7] but we need a slightly different
decomposition for AxU*S. A« U xS may be written in Vg as a projection of the
product

(A[O,n] * U[O,n) * S[O,n)) X AnJrl X A[n+2,w) X B[n,w) X (C[n,w)
where:

Ajg,n) * Ujo,n) * Sjo,n) 1s defined and pi,,41-cc in Vet
A,y is defined and < pi,,11-closed in V¢ = Vi, [X4].
Appyo.w) is defined and < puy, 1 2-closed in Vipy.

Bin,w) X Cjp,w) is defined and < i, 41-closed in Vies.

As in the proof of Lemma (and keeping in mind that D! is defined and
< pnt1-closed in V¢ = Vi, [X€]) we may force with a series of quotient to term
forcings to extend Vyer[A * U * S][D1?3] to a model of the form Vi, [(X * PY) x T x
Appg2,u) X D? x T3], where:

o Py = A * ULO,n) * S[o,n), SO tha‘.c X Py is fin+1-cC in Viny.

o T = .Avi“r‘ (Xd, An+1) X .Avi““ (Xc, ]D)l) X .Avi“r‘ (XaB[n,w) X C[n,w))a so that T
is < ppy1-closed in Viyy,.

o As before T? = AVi (X s A | pingo * U | fingo, D3), so that T3 is < pi,1o-
closed in Viyy,.



September 17, 2025 16:29 treepaper jml

The tree property on long intervals of reqular cardinals 45

By Easton’s Lemma all < y,,1-sequences of ordinals from Vyer[A* U x S|[D12:3]
lie in Vipn [X * PY] = Vaer[PY] € Vaet[A x U % S], so that in particular D' is < g, 11-
distributive in Vgeg[A x U * S][D*3] and we satisfied Hypothesis

By Lemmal3.15|and the hypothesis that Vger is a pq-cc extension of Vinn, Vaer[A*
U xS] is both a (pn, tnt1)-good extension of V¢ and a (fp+1, thn+2)-good extension
of V¢. Since D3 is < iy, o-distributive in Vier[A * U * S], Vaer[A * U x S][D*3] is
a (fnt1, int2)-good extension of V¢, so that D! is ju,o-Knaster in Vger[A x U *
S][D?3]. Since D! is < j1,41-distributive in Vger[A*U xS][D?3], Vaer[AxU*S][D1:23]
is a (fin, pns1)-good extension of V¢, so that D is p,41-Knaster in Vier[A * U *
S)[DV2:3]. In fact DY x D¥™all is 4y, 1-Knaster in Vgee[A * U * S][DV23], from which
it follows easily that both p,41 and p,io are regular in W. We have satisfied
Hypothesis

The analysis of the last paragraph also shows that W is a (tin41, nt2)-good
extension of V¢ and of V. From the analysis of j(A,, 1) and j(D'), it follows readily
that Pop is ptn42-Knaster in W. We have satisfied Hypothesis

Now we do another analysis in the same style as Lemma but this time
we expand the model W[Py] = Vaer[A * U x S][DS0123][Pyy] to Vipn[(X * Py *
(DY x D*)) X T X Appy2w) x D* x T? x T'], where T/ = AV (X¢, j(D1)/j[D1]) %
AVinn (X4 5(Ap11)/[Any1]). We recall from our earlier analysis that Dsmall ¢
Viet|[PY] and that D° is g, 1 1-cc in Vier[A+ U 5], so that easily X* Py + (DY x Dsmall)
is ptp1-cc in Vip,. By Easton’s lemma all < pi,,41-sequences of ordinals in W[Pa)
lie in the submodel Vi, [X * P} * D%%] of W, so that Py, is < pu,,+1-distributive in
W. We have satisfied hypothesis [6b]

We saw already that Vae[A* U *S][DV23] is a (pin, int1)-good extension of V4.
Since Py, is < j1,,41-distributive in W it has this property in Vgeg[A * U * S][DY23],
50 Vier[A * U x S|[DV23][Poy] is a (fin, fny1)-good extension of V¢ and thus D° is
pnt1-Knaster in Vgee[A x U x S][DY23][Pyp]. We have satisfied hypothesis

Finally let Q be defined and < pi,,11-closed in Vier[A * UJ[S | [tns1, iw)][D?],
and let W’ = W[Py)[Q] = Vaet[AxU xS][DY23][D%4][Q][Pap). Arguing as before we
expand Vee[A* U S][DV23][Q][Pys] to a model Vipn[(X * PJ) x T X Ap, 40 4y x D? X
T3 x T' x T"], where T" = AVin (X% A« U*S | [ftni1, po) * D%, Q), and use this to
argue that all < j1,, 11-sequences of ordinals from Vgeg[A x U * S][D123][Q][ Pay) lie in
Vet [ P{]- Tt follows that Ve[ AxU % S][DY23][Q][Pap] is a (i, fin+1)-good extension
of each model V%, so that easily D° x Dsmall x Py, is j1,, 4 1-Knaster in Vger[A * U *
S)[DY23][Q][Pap)- So Paq is punt1-Knaster in Vger[A x U x S|[DV23][Q][ Pan)[D%¥] =
W', and we have satisfied hypothesis O

It will be useful later (in the n = 0 cases from Sections and and again
in Section to know that certain initial segments of Vier[A * U % S] have similar
indestructibility properties to those in Lemma [4.5] The following lemma is stated
under the same hypotheses as that lemma, and as far as possible with the same no-
tation. Although the construction of the relevant generic embedding is very similar
to that for Lemma [4.5] we have given it in some detail as a service to readers of
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Section We have not stated the Lemma in the maximum possible generality,
in particular we have dispensed with D' and have only some specific instances of
DY,

Lemma 4.10. Let piny2 <1 < py, and let V! = Vat[A T n* U | piny2 %S | pinta)-
Let D?, D%, D0, D™ be forcing posets such that

(1) D? € Vipn and D? is < pu,yo-directed closed in Vipy.

(2) D? € Vaet[A T pinio*U | pinya] and D? is < pi, 1 o-directed closed in Vaer[A |
png2 ¥ U | pinyo]

(3) D° = AddVeer (thn, o) for some o, or D = Coll(w, p) for some p < .

(4) ]D)small c V/ and V/ ': ‘Dsmall| S L.

Then the tree property holds at p, 12 in V/[D*%23].

Proof. Let W = V'[D*923]. Let A = A | [n12,m), so that A is generic for < i, yo-
directed closed forcing defined in Vipy. pin42 is indestructibly supercompact in Viyy,
we will construct a supercompactness embedding j defined in Vi,,[D? x A] and lift
it to such an embedding defined in Vget[D? x A.

We can dispense with Steps la and 1b from the previous construction, so there
is no ;. We choose x suitably large and then work in Vi,,[D? x A] to choose j such
that j [ ON is defined in Vi, j witnesses p, 12 is x-supercompact, the next point
in dom(j(v)) past pn4o is greater than y, and j(v)(un+2) is a name in Vi, for an
A | pinyo * U | pinio-name for D3, Then after lifting j to Vaer[D? x A, j(¢)(tni2)
isan A | ppy2 * U | pipro-name in Vyer for D3.

Py, is chosen as before, with the simplification that it is now just a forcing in
Vier adding Cohen subsets to p,. As before Py, is p,,1-Knaster in a robust way.
Py, is also as before, with the simplification that there is no D' and so this poset is
just “stretching” A, 41: as before Py, is < pp,41-distributive and p,,2-cc.

PP3 is chosen essentially as before. P3 is defined in Vget[A | % U | pni1][D?],
and is < i, 1-closed in Viet[A [ 7% U | fns2][S | [tnst, tnio)][D*3].

In the lifting argument we lift j onto Vaet[A | 7% U | pini2][D%?3] (like Stage
1), extend to Vaet[A [ 0% U | pinio * S | pini1][D%?3] (like Stage 2), extend to
Viaet[A T % U | pingo * S | pinie][D%?3] (like Stage 3), and finally extend to
Vaet[A T 0% U | pinaa * S | pinie][D*%23] (like Stage 6). The argument for the tree
property is essentially identical, as we still have the relevant cardinal arithmetic
and all the posets P; are either missing or have the same properties as before. [

Remark 4.11. As we mentioned in the preamble to Lemma[4.5] there are a couple of
instances where we would like to apply the Lemma but the hypotheses are not quite
satisfied. To be more precise, we want to prove that p, o has the tree property in
some extension W’ = Vie[A* U x S][D’] where DV is a product of posets which does
not quite meet the hypotheses of Lemma In this case we can sometimes use
mutual genericity to our advantage.
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More specifically, assume that by forcing over W’ with some poset P, we obtain
a generic embedding with domain W' and critical point p,12. Let T € W' be a
Unto-tree, so that T' has a branch b € W’[P’]. Assume further that E is mutually
generic with P’ over W', and that our previous arguments can be adapted to show
that every branch of T from W’[E][P’] lies in W’[E]. Then b € W/[E]NW'[P’], and
by the mutual genericity of E and P’ we have b € W' as required.

Remark 4.12. A particular instance of the idea of Remark can be used to
handle more posets of cardinality p,y1 in the setting of Lemma It is clear
that in general a forcing poset of size p,41 can destroy the tree property at fi, 2,
for example Coll(w, tin+1) Will always do this. In the language of Lemma such
a poset may not be a viable choice for D (insufficient chain condition) or D!
(insufficient distributivity).

Suppose that D € Ve and let W* = W[D] where W = Vgeg[ A+ U x S|[D*01:2:3]
as in Lemma [L5] Assume that:

(1) 1Bl = fins1. |

(2) D is the projection of a two-step iteration P * Q where P forces that Q is
the union of fewer than p, 1 filters, and |P* Q| = pp41.

(3) Py, is pip+1-Knaster in WPy x Poy, x Py x P].

(4) Pgp is < pinyi-distributive in Vaer[A * UJ[S | [pna1, ta)][DV23][P).

(5) Pis < pupy1-distributive in Vgeg[A x U][S | [ttn+1, po)][DV23].

Then we claim that Lemma 5] remains true if we add D as a factor to the
product of posets which preserves the tree property at p,,42, that is to say we claim
that 42 has the tree property in W*. As for Lemma the proof is followed by
a picture with a legend to help the reader keep track of all the models and forcing
posets.

Let T be a pi,49-tree in W*. We define the embedding j and lift it to W in the
model W[P; 53] just as in Lemma Since |D| = pint1, we may trivially lift the
embedding onto W[D] = W*, working in the model W*[P; 2 3]. As usual we obtain
a branch b in W*[P; 2 3].

To cope with the problem that D is not necessarily f,4+1-cc, force over W*[Py o3 |
with P« Q/D to obtain P % @ which induces D, and is mutually generic over W
with Pjo3. Let W** = WP % @], so that W* C W** and b € W**[P, 53] =
W[P17273 x P x Q]

Now let MO = W**, Ml = Mo[PQb], MQ = Ml[Pl X Pg], M3 = MQ[PQQ] =
W**[Pi 23]. We aim to argue that b € M. Since |P * Q| = fint1, Pop IS fnyo-
Knaster in My, so there is no change in the step from M; to M.

Let M_ = Vaer[A x UJ[S | [ttn+1, pw)][DV23][P]. By hypothesis P is < fi41-
distributive in Vaer[A * U][S | [tni1, pw)][DV?3], so that Py x P3 is < ju,,41-closed
in M_.

By hypothesis Py, is < i, 4-1-distributive in M_. It follows that Py xPg is < fiy,4-1-
closed in M_[Pyy). Finally (S [ pinr1 x Q x DY) sxDsmall is 4y, 1 1-cc in M_[Pay), where
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the factor QQ causes no problems because QQ is the union of fewer than p,,41 filters,
so P; x P3 is formerly closed in My = M_[Pyp)[(S | pnt1 x Q@ x D°) x D?] and we
finish the step from M to M, as before.

Finally our hypotheses imply that P, is p,41-Knaster in W[P; x Pa, X Py X
P][Q] = My, and we finish the step from Mz to My as before. It follows that
b e W** = W*[P % Q/D]. Since b € W*[P; 23] and P * Q/D is mutually generic
with Pj 23, b € W* and we are done.

W D W PxQ/D

M, Y M_

Py 23 P123 Py x Py

PxQ/D

WP 23] — L WH[Py2s] M3

The blue arrow for P x /D and the violet arrow for Pj 33 indicate mutually
generic objects over W*.

W = Vdef[A * U * S] [D0’1’2’3’s].

W* = W[D).

M- = VaetlA = UJIS 1 s, 1) |[DV22][P).

My = W** = W*[PxQ/D] = W[P*Q] = Vaes[Ax U % S][DO123:5] [P+ Q] =
M_[Y], where Y = (S | pni1 x Q x D) % D*.

M1 = Mo[PQb].

o M, = M[P, x P].

L4 M3 = MQ[PQ,I] = W**[P17273].

Remark 4.13. The main construction for Theorem [I.I] contains many instances of
“quotient to term” posets, for instance in the definitions of Q1 (7, 7*) and Qo (7, 7*)
in Section [7.1] The role of these quotient to term posets is typically to produce
generic objects which fit into one of the indestructibility schemes from the current
section.
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5. Initial hypotheses

We are now ready to begin the main construction. As we mentioned in the introduc-
tion, we will be introducing many pieces of notation which will have fixed meanings
for the rest of the paper. Every time we introduce one or more of these important
pieces of notation, we will flag it as “Global notation” and add a corresponding
entry in the index of notation.

5.1. Preparing V
We start with a model V) with the following properties:

(1) 6 is the least supercompact cardinal.

(2) There exist cardinals k, for o < 6% such that § < ko and each k, is
supercompact. We let kK = ko and d = sup, g+ Ka-

(3) There is an elementary embedding jo : Vo — My such that j, witnesses
that x is 6 T-supercompact, and in addition k. is supercompact in My for
all a < 0T,

(4) There is a universal indestructible Laver function ¢¢ defined up to §, in
particular # and the ks are all indestructibly supercompact. Every element
of dom(¢y) is an inaccessible closure point of ¢g.

(5) Jo(do) [ 6 = ¢o.
Global notation: Vg, 0, ka, K, 8, jo, Mo, ¢o.

Remark 5.1. Given a model V§ where hypotheses 1-3 hold we may arrange that
hypotheses 1-5 hold in a suitable extension V; of V{j. To see this let 1-3 hold in Vj
where hypothesis 3 is witnessed by jj : Vg — M{. The main point is that in V{ we
may choose ¢, a universal Laver function defined up to ¢ such that j(¢g) [ d = ¢p:
doing the corresponding Laver preparation will give a model Vj for hypotheses 1-5.

To see that we can choose a suitable function ¢, recall that to define ¢} («) we
choose a counterexample to ¢f | a being a Laver function which is minimal with
respect to some well-ordering. We will fix a well-ordering < of V,; such that <[ V,
is an initial segment of < for all & < k, and define ¢, using <*= j{(<) [ V5: this
works because <*| V, =< and j{(<*) | V5 = ji(=*] Vi) | Vs = j5(=<) | Vs ==<*.

It will be important later that all Laver functions used during the construction
are derived from the initial Laver function ¢ as in[2.9 and [2.6] Let Ej be defined
in Vj as the set of inaccessible closure points of ¢g in the interval (6,4), and let
o =min(Ep \ (a4 1)) for a < 6.

Global notation: Fy, a*.

Our first step is to produce an extension V' of Vj, in which the k,’s retain the
properties listed above, 6 is the continuum, and 6 is “generically indestructibly
supercompact via Cohen reals”. To be more precise:

Lemma 5.2. There is a generic extension V' of V in which:
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o 2% =g,

o For every < O-directed closed generic extension V[H| and every v > 0,
there exists a generic y-supercompactness embedding © : V[H| — N with
critical point 0. The embedding 7 exists in an extension of V[H| obtained
by adding w(0) Cohen reals.

o The embedding m lifts an embedding i : Vo — Ny defined in Vy, where
crit(i) = 0 and i may be chosen to witness an arbitrarily high degree of
supercompactness for 0 in Vj.

e There is a universal indestructible Laver function ¢ defined on (6,0), in
particular every supercompact cardinal up to § is indestructible.

o There is an elementary embedding j : V. — M such that j witnesses K is
0T -supercompact and in addition each ko is supercompact in M.

Global notation: V', j, M, ¢

Proof. The construction will be reminiscent of that of A * U from Section [3| This
resemblance is not coincidental and will be used later, see Section[7.2] We will freely
use the notation and ideas of Section[3] Objects in the current construction typically
have names as in Section [3] decorated with a superscript 0

We work in Vj. Let A® be the poset of finite partial functions a from § to 2
with dom(a) C 6. Of course A is equivalent to Add(w,6), and A® | o = AP for
6 < a < §: defining A° in this artificial way just makes the following definitions
more uniform. Let A? be A%generic. As in Section [3| we define posets B € V' and
U°% € V[A] such that:

e B? and U° have the same set of conditions.

e The support of BY consists of a < § such that ¢ () is a pair (o (), ¥1(a))
with the following properties:

— tbp(a) is an A® | a x U° | a-name for a < a-directed closed forcing
poset.
— 1 (a) is an A® | a x U° | a-name.

e An element b € B is a function such that dom(b) is an Easton subset of
the support of BY, and b(a) is an A° | a * U° | a-name for an element of
1/)0(&).

e For by, by € B, by < by if and only if dom(by) C dom(b;) and (0,b; | @) IF
b1 (@) < bp(«) for all € dom(by).

e For ug,u; € U° u; < wp if and only if dom(ug) € dom(u1) and there is
a € A% such that (a | a,u; | @) IF uy(a) < ug(a) for all a € dom(ug).

Global notation: A?, BY, U°

Let V = V4[A?  U°] where A° x U is A x U%-generic over V. We record a few
remarks:

e a|a=a|min(a,0) for all a € A°, and similarly for A? and A°.



September 17, 2025 16:29 treepaper jml

The tree property on long intervals of reqular cardinals 51

e Since 6 is supercompact, 8 ¢ dom(¢y).

e We can view A%+U° as a two-step iteration, forcing first with Add(w, 9)*@0 [
6 and then with a forcing poset L° defined in Vo[A% x U | 6)].

e The forcing poset IL? is essentially a Laver preparation on the interval (6, §),
with the minor modification that the guessing function is just guessing
names for forcing posets rather than pairs consisting of a name for a forcing
poset and an ordinal: in the standard Laver preparation the role of the
ordinals is to “space out” the support of the image of the preparation
under supercompactness embeddings, and in our context this is handled by
the properties of ¢g.

e In V we have a universal indestructible Laver function ¢ on (6, 4), given by
¢ a1 (a)[A"xUY | qf.

e 2Y=0inV.

o AYx TP | 0 is #-cc in V.

e The poset L0 is §-directed closed in Vo[A? x U° | 0].

Global notation: L9,

The main point is to establish that # is indestructibly generically supercompact
via adding Cohen reals. Since the argument is essentially that for [16, Claim 4.12]
with certain simplifications, we have relegated it to Appendix For
use in Lemma we note that if Q € V is < 6-directed closed and our goal is
generic supercompactness for 6 via Cohen reals in the extension by Q, then we lift
1 : Vo = Ny where i witnesses a high degree of supercompactness for 6 in V;, and
the forcing at 6 in the second coordinate of i(A% x U*) is L? x Q.

It remains to lift jo onto V', which is comparatively straightforward. Let V; =
Vo[AY x UV | 0] and My = Mo[A® x U° | 6], so that easily jo lifts to j; : Vi3 — Mj.
It is easy to verify that j;(LY) | 6 = LY. We construct a compatible generic object
L* € V; for j;(IL°) as follows:

o L*6=1L0

o« L* 1 (6.4

e L* [ (jo(k),jo(0)) is constructed by counting antichains and closure, work-
ing below a master condition chosen as a lower bound for jo[L° | (k,§)].

(k)) is constructed by counting antichains and closure.

Now we lift as usual to get j: V — M = M;[L*] = M;[L°][L* | (,(6))]. Each
ke 18 (indestructibly) supercompact in M by the Levy-Solovay theorem and the
fact that L* is generic for a Laver preparation over M;.

O

Remark 5.3. If A < § and X is supercompact in either V or M, and « is such that
A < Kq, then (by the agreement between V and M) A is k,-supercompact in both
V and M. Since k4 is supercompact in both V' and M, A is supercompact both in
V and in M.



September 17, 2025 16:29 treepaper jml

52 J. Cummings, Y. Hayut, M .Magidor, I. Neeman, D. Sinapova & S. Unger

Remark 5.4. The reader may be wondering why we need the x,’s to be super-
compact in M. The point is that we will eventually be doing a version of Prikry
forcing at x, so that each Prikry point 7 comes with reflections of the k,’s which
are fully supercompact. This is convenient because when 7 and 7* are successive
Prikry points, so that 7* is far above the reflections of the k,’s attached to 7, we
need these reflections to be supercompact for a long way past 7*.

Remark 5.5. Our starting hypotheses are consistent relative to the existence of a
2-huge cardinal, and in fact relative to the hypothesis that there is a cardinal which
is both supercompact and huge, which we will show is weaker.

e Let x be 2-huge, and fix ¢ : V' — N such that crit(i) = &, i(k) = A, i(\) =
@ and #N C N. Then easily V, = “k is huge with target \”. Also & is
supercompact up to A, by elementarity and closure A is supercompact up to
i, so that x is supercompact up to p and hence V), = “x is supercompact”.

e Suppose now that k is supercompact and also is huge with target A, as
witnessed by i : V — N with crit(i) = &, i(k) = A\, "N C N. By elemen-
tarity, A is supercompact in N. By the agreement between V and N, « is
supercompact up to A in N, so by reflection there are unboundedly many
«a < k with « supercompact up to k. Applying ¢, in N there are unbound-
edly many 8 < A which are supercompact up to A. Let B be the set of
such B, where since A is supercompact in IV it follows that every 8 € B is
supercompact in N.

For any n with kK < n < A, let U be the supercompactness measure on
P.n derived from i. It is easy to see that every 5 € B N7 is supercompact
in Ult(V,U). In the universe V) every 8 € B is supercompact, and every
B € BN is supercompact in the ultrapower by U. It is now easy to get
the starting hypotheses.

5.2. Raux(A) and Laux(p, A)

We now work in the universe V constructed in the last section, and construct
auxiliary posets Raux(A) and Laux(p, A). The subscript “aux” is to underline that
we will not actually force with these posets during the main construction. Their
role is to help us choose parameters for the main construction, which we will do in
Section

Let A be a supercompact cardinal with A < §. We define:

Ao = A

For n < w, A\p41 is the least supercompact cardinal greater than A,,.

Aw = SUD, <o, An-

Awil = AJ.

For 0 < n < w, Ayyny1 is the least supercompact cardinal greater than

Aerin-

In V we define a poset R,,x(A) to be the product of the following three posets:
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(1) East® (Aog1, < Awy2) X [Lhew East (Ans < Ant1). Here East is the Eas-
ton collapse defined above in Section and FEj is the set of inaccessible
closure points in the interval (6,d) of our initial Laver function ¢g: note
that elements of Ey are inaccessible closure points of ¢, dom(¢) C Ey, and
Ej is stationary in every supercompact cardinal up to §.

(2) Coll(Ayt1, < Awr2) X [, Coll(An, < A1)

(3) Add(/\17, )\w+2) X Hn<w Add(/\n, /\n+2) X Add(/\w_H, /\w+2)~

Global notation: A;, Raux(N)

Recall that in Vg the cardinal € is supercompact, and ¢q | € is an indestructible
Laver function for #. We claim that there are many cardinals p < 6 such that in
Vo the cardinal p is a limit of w many inaccessible cardinals, and there is an active
stage @ < p of the preparation forcing from Section such that p becomes an
w-successor cardinal in Vo[A® | @ % (U° | 6 + 1)]. To see this let p’ be the limit
of the first w Vjy-inaccessible cardinals greater than 6. Use the guessing property
of ¢o [ 0 to anticipate a suitable < 6-directed closed collapsing forcing defined in
Vo[AY % U° | 0] which makes p’ into an w-successor cardinal.

Let Index be the set of all such p. For each p € Index let (p) be the least ordinal
such that p is an w-successor cardinal in Vo[A® | 8(p) * (U° | 8(p) +1)], let W(p) =
Vo[AC T 8(p) * (U° | 8(p) + 1)], and define L,.x(p, \) to be the poset Coll(w, p) x
Coll™®) (o1, ;). Tt is routine to check that CollV (") (pT, \;) is p-distributive in any
A-closed extension of V, a fact which will be used in the proof of Lemma

Global notation: Index, 6(p), W (p), Laux(p, \)
Remark 5.6. The proof of Lemma uses ideas from unpublished work of Hayut.

Lemma 5.7. For each supercompact cardinal A with k < XA < J, there is p € Index
such that ”_Jl‘faux(p,A)xRaux(A) “the tree property holds at A,4+1”

Proof. For technical reasons we will prove a slightly different (but equivalent) ver-
sion of the conclusion. Let R,y (\) be the result of replacing Add(A17, A,12) by
Add(M7, Awt1) in the product that defines Ry (A). We will show that for some p,
H_li/aux(p,/\)xRaux’(z\) “the tree property holds at A,1”. This is good enough because
if Hx G is Laux(p, A) X Raux(A)-generic over V and T € V[H x G| with T a Ay41-
tree, then by chain condition and homogeneity there is a submodel V[H x G'] where
T € V[H x G'| and H x G" is Laux(p, A) X Rauy (A)-generic over V

Let G be R,y (A)-generic over V. We will use Fact in V[G] with the pa-
rameters set as follows:

K2 is 0

Kn 18 A\p_3 for n > 2.

vis A, and v¥ is Ayy1.

Index is the set Index we just defined.
M(p) is Laux(pa )‘)
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Once we have verified that the hypotheses of Fact hold in V[G] the con-
clusion will be immediate. For the first hypothesis, let n > 18 and observe that
Rauxl()\) can be factored as Rg X Ry where Ry is A, 42-cc and Ry is < A, 4 o-directed
closed. We decompose G accordingly as Gy x G1. By indestructibility, there is an
embedding j defined in V[G;] witnessing that A,y is vT-supercompact in that
model. Forcing over V[G;] with P = j(Rg)/j[Go] will add a generic object which
enables us to lift j onto V[G].

Clearly Ry is a product of terms of the form Coll(\,,, < Am1), EastPo(\,,, <
Ama1) and Add(Ap, Appe) for m < n + 1, together with Add(A17, Awy1). Since
many factors in Ry are fixed by j, the corresponding factors in j(Ry)/Gp are triv-
ial. It follows that j(Rg)/GY is the product of the factors Coll(An+1, [Ant2, 7 (Ant2)),
EaStj(EO)()‘n+1a Ant2, i (Ant2)), Add(An, j(Ant2) = Ant2), Add(Ant1, j(Ansa) —
J[An+3]) and Add(Ai7, j(Aw+1) — J[Aw+1])-

Now we let @ be the product of A, copies of j(Rg)/Go with the following sup-
ports: full support for the < A,y1-closed components, supports of size less than
A, for the components of form Add(\,,j(Ant+2) — Ant2) and supports of size less
than A;7 for the components of form Add(Ai7,7(Aw+1) — j[Aw+1]). It is routine
to check that Q preserves cardinals up to and including A,y; and forces that
cf(Aw+1) = Ant1, so that Q is as required.

For the second hypothesis, we will use the indestructible generic supercompact-
ness of 6 in V secured by Lemma to define a certain generic embedding, and
then reflect the existence of this embedding to a well-chosen elementary substruc-
ture X < R where R is a suitable rank initial segment of V[G].

More precisely, let 7 : V[G] — V* be a generic embedding added by the forcing
poset Add(w, w(0) — 0) such that:

e crit(m) =6
o (0) > Ayt1
o 7 is discontinuous at Ay 41.

From the proof of Lemma [5.2| we recall that

o V=",[A°xU° | 0% LY, so that V[G] = Vu[AY « U° | 6 x LY x G].

e 7 is a lift of a supercompactness embedding ¢ : Vj — Ny with critical point
6 defined in Vp, with the property that the forcing at coordinate 6 in i(U°)
is LO % Raux’ ().

e The embedding 7 may witness an arbitrarily high degree of supercompact-
ness for 0 in V4.

We claim that A, € 7(Index): this is easy because A, is a limit of supercompact
cardinals in No[A? * U] but becomes AT in Ny[A° * U? x L x G]. By definition
TM)(A) = 7(Law) Ay T(N) = Coll(w, Ay) x CollNoIAULEG () | 2(A)).
Recalling that V[G] = Vo[A? + U? % LY x G] and that i can witness arbitrary lev-
els of supercompactness, we may arrange that CollNO[AO*UO*LO*G](/\wH,i()\l)) =
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CollVI (A 41, m(\1)), in particular it is defined and A,-closed in V[G].

In summary, we have shown that there is a generic embedding 7 : V[G] — V*
added by Add(w, 7(0) — ) such that crit(7) = 0, 7(0) > A,41, 7 is discontinuous at
Awi1, Ao € m(Index) and m(Laux) (Aw, m(A)) = Coll(w, Ay) x CollV[F(A,i1, (A1)
Observe that 2%~ = )\, in V[G] (it was for this reason that we replaced Ry (A)
by Raux'(A)). We choose R a long enough rank initial segment of V[G] that for any
algebra of finitary functions on R, we may find X < R which has size A\, 1, is closed
under )\, -sequences, and reflects the statement asserting the existence of a suitable
generic embedding 7

Let M be the collapse of X, and let A x h be generic over V[G] for Px =
Add(w, m(0) — 0) x Coll(w, \,). Using A, we may define in M[A] a generic em-
bedding 7x : M — M* C MJ[A] such that crit(rx) = 0, mx(0) > Ay41, 7Tx i
discontinuous at Ay,11, Ay € mx(Index) and 7x (Laux) (Aw, 7x (X)) = Coll(w, A,) X
CollM()\wH,ﬂX()\l)). Since |M| = A,41 and *M C M, we may build a filter
C € V[G] which is generic over M for Coll™ (A 11, mx (A1)).

Now M[C] C V[G] and A x h is generic over V]G], so A x h is generic over
MIC], and since M* C MJ[A] we see that h x C is generic over M*. It follows
that forcing over V[G] with the A,41-Knaster poset Px = Add(w,7x(0) — 0) x
Coll(w, A\,) has added the embedding 7x : M — M™* and a filter h x C' which is
7 x (Laux) (Aw, Tx (A))-generic over M*. Since we constructed X to be closed under
an arbitrary algebra on R, there are stationarily many X and we have fulfilled the
second clause in the hypotheses of Fact [2.58 O

5.3. Selecting p

Using the fact that there are #* supercompact cardinals above &, we choose super-
compact cardinals A\ and A\? above  such that \¢ oig < Ab and the cardinals A%, \?
select the same cardinal p from Lemma We can assume that (p, A%, \) is the
lexicographically least such triple with this property: recalling that j : V' — M is
a 0+-supercompactness embedding with critical point #, we see that (p, A%, A®) is
definable from k in M using the same definition.

Having fixed p, we also fix some related parameters. We set § = 6(p) and W =
W (p). It follows that for A = A%, A’ we have:

o L.ux(p, A) = Coll(w, p) X CollW(p+,)\1).
o It forced by Laux(p, A) X Raux(A) that the tree property holds at Ay11.

It follows that there is a measure one set of points 7 below x with reflected
versions A%(7) and A®(7) of the cardinals A and Ab. To be more specific:

(1) J(AZ) (k) = AT for @ € {a,b}.

(2) 0 <7 < A7) < A’(7) < k. where A%(T) and Ab(7) are supercompact.

(3) Setting A?(1) = A*(7); for z € {a,b} and i < w +w, A%, (1) < A%(T).

(4) Tt is forced by Laux(p, A% (7)) X Raux(A* (7)) that the tree property holds at
AL () for z € {a,b}.
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Global notation: A%, X, p, 0, W, A%(7), Ab(7), A¢(7), Ab(T)

6. More preparation

Let Y be the set of supercompact cardinals 7 less than x which are such that A*(7)
and A°(7) are defined, and are closed under the function o — Al 5(c). We define
an Easton support iteration I which is nontrivial only at each 7 € Y U {k}. For
ease of notation we specify the forcing at step x and note that the forcing at 7 can
be obtained by replacing x with 7 and A? by AZ(7) (for z € {a,b} and i € w 4 w).
Global notation: Y, L

The forcing IL(7) at stage 7 will be < Af;(7)-closed. Since 2 =6 in V, and Y
is a set of supercompact cardinals, the forcing IL will be much more than §*-closed.
This will be important in Section [9.3]

Of course we define the forcing at « in V[L | k| where L | x is L-generic.
The preparation forcing at x will be defined in stages, and will ultimately have
components L?, I?, and A, x Je.

Global notation: L%, I?, A,, J¢

Note that by Fact the cardinals \® are supercompact but no longer inde-
structible in V[L | x]. Let L® € V[L | ] be a Laver preparation for the interval
(A%, 1, AL), defined using the Laver function a — ¢()[L | k] on this interval. Let
LY be LP-generic over V[L | ], and let 1 be the universal indestructible Laver
function added by L on the interval (A%, A%).

Global notation: 1
Working in V[(L | k) * L], we define posets AP, BY, CP, §b = (Cb)+A"U’
following the recipe in Section [3| with the parameters set as follows:
o p1g = A7, i1 = Aoy, po = Al yg, pings = Ab for n < w.

e The universal indestructible Laver function is the function ¢ which we just
added using L°.

Global notation: Ab, B?, CP, SP

Remark 6.1. Since L? is defined on the interval (A%, ,,A%), it is < A% ;-closed, so

w

that A = Add" I (40, (11, p2)) and AL = AddV ™ (g [pn, p13)).

Let I’ be generic over V[(L | k) x L?] for I = A’ x U xS, where I® decomposes
in the obvious way as A’ * U % S®. For the record, in V[L | x* L® % I’] we have the
following situation:

e The cardinals A%, 1, A%, 5, A, AL, ... AL, AP, form a block of w + 2 consec-
utive cardinals.
Ay — Alyr — 20 9AEio — \b 9L _ b
o 2M7 = N\ o, 27wt = \g, 2742 = A7, 2% = X)L, for n < w.

Global notation: 1%, I°, A®, U®, b
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Working over the model V[(L | &) * L x I’] (but using some Cohen posets
defined in inner models of this model) we will define a poset A, x J¢, where A, =
AddVI(ER)*L] (Ao, )\ZH). We digress briefly to prove that A. has reasonable chain
condition and distributivity properties in V[(L | ) % L® % I’]. The point of defining
A, in the submodel V[(L | k) % L] is that after forcing with I® we have 2*s = Aby |
so that AddY[(EIR)=L"+1"] (Ay7, Al 4 3) collapses Aig.

Lemma 6.2. A, is < A, -distributive and Ng-Knaster in V[(L | k) * Lb x I°].

Proof. By itemlﬂ of Lemma we may force to expand V[(L | k) * L?* I’][A.] to
V(L | k)* LP)[Pt x PP x A.], where P}, Pt € V[(L | x)* L], with P4 a Ab,-cc initial
segment of I° and PY being < A;-closed in V[(L | k) * L’]. By Easton’s Lemma
applied to P4 and P4 x A, all < \l,-sequences of ordinals in V[(L | x)* L® x I*][A]
lie in V(L | &) * LY [P¢] C V(L | k) * L® % I°).

Since \lg is supercompact in V[L | x][L?], it follows that in this model <M <
Mg for all n < Mg. By item [2f of Lemma V(L | k) Lb % I°] is a (Ab;, A8g)-
good extension of V[(L | k) * L’]. Appealing to Lemma A is Nog-cc in V[(L |
k) * L+ IY). O

In the sequel, there will be many situations where we use Cohen conditions
chosen from inner models, for example the Cohen posets Af and Af{ used below in
the definition of J¢. We generally leave the verification of the needed chain condition
and distributivity properties, which can all be proved along the lines of of the proof
of Lemma [6.2] to the reader.

The generic functions added by A, will be used below in the lifting arguments
of Section The poset J¢ will be an initial segment of the kind of “two-phase
AxU=S construction” discussed in Remark[3.23] using different cardinal parameters
from the ones we used for I°. We first force with a poset A§ * U§ * S§, and then do
the rest of the construction over the extension by A§ x U§ * S§: an important new
point is that the remainder of the construction now involves S§. This will be used
to get some extra closure in Lemma below.

To define J¢ we proceed as follows:

® o = )‘?77 H1 = /\Z:—&-lv H2 = )‘34-27 H3 = )‘fu+3'

e J¢ will have the form (A§ * U§ * S§) * (A * U§ x SF), so all its components
have supports contained in ps3.

o Af = AddVIEE (g [y, p1z))

e To define U§ we use a Laver function on (1, 2) derived from ¢ as in Fact
that is the function o + ¢()[(L | k) * L® % I®] defined at those o where
this makes sense.

o B° | po and UG = U° | po are defined as in Section

e As we noted in Remark [3.9] S§ = (C§)+40*Uoln = (C§)+40, so that A§ *S§
is just the standard Mitchell forcing to force that 2#° = py = pf and po
has the tree property.
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e For the definition of AS+U§ *S§, we work in V(L | k) L?+ I°][A§*US * S§].
We use the Laver function a +— ¢(a)[(L | &) x L® % I°][AS % U§ * S§] on the
interval (j2,p3). The posets B and C§ are defined in V[(L | &) x L *
IP)[AS * U§ * S§], so that for example a condition b € Bf has domain a
subset of [ug, p3) lying in V[(L | k) * LY % I°][A§ x US % S§], and b(a) is a
name which lies in this model.

o A = AdqVIEIm*L] (11, [p2, p3)), and we define U and S§ by feeding in
information from A§ working over the model V(L | x)* LY I°][ASxU§*S§).
In particular U§ and S§ are both defined in the model V[(L | x) * L x

I][ A5, , * Uf * 55].

The last stage of the preparation forcing L at x is to force with A, x J¢ over
VL | k% L % I°], where J¢ = (A§ + U§ * S§) * (A§ * U$ * S$). We write the generic
object as A, x J¢ where J¢ = (A§ x U§ * S§) x (A * Uf * S§). We note that L is
A4 g-cc.

Again we record some information about cardinals and cardinal arithmetic. In
VIL | kLY % I” % (A, x J¢)] we have:

e The cardinals AJ 1, Al o, PYAD LIPS )\Z)H, )\fﬂrg, )\Z+3 form a block of
w + 4 consecutive cardinals.

o 2Mr = A3, 2 = \b 2N = \D 2N = \b, for m < 17, 2% = AL,
for 17<n <w+ 2.

Let V[L] be the model obtained after forcing with L. The generic object added
by L at a stage 7 € Y is written as L(7) = L%(7) % I(7) * (Ac(7) x J¢(7)) with the
obvious notation for the components of I°(7) and J¢(7).

Global notation: L(7), L*(7), I°(7), A¢(7), J°(7)

We will ultimately do a lifting argument to show that s is still a large cardinal
in V[L]. This will enable us to choose some supercompactness measures and other
data, which will be ultimately be used to define the Prikry forcing P in Section
The lifting argument involves some objects introduced in Section [7.1] so we defer
it until the start of Section

Remark 6.3. It follows readily from Lemma that L(7) is < A§,(7)-closed in
V[L | 7]. For the purposes of Section we note that as a consequence all initial
segments of L are p-closed in V.

7. The interleaved forcing posets
7.1. Between successive Prikry points

We now work in V[L] to define the forcing Q(7,7*) which the Prikry-type forcing
P will interleave between successive Prikry points 7 and 7*. A few points to note:

e The points 7 and 7* will be elements of Y.
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The poset P is defined in a certain generic extension V[L][A99] of V[L],
but each poset Q(7,7*) will actually be defined in the extension of V' by a
certain initial segment of L which we specify shortly.

The filter on Q(7,7*) added by forcing with P will be generic over V[L *
A99 x E], where F is the product of the finitely many generic objects added
by P for the preceding interleaved forcing posets.

Q(7,7*) will be quite large (bigger than 7*) and will have an effect on
the universe past 7, and by the same token E will have an effect on the
universe past 7. On the other hand Q(7, 7*) does not start to have an effect
till some way past 7, so that if 7, 7%, 7** are successive points on the Prikry
sequence then there is a large gap between the intervals where Q(7,7*)
and Q(7*, 7**) are each doing their work: this is crucial to later arguments,
particularly in Section [9}

PP will also have to act between w and the first Prikry point. This will require
special treatment, see Section below.

Ultimately the Prikry-type forcing of Section [8| will add (mutually) generic ob-
jects over V[L] for the posets Q(7,, Tnt1) where 7, and 7,41 are successive points

on the Prikry sequence, together with a generic object for Q*(7g) where Q*(7) is
defined in Section

Notation: In the sequel it will be convenient to have a compact notation for
certain initial segments of V[L]. For 7 € Y U {k} we will let:

Vi(r) = VIL | 7.
V0 (r) = VIL I 7][LY (7).
VI (r) = VIL I 7)) (7).

Global notation: Vi(7), V¥ (7), V(7).
Recall that:

Part of the the final step of the preparation at stage 7 was a forcing J¢(7),
which added a generic object J¢(7) for an initial segment of the kind of
two-phase construction discussed in Remark [3.23] The cardinal parameters
were Al{7(7'), AZ+1(7)7 AZ+2(7')a AZ+3(T)-

One of the first steps of the preparation at stage 7* was to add a generic
object I°(7*) for a version of the construction of Section 3| whose first
few cardinal parameters were Af,(7*), A% | (7%), AL 5 (T"), Ab(7*): this was
computed in V(7). In particular we added a generic object A%(7*) where

b, __*
AG(T) = AddY T (Mg (1), [AL 41 (77), Al o (7))
Lb(7*) is generic over V!(7*) for a forcing which is sufficiently closed that
actually Af(r) = Add"" D (Afy (%), [AL41 (7). AL 4 (7).

w

As we construct Q(, 7*), we will keep track of the models in which its various
components are computed. This information will be used later in Lemma We
will also keep track of some closure properties of the components. This is mostly for
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use in Section where all we will need is that certain components are p-closed.
Q(7,7*) is the product of three factors Q;(r,7*) for i < 3.

Global notation: Q(r, 7*)

The first factor Qo(7, 7*) completes J¢(7) to a generic object for a certain forcing
poset defined in the model V% (1), which we now describe:

e The forcing poset is a two-phase AxUx%S construction of the type discussed
in Remarkﬁ and it has the form (A§(7) «U§(7) *S§(7)) * (A, (7, 7") *
Ui o) (7, 7%) * S 7*)), where A7 ) (1,7%) * Ui o) (7,7%) * St (75 )
is computed in the extension by A§(7) * US(7) * S§(7).

e The first two steps were added as the component J¢(7) of L(7), explicitly

J(r) = J5(7) * Ji (1) = (A5(7) * Ug (1) * S5(7)) * (A5 (7) * Ut (7) * S7(7))-

o o = Abo(r), jr = ALy (1), 2 = AL a(r), iy = ALyo(r), then sy =
A%(7*) for n < w.

e The forcing Af ,(7,77) * Ufl’w)(T, %) % §f; (7, 77) is computed in the
model V% (7)[J§(7)] with parameters set as follows:

— A§(r) = A" (a, (a2, 1))

— AS(71,7) = AddY (i, [tns1, fini2)) for 2 <n < w.

— We define B, , (7,7%) and Uf; (7, 7") using the Laver function a —
A(Q)[L | 7+ LP(7)+I°(T)][A§(7) %S5 (1) US (7)) on the interval (ua, f1,)-

— The supports of conditions in Bf; (7, 7") and Cf; , (7, 7") are defined

in VP (r)[J§(T)].

Global notation: Qq(7, 7%)

Keeping in mind that J°(7) has already added J¢(7) = (A§(7) * U§(7) * S§(T)) *
(AS(T) « Uf(7) * S5(7)), Qo(7, 7*) will add a generic object Qo (7, 7*) composed of:
A, -generic objects AS(7,7*) for n > 2, together with generic objects U[CQM) (1,7%)
for UG, ) and S§, ) (7,77) for S§, ).

The last claim in the following Lemma is similar to some closure facts from
Neeman’s paper [16], notably Claim 4.7, but the setting is a bit different and we
give a few more details.

Lemma 7.1. Qo(7,7%) is a forcing poset of cardinality AL, (7*) defined in the
model VW (7)[J¢(T)]. Al ) (1,7%) is defined and < AL ,(7)-closed in V, and is
< Ab o (7)-distributive in V' (7)[J¢(T)]. U[CQM)(T, T*) * S[C2,w)(77 7*) is defined and
< AL, (7)-closed in Vlbi(T)[JC(T)HA[CQ)w)(T, 7).

Proof. Tt is easy to see that L | 7« Lo(7) « I°(7) % J§(7) * Af(7) is AY ,(7)-cc in
V. In the model V*(7)[J§(7)], Uf(7) * S§(7) is the projection of the < Al ,(7)-
closed poset B (7) x C§(7). So by a suitable quotient-to-term forcing we may extend
V() [Je(T)] to V() [J§(7) * AS(7) x T, where T is generic for the term forcing
AV(L | 7+ LO(7) *I°(7) % J§(7), B§ (1) x C§(7)) which is < A’ ,(7)-closed in V. By
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a standard application of Easton’s lemma, Af, (7,7%) is < Al ,(7)-distributive
in V% (r)[Je(7)].

For the closure of U[CQM)(T, T*) * S[CQ’W)(T, 7*), start by noting that by Corollary
every < A’ ,(7) sequence of ordinals from V””'(T)[JC(T)][A[C2
the submodel V% (7)[J§(T) x A§(T)].

Let V' = VW(7)[J5(7)]. To lighten the notation we drop the parameters 7
and 7%, and use the “u; notation” for the cardinal parameters. We will only prove
closure for U$, since this proof contains all the ideas. Note that the underlying set
B | (u3, pa) of UG lies in V', the ordering on U§ is defined in V'[Af, , * Uf], and
the relevant decreasing < po-sequences from U§ lie in V/[A$].

We work for the moment in V'. Let n < ps and let (b2)2<n be a sequence of
A§-names for elements of B® | (us, 4), where without loss of generality the trivial

(T, 7)] lies in

condition in Af; 5, + U forces that the b;’s form a decreasing sequence in Us.

We will construct b € B [ (u3, t1a) which is forced to be a lower bound for the
b;’s. We let dom(b) be the union over ¢ of the possible values of dom(b;), where it
is easy to see that this is an Easton subset of (us, p4). Suppose that a € dom(b),
we have defined b [ @, and b [ « is forced to be a lower bound for the b; [ a’s.

Force with A° | (uz2,a) * U® [ (u2,«) below the condition (0,b | «) to obtain
a generic object FA « FU. Let ¢; = b;[FA | (p2,p3)] € B | (us, pa), and let
di = ci(a)[F2 x FY] € ¢(a)[F2 * FY] if a € dom(c;). We note that dom(c;)
increases with 4, so that either d; is never defined or it is defined for all large i < 7.

Let i < j < n where d; and d; are both defined, we claim that d; < d;. Since it is
forced that the b;’s are decreasing in US, there is a condition in F4x FY forcing that
¢j(a) < ¢i(@), and so d; < d; as required. Since ¢(«) is forced to be < a-directed
closed, we may choose b(c) as a name such that (0,b | a) forces b(a) < d; for all i.

Now let F' = A§ x A§ x U{ be Afj o) * Ui-generic over V', let a € dom(b) and
let ¢; = b; [AS]. By the induction hypothesis b | a < ¢; | « for all ¢ in the version
of U§ computed by V'[F]. If a ¢ dom(c;) there is nothing to do, so assume that
a € dom(c;) and choose a condition (ai,as,u;) € F where ay | (o, pu3) forces
b; = ¢;. Consider the condition (a1,a2 | (us, @), u1,b | a): it forces that d; = ci(a@)
by the choice of a;, and so forces that b(a) < ¢;(a) because it refines (0,0 | «).
Sobla+1<e¢ [ a+l, with (ar,a2 | (pus3,«),u1) as the witnessing condition at
coordinate a. O

As we mentioned earlier in Section [f] Lemma [7.1] depends critically on the
definition of J¢ as a two-phase construction where we defined everything past stage
zero using S§.

Recall that A%(r*) = Add” (A% (%), [A%,, (7%), A% 5 (7*))). By the discus-
sion in Section we may force over V!(7*)[A§(7*)] to produce a generic object
AY (7*) for Add” (At (1), A%,5(r*)) so that V() C VI(r*)[A4(r*)] C VI(L |
) x AY (7%)]. Q1 (7, 7*) is the “quotient to term” forcing to produce AY (7*) from
A (T%).
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Global notation: Qq(7,7*)

Lemma 7.2. Q:(7,7*) is defined in V! (7*)[A}(7*)] and has size A%, (7).

Proof. Clearly the definition of Q; (7, 7*) only needs L | 7* and A4(7*), and we can
compute its cardinality by counting terms. O

To define Q2 (7, 7*), recall that at stage 7 in L we force with L(7) = Lb(7)*I°(7)*
(Ae(m) x J(7)) over VL | 7]. Of course L | (,7*) € V[L | 7+1], and is easily seen
to be 7*-cc forcing of cardinality 7* which is at least < Al 4(7)-directed closed.
Working in V%*¥(7)[.J¢(7)] we can compute the term forcing T(7, 7*) = A(A.(7),L |
(1,7%)). We note that T(r,7*) is a < Al 4(7)-directed closed and 7*-cc forcing
poset of cardinality 7*. Qqo(7,7*) is the quotient to term forcing (see Section
to produce a generic object T'(7,7*) for the term forcing such that A.(7) x T'(,7*)
induces Ac(7) x L | (7,7*): we write Qa(7,7*) for the generic object for Qq(7, 7).

Global notation: Qq(7,7*) T(7, 7*)

Lemma 7.3. Qx(7,7%) is a forcing poset of cardinality T* defined in V'(7*).

Proof. Clearly the definition of Q2 (7, 7*) only needs L | 7, and the cardinality can
be calculated by counting terms. O

Remark 7.4. By Remark and Lemma Q1 (7, 7*) and Qo(7,7*) are both
p-closed.

It is clear from Lemmas and that Q(7,7*) is a forcing poset of
cardinality A?,,(7*) defined in V[L [ 7* 4 1]. To clarify what Q(7,7*) is doing
we record some information about cardinals and cardinal arithmetic after forcing
with this poset. Since Q(7,7*) € V[L | 7*][A4(7*)] and it has cardinality less than
Ab(7*), to analyze the extension of V[L] by Q(r,7*) it is sufficient to analyze the
extension of V[L | 7* + 1] by Q(7,7*).

Recall from Section [6] that in VL | 7% + 1]:

* AZ+1(T)a AZ+2(T)7 AS(T)v AI{ (T)’ te AEJ(T)’ AEJ+1(T)7 A21+2(T)v AZ+3(T)
form a block of w + 4 consecutive cardinals, and similarly for 7*.

o M) = AZ(7), 2884100 = Af(7), 28542 (7) = Ab(7), 280 (7) = ALy (7)
for n < 17, 28n(7) = Al 4(7) for 17 < n < w+ 2, and similarly for 7*.

After forcing with Q(7,7*) we have that:

e The cardinals A2 (1) , AZ(7*), A¢(7*), AZ(T*),... A%(7*) form a block of
w successive cardinals.
b b a *
o 2802(T) = Ag(7%), 28e+a(T) = A¢(7%), 280 (77) = A2, (7%) for 0 < n < 17.

To help analyze Q(7,7*), we embed the generic extension by this poset into
something more tractable. This will be useful immediately in the proof of distribu-
tivity for Q(7,7*) in Lemma and again in Section The poset Q(7,7*) is
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defined in V[L | 7*][A}(7*)], but for our purposes we work over the slightly larger
model VL | 7% 4+ 1].

Lemma 7.5. Let 7,7* € Y with 7 < 7* and let Q be Q(7,7*)-generic over VL |
7" +1]. Let A§(7,7*) be the Add" (AL, o(7), [AL,5(7), AG(T*)))-generic filter added
by Q as the AS(t,7*)-component. Let X = Ab, 5(7). Then in some generic extension
of VIL | 7* + 1][Q)] there exists L' such that:

(1) VIL ™+ 1[Q] CVI[L [ 7+1x AS(r,7*) x L'].
(2) AS(t,7*) x L' is generic for the product of A5(t,7*) and some < A-closed
forcing L lying in 'V, where L' has cardinality A% 5(7*).
Proof. Decompose @ in the natural way as @y X @1 X (2. We recall that
Qo(r,7*) € VWi(r)[Je(T)], Qi(r,7*) € VI(T*)[A§(7*)], and Qo(T,T*) € VI(7*) =
VI () [Je(T)][Ae(r) * L | (1,7%)].

We recall also that @y = A[CQM)(T, ) % (U[szw) (1,7%) * S[CQ’W)(T, 7*)) where:

o A% (7,7*) is generic for a product A["Q’w)(r, ) = A§(T, %) X A ) (r,7*)
of Cohen posets defined in V.
o A5(r,7) = AddY (AL 5(7), [AL 5(7), A (7))

o Afy y(7,77) is defined and < A-closed in V.

We will produce V[L | 7+ 1 x A5(7,7*) x L] from V[L | 7* + 1][Q] by a series
of rearrangements and quotient to term forcings. We will be making several appeals
to the Product Lemma and Lemma but we will not make these explicit: the
point is that each generic object will be generic for the forcing which originally
introduced it over various larger models than the model where that forcing was
originally defined.

e We may rearrange [°(7*) as Aj(7*) * I° (7*) where I’ (7*) collects the
remaining components of I°(7*). Recall from Remark that Aj(7*) €
VL 1 7*]. Forcing with an appropriate series of quotient to term forcing
posets we extend VI[L | 7* 4+ 1][Q] to V[To][L | 7*][A4(7*)[Q] where Ty is
generic for the product Ty of the following term forcings:

— AV(L | 7%, L8 (7%)).

— AV(L | 7* x L2(7*) % A5 (7%),1° (%))

— AV(L | 7%+ LO(7%), A§ ("))

— AV(L | 7* x L2(7%), A§ (%))

- AV(L TT* *Lb(T*)?Ae(T*))

— AV(L [ 7% % LO(7*) = I°(7%) * AS(7%), US(7*) * S§(7%)).

- AV(L | ( # J5(77) x AT (77), UT(7) * S{(77)).

o VIT[L | m|[A5(9)[Q] = VIT[(L I 7%) * Af(T*) * Q1][Qo x Q2] =
VITO)[(L | ) x AY (7%)][Qo X Qa], using the definition of Q; as a quo-
tient to term forcing. It will be convenient to reorganize A} (7*) as Ty
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which is generic for T, = AL | 7%,A5(7")), so our model becomes
VIT][TA][L T 77][Qo x Q2]

o VILJM[L [ 7[Qo x Q2] = VITO|[TA][L | 7)[LO(7) » I°(7) x J¢(7)][Ac(7) *
L (r7 ) Q2][Qo] = VIT][I[L | 7][L0(r) * I"(r) % J¢(7)][Ac(r) x
T(r,7™)][Qo] = VITO|[T][L | 7][L*()  I°(7) » J(T)][T (7, 7*)][Ac(7)][Qo]-
using the definition of Q as a quotient to term forcing.

e By LemmaAV(L [ 7x L0 (7)1 (T)x JS(7), T(T,7*)) ~ AV(L | 7+1,L |
(1,7*)). So forcing with an appropriate quotient to term forcing we extend
to obtain V[Ty][T1][T2][L | T][LP(7) * I°(T) * J¢(7)][Ae(T)][Qo], where T} is
generic for Ty = AV (L [ 7+ 1,L | (1,7%)).

e By the definition of Qq(7, 7*),

VT[T T)[L | 7)[LY(7) = I°(7)  J*(7)][Ae(7)][Qo] =
VI[T)[TR)L | 7][LY(r) % I (7)][Ae(T)][A(7, 7%) % US(7, 7%) % S°(7, 7))

oWedeﬁnedAlw)( T*) * U[lw)( )*S (TT)asanA*U*Scon—
struction as in Section |3| performed in the model V[L | 7 x Lb(7) *
I°(D)][AS(7) * U§() * S§(7)]. In particular the construction involved aux-
iliary posets B o (7, 77) and Ch, w)(T,T*) constructed in this model.

Chiwy (7,7*) breaks down as C[Lw)(T ) = C§(7,7*) % Ch, w)( T*) where

Cpa, )(7' %) is < A-closed in V[L | 7% Lb(7) * I°(7)][AS(T) * U§(T) *
S§(7)]. The forcing poset S, o) (7, 77) is defined from Cp, (7, 7) and

Afy (1,7 R UG ) (77 s (Chy ) (7,79) A 0T Vh0 (077 g in Sec-

tion so that in V[L | 7% Lo(7) * I°(7)][AS(7) * U§(7) * S§(7)] we may
view Af, L‘))( T, T%) * Ui o) (1, 7%) * St.w) (1,7*) as a projection of the product
A[Lw)( )*U[Cl’w)(T, T*) X Ch. (7, 7). In V[L | 7% LO(7) % I°(7)][AS(T) *
S§(7) = US(M)][AS(7) * Uf(7)] we may view A[C2M)(7'7 T*) * U[%,w)(T, T*) as
a projection of Af, (7, T*)* (B [02 o (7, Ti))*AC(T)*Uf(T) By Lemma
for Af; o (T T7) * Up, o (T T7) % 1w)( ) with a = o = X (so that
F' in the lemma is Af * Uf), (B, u))(7' 7)) FALM*UI(T) s < A-closed in
VIL [ 7 L0 () # I°(7)][A§(7) # Us (7) * S§(r)][A5 (7) = U(7)]-

e Since Sf (7, 7%) is a product,

VIT[WT][L | 7)ILY(r) = I (D)) [Ae(D[A(7, 7%) % US(7, 7°)  S%(7, 7))
=VITO)[T][L T 7][L(7) * I (D)][Ae(T)][AG () * UG () * S§(7)]
[Aft ) (7 77) # Uf ) (7, 77) % S ) (7, 7)][ST(7))]

Forcing with a suitable quotient to term forcing, we may extend to
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obtain a model
VITOT[T[L | r)[LO(7) % I°(7)][Ac (T)][AG(7) * Ug () * S5(7)]

(AL ) (T 77) % Ufy ) (T, 77) X Cp 0 (7, TN ST(T)],

and then reorganize as

VITO)[T[To)[L | 7][L°(7) % I (7)) [Ae(7)][T(7)]
[A[szw) (1,77%) * U[%M)(T,T*) X C[Czyw)(T, 7).

Forcing with another quotient to term forcing, we may extend to obtain a
model V[To][Th][T2][L | 7][LO(7) % I°(7)][Ae(7)][T(T)][Afy ) (7, 7%) x X x
C[CQM)(T, 7*)] where X is (IB%fQ’w)(T, 7)) AT (MU (") _generic. This model may
be rewritten as V[To][T1][T2][L | 7 + 1][Af, ) (7,7%) x X x Cf (7, 77)].
e Now let

T

= AV(L T 7o LY(r) # T(r)  T5(7) % AS () # U (), (Bl (r, 7)) HAI0E )
) AV(L [ 7+ L (7) # I°(7) % A§(7) * Ug(7) * S§(7), Cy 0y (7, 7)),

where T3 is < A-closed in V. With one more round of quotient to term forc-
ing we may extend V[To][T1][T2][L [ 7+ 1][Af, ) (7, 7%) x X x Cf, (7, 7)]
to obtain V[To][T1][T2][T5][L | 7+ 1][Af ) (7, 77)]

We set L' = Afz (7, 77) x To x Ty x Ty x Ts. It is routine to check that L is
< A-closed and has cardinality A’ 5(7*). O

Lemma 7.6. The poset Q(7,7*) is < AL ,(7)-distributive in V[L].

Proof. By the agreement between V[L] and V[L | 7* 4 1], it is enough to show that
Q(7,7*) is < AL, (7)-distributive in V[L | 7* + 1]. Let Q be Q(r,7*)-generic over
VIL | 7* + 1], then by Lemma [T.5| V[L | 7* + 1][Q] C VIL | 7 + 1 x A§(7,7*) x
L'], where A§(7,7*) x L’ is generic for the product of Add" (A%, ,(7), A4(7*)) and
some < A?  5(7)-closed forcing L' lying in V. The conclusion is now immediate by
Easton’s lemma. O

A minor elaboration of this argument shows:

Lemma 7.7. Let 1o < ... < 7, with 7; € Y for all i. Then H0§i<n Q(7i, Tig1) is
< Al (70)-distributive in V[L].

Since Q(7y, Tpy1) is distributive over the cardinality of [],,_,, Q(7i, Tiz1), we
immediately deduce:
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Lemma 7.8. Let 19 < ... < Ty, < Tpy1 with 7, € Y for all i, and let E be
[o<icn Q(7i, Tit1)-generic over VL] Then Q(7n, Tnt1) is < AY o (7)-distributive
in VIL][E].

7.2. The first Prikry point

In this section we define a forcing poset Q*(7) which will be used in the Prikry
forcing P when 7 is the first Prikry point.

Recall from Section [5.1) that V = Vo[A% x U° | 0  L°] where A° x U° | 6 forces
that 2 = 6 and makes 6 indestructibly generically supercompact via Cohen reals,
and LY is generic over Vo[A% x UY | 6] for what is essentially a standard Laver
indestructibility iteration in the interval (6,8). Let Vi = V5[A® x U° | 6]. Recall
from the discussion preceding Lemma that there is a unique stage 6 < p of the
preparation such that p is a limit of supercompact cardinals in Vo[A° | 6 % U | ]
and p is an w-successor in Vo[A? [ 0% U° | 6+ 1].

Recall from Remark m that AY(r) = AddVFIT (A2 (1), A2 1(7), A2, 5(7)))
and is part of the component of L at stage 7. The poset Q*(7) will ultimately be
defined in V[L | 7][A}(7)] and will have three components Q} (7) for i € {0, 1,2}.

The idea for defining Qj(7) is that we view the forcing A®  U° | 6 % L which
produces V from V{, as the first phase of a two-phase A x U x S construction, and
that Qg(7) is defined in V' and implements the second phase. Here are the details
of the two-phase construction.

e The cardinal parameters are o = w, 1 = p*, po = 0, pz, = A%(7) for
all n € w.

e Ag=A"=A"16,By =B |0 and Uy = U° |  were already defined in
Vb, and the construction of Section [5.1] already gave us the generic object
AO * Uo.

e C, is also defined in Vj as in Section [3] in particular it adds generic objects
for Add(pt,1)VelAelaxlolal only for o with puy < a < 6.

o Ay = Add(uq, [pe, ug))W, where we recall that W = Vy[Ag [ 0% U | 6+ 1].

o Ay = Add(fin, [tni1, tinie))Y for 2 <n < w.

e The Laver function is the universal indestructible function ¢ from Lemma

e For n > 1, B, and C,, are defined over V. To be more precise condi-
tions in B,, are functions b € V with supports which are Easton subsets
of (ftn+1, nt2), consisting of points o where the Laver function returns
an A [ a* U | a name in V for a forcing which is < a-directed closed in
VIA | axU | a]. As usual b(a) will name an element of this poset. The
definition of C,, is similar.

The first component Qf(7) of Q*(7) prolongs Ag* Up * L° to a generic object for
this two=phase construction. The second component Qj(7) is defined over VI[L |
7][A5(7)] and adds AY (7) which is AddV(A‘f7(7),Ag+2(7))—generic over V[L | 7]
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and is such that V[L | 7] € V[L | 7][4§(7)] € V[(L | 7) x AY(7)]. The third
component Q3(7) is Coll(w, p). We note that Q*(7) has cardinality AZ_ ,(7).

Remark 7.9. By contrast with Q(7,7*), not all components of Q*(7) are p-closed
posets defined in V' or some p-closed extension of V. For use in Section we
categorize the components of Q*(7).

e Ap ) is p-closed in V.

e A is p-closed in W which is a proper submodel of V. By the usual argu-
ments with Easton’s lemma, it is p-distributive in V.

Ul1,w) * Sj1w) is p-closed in V[A[ )]

As in the case of Q(7,7*), Q}(7) is p-closed in V[L | 7][A4(7)].

Of course, Q5(7) is not even w-distributive.

Global notation: Q*(7), Q3 (1), Qi (1), Q5(7)

7.3. Some auxiliary computations

Recall that j : V' — M has critical point x and witnesses that x is § T-supercompact.
We derive a supercompactness extender E from j witnessing that x is < A 13-
supercompact: to be more concrete, for each n with K < 7 < A 13 we let W, be
the supercompactness measure on P.n derived from j, and let E be the system of
measures (W, : K <1 < Ag+3>, with projection maps m,¢ : P.( — Pgn given by
Tpe T — 1.

Let jg : V. — Ult(V,E) be the limit ultrapower by E, so that by standard
arguments crit(jg) = £ and Ult(V, E) is closed under < )\Z+3—sequences. As usual
there is a an elementary embedding kg : Ult(V, E) — M such that kg o jg = j and
crit(kg) > Ao 5. Using kg it is easy to see that jp(A?)(k) = j(AF)(k) = A? for
z € {a,b} and i < w+ 3.

Global notation: F, W, jg

We will need to iterate the ultrapower by E, but only for two steps. To simplify
the notation let jo; = jg and My = Ult(V, E). Then as usual jio : M7 — My is
the ultrapower map computed in M; using the extender joi(E), and jo2 = j12 © jo1-
Note that by the usual chain condition argument, V[L] = <Ats M, [L] € M;y[L].

We will use the identity jo1 [ M1 o jo1 = joz2- The proof is quite easy: by the
elementarity of j% and the fact that j% is defined in V, jo1(jo1(z)) = jh (j%(x)) =
jjgl(E)(jg(x)) = ji12(Jo1(z)) = joz(x).

Global notation: jo1, ji2, jo2, Mo, M1, Ms

It is easy to see that:

o crit(ji2) = joi(k) > Ao 5.
o My | <0 My C My,
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e For any function g : kK = &, jo2(9)(k) = J12(Jo1(9)(k)) = jo1(g9)(x) and
Jo2(9) (o1 (%)) = jo1(jor(9)()). In particular joo(A)(k) = A7, and also
Jo2(A7)(Jo1(r)) = jo1(A?), for z € {a,b} and i < w + 3.

Lemma 7.10. Let A%9 = Add" (A4, j01(A8)). There exists L* € V[L] and K €
V[L][A99] such that:

(1) L* is jo1(L)-generic over M.

(2) joulL] € L*.

(3) L* | k+1=L.

(4) If we lift jo1 to obtain j3, : VIL] - M{ = Ml[L*],*let Jte = 351G -
M; — M3 and jly = jis 0 jiy, and define Qoo = QM2 (k, jo1(k)), then K
is Qoo-generic over M{.

Proof. We start with some easy remarks:

(1) By Easton’s Lemma, A% is < X, ,-distributive in V/[L].

(2) Since L* | k+1 = L, it will follow that M7 is closed under < A’ | 5-sequences
in V[L]. By elementarity Mj will be closed under < jo1(A? 3)-sequences
in M{, in particular M7 and M3 will agree for a long way past the rank of

Q.

We now appeal to Lemmain the model My with 7 = k and 7* = jo1 (k). Using
the fact that M is closed under < jo1 (A%, 3)-sequences in M, we get a projection in
M; from L x A99 x 1/ to jor (L) *Q(k, jo1(x)), where A9 = Add™* (N, 5, jo1(\)) =
AddV(AZ+2, Jo1(A%)) and L is the product of various term forcing posets. The most
relevant factors in L are:

° L6 =AM (ijm(]L) [ (li,j01(/€))~

o Ly = A (jou(L | ), jor (L))

o Ly =AM (jor (L | &), jo1 (AB))

o Ly =AM (joy (L | &% AB),17), where I’ = A} «I?

o L) = AMi(Gor(IL | K+ 1Y), jor (AS)).

o Lj =AM (jou(L | & *L°), jor (AT)).

o Li =AM (Go (L | & xLP), jor(A))

o LI = AM (o1 (L | Kk % L2« I? % A§), jor (UG * S5)).

o Ly = AMi(Goy (L | k% L+ 1P % J§ % A), jor (US % S5)).

In the proof of Lemma LY corresponds to Ty, L{ corresponds to Tg, and the
remaining factors correspond to factors in T(. The projection uses L and the factors
L. listed above in the obvious way to prolong the L-generic to a jo1(LL)-generic
object.

It is straightforward to verify that the set of maximal antichains of I which
lie in M; has cardinality /\3-5-3 in V. Since L/ is < AZ+3—closed in My, and M; is
closed under < \° y3-sequences in V, we may readily work in V' to build L’ which
is IL'-generic over M, but since we will ultimately use L’ to build L* we need to
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build L’ more carefully. The construction will involve successively lifting j9; onto
larger and larger initial segments of V[L]: to lighten the notation we will denote
all the embeddings by “jp1” and resolve any ambiguity by making the domain and
codomain explicit.

To start we choose L{, € V which is L{-generic over My, and combine it with
L to construct Ly € V[L] which is jo1(IL) | (k,jo1(k))-generic over M;[L]. Note
that by the closure of L{,, V |= <Nots My [Ly] € Mi[Lp]. As usual we may lift to
obtain jo1 : V[L | k] = M1[L§]. The next stage is slightly harder, because we must
choose L] so that it combines with L * L{ to produce Lj so that we may lift jo; to
V(L | &][L"].

To this end, let H be any filter which is jo1 (L | k)-generic over My, so that we
may lift to obtain jo1 : V[H | k] — M;[H]. Since |[L°| < Ab 5, it is easy to see that
if H' is the generic filter on L” added by H then joi[H'] € M1[H], and jo1[H'] has
a lower bound in jo; (IL?). Let 2 be a joi (L | x)-name for such a lower bound, so
that we may view 7 as a condition in L} and build L] € V which is L}-generic
over Mi[Lg] with i € L}. We combine L} with L L§ to obtain L} € V[L] which
is jo1 (IL®)-generic over M;[L§]. By construction jo1[L%] C L%, so that we may lift
and obtain jo; : V[L | k% L] — My [L} x L%].

Similar arguments will handle the other factors of size less than A\’ 5, but the
factors of size Al ; will need more care because we do not have closure under
b y3-sequences. We will handle this problem using ideas of Magidor [IT].

We will only do the argument for A., which has an extra twist: the arguments for
A and US % S§ are similar but simpler. Recall that A, = Add" 1% [Lb]()\’{7, A g):
forcing with A, adds A’ ; many generic functions from A, to A§;, and for o < A\l 4
we let f, be the function with index a.

As we noted in the previous paragraph, jo1[Ac | 7] € Mi[joi(L | k% L?)] for all
n<\ 13- We will use the following easy remark:

Remark 7.11. For every dense subset D of A(L | k%L’ A,), there is f : /\g+3 —
b 13 such that if 7 is an inaccessible. closure point of f and IF ¢ € A, | , there is
7 € D such that IF7 <& and IF7 € A, [ 7.

Since [jo1(A}7)] = Al 3, we enumerate the elements of jo1(A\};) as v; for j <
A4 Let n = sup jo1[\};], and note that if p € A, then the support of joi(p) is
contained in jo1 (A, 5) X 7. We will arrange the lifting construction so that in the
end j&; : V[L] — M has the property that jg, (fi)(n) = v for every i < A, 5. This
idea originates in unpublished work of Woodin, and was used in a construction
similar to ours by Gitik and Sharon [5].

We will construct L as the upwards closure of a decreasing Al 5-sequence in
LS. View 1 as a condition in jo; (L | & * L®), and let H be an arbitrary filter
which is joi (L | & * L?)-generic over M) and contains this condition. Let H' be the
L | x % Lb-generic filter induced by H, so that jo;[H'] € H by the choice of 71 and
we may lift to obtain jo; : V[H] — M;[H']. Much as in the construction for L}, we
will use this embedding to define suitable conditions in L.
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We will build a decreasing A2 y3-sequence of conditions in Lj, with the aim
of generating a filter which is generic over M;, and induces a filter L3 which is
compatible with jj; and A, and assigns the right values to j&, (fi)(n). Suppose that
we have reached a stage of the construction where we built a condition ¢ € L/, with
the following properties:

e I-g € jor(Ae [ ).
o g <jolAe [ al.
o |- q(jo1(7),n) =, for all i < a.

Suppose that the next dense set in L}, to be handled is D € My, and note that
(since E is a supercompactness extender) D = jo1(d)(jo1]o]) for some o < A} 4
and function d € V with dom(d) = P,o. We may assume that d(x) is a dense subset
of A(L | k*LL" A,) for all z: it is now easy to produce a function f which satisfies
the conclusion of Remark for all the dense sets d(x) simultaneously.

Let v > a be an inaccessible closure point of f. We build a name 7 for a condition
extending ¢ in stages, making sure that 7 names a condition in joi (Ae [ 7):

e Let 7 name q U JJjo1[4e | [, y)], so that 71 names a lower bound for
Joi[Ae [ 7]

e Let 75 name r1 U {(jo1(4),n,vi) : @ < i < ~v}.

e Let 7 € D with I 7 < 75, where it is possible to arrange that IF 7 € jo1 (A |
v) by the careful choice of ~.

The condition 7 will be the next entry in our descending chain.

By construction, if we induce L} using L x L * L] then jo1[A.] C L3. We lift to
obtain jo; : VL | &][LY][Ae] — My[L * L§ * L % L5, where jo1(f:)(n) = ; for all
1. Continuing in the same way we build the remainder of L', induce L*, and finally
lift to get jg, : V[L] — M} = My[L*].

Let A99 be A9 = Add" (), jo1 (AZ))-generic over V[L], so that A99 is generic
over Mi[L x L’]. Using the projection map in M; from L x A% x L to jo1(L) *
Q(k, jo1(K)), we get K € V[L][A%9] which is Q(k, jo1(k))-generic over M;y[L*]. O

Global notation: jg,, M7, j5o, M3, Qoo, A99, K

Working in V[L] we derive for each n > 17 a supercompactness measure U,, on
P, )Y using the embedding j&;. We do some computations in V[L] which will be
useful when we define the Prikry forcing P in Section [8| For n with 17 < n < w let
N, =Ult(VI[L],U,) and j, = j&EL], so that j, : V[L] — N,, and we obtain as usual
a factor map k,, : N,, = M{ with j§; = &y, o jn.

We will show that k,, has a very large critical point, in fact crit(k,) > jo1 (A%7).
To see this observe that the range of k,, is the set of elements in M7 of the form
Je1(F)Gor[A2]) where f € VL] and dom(f) = P A2. If welet f(z) = fi(sup(znA8,))
then g, (£)(Go1[A2]) = j&1(£:)(n) = i, so that easily jo1(p1)+1 C rge(k,,) and hence
crit(kn) > jor (Alp).

We will use the observations that since crit(k,) > jo1(A\l;) for n > 17:
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* joi(n ):

Jn(n )foralln<)\
o Jo1(A}) (k) = A

b =, (AY)(k) for k <17 < n.

Global notation: U,, Ny, jn, kn

We are interested in comparing the two-step iteration jj, defined above, and
the iteration ,, where we apply j, and then j,(jn+1). We use the easy equations
in = Jn(jn+1) © Jn = Jn © jng1 and Jo2 = Jo1 © Jo-

Global notation: i,

Lemma 7.12. For alln > 17, Qo = in(Q) (&, jn(K)).

Proof. We will produce a map k such that ko, = ji and crit(k) > joi1(A\},).
This will suffice because i,(Q)(k, j,(k)) can be coded as a bounded subset of
in(A7) (i (K)), and in(AD7) (jn(K)) = Jn(n+1(A37)) (Gn (%)) = Jn(Gnr1(Al7) (k) =
Jn(A7) = jor (A7)

Start by applying the embedding j,, to the equation j§; = kpy1 © jn+1, to get
In(J51) = Jn(kng1) © Jn(fns1). Here 3n(i51) @ No — Gn(M{), jn(fns1) @ No —
Jn(Nnt1), and jn(knt1) @ jn(Npt1) = ju(M7). By elementarity crit(jy (kn+1)) >
o (A2)):

Since M7 is a class of V[L], j,(M7) is a class of N,, and we may form the
restriction ky, [ jn(M7). Since k,0j, = jip, it is routine to check that k, (j,(M7)) =
Jo1 (M) = M3 and that ky, | jn(M7) : jn(M7) — M3 is elementary.

To finish, we set k = ky o ju(knt1). To confirm this works, recall first that
In(361) = Jn(knt1) © jn(jn+1). Now

ko in = ky 0 jin(knt1) © Jin(jn+1) © Jn
= ky, 0 jn(Jo1) © Jn
=kn 0 Jn 0o
= Jo1 © Jo1

p— -k
= Jo2

where the first equation holds because k = ky, o j,(kn+1) and i, = G5 (Jnt1) © Jn,
the second equation holds because j,(j¢1) = jn(kn+1) ©Jn(jn+t1), the third equation
holds because j, 0 ji; = jn(Jl1) ©Jn, the fourth equation holds because ky, o j, = jiy
and the last equation holds because jg5, = jg; © 451-

As for the critical point, crit(k,) > jo1(A%;) for all n, so that crit(j, (k1)) =
gn(crit(kns1)) > jo1(Ay,), and since k = k, o j,(knt1) we have that crit(k) >
Jo1 (A7)
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En 1in (M{)

. " jin (kni1) .
]n(Ml) : - Jn(Npy1)

Ji2 Jn(351) Jn(Gnt1)

M; in03Gy N,

/

ViL]

O

The two-step iteration ¢,, can be viewed as a one-step ultrapower by the measure
U, x Upq1 on PAb x P,JJ,’HD where A € U, x Up41 if and only if {x : {y: (z,y) €
A} € Uyq1} € U,. We define product measures Uy, X Up1 X ... X Upyi—1 with ¢
factors in a similar way. The following Lemma is an immediate consequence of the
normality of the measures Uj.

Lemma 7.13. A€ U, xU,11 X ... X Upyi—1 if and only if there exist sets A; € U;
forn < j < mn+1i such that every <-increasing sequence from []

A.

n<j<nti A; lies in

Motivated by the i = 2 case of Lemma we define a modified version of the
Cartesian product.

Definition 7.14. Let A C P\, and B C P A\b |, then Ax<B = {(z,y) € AxB:
x <y}

With this definition, the i = 2 case of Lemma [7.13] states that U, x U,q1 =
{(XC P, xPX, :3A€U,3Be Uy Ax*BC X}

Global notation: x=

We will need the following version of Rowbottom’s theorem, which also follows
easily from the normality of the measures U;.

Lemma 7.15. Let m < n < w, let (Aj)m<;<n be a sequence of sets with A; € U;
and let F' be a coloring of the <-increasing sequences from ngj<n Aj in fewer
than k colors. Then there exists a sequence (Bj)m<j<n with B; C A; and B € U;

such that F | ] B, is constant.

m<j<n
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Now that we have defined jj;, we can define an auxiliary poset that will be
useful in Section [§l Recall that Y is a measure one set of cardinals which are less
than x and reflect some properties of x, which we can think of as the “potential
Prikry points”. By the agreement between j§; and j,, ji (Q)(a, k) = jn(Q) (e, k)
for « € Y. In a mild abuse of notation, we will write Q(«, ) for this poset.

The following Lemma is immediate from Lemmas [7.6] and [7.7] together with the
elementarity of j3; and the agreement between V[L] and M.

Lemma 7.16. Let 19 < ... < T, with 7; € Y for all i. Then H0§i<nQ(TivTi+1) X
Q(7n, K) is < AL ,(70)-distributive. In particular, in the case n = 0, Q(10, k) is
< AL (70)-distributive.

Global notation: Q(a, k)

8. Prikry forcing

Let A99 = Addv()\g+2,j01()\8))7 let A99 be A99-generic over V[L], and let K €
V[L][A99] be the Qoo-generic filter over M constructed in Section Working in
V[L][A99] we will define a Prikry-type forcing P. Conditions in P will each lie in VL],
but K will be required to recognize the set of conditions, so that P € V[L][A%9].
Since A9 is generic over V[L] for < A, ,-distributive forcing, the models V[L] and
V[L][A%9] agree on bounded subsets of A’ ,. We will use this agreement without
comment at several points below.

8.1. Defining the forcing

The definition of P will use the measures U,, for n > 17. A typical point for U, is
aset ¥ € P.A% with k(z) = 2Nk € Y. In a mild abuse of notation we write (for
example) “AP (z)” as a shorthand for “A? (k(x))”.

The poset P will add a sequence (z,, : 17 < n < w) where:

o 1, € Pli)\%'
o k(zy) €Y.
e The sequence is <-increasing, that is z,, C 2,41 and ot(z,) < K(Tp41)-

We call the z,’s the “supercompact Prikry points”, and the associated cardinals
K(2n) “the Prikry points”.

When z and ¥ are successive supercompact Prikry points, the forcing poset P will
add a generic object for the poset Q(x(z), £(y)) as defined in Section[7.1] Recall from
Section that since k(x), k(y) € Y the preparation forcing L did some collapsing
in a block of cardinals associated with x(x), and some more collapsing at a higher
block of cardinals associated with k(y): the point of forcing with Q(k(z), x(y))
is to “close the gap” between these two blocks of cardinals. When z is the first
supercompact Prikry point P will add a generic object for the poset Q*(x(z)) as
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defined in Section In the sequel we will lighten the notation by writing “Q(z, y)”
for Q(k(z), k(y)) and “Q*(x)” for Q*(k(z)).
Global notation: Q(z,y), Q*(z)

Conditions in P have the form

b= <CI17,$177 =1, Tn—1, fns An, Fag1, Ang1, Fago, Ango, - >

where:

(1) n > 17 (so that for n = 17 the condition p is of the form {fi7, A17, Fis,...)).
(2) A; €Uj for all j > n.
(3) For all i > n+ 1, F; is a function with domain A4;_; x= A;, such that
Fi(z,y) € Q(z,y) for all (z,y) € A;—1 x= A; and [Fi]u,_,xu; € K.
(4) (w; | 17 < i < n) is a <-increasing sequence where x; € P.(\?) and
k(z;) €Y.
(5) If n > 17, then
(a) Forallm >nand ally € A, Tpo1 < y.
(b) q17 € Q*(z17).
(¢) ¢ € Q(x;—1,x;) for all 4 with 17 < i < n.
(d) dom(f,) = A, and f,(z) € Q(xn_1,z) for all z € A,,.
(6) If n =17, then f, is a function with dom(f,) = A, such that f,(z) € Q*(z)
forall z € A,.

Global notation: P

The length Ih(p) of p is 1 plus the index of the last x; entry in p, so that lh(p) = n
for the condition displayed above. Note that the length of a condition is the index
of the measure one set from which the next “x point” will be drawn when the
condition is extended.

For p as above, the lower part of p is the initial segment

<Q17, Z17,---qn—-1, $n71>

and the stem (written stem(p)) of the condition p is

<Q17, T175+-Qn—1,Tn—1, [fn]Un>

The length lh(h) of a stem h is the length of the corresponding condition, so that
the stem displayed above has length n. The upper part or constraint part is

<fn,An,Fn+1;An+1,Fn+2; . >
Global notation: lh(p), stem(p)
Remark 8.1. The point of distinguishing stems and lower parts is that the function

fn can be a source of incompatibility between two conditions of the same length.

Remark 8.2. Since |Q(7, 7%)|,|Q*(7*)| < Aj(7*), there are fewer than A} possibilities
for [fn]u, - Since (A2)<F = X\b for all n, it follows that there are A\’ possible stems
for conditions of length n + 1.
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Suppose that

r_ ! ! ! ! / 1 I
p _<q177x177"'melﬂxmflvfmv m m+1ﬂAm+17"'>

is another condition. Then p’ < p if:
1

2) &’ end-extends &, that is to say z; = z for 17 < i < n.

) m>n.
)

3) For all 7 such that n <i < m, a2} € A;.
)
)

4) For all i > m, A, C A,.
5) If m > n, then

Py

(a) gn < fu(n),
(b) for all i such that n <i <m, ¢; < Fj(z;-1, ;) and
(c) forall z € AL, fl (z) < By (z] x).

m—1»
(6) If m =n, then for all x € AL, fr (x) < fm(2).

(7) For all i < n, ¢} < ¢;.

(8) For alli >m+ 1 and all (z,y) € A,_; x~ AL, Fl(z,y) < Fi(z,y).

Remark 8.3. Since the definition of P includes the demands that A; € U; and
[F;] € K, incompatibility between conditions of the same length can only arise from
the stems.

In the case when ¢ < p with 1h(q) = Ih(p) we say that ¢ is a direct extension of p
and write ¢ <* p. When lh(q) —lh(p) = t we say that ¢ is a t-step extension of p. As
is typical for Prikry-type forcing posets, when ¢ < p we may view ¢ as obtained by
first adding the points x; for Ih(p) < i < lh(g), and then taking a direct extension
of the result.

More formally:

Definition 8.4. Let

p= <Q17,I17, <. 'QH—17xn—17fna
AnaFn+1;An+17Fn+2;An+27 . >

and let ¥ = (zp, ... Tnti—1) be a <-increasing non-empty sequence such that x; € A;
forn<j<n+tand x,_1 < x,. Then p—F (the minimal extension of p by &) is
the condition

<Q17, L1175+ - Gn—1Tn—154n,Tn, - - - nt+t—1, Tntt—1, fn+t7

* * *
Anth’ Fn+t+17 An+t+1 e >

where ¢, = fn(Tn), @ik = Fogr(Tnir—1,Tngr) for 0 < k < t, A}, = {y €
Apik t Tpge1 <y} fork >t Fy = Fop [ Ay 1 X AL for k > t, and

Jntt(Y) = Fogt(@nyi—1,y) fory e Ay,
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Global notation: p~ &

By convention p™ & = p for & empty, and we abuse notation by writing p~« for
p~(z) for sequences of length one. The following Lemma is routine:

Lemma 8.5. p— & < p, and if ¢ < p then there is a unique T such that ¢ <* p™T.

Lemma 8.6. Let p,q € P with stem(p) = stem(q) = h. Then there is a lower bound
r < p,q with stem(r) = h.

Proof. Let the common length of p and ¢ be n. We choose the lower part of r to
agree with the common lower part of p and ¢. The main point is that [fP]y, =
[f%u,, so that {z : fP(z) = fi(z)} € U,. We may therefore choose f; such that
fr(x) = fP(x) = fi(x) for all x € dom(f). It is now easy to choose the remaining
entries of r to ensure that r < p,q. O

Lemma 8.7. In V[L][A%9] the poset P is AL -centered, in particular it has the (\2)*-
ce.

Proof. It follows from Remark that the total number of stems is A’. The con-
clusion is now immediate from Lemma O

Essentially the same proof as for Lemma shows:

Lemma 8.8. Let h be a stem, let v < k, and let p; € P for i < v, with stem(p;) = h
for alli. Then there is r such that stem(r) = h and r < p; for all i.

Remark 8.9. We only need Lemma [8.8]in the case where v = w. It will be used to
verify Hypothesis [6] when we appeal to Lemma [2.21

We define P to be the set of p which satisfy all the conditions for membership
in P, except the condition that [Fi]y, ,xu, € K. Note that P € V[L]. We can view
PP as the set of potential elements of P.

It will be convenient to factor the forcing poset P | p for p € P in various ways.
Let

p= <Q1773017, oo qn—1,Tn—1, fnyAn,Fn+1; An+1aFn+2; .. >

Let 7; = (x;) for 17 < j < n, and let 17 < m < n—1. Then P below p is isomorphic
to Piow 4 Po X Phign 4 p1 where:

(]-) ]Plow = @*(T17) X H17<j§m Q(xjfl’x]')'

(2) Po = (Q177---7(Jm)' _
(3) Phign is defined in a similar way to P, with conditions of the form

/ / ! ! ! ! ! ! /
(U1 Tt - Gy — 15 T 1 s Ay Frr i1, A1, F o)

ordered in the natural way.
(4) 1= (Gm+1,Tms1s- - Gn-1,Tn—1, fn, An, Fng1, Angr, Frga, o)
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It follows that if G is P-generic and (1; : 17T < j < w) is the Prikry sequence
added by G, then for every m > 17 the generic object G induces a Q*(117) X
[Ti7<j<m Q(zj—1,7;)-generic filter.

Remark 8.10. Formally the posets Piow, Phigh and conditions pg, p1 depend on the
choice of m. When we use this kind of factorization in the sequel, the value of m
should always be clear from the context.

8.2. The Prikry lemma

Recall from sectionthat in V[L] we derived measures U,, on P\l for 17 <n < w
from the embedding j3; : V[L] — M7, and formed ultrapower maps j, : V[L] —
N, = Ult(V[L],U,). We arranged that if k, : N,, — M is the natural factor map
with j& = kp 0 jn, then crit(k,) > jo1(A\%;). It follows that for a < b, we have
Jor(a) = jn(a).

Recall also that i, = j,,(jn+1)0dn, and that Qoo = i, (Q)(k, jn(k)) for all n > 17.
Now Qoo € Mg, and in Mg we have |Qoo| = jo1 (A% o) and 2000(+2) = jg; (AY).
It follows that Q. € N,, and K is Qu-generic over N,, for all n > 17. By similar
arguments, if we let N;¥ = Ult(Ny, jn(Uny1)), so that i, : V[L] — NI, then
Qx € N,/ and K is Quo-generic over N,.

Global notation: N,

For each n with 17 < n < w, |P.A2| = A in V[L], so that U, is still a super-
compactness measure on P, A" in the < A} ,-distributive extension V[L][A99]. It
follows that j, lifts to the ultrapower map computed from U, in V[L][A%], and
we write j4 : V[L][A9] — N2 = N,[j2(A99)]. Similarly i, lifts, and we obtain
i V[L][A99] — NA+ = N;F[i2(A99)]. By distributivity it is easy to see that K

is still Quo-generic over the models N and NAT. We also note that Qo is still
< AL, ,-distributive in each of the models N,,, N,7, N2 and N/'*.

Global notation: j2, i, N4 NA+

n» ‘n n’ n
Fix E a dense open subset of P with E € V[L][A9], and let E(*) be the dense
open set of conditions whose every k-step extension lies in E. We describe a series
of steps to “canonize” membership in E.

Global notation: E*)

For each n > 17 we define F,, to be the set of functions of two variables I’ such
that dom(F) = Ax= B for some A € U,,_; and B € U,,, and F(z,y) € Q(x(z), k(y))
for all (z,y) € dom(F): that is to say, F,, is the set of functions which can appear
as FP for some p € P. In this situation, for each z € A we define F(x,—) to be the
function with domain {y € B : & < y} given by F(z,—)(y) = F(z,y).

Global notation: F,,, F(x,—)

We define L,, to be the set of lower parts s of the form ¢17...x,_1. Whenn > 17
and s = qi7...Tn_1 € L, we let k(s) = k(z,,_1), and for x € P, A% we write s <
for x,—1 < z. By convention L7 is the singleton set containing the empty sequence,
() <z for all x € P,\,, and Q((),z) = Q*(k(x)) for all z € P A8,
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Global notation: L,

It easy to see that if L C L,, and (A;)seyr is an L-indexed family of sets in U,
then {x € PN\ :Vs€ Ls <2 = x € A,} € Uy,. In the sequel we use this form
of normality for U,, without comment.

Lemma 8.11. There exist functions (F)n>17 and sets (A%),>17 such that:

o A € U,.

e dom(F?) =A% |

o [Fu, .xu, € K.

o For every k, every n > 17, every x € AV, every lower part s € L,, with
s < x, and every condition ¢ € Q(k(s),k(x)), one of the two mutually

exclusive conditions holds:

< A0
x< A

— There is a condition in E¥) with an initial segment of the form
SAqAxAFS+1(xa _)‘
— There is no condition in E®) with an initial segment of the form
s7q T fan
where fni1 < Fp (2, ).
Proof. Fix n for the moment. Recall that j2 : V[L][A99] — N/ is the ultrapower
map computed from U, in V[L][A99], and j2 is a lift of j,. Let 2} = j,[\%], so that
U, ={X C P : 2L € j,(X)}. Observe that {t € j,(L,) : t < 21} = j,[L,] €
N,,.
The key point is now to observe that if F € F, i then j,(F)(zl,—) € N,,

na

and is a function which can be integrated in N,, with respect to j,(U,+1) to obtain
[Flu, xUps: € Qoo. For each k, each s € L, and each Q@ € Q™ (k(s), ) we define
in N a dense open set of conditions in Q, namely the set of conditions r € Qq
such that one of the following mutually exclusive conditions holds:

e There is a condition in j,(F®) with an initial segment of the form
()" Q7T fan
where [fri1], U,0) =7
e There is no condition in j,(E*)) with an initial segment of the form
jn(S)AQAfE;Afn-H
where [fn+1]jn(Un+1) <.

By the genericity of K over N;L4 and the distributivity of Q. in N;:‘, there
is 7, € K which is in the dense set defined above for every s and (). We choose
F} ., € Fpysuchthat [F) 1]u, xv,,, = Tn, that is [ju(F) 1) (@h, =i (Uniy) = Tn-

Working in V[L][A%9], let A! be the set of x € P,\Y such that for every k,
every s € L, with s < z, and every ¢ € Q(k(s), k(x)) one of the following mutually
exclusive conditions holds:
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1) There is a condition in E®) with an initial segment of the form
ST foa

where [fn+1]Un+1 = [F7,z+1(m7 _)]Un+1'
2,) There is no condition in E*) with initial segment of the form

$7q7 T fata
where [fn+1]Un+1 < [Frlz+1(x7 7)]Un+l'

By Lo§’s theorem A/, € U,.
For each k, © € A, s < z, and ¢ € Q(k(s),x(z)) such that 1, holds, let

no

B} 1(k,s,q,x) € Uy, 41 be such that there is a condition in E®) with initial segment

sTq a T Fy (@, =) | By (k,s,q, ).

Let B}, be the set of y € P,Q/\ZT’LH such that y € B}, ,(k, s, q,x) for every k, every
r € A, with 2 < y and every relevant s and ¢, so that By, | € U,41 by normality.

Now we choose AY € U, so that AY C A/ N B!, for every relevant n, let F0 =
F! 1 A%, x= A%, and verify that this satisfies the desired property. Let n > 17
and suppose that k < w, z € A%, s € L,, with s < z, and ¢ € Q(x(s),k(z)). By
construction x € A,.

Suppose first that 1, holds, so that we defined B ,,(k,s,q,z). By definition
dom(F0,, (#,-)) € dom(Fl,(2,-)) € {y € Byyy : & < g} € By (k,5,,2), 50
that Fy, (z,—) < Fl 1(z,—) | Bl 1(k,s,q,x) and hence there is a condition in
E®) with initial segment

sAq”\x’\FSH(x, —).
If alternatively 2, holds then a fortiori there is no condition in E*) with an initial
segment of the form
$TqTxT fora
where f11 < FJ (2, —), because in this case we have

[f7l+1]Un+1 S [Fr/H-l(x? _)]Un+1 = [Fr?-i-l(x? _)]Un+1 .

Lemma 8.12. There ezist functions (F}),~17 and sets (AL)n>17 such that:

o Al €U, with AL C AY.
o dom(F}) = AL | x= AL with F} < F?.
hd [F%]Un71><Un e K'

o For every k, every n > 17, every x € Al

n’

and every t € Ly with t =
s™q ", if there is a condition in E®) with initial segment

t~ F3+1($, *)
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then
t~F) (z,—) (A

n m—1»

F:;L)m>n+1 S E(k)v
where Ff = FY 1 {(y,2) € AL _| x AL 12 <y <z}

Proof. Fix n for the moment. For every k, z € A% s € L, with s < z, and
q € Q(k(s),k(x)), let t = s™¢"x (so that t € L,41) and if there is a condition
in E() with initial segment ¢ ~ FU, (z,—) then choose such a condition p**. To
lighten the notation let Ft:F = FP"" for m > n + 1.

For all k, t, and m, [FL¥]y,, ,xv, € K. Since K is generic over My, it fol-
lows from the closure properties of M and the distributivity of Q. that there
exists a sequence (GI)msn+1 such that G, € F.,, [Ghlu,._,xv,, € K and
[G™ v, xv,, < [FLFly,,_ xu,, for all t and k. Using closure and distributivity
again there exists a sequence (Gp,) such that G, € Fn,, [Gunlu,,_,xv, € K,
[Gnlu,, _1xv,, < [Fr(r)z]Um—1><Um7 and [Gplu,,_xvu,, < [GElu,._.xu, for all n >
m+ 1.

By taking appropriate diagonal intersections to define the sets Al and setting
Fl =G, | AL | x2 Al | we may arrange that for every k, n, t € L,. 1, m >n+1
and (y,z) € dom(F}) with t < y < 2, we have Fl(y,2) = Gu(y,2) < G (y,2) <
Ft*(y, z) and FL (y,z) < F9 (y, 2). To verify that this works, let t = s~¢" 2 € L1
with 2 € AL and assume that there is a condition in E®) with initial segment t —~
F?.(z,—), so that we chose p* € E®). The desired conclusion is immediate. [

Lemma 8.13. There ezist functions (F2),>17 and sets (A2),>17 such that:

o A2 €U, with A2 C AL.

o dom(F?) = A2 | x= A2 with F? < F}.

o v, .xu, € K.

e For every k, every n > 17, every (z,y) € dom(F2 ), every s € L,, with
s <z, and every q € Q(k(s), k(x)), one of the following mutually exclusive
statements holds:

— There is a condition in E® with initial segment
sTq e T F(n,y) YT Frya(y, —)-
— There is no condition in E®) with initial segment of the form
sTq e T YT Fya(y, )
where 7 < F2 1 (z,y).
Proof. As in the proof of Lemma [8.11} let x} = j,[A2]. Let 22 = j,(jns1)(z)) =
in[A2], and let y2_ ;= jn(jnt1)[in(Ao41)]. By a routine calculation U, x Uy41 =
{X C PXY x PoALy : (22,92,) € in(X)}. Tt is easy to see that in[L,] = {t €
in(Lyp):t <22}
Let k < w, s € Ly, and Q € QN+ (k(s), k). Working in N4 define the dense

open set of conditions r € Q., such that one of the following mutually exclusive
conditions holds:
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e There is a condition in i, (E®*)) with initial segment
LN~ 2 T~ 2 T ol 2
’Ln(S) Q T, T ynJrl ln(FnJrQ)(ynJrl? _)
e There is no condition in 4, (E*)) with initial segment of the form
. ~Ay—~ 27—~ 2 . 1 2
ZTL(S) Q z, T yn+1 Zn(Fn+2)(yn+17 _)
where 7 < r.

Using the genericity of K over N/t and the distributivity of Q. in this model,
we find r, € K which lies in this dense open set for every k, s, and @, and fix
Fly € Foy such that [F o, o = in(Fl) (@2, 32) = 1.

By Lo$’s theorem there is a set C,41 € U, X Upy1 such that for every k,
(x,y) € Cpy1, s € L, with s < z, and every g € Q(x(s), k(x)) one of the following
mutually exclusive conditions holds:

e There is a condition in F®) with initial segment
SAqAxAFrIL/-H(mv y)AyAFﬁ+2(yv -).

e There is no condition in E*) with an initial segment of the form

where 7 < F)/ 1 (z,y).

Now we choose F2 < F!/, F} and A2 C A} so that dom(F?2, ;) = A2 x~* A2, C

n —

Cp+1. Clearly this satisfies the requirements. O
Lemma 8.14. There ezist sets (A2),>17 such that:

o A3 U, with A3 C A2.
o For every k, every n > 17, and every t € Ly,11, one of the following mutu-
ally exclusive conditions holds:

— For everyy € AfH_l with t <y, there is a condition in E®) with initial
segment

tﬂFzﬂ(% y)AyAF3+2(ya _)'

— For every y € Af’lH with t < y, there is no condition in E*) with
initial segment

TR (2y) YTy, ).

Proof. For every k, n and t = s7¢"x € Ly41 partition {y € A2, : ¢t < y} as
follows:

o Al (t k) is the set of y € A2, such that ¢ < y and there is a condition
in E®*) with initial segment

tAFr%—i-l(xa y)AyAFs—&-Q(ya 7)'
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o A (t,k) is the set of y € A2 | such that t < y and there is no condition
in F®) with initial segment

T2 (z,y) YTy, —).

Let A%, (t,k) be whichever of the sets A, (¢, k) and A, (¢, k) lies in Uy,
and then let A2 | ={ye€ A2 | :VkVte Lyt <y = ye A3, (t,k)}. Clearly
this satisfies the requirements. O

To keep the indices in step, we define F3 = F2 | A3 | x= A3 .

Lemma 8.15. Let n > 17, let x € P\, and let .11 be a function such that

Apy1 = dom(fny1) € Uny1, where © < y and frni1(y) € Q(k(x),x(y)) for all
y € Ans1. Then there exist Bpy1 C Apgy and f),y with domain By such that:

® fros1(y) < fasa(y) for ally € Bnya.
o Forevery k and everyt € L,+1 of the form s™q " x, one of the two following
mutually exclusive conditions holds:

— For every y € Bni1, there is a condition in E®) with initial segment
(W) YT Fra(y, ).
— For every y € Bny1 and every v < f) . 1(y), there is no condition in
E®) with initial segment
Ty T Py, ).
Proof. Shrinking A, if necessary, we may assume that A, 1 C A> +1- Note that
Q(r(2),k(y)) is < AL, o(k(z))-distributive, and the set of elements of L, 1 of form
s7q "z is of cardinality at most A (k(x)). It follows that for each y € A,, 41 there

is 7 < fn41(y) such that for every k and every ¢ in L,,11 of the form s~ ¢~z one of
the two following mutually exclusive conditions holds:

1tx) There is a condition in E®) with initial segment
tﬂrﬂyAFs+2(ya _)'
24 1) There is no condition in E®) with an initial segment of the form

O

Ty Fa(y, )
where 7 < 7.
For each y € A,41 choose f; ,,(y) be some r < f,,1(y) as above. For each ¢
and k, let A,,41(t, k) be whichever of the sets {y € A,11 : frn+1(y) satisfies 1, 5}

and {y € Apt1 : fot1(y) satisfies 2,1} is measure one for U,4i. Let Bypq =
mt,k An-l—l(tak)' U

Remark 8.16. Lemma [8.15| is only useful for conditions of length n > 17, because
for a condition (fi7, A17, F1g) of length 17, fi7(x) € Q*(z) for all x € A;7. This
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explains why the following Lemma [8.17]is restricted to conditions of length greater
than 17.

Lemma 8.17 (Strong Prikry Lemma). For every dense open subset E of P and
every condition p € P of length greater than 17, there exist q a direct extension of p
and k € w such that ¢ € E®).

Proof. Let the condition p be {q17, 217 ... Tn—1, fn, An, Fnt1,...) where n > 17, and
as usual dom(f") = A4,, and dom(F,,) = Ap—1 X~ A,y for n < m < w.

Appealing to Lemma we refine f,, to f/ < f, with dom(f}) = A/, C A,
such that for every k and every ¢t € L,, with last entry z,,_1, one of the following
holds:

e For every y € A/ there is a condition in E®) with initial segment
) YT Fa(y ).

e For every y € A’ there is no condition in E®) with an initial segment of
the form

Ty F(y, —) where 7 < f1.(y).
We then form a direct extension p’ of p, where p’ has the form

<Q177x17 . --xnfhfrlwA{m 7/1+17 o >

with F),
p"” < p’ such that p” € E. Let p” be a k-step extension of p’. If K = 0 we are done
setting ¢ = p”, so assume that k > 0.

The condition p” has the form

< F,,, F3 for all m > n. Since E is a dense open set, there is a condition

" " Z " " "
<q17,$17 o Tn—1,490,Tn - - - Q15 Tm—1, fm7 Amv m—+1s >

where m = n + k > n. We note that:

o qp < fu(zn).

° xjeA?forn§j<m.
* fm SFgL(xm717_)'

o Fi/ < F?for j >m.

Claim 8.18. If p** is the condition

" 7 1 / I 1
<Q17>$17 s Tn—1, qnvxnan+1(xnv *)aAn+17 n+2>Fn+37 .. >

then p** € E(=1),
Proof. We will show by induction on i that for 0 <1 < k — 1, if p* is the condition
<q/1/77 Ti7 ... q:‘:l—i—l’ Tm—i—1, Fyln—i(x’m—i—la _)a A{m—ia 1'/n—i+17 . >

then p* € E(®.
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(Base case) i = 0: Since f/! < F! (m—-1) < F2 (m—1) and z,,,_1 € A _, | it follows

from Lemma [8.11] that there is a condition in £ with initial segment

<qI1/77x17 v qu,fla $m71,F791(9Cm717 _)>

Since E is open, it follows from the choice of the functions Fj and Lemma that

P = (a7 A1y T, Fyp (Tm—1), A1 Frpy15- ) € E = EO),
(Successor step) i = ip + 1 for 0 < iy < k — 1. By the induction hypothesis if p*~ is
the condition

" " / / ’
<q17a T17 -+ - Qpy—iy Tm—i; Fm—i-‘,—l(mm—h _)7 m—i+ 1 'm—it+2 -+ >

then p*~ € B0,
Since ¢, < Fyi(Tm—ic1,m—i) < Fpo(Tm—io1,Tm—i), Tm—i—1 € A?n_@_la
and z,,_; € A2 it follows from Lemma [8.13[ that there is a condition in E¢—1

m—1)

with initial segment
" . F2 . . . Fl X
<Q177 17+ - Tm—i—1, mfi(xmfzfla xmfz)a Tm—iy m7i+1(xm727 _)>
Since E(—1 is open there is a condition in F~1 with initial segment
1" 2 2
<Q177 17+ - Tm—i—1, mei(xm7i717 ./L'mfi), Tm—iy Fm7i+1(xm7i7 _)>

Since x,,_; € A3 .. it follows from Lemma that for every y € A3 . with

m—i? m—1

Tm_i—1 <y, there is a condition in E¢~1) with initial segment
(@217 Tmmim1, B i(@mic1,9), 4, F2 i1 ().
It follows from the choice of the functions F]' that for every such y
<Q/1/77 17 -+ - Tm—i—1, F&fi(fﬂm—i—h y), Y, Fr/nfi+1(y)7 ;nfiJrla 7317142’ .- >
e 0D,
So every 1-step extension of p* lies in E~1 so by definition p* € E(®), O

Since ¢ < fI(xy), it follows from the choice of f], that for every y € A}, there
is a condition in E*~1) with initial segment

<q/1/77 17 .- Tp—1, f'rlz(y)7 Y, FS+1(y7 _)>
Let g be the condition
(q'1/7,x17 <o Tn—1, frlL7A/n7F7/L+17 .- >

By the choice of the functions F ]’ and Lemma it follows that ¢~y € E*+—1
for all y € A’ | that is to say ¢ € BE*). O

Lemma 8.19 (Prikry Lemma). Let b be a Boolean value for P and let p € P be a
condition of length greater than 18. Then there is s <* p such that s decides b.
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Proof. Let E be the dense open set of conditions which decide b and let ¢ <* p
and k be as in the conclusion of Lemma [8.17} For each appropriate k-tuple &, define
F(Z)=0if ¢~ Z |- —band F(Z) = 1if ¢~ & IF b. By Lemmal[7.15| we may find r <* ¢
such that all k-step extensions of r decide b the same way: since every extension of
r is compatible with some k-step extension, r decides b. O

Recall from the end of Section [B:1] that given a condition

P =(Q17: %17, - Gn—1,Tn—1, fr, An, Frg1, Ang1, Fyo,..)

and m < n — 1, we factored P | p as Piow | po X Phigh 4 p1, where Pigp is defined
in a very similar way to P with the associated Prikry sequence starting at 1.
The proofs of Lemmas [8:17] and [8.19] can easily be adapted to prove the parallel
assertions for Ppigh.

Lemma 8.20. Let p, m, Piow, Phigh, o and p1 be as above. Let T = k(xl,) and
A=Ab (7). Then:

(1) Forcing with Pyign | p1 adds no new bounded subsets of \.
(2) Forcing with P | p, all bounded subsets of X are in the intermediate exten-
ston by Pioy -

Proof. To show the first claim, let v < A and let X name a subset of . Let p’ be a
condition in Ppign | p1, and let

p/ = <q;n+17xfm+17 s q;ﬂ—l’x;ﬂ—h f?lz’? Aiﬂv 7/1/-',-17 ’/rL/+1’ FT/L/+2’ .- '>v
where z/; = z; for m < j <n.

Let 7; = r(z}) for m < j < n'. For each a < v we will define a subset D, of
Q7 Tmt1) X [ s 1< jenr Q(75-1,75) X Q75 —1, k) as follows: D, is the set of tuples

(@ms1s-- -+ a1, q) such that there is a direct extension p” <* p’ deciding o € X
where

17" 7 1 " ! " " " " "
p = <qm+1’xm+1’ sl 1, X1 It An’> n’+17An’+17 n'+42y - '>7

and g, = [f7)].

Clearly D, is open. It follows by Lemma for Ppign that D, is dense be-
low (qp,41,---@Qy_1,[frs]) for each a. By Lemma Na<y Da is dense below
(@rns1s -+ Q15 [fr])s so we find (qr 15+ @1 @) < (@ngrs -+ - Q15 [f70]) With

(@mg1s - G—1:0n) € Nacy Da-
For each a < 7, choose a condition

a _ /N ’ " ! a a « «a «a
P —<qm+17l'm+1,...qn/_17$n/_1,fn/,An/, n/+1,An/+17Fn/+27...>

witnessing that (q;,,1,...q, _1,[fy]) € Da. Since [fo] = ¢, for each a, by &-
completeness there is a large set where all the functions f;; agree, so refining their
domains we may as well assume that there is a fixed function f;, with f2 = f*

= fr for
all a < 7.
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For each j > n' and a < v, [F}]y;_,xv, € K. Since K is generic over a highly
closed inner model, we may find F; for j > n such that [F}]y,_,xv, € K and
[F7] < [F}] for all a. Since v < &, by k-completeness we may reﬁne the domains
of the functions F;‘ and assume that F;‘ < Fja for all a. In summary we have
constructed a condition

p* = <q£:z+1v x;n-i-lﬁ tee qg’—lv xfn/—l’ f’;:/7 A:L" F:;/-‘rl’ A:z/—i-lv F':/—i-27 N >
which refines p’ and decides a € X for all o < 7.

For the second claim we observe that |Pi,w| < A, so that all Pj,,-names for
bounded subsets of A\ are coded by bounded subsets of A\, and we are done by the
factorization of P | p and the first claim. O

The following corollary is immediate.

Corollary 8.21. Let G be P-generic and let (t; : 17 < j < w) be the Prikry
sequence added by G. Let v < Kk, and let m > 17 be least such that v <
Ao (Tm), and let X € P(y)VIHIAYICL Then X € V[L]|[Go] where Gy is the
Q*(117) X [ 17« j<m Q(@j—1,75)-generic filter induced by G.

For the purposes of the analysis in Section [0} we record some more refined
information about how much of the various generic objects we need to define some
bounded subsets of . We remind the reader that Q(r, 7*) is < Al ,(7)-distributive,
and that only the A} component of 1°(7) adds any subsets of A% (7). The proof of
the following easy Lemma uses these facts and Corollary

Lemma 8.22. In the generic extension by P:

o If T and T* are successive Prikry points, the cardinals between T and T* are
A4() for j < w+3 and Ab(7) for k < w+4. If E is the generic object
added by the interleaved forcing between Prikry points up to T, and Q(1,7*)
is the generic object added by the forcing between T and 7*, then:

All bounded subsets of Ab (1) lie in V% (7)[E][Ac(T) x J§(T)]-

All subsets of AL, (1) lie in VI (7)[E][J5(T)][Ac() x AS(T)].

All bounded subsets of A% (7*) lie in VL | 7*][E][Q(r, 7*)][A4(7*)].

All subsets of A2 ,(T*) lie in

VIL 1 TBNQ(T, L () T A ya (T9)][Afp, 1y (7%) + Ug (%) + Sg (7).

o If T is the first Prikry point then the infinite cardinals below T are w, p* =

w1, 0 = wy. If Q*(7) is the generic object added by the first interleaved
forcing then:

— All bounded subsets of A%(7) lie in V[L | T][Q*(7)][A4(7)].
— All subsets of AY 1 (T) lie in

VIL 7@ (ML (7) T AL 4o (][ Afp 1y (7) * UG (7)  S5(7)]-

Lemma 8.23. x = (Ry2)VIEIAYIP] gng (\D)T = (i) VILIAZIP],
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Proof. Tt follows immediately from that x = N2 in V[L][A99][P]. By Lemma
(AL)* is a cardinal in this model. An easy density argument shows that A\ =
U,>17 &n where the z,,’s are the supercompact Prikry points added by P, and it
follows immediately that A’ is collapsed to have cardinality » in V[L][A%][P]. O

The following Lemma gives an analysis of names for sequences of ordinals, in a
similar spirit to Lemma and Corollary

Lemma 8.24. Let p € P, where

= <q17,$177 o qn—1,Tn—1, fn7An7Fn+17An+l7Fn+2a .. >

Let 7; = r(x;), let v < A 5(T—1), and let f be a P-name for a function from v to

ON. Let Piow = Q*(717) % H17<j<n Q(xj—1,2;), and let po = (q17,- .- qn—1). Then
there are a direct extension

p/ = <q177$177 oo qn—1,Tn—-1, f'rluA'/nv fr/1+17A;q,+17 72+27 .. >
of p, conditions (p§)a<y i Piow and natural numbers (ko)a<~ such that for all
a <7y

® Py < Do-
o Ifpg = (g%, ...q%_1), then every kq-step extension of

(03

p = <q1a77xl77"'qg—lﬂxn—lvfT/mA;L?F7/L+17A;L+1?FT/L+27'">
decides f(c).

Proof. For each a, let D, be the set of ¢ € Q(7,,—1, k) such that there exist a direct
extension p of p with [ff] = ¢ and k¥ < w such that every k-step extension of p
decides f(a). Clearly D, is open, and by Lemma D,, is dense below [f,]. Since
v <AL, o(Tao1) and Q(7,—1, k) is < AL ,(7,,—1)-distributive, we may find g < [f,,]
with ¢ € (<, Da-

For each a < v we choose p* <* p witnessing that ¢ € D,. Arguing exactly as
in the proof of Lemma[8.:20, we may assume that all the entries of p* past z,,_; are
independent of «. This defines a suitable condition p’. O

9. The tree property below N,z in the final model

We now establish the various instances of the tree property below N 2 needed to
prove Theorem [I.I] The instances above N,z require different techniques and will
be discussed in Section

Let (r; : 17 <4 < w) be the Prikry-sequence added by P, that is 7; = k(x;) in
the notation of Section [8] As we noted in Lemma it follows from the Prikry
lemma that bounded subsets of x in the final model live in extensions of V[L] by
posets of the form Q*(717) X Q(717,718) X ... X Q(7;, Ty41) for some i < w.

Global notation: 7;
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The general plan is based on the fact that all the cardinals of interest are ei-
ther double successor cardinals or successors of singular cardinals. To handle the
double successors we will use the fact that the forcing posets Q*(7), I°(7;) and
Jo(7;) * Qo(7i, Ti+1) establish instances of the tree property at all the cardinals
which concern us, but only in submodels of our final model. We will use Lemma
to show that these instances of the tree property persist into our final model.
To handle the successors of singulars we will exploit the fact that all the cardi-
nals of concern have the form A\, where A = A%’(7;), and that it is forced over
V by Laux(p, A) X Raux(A) that the tree property holds at A,41: the extension by
Laux (9, A) X Raux (A) collapses so many cardinals that A\, 11 = RN,41, the point is that
this extension absorbs enough of our final model to argue that the tree property
also holds at A,41 in our final model.

Let 7; and 7;41 be successive Prikry points. To lighten notation we make the
following definitions:

e T =T
o TN =Tt

o o5 = AL(T), o7, = AL (7).

o o = AG(r), ol = A (7)

We will discuss the cardinals in groups, roughly corresponding to the various
instances of the A x U x S construction which are used below x. Recall that one
instance of this construction was done entirely by the 1°(7) component of LL(7) at
stage 7 with cardinal parameters g = 07, p1 = 0%, 4, i = 0%, 9, Hntz = O
for n < w. Another “two -phase” version was done partly by the J¢(7) component
of L() and partly by Q(r,7*) with cardinal parameters po = ob7, p1 = ob,4,
Yo = UfJH, U3 = 03+3, tnta = 02" for n < w. When 7 is the first Prikry point yet
a third version was done partly by the construction of V' and partly by the forcing
Q*(7), this time with cardinal parameters po = w, p1 = p*, po = 0, pz4n = o2 for
n <w.

We let E = Q*(717) X [[17<p<; Q(7k, T +1), so that E accounts for the forcing
posets interleaved between the Prikry points up to and including 7. Let E be the
E-generic object added to V[L] by P.

9.1. Group I: 62 ,, 00 5, 0% forn < w

Recall from Section |§| that L(7) = L°(7) * I°(7) * (Ac(7) x J°(7)) and is generic
over V[L | 7]. Recall also from Section that Q(7,7*) € VL | 7*][A§(7*)] and
adds Q(7,7) = [[;.5 Qi(7,7*) which is generic over V[L][E]. The generic objects
Je(7) and Qo(7,7*) combine as described in Section The cardinal parameters
ate g = O, fi1 = 1. i = o i = Oy s — 0% for 1 <

To help the reader keep track, here is a picture of some the most relevant cardi-
nals for this group under the various names that they go by in the proof . Cardinals
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in each row are equal, cardinals in each column are strictly increasing.

Af(r7) of™ ps

AG(T™) 05" pa

AZ+3(T) Uf;+3 H3
A2z+2(7) Ug+2 H2

AZ-H(T) ‘73+1 1251
Alf7(7) Ulf7 Ho

Ti T

As we noted in Lemma, above, all the relevant trees for cardinals in Group
I exist in the model W; = V[L | 7*][A4(7)][E][Q(r,7*)]. So to cover the cardinals
in Group I it will suffice to prove:

Lemma 9.1. For alln < w, fin12 has the tree property in Wi.
Proof. Expanding L | 7%,
Wi = V@A) x FOIL T ()[4SO ER( ).

With a view to rearranging W; we note that:

e By similar considerations as for Q(r,7*), E € V!(7)[A}(7)].

o A1) € V(7).

o Jo(1) € VI¥i(7).

e Q(r,7) € Vlbl:(r)[Jc(T)].

o Qu(r,7) € VI(r)[Ac(r) x JUTL T (7, 7)][AG(7*)].

o Qu(r,7) € V() [I°(7)][Ac(T) x JUDL T (7, 7%)].

So we may rearrange W as

VD) E]T(r)][Ac(OIL T (7, 7)][Qo (7, 7%) x Q2(7, 7*)][AG(7") * Qu (7, 7).

By the definition of Q;(7,7*), we may rearrange A4(7*) * Q1 (7, 7*) as A} (7%)
which is generic for AY (7*) = Add" (0§, olt ). We note that o7 = pp; in our list
of cardinal parameters.

So Wy is

VI OB)T AL T (7, 7)[Qo(r, 7*) x Qa(7, T)][AY (77)].

(r,7
(r,7
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Since A} (7*) € V we may rearrange Wy as
VBT (m)Qo (T, ™NAY (TNA(TIL T (7, 7)][Q2(r, 7).

Recalling that Q2(7,7*) adds a term generic T'(7,7*) such that A.(7) x T(7,7%)
projects to A.(7) * L | (7,7*), we may rearrange W7 as

V()[BT (P)][Qo (7, TAY (T)][Ae(7) x T(7, 7],
and then as
VU T)[T(T) * Qo(r, T[T (7, 7)][AY (7)][Ae(7)][E]

We recall that J¢(7) = (A§(7) * U§(7) * S§(7)) * (A§(7) * U(7) * S§(7)), while
Qo(7, 7*) adds A[C27w)(7', ), U[‘é,w)(T, 7*) and S[C27w)(7', 7*). The reader is advised to
keep in mind that u; for j < 3 depends on 7 while p; for 7 > 4 depends on 7%, so
there is a “seam” between ps and py.

Bearing in mind that Af; ) (7,7%) * U[CLW)(T, ) % S[CLM)(T, 7*) is defined in the
extension by J§(7) = A§(7) = U§(7) * S§(7), we reorganize J°(7) % Qo(7,7*) as

J§(T) * (A[Cl,w) (1, 7%) % U[Cl,w)(T, T*) % Sﬁw)(T,T*)). So Wi is

VD) IS (7)%(Afy o) (7, 75U ) (7, 7) %S o) (r, TONT (7, 7)][AG ()] [Ae(T)][E]-

The general idea is now to use the indestructibility guaranteed by Lemma
but there are a couple of obstacles:

o Since Ay (7, 77) # Uy ) (7,77) % Sf; ) (7,7") was defined in an extension
by A§(7) * U§(7) * S§(7), we need to treat po separately.

e For n = 2, T(7,7*) x A} (7*) x A.(7) x E does not fit perfectly into the
hypotheses of Lemma as applied to p4 and A[Cl’w)(T, ) * U[Cl)w)(r, T*) %

S[clm (1,7*), and extra arguments are required.

With a view to applying Lemma to Afy (7, 77) # Ufy ) (7, 77) % Sf (7. 77)
in V(7)[J§(7)], recall that:

e F is generic for a poset E € V(1) where |E| < ppo.

o A.(7) is generic for a Cohen poset adding ps subsets of pg, defined in
V(7).

e AV (7*) is generic for a Cohen poset adding many subsets of ug;, defined
in V.

o T(7,7*) is generic for a < ps-directed closed poset T(7,7*) defined in
Vi) [Je(T)], with pug < |T(T,7%)| < pa.

. A[CQM) (1,7*) is a product of Cohen posets defined in V.

e The cardinals p; for j > 3 are indestructibly supercompact in V', and
¢ is an indestructible Laver function there. They remain supercompact
in VW (7)[J§(7)], and Af () % TR (7, 7%) % SF, ) (7, 7%) was defined
using a Laver function derived from ¢.

o VW(7)[J§(7)], is an extension of V by a poset of size po.
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Now we verify that p,42 has the tree property in Wj for all n. For most n
we can directly apply Lemma to Afl’w)(T, T*) % Uﬁ,w)(T? T*) % Sﬁ’w)(T, 7*) in
VI()[J§(T)]. In this context Vger = VW (7)[J§(7)], and Vign = V. The reader is
warned that since we are working with indices in the interval [1,w), g1 in our
current context plays the role of u in Lemma In most cases, our appeals to
Lemma are justified by Lemma

The proof involves various auxiliary models, which we have sought to name in
a consistent way. The models W} where x = 14,141,441 are submodels of W; which
isolate some families of trees, and W7* is a generic extension of W} obtained by
some form of quotient to term forcing.

Claim 9.2. p, o has the tree property in Wy for all n > 21.

Proof. Use Lemma {4.5{ with D = AY (7*), Ds™all = T(7,7%) x A.(7) x E, and the
other factors trivial. The hypotheses of Lemma [L.5] are satisfied by appealing to
Lemma where we note that A} (7*) is a Cohen poset defined in V (which is
Vinn) adding subsets of o1, so that it is a reasonable value for DO. OJ

Claim 9.3. p,42 has the tree property in Wy for n = 20

Proof. Use Lemma with D! = AY (7%), D™l = T (7, 7%) x A.(7) x E, and the
other factors trivial. Again we use Lemma to justify the appeal to Lemma [4.5
where this time AY (7*) is a Cohen poset defined in V adding subsets of p, 1, so

that it is a reasonable value for D?!.
O

Claim 9.4. p, 42 has the tree property in Wi for 3 <n < 19.

Proof. Use Lemma {4.5{ with D? = AY (7%), D™all = T(7,7%) x A.(7) x E, and the
other factors trivial. In this range of values of n, AY (7*) is < fi,,42-directed closed
forcing defined in V, hence it is a reasonable value for D?. O

Claim 9.5. p, 2 has the tree property in Wy for n = 2.

Proof. This case is slightly harder because we need the factor T'(r,7*), but this
doesn’t fit smoothly into Lemma [£.5] We will use the mutual genericity idea from
Remark .11l

All the relevant py-trees lie in the model W} = Vlbi(T)[Jg(T)][At[:l,w)(T, ) *
Ul o) (7. 77) % Sf o (7, 7)][E X Ae(7) x T(7,77)]. Let T € W} be a pug-tree.

Now while [E| < o (so E would a reasonable value for D*™a) " and A.(7) is
Cohen forcing defined in a model between Viy, and Vg adding Cohen subsets to
o (so would be a reasonable value for D°), the poset T(7,7*) does not fit into our
indestructibility scheme.

Proceeding exactly as in the proof of Lemma |4.5] we construct a generic em-
bedding j with critical point yy in an extension W}[P;_3]. Since |T(7, 7*)| < p4, no
additional forcing is needed to handle T'(r,7*). Using j we obtain a branch b of the
tree T with b € W}[P;_3], and aim to show that b € W}.
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To this end we force over Wi[P;_3] with a “quotient to term” forcing QTT to
remove the dependence of T'(7,7*) on S¢, obtaining a generic object T'T for the term
forcing poset TT = AV (DI (AT (1)U (7)] (S§(1), T(7,7*)) such that S{(7) x T'T
induces S§(7) « T'(1,7*).

Note that:

(1) TT is generic for the term forcing poset TT which is < ps-closed in the
model V% (7)[J§(T)][AS(T) * UL(7)], and by routine calculations this term
poset is still < ps-distributive in Vlbi(T)[JS(T)][A[CLw)(T, TF)#Uf (7. 77)
S[Cl,w)(T’ )]

(2) It follows from Lemma that QTT is defined and < pa-closed in
the model Vlbi(r)[A[COJ](T) # Uy 1) (7) = Sfy ) (D][T(7,77)], and by the
usual distributivity arguments QTT remains < pus-closed in the model
V() [AS(r, 7%) * US(T,7%) * S¢(7, 7)|[T (7, 7))

Let Wi* = WEQTT) = V(1) [A¢(r, 7*) x U(1, 7*) % S¢(7, 7)][E X A (7) x TT],
so that b € W*[Py_3]. We now proceed to argue that b € W;* by a similar line of
argument to that in Lemma [{.5

Let MO = WIZ*, M1 = MO[PQb]’ M2 = Ml[Pla X Plb X Pg], M3 = MQ[PQa]. The
arguments that b € My} =— b€ My and b € M3 — b € M, work exactly as
before. To complete the argument we need only to argue to argue that My is an
extension of M; by “formerly < ps-closed” forcing in the sense of Fact

Arguing as before, Py, x Py, x P3 is < psz-closed in VI (7)[A§(T) * U§(7) *
SGMIAf ) (1, 77) # Uf oy (7,77) % ST, 77) | [13, )], and it remains < piz-closed
in M_ = VW(7r)[A5(7) x US(1) * SS(T)][A[CLW)(T,T*) * U[CLw)('r, 7*) % ST, %) |
(s, p)[TT). Now My = M_[S°(7,7%) [ [p2,p3) x E x Ae(7)] and My =
M_[Pop][S€(7,7*) | [u2,n3) X E x A.(7)]. Since S¢(7,7%) | [pe,pu3) X E x Ac(7)
is ps-cc in M_[Pyypl, P1, X Ppp x Py is formerly < psz-closed, and we see that
be My = be M.

We have shown that b € My = W* = WEQTT). Since QT'T is mutually generic
with P;_3 and b € WE[Py_3], b € W} and we are done. O

Claim 9.6. p, 2 has the tree property in Wy for n = 1.

Proof. Again this case needs a slightly different argument, using some of the in-
gredients from the proof of Claim [9.5] but appealing directly to Lemma [£.5 and
avoiding the use of mutual genericity.

As in the preceding case, all the relevant us-trees lie in the model W} =
VW (A (T, 7))« US(1,7*) * S¢(7, 7)][E x Ae(T) x T(1,7*)], and the troublesome
factor is T'(1,7*). Let T € W' be a us-tree.

Exactly as in the proof of Claim we force over W with the quotient to term
forcing QTT to obtain a term forcing generic TT such that S§(7,7*) x T'T induces
S¢(r, 7*)« T (7, 7). Since T'T is generic for a term forcing poset TT which is defined
and < ps-directed closed in Vlbi(T)[A‘[:O,l] (7, 7%) % U 4 (7, 77) * S§(7,77)], we may
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appeal to Lemma ﬁ for A7y (7, 7%) * Ufy ) (7,7%) S, ) (7, 7%) with Dsmall = B
DY = A.(7), and D® = TT. As before, Lemma ensures that we satisfied the
hypotheses of Lemma We conclude that g has the tree property in W [QTT],
so that our tree has a branch b in W [QTT.

Since QTT is < po-closed in Vi(7)[AS(r,7%) x Uc(r,7*) * S¢(1,7")][T (T, 7*)],
and E x A.(7) is pa-cc in this model, QTT is formerly < po-closed in W}* and so
b€ W by Fact O

Claim 9.7. p,y2 has the tree property in Wy for n = 0.

Proof. Routine calculation shows that all the relevant po-trees lie in Wi, where
Wit = V() [J()][As(r,7*) x E x A.(7)]. The key point is that Affy (1, 77) %
U§(7) * S§(7) is a forcing poset which is in the scope of Lemma

We need to extend W before applying Lemma Let

TBC = AV (AU (85 (r), B (7) x C5(7)),

so by Lemma TBC is < po-directed closed in VI (7)[AS(T) x U§(T)].

Forcing over V% (7)[.J¢(7)] with an appropriate quotient forcing QTT,, we may
obtain an extension of the form V(7 T)[Afp 1y(7) = UG (1) * S5(7)][Bf (7) x CF(7)]-
Since A§(7) * U§(7) = S§(7) is the first stage of an A« U % S construction defined in
VIi(7)[Jg], it follows from Remarkthat QTT, is < pi-closed in VP (7)[J¢(7)].
Forcing with another quotient forcing QTT;, we may further extend to obtain a
model V! (7)[A¢ f0.1)(7) = UG (7) = S§(T)][T BC]: by Lemma we see that QTT; is
< py-closed in VW (7)[J§(T )][ $(1) x C§(7)]. By the distributivity of A{(7), QTT,
is < py-closed in VI(7)[AS 0,17 (7) = Ug (7) * S§(7)][Bf (1) x CL(7)], so that if we set
QTT = QTT, * QTT; then QTT is < ju;-closed in VP (7)[J¢(T)].

Forcing with QTT over W, we get

Wi = V() [J(7)][A5(7,77) x E x Ac(7)]
CW™ = V() [Af) o (1, 7%) % Ug (1) % S§()][TBC x E x Ac(7)].

Now we use Lemma to show that po has the tree property in Wi, To save
the reader some work we record how the parameters from that Lemma should be
set:

n is 0.

1 is pa, so that A [ nis AG(7) x AS(T) x AS(7, 7).
Vinn 1s V.

Vdef is Vlbi(’r).

Dsmall is B,

D? is TBC.

DO is A (7).



September 17, 2025 16:29 treepaper jml

94 J. Cummings, Y. Hayut, M .Magidor, I. Neeman, D. Sinapova & S. Unger

We claim that the quotient-to-term forcing which we used to obtain W¥* from
Wit is formerly < pi-closed in W%, To see this note that W}% is obtained from
Vi (r)[Je(T)] by adding A§(7,7*) (which is generic for highly distributive forcing
and preserves the closure) and then F x A.(7) (which is generic for p;-cc forcing).
It follows that s has the tree property in Wi, O

This concludes the proof of Lemma [9.1] O

9.2. Group II: T2 O'z for n < w.

Recall from Section [6|that L(7) = L(7)+ I°(7) % (A () x J¢(7)) and is generic over
V[L | 7). Here L®(7) is making the cardinals A’ (7) = 0% for n < w indestructible,
and I°(7) is a forcing of the form A*UxS defined in V[L | 7][L?(7)] with parameters
set as follows: pg = 07, gy = 08,1, p2 = 0%, 5, P34n = 0. The poset I°(7) uses
the indestructible Laver function added by L°(7).

A(r) o}
AS(T) 08 H3
Afys ) OGt2 M2

A7 (1) ofr o

Ti T

By the design of I°(7), all the cardinals in Group II have the tree property in
the model V[L | 7][L®(7)][I?(7)]. As in Group I, to see that the cardinals in Group
IT have the tree property in our final model V[L][A99][P] we have to account for

various generic objects added by L [ [r,k) and by P. The objects of potential
concern are:

e FE which we recall is added by the interleaved posets between Prikry points
up to and including 7. This object is slightly more troublesome in this group
because it is generic for forcing of size yz = o 5.

o A.(1) x J¢(7), where A.(7) is adding subsets to ob; = pgg and J¢(7) is
doing the first two steps of an A+*Ux*S construction whose first few cardinal
parameters are 057, o, , 05, since we only care about trees up to o2,
the only relevant part of J(7) is A§.

e Q(r,7*), which we can safely ignore since it is generic for o?-distributive
forcing.
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So all the relevant trees lie in the model Wiy = VW (7)[E][A () x A§(T)].
We need a slightly finer analysis of E:

e If 7 is not the first Prikry point, let 7= be the preceding Prikry point. Then
E = Ey x Q(7~,7) where Ej represents the product of interleaved forcing
posets up to 7. It is easy to see that Eg € V[L | 7] and |Eq| < 7 < po.
Furthermore Q(77,7) = [[; .4 Qi(77,7) where:

— Qo(77, 7) is defined in V(7 7)][J¢(77)] (which is a submodel of V[L |
7]) and Qo(7~,7) is generic for a version of A x U xS forcing of size
0%, 1 = py defined in V' (77)][J¢(77)]. Appealing to Lemma in
Vi (7)][J¢(77)] the poset Qo(7~, 7) embeds into a two-step iteration
where the first step is < p-distributive and the second step is p;-cc.

— Qi(77,7) is a “quotient to term” forcing defined in V[L | 7][A$(7)], re-
fining A8(7) to AY (1) which is a generic object for Add" (0%, 0l.io) =
Add" (o, p2), so that VL | 7][A§(1)][Q1(7,7%)] = V(L | ) x Ay (7)].

— Q2(77,7) is generic for a forcing of cardinality 7 < pg, defined in
VIL T 7).

e If 7 is the first Prikry point then £ =[], _, Q;(7) where:

— Q§(7) is again generic for a version of AxUxS forcing of size p;, which
embeds into an iteration where < pi-distributive forcing is followed
by p1-cc forcing.

— Q3i(7) is generic for a quotient-to-term forcing defined exactly as
above.

— @5 (7) is generic for Coll(w, p), where we note that p < 7 < pg.

In summary, many of the factors in E are forcing posets which lie in V**(7) and
have size less than pyg.

Now we argue that all the cardinals in Group II have the tree property in Wi;.
We mostly do this by applying Lemma to I°(7), with Vip, = Vaer = V(7). As
before, most appeals to Lemma |4.5| are justified by Lemma [4.9

Lemma 9.8. For alln < w, fin42 has the tree property in Wry.
Proof. As before we break the proof into several claims.
Claim 9.9. p,12 has the tree property in Wrr for n > 20.

Proof. Appeal to Lemma with Dsmell = E, D° = A.(7) x A§(7), and the re-
maining factors trivial. O

Claim 9.10. p,12 has the tree property in Wiy for n = 19.

Proof. Appeal to Lemma with D™l = B D! = A.(7) x A§(7), remaining
factors trivial. O

Claim 9.11. py,o has the tree property in Wiy for 2 <n < 18.
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Proof. Appeal to Lemma with D*ma! = E D? = A.(7) x A§(7), remaining
factors trivial. O

Before we handle the last two cases, we need to discuss some issues involving
the Qo and @Q; factors in the posets Q(7—, 7) and Q*(7).

o The Qo factor: Let Qo = Qf(r) if 7 is the first Prikry point, and
Qo = Qo(77, 7) otherwise. In either case Qg is defined in some model V[L/]
intermediate between V and V[L | 7]. By the analysis from Section in
V[L'] we may write Qg as the projection of a two-step iteration QJ's* x Qg°,
where:

— Q" * QF°| = 1 = 0841

— For all large n < w, Q3! is the projection of some ¢2-closed forcing
poset (so that QFst is < y;-distributive).

— It is forced by Q3 that Q5 is the union of o¢ filters, so that it is

p1-cc in any outer model of V[L/][Q3!] where p; is still a cardinal.

e The Qg factor: Let Q; = Qj(r) if 7 is the first Prikry point, and Q; =
Q1 (77, 7) otherwise. In either case Q; is a quotient to term poset defined in
VL | 7][A4(7)], refining A4(7) to AY (7) which is generic for Add" (uo, p2):
in the notation from Lemma PisL [ 7 and Q is A}(7). We would like
to set D° equal to Q; but there are some obstacles:

— The definition of the poset involves Ag(T), 0 it is not in Vier (which
is VL | 7][Lb(7)]) and thus hypothesis @ of Lemma is definitely
not satisfied.

— Hypothesesandrequire that D° and some related posets have quite
arobust chain condition, which in our context should be the p;-cc since
we plan to deal with us as well as uz. We need to verify versions of
these hypotheses, appropriately modified to handle the dependence on
Ab (1), for the poset Q.

The cure for the first of these issues is to modify the statement and
proof of Lemma to permit some dependence of D° on A. In the version

appropriate for Claim (resp.[9.13)) we modify the hypotheses concerning
DY as follows:

(1) D% € Viyer[An_1] (vesp. DO € Vier[An]), and DO is py,11-Knaster in
Vdef [A * U % S] [D1’2’3][P2b].

(2) For any W' which is an extension of W[Py] by a forcing which is
< pnyi-closed in Vier[A x U % S | [tna1, e)][D?], and any j as in
hypotheses [6] of Lemma if Py, = j(A,_1 xD%)/j[A,_1 x D))
(resp. Pa, = j(A,, x DY)/j[A, x D)) then Py, is j1,,+1-Knaster in W'.

It is straightforward to modify the proof of Lemma for these slightly
more general hypotheses.



September 17, 2025 16:29 treepaper jml

The tree property on long intervals of reqular cardinals 97

In our specific context we can use the following observations to satisfy
these hypotheses:

— By Lemmas [2:43] and 2:42] to verify that Q; is ui-Knaster in some
outer model it is sufficient to verify that AY (7) = Add" (uo, p2) is
p1-Knaster in the same model.

— By Lemma [2.41} A}(7) * Q is equivalent to AY () in VL | 7], so as
for Q; it is enough to check that AY (7) is u;-Knaster.

— |Ab(7) % Q1| = p2, so that in the case n = 1 this poset is fixed by j and
the technical hypothesis involving stretching by j is vacuously true.

— Inthe case n = 0, j(A(7)*Q1)/j[A§(7)*Q1) is easily seen to be equiv-
alent to AddY (1o, 7(pi2) \ p12), so that again verifying p1-Knasterness
amounts to verifying this property for a Cohen poset adding subsets
of pp and defined in V.

Claim 9.12. py,o has the tree property in Wrr forn = 1.

Proof. Appeal to Lemma (modified as above to permit D° to depend on A)
where D? is A, (1) x A§(7), DY is Q1 (77, 7) or Q}(7), and D*™*!! is the product of
the remaining factors in E. O

Claim 9.13. py,42 has the tree property in Wrr for n = 0.

Proof. Appeal to Lemma [4.5]in the more general version from Remark Here
D? = A.(7) x A§(7), the factor D from Remark is Qo(77,7) or Qj(7), DY is
Q1(77,7) or Qi(7), and D! is the product of the remaining factors in E.

To see that this is legitimate we need to verify that the hypotheses from Remark
are satisfied. Since D! is trivial and |D°| < po, Pa, and Py, are Cohen posets
computed in Vyer adding subsets to pg and p; respectively, so that by the usual ar-
guments we can establish the necessary Knasterness and distributivity hypotheses.
As we already discussed, Qf° has a very robust form of p4-cc, so it remains to show
that Q4 is < py-distributive in VP (7)[Ac(7) x A§(7)].

Since |Q3t| = 11 and A.(7) x A§(7) is generic for highly distributive forcing, it
is enough to verify the distributivity in V!*(7). In fact by article [7| of Lemma
it will be enough to verify it in Vlb(T)[Al[’O’l] (1) * U(7) * S§(7)].

Recall from Remark that since LP(7) is puy-closed, Aj(7) and A}(7) are
Cohen posets defined in V[L | 7], moreover AS(7) is ud-cc (where pg = of,)
and Ab(7) is < pj-closed. In V(7), A?O,l] (1) % UY(7) * SB(7) is the projection of
AI[’OJ] (1) x BY(7) x C4(7), where BY(7) x C§(7) is < p1-closed.

By the usual methods we may extend Vlb(T)[AfOJ] (1)« UL(7) * SY(7)]. to VIL |
7][A8(T) x T, where AY(7) is generic over V[L | 7] for ug-cc forcing, and T is
generic over V[L [ 7] for some < pi-closed term forcing. By Easton’s lemma, for
all large n we have that Q3 is o@-distributive in VL [ 7][A4(7) x T]. So Q3 is
< py-distributive in VP (7)[A. (1) x A§(7)], as required for an appeal to Remark
4,12
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This concludes the proof of Lemma, O

9.3. Group III (At the first Prikry point): 0, o2 for n < w

Let 7" be the first Prikry point, and define 0% = A%(7’) and so on as usual. We
recall some salient facts and definitions from Section

V = VylAg * Uy x L°], Vi = Vy[Ag * Uy).

L | 7 is generic over V for §7-directed 7'-cc forcing of cardinality 7’.

L%« L | 7' is generic for §1-directed closed forcing defined in V;.
0<p<f<71 <o

p is a limit of supercompact cardinals in Vo[Ag | 0 * Uy | 6], but becomes
an w-successor cardinal in Vo[Ag [ 0% Ug [ 0 + 1],

Ab () is generic for Add" L '] (047,108 41,08 5)). This is added as part of
L(7").

Qi(r") € V. Ap x Uy combines with Q§(7’) to give us a generic object
Ax U xS for a two-phase A U * S construction with cardinal parameters
fo =w, g1 = pT, pp =0, and pg4, = ot for n < w. So Q4(7') adds Ap .,
Upnw) and S = Sp * S[p 0y

Cyp is defined in Vp, while B,, and C,, for n > 1 are defined in V. The
definition of Sy does not depend on U°.

# is indestructibly supercompact in V. Ag * Uy * Sg may be viewed as
generic for the first stage of an A x U % S construction defined over V with
parameters w, pT, @ and using the indestructible Laver function ¢ from V;.
The cardinals p for £ > 3 are indestructibly supercompact in V', with an
indestructible Laver function ¢ which was added by L°. It was ¢ which
was used to define Ay ) * Up ) * Spp,wy- S0 Aj1w) * Upnw) * S[1w) may be
viewed as generic for a version of the A x U % S construction defined in V'

with parameters g1, o, p3 ... and ¢.
A is defined in Vy[Ag [ 0% Uy | 0 + 1], A, for n > 2 is defined in V.

e Qi(r") € VIL | 7|[A5(7")]. Qi(') is a “quotient to term” forcing poset,

and refines AY(7') to AY(7') which is AY (7')-generic where AY (7/) =
AddY (04, 0do)-generic.
Q3(7") = Coll(w, p), we call the generic object h.
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D AY(T) 0f s

L AG() o s

0 2
H1
W Ho
Arguing as in Sections and all the relevant trees for Group III lie in
Wirr where Wi = VL | 7][Apw) * Upwy * SIAY (7)][R].
Lemma 9.14. For alln < w, pin+2 has the tree property in Wyyr.

Proof. We will break the problem of establishing the tree property at fi, 12 into two
parts. For n > 1 we will apply Lemma to A1 w) * Up ) * S ), working over V,
which makes sense because A ) * Uy ) Sy ) is an A* U S construction defined
in V which establishes the tree property from us onwards. In this setting we have
to account for the effects of L | 7, Sy, AY (7') and h.

Claim 9.15. p,1o has the tree property in Wiy for n > 20.

Proof. Appeal to Lemma [4.5 with D™ = L | 7 x Sy x h, D° = AY (7). O
Claim 9.16. p,o has the tree property in Wy for n = 19.

Proof. Appeal to Lemmawith Dsmall = I, | 7 x Sy x h, D! = AY (7). O
Claim 9.17. p,o has the tree property in Wiy for 2 <n < 18.

Proof. Appeal to Lemma [4.5{ with D™l = L | 7/ x Sy x h, D? = AY (). O
Claim 9.18. p,2 has the tree property in Wy forn = 1.

Proof. Note that A} is generic for highly distributive forcing, so adds no ps-trees
and can be ignored in this context. Appeal to Lemmawith Dsmall = Coll(w, p),
DY =Sy, D=L |7 O

Claim 9.19. p,1o has the tree property in Wy for n = 0.

Proof. We are concerned with ps = 6. By the usual distributivity arguments,
the only relevant part of Ap ) * Uppwy * Spwy is (A1 * Up * S1) x Aa. Note that
Ay = Add(ps, [13, 14))Y = Add(ps, [p3, 114))"*, where the last equality holds by the
distributivity of L°.

We aim to apply Lemma but we need to be careful because A; is only
defined in the model Vo[A® | 0+ U° | 6 + 1], so we view this as the ground model
Vet in our appeal to the lemma. This is not a problem because the remaining part
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of A+ U%is A° [ [0,0)*U° | (0,0), and by the definition of Q(7) the definition of
Sp only uses A° | o where o > p1 > p > 6.

Working over Vo[A? x U° % Sy], we have to account for the effects of LY (which
prolongs Vj to V) plus L [ 7, h and Ay o) * U1 w) * S[1w)-

As usual we may force over V[A; * U; % S7| with a suitable quotient to term
forcing to remove the dependence of U; * S; on A;. We obtain By x C; which
is By x Ci-generic over V[A;], so that A; x By x Cy induces A; x Uy x S7 and
V[A; * Uy x S1] C V[A; x By x C1]. By x C is generic for < pg-directed closed
forcing defined in V, and by Remark the forcing which produces By x Cj is
generic for < pj-closed forcing defined in V[A4; x Uy * Sy].

At this point we recall that Sy is added as part of Q*(7), is generic for Sy €
Vo[Ao], and is mutually generic with U L? % L | 7 * (Ap1,9) % Up % S1 x h). We will
use Lemma with the non-trivial parameters set as follows:

Vaet = Vinn = Vo[Ao [ 0% U | 6 +1].
= H3

D3 =L (L |7 x Ay x By x Cy)
D = Coll(w, p).

It follows from Lemma that 6 has the tree property in

Vol[Ag * Uy * So|[A1][LO][L | T x As x By x C1][h]
:V[L FT] [So] [Al X A2 X Bl X Cﬂ[h}

The forcing which produces By x Cy is < p-closed in V[A; * Uy % S1], and retains
this closure in V[L | 7][A1 % Uy *S1 x Az]. Since Ag * Sy is the projection of Ag x Co
where Cy is < p1-closed in V{y, the usual arguments show that Sy is < p;-distributive
in V[L | 7][So][A1 * Uy * S1 X As], so that the forcing which produces B; x C is
< py-closed in VL | 7'][So][A1 * Uy * S1 x As], and so is formerly < pu-closed
in V[L | 7'][So][A1 * Up * S1 x Ag][h] because Coll(w, p) trivially has p;-cc. So by
Fact 2 has the tree property in VL [ 7][So][A1 * Uy * S1 x As][h] and we are
done. O

This concludes the proof of Lemma [9.14} O

9.4. Group IV (Successors of singulars)

OG0y O

Finally we treat the cardinals below x which are successors of singular cardinals.
Such cardinals are either of the form o2, = A%, () or o2, =AY, (7) for some
Prikry point 7. The case of A% (7’) for 7/ the first Prikry point, which becomes
N, +1 in the final model, requires special attention.

Recall from Section that we chose the cardinals, p, A* and A’ so that for
A € {Aa, Ao} the cardinal A, ;1 has the tree property in the extension of V by
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Laux(p, A) X Raux(A), where A, 11 becomes R, 1. We defined the reflected versions
A%(7) and A®(7) of A% and A® to secure the following key property: for every potential
Prikry point 7, if A € {A%(7), A’(7)} then A, 41 is forced to have the tree property
in the extension of V by Laux(p, A) X Raux(A).

The key idea in this section is that for every relevant A, we can establish the tree
property at A1 in our final model V[L][P] by embedding an appropriate submodel
of V[L][P] into the extension of V by Laux(p, A) X Raux()). It is important that
the quotient to term posets that accomplish this embedding are p-closed, and this
consideration played a role in the design of our construction. The posets Laux(p, M)
and R,ux(A) were designed to absorb the many different posets which will appear
in these embedding arguments. We will make repeated use of the term forcing and
absorption arguments from Sections [2.6] and Section [2.7}

At this point it becomes important that all of the Laver functions used in our
construction were derived from the initial Laver function ¢g. It is for this reason that
various products of term forcings which will be used in the absorption arguments
fit the hypotheses of Lemma [2.50]

9.4.1. The cardinal 0%,

: By the usual arguments, all relevant trees in the final model lie in the submodel
V() [E][J§(T)][Ae(T) x Af(7)]. Since any particular o’ ,-tree only involves at
most 0¥, | coordinates in the (highly homogeneous) generic object A.(7) x A§(7), it
will suffice to establish the tree property in M, where M = V% (7)[E]|[J§(7)][Ae(T) |
ol o x A§(7)'] and A§(7)" is AddVILI7] [Lb(T)](afJH, ol ,)-generic.
For the purposes of absorbing M into an extension of V' by Lux(p, 08) xRaux(JS),
we note that:
o V =Vo[Agx Uy L°] = W[Ao | [0,0) * Uy | (0 + 1,0)][L°], where we note

that the first element in the support of Uy [ (6 + 1,8)] is much larger than
p.
e F breaks down as h x A; x E', where:
— h x A; is part of the generic object for the forcing at the first Prikry
point 7" as described in Section h is Coll(w, p)-generic and A; is
Add% (pt, i')-generic, where 1/ = Ag(1").
— E’ collects the rest of E, that is the remainder of Q*(7’) together with
generic objects for the interleaved forcing posets up to and including
7. E' is generic for a poset of cardinality ol ,.

e (1) is generic for an A + U %S construction defined in V(7) with param-
eters 017,051,009, ol ...

e J§(7) is the first phase of a two-phase A % U % S construction defined in
V(1) where the relevant parameters are o;, o’ ., and 0¥ ,. A§(7) is
generic for AddV" ™ (o%7,[08 11, 0545)), and the support of U§(T) = S§(7)
is contained in the interval (o0, 1,07, ,).
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To help the reader keep track of the indices, we note that o is playing the role
of fin+3 in I?(7), and that the components of this forcing with index n have supports
in the interval [pt, 41, ftnt2) as usual.

As a first step we set aside h (which will eventually be absorbed by the Coll(w, p)
component of L(p,cd)), to obtain a model M = V¥ (7)[A][E][J§(T)][Ac(T) |

ol o x AS(1)’]. We note that M is a p-distributive extension of V. Then we isolate

the generic objects which we plan to absorb into Ruuy(c§): these are L(7) | [0§,02),

Alf?,,w)( 7), U[z,w)( 7) = U7) | [0§,08), Sf)gw( ) = S(7) | [0, 00), A5(7), US(7),
S5(7), Ae(7) | 0¢, 45 and Af(1)"

We now need to specify how these various objects are to be absorbed into
Raux () by doing a series of quotient to term forcings, which in every case will
be p-closed in the models where they are defined. The closure of these forcings will
follow by appealing to Fact Lemma and Lemma [2.52

e LO(7) | [08,0%) is a Laver-type iteration defined in the model V[L |

ALY 1 ob).
We claim that L | 7% L%7) | of « L¥(7) | [08,08) can be written as
a projection of the product of L [ 7% L%(7) | O’O and an Easton support
product of term posets of the form AV(L [ 7+ LY(7) | a, ¢(a)), taken over
b) such that o € dom(¢) and ¢(«a) IS an appropriate name. The
only tricky point is that since L | 7 % L?(7) | 0§ has cardinality o§, taking

Easton supports in V suffices.

a € (ob,o

Since dom(¢) consists of inaccessible closure points of ¢, and ¢(a) names
a < a-directed closed poset for all relevant «, it follows from Lemma, [2.50
that the Easton product of term forcing posets can be absorbed by the
component ], . East™ (0%, < 05 1) of Raux(ad).

® A? w) = HnZSAlr)m

where Ab = AddVE! IreL Mo n,[ Z+17 ob.5)), and so by closure of tails
of L¥(7) in fact AL = AddVIEITE Mol (b (50 gb )

For each n, L | 7 xL¥(7) | o2 x Ab is the projection of the product of
L[ 7%L87) | b and AV(L | 7% L2(7) | 0%, Add(c?, [0 b 1.0h5)). By
Lemma the term poset at n is equivalent to AddY (0b,0%.,), and can
be absorbed by the component Add(c}, 0l ) of Raux(af).

e We claim that IL | 7+ L°(7) x A®(7) x U%(7) is the projection of the product
of L | 7+ Lb(7) * A%(7) x Ul[’OJ] (1) and an Easton support product of term
posets of the form AV (L | 7+ LY(7) | vo * AP(7) [ a* U(7) | o, UP(7)(a)),
where o < a < 0¥, 7, < a* and 7, is chosen large enough that A’(7) |
axU%(7) [ a+1 can be defined in V[L | 7% L°(7) | 7a)-

This is a variation on Lemma adjusted to take account of the fact
that 1°(7) is defined in the generic extension V[L | 7][Lb(7)] of V. The only
subtle points here are that we restricted L’(7) to make the term forcing
small enough, and that we used Lemma to ensure that we may take
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an Easton support product in V.

This product of term forcing posets can be absorbed by the component
Il<o East™ (0, < 0% ;) of R(a}).

o L | 7xL%7) % A’(7) x U’(7) % S*(7)[2,0) is the projection of the product
of L | 7% L¥(7) * A’(7) x U’(7) and a full support product of term posets
defined for n < w, where at n we take the product with < o® supports
over a € (02, 0% ) of posets of the form AV (L | 7+ LP(7) | 7o x Ab(7) |
axU(7) | 0%, Add(c?,1)) and 6, < o* is chosen large enough that A®(7) |
axU(7) [ ol 4 xAdd(cb, |, 1) can be defined in VI[L | 7x L’ | §,].

The issue about supports is easier here than for U? (T)[2,w)- Given a set
of ordinals of size less than p? in V[L | 7][Lb(7)], we use closure to cover
it by a small set in V[L | 7][L®(7) | p2], and then chain condition to cover
the covering set by a small set in V.

Here the product of term forcing posets can be absorbed by the com-
ponent [], . Coll(cl, 0l 1) of Raux(af).

e AS(T) = AddVIEImIE @) (0%7,[0l,0%.5)), and by the closure of tails of
L) (7). A5(r) = Add" I O ol (o], b)),

L [ 7+ L%7) | 0% % A§(7) is a projection of the product of I | 7 x
L*(7) I pty and AV(L | 7% L(7) | 01177»Add(01177a [‘73}+703+2)))7 which is
equivalent to AddV(a’f77 ab 42) by Lemma The term forcing poset can
be absorbed by the component Add" (o?., 0. 5) of Raux(af).

o L [ 7% LP7) * I°(7) % A§(7) * U§(7) is the projection of the product of
L | 7+Lb(7) *I°(7) * A(7) and an Easton support product of term forcing
posets of the form AY (I | 7+L2(7) «I°(7) % A§ () | axUG(7) | o, U§(7)(cx))
for relevant o € (0%, ,0% ;). By similar arguments to those above,
this product of term forcing posets can be absorbed by the component
East™ (02 1, < 0% ,5) of Raux(0d).

o L [ 7xLb7) *I°7) x A§(7) * S§(7) is the projection of the product of
L | 7+ LY7) «I°(7) » A§(7) with < ol supports of term posets of the
form AY (L | 7L (7)*I°(7)%AS (1) | o, Add(0? 11, 1)) for a € (00,1, 00,,).
By similar arguments to those above, this product of term forcing posets
can be absorbed by the component Coll(c?, 1, < 0¥, ,) of Raux(cf).

e Ac(7) | 0%, = A§(7), and in exactly the same way it may be written as
the projection of the product of L | 7+L°(7) | p%; and a term forcing, and
the term forcing may be absorbed into the component Add" (0%, 0%,) of
Raux(0d).

o A§(7) = AddV[er*Lb(T)](O—ZH,Uf’ﬂrg), and L [ 7% L%7) % A§(1) is
the projection of the product of L | 7 % L’(7) and AV(L | 7 x
Lb(7), Add(agH, 0?.5)). By Lemma this term poset is equiva-
lent to Addv(ab+1,og+2), and so can be absorbed by the component

w

AddY (0l 1,00 5) of Rawc(ad).

Remark 9.20. Note that we have used some components of Raux(ag) to absorb
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multiple term forcing posets. This is not problematic, we may easily write (for
example) East™ (0%, < ¢%, ) as the product of two copies of itself and use it to
absorb two Easton iterations in the interval [o%, 00 ;).

Forcing over M with an appropriate iteration of quotient to term forcings, we
may absorb all the generic objects for these forcing posets which we isolated above
into a generic object Raux for Raux(0d). Since M is a p-distributive extension of V/
and each step in our iteration is p-closed in the model where it is defined, the whole
iteration is p-closed. We produce Mg = V[L | 7][L*(7) | og][A}y 5(7) * Up ;(7) *
S[bo,u (M)][A1][E'][Raux), where M{ is a p-closed extension of M. Let M* = M{[h],
so that M* is an extension of M = M|[h]: by Lemma m the passage from M to
M* does not add branches to o L 1-trees in M.

We need to absorb the generic objects other than R,,x used to obtain Mg.
The generic objects L | 7, L°(7) | o8, A’[JO’Q] * U[%,u * S[bo,u and E’ are generic for
p-closed forcing posets of cardinality at most o}, each defined in some (possibly
trivial) generic extensions of V. We note that all these posets actually exist in some
generic extension of V' = Vp[A® U % LO | 0%] = W[Q], where Q = A° | [0,0)xTU° |
(0+1,0) xLLO | pb, and that in W the poset Q is o%-cc with cardinality o?.

Let My = V'[L | 7][L°(7) T of][Afy 5 (7)%Ufy 11 (7) %S 1y (DI[AL[E'] = WIQ][L |
T[LY(7) | ob] [AI[JO,Q] (1) * U[ZZM] (1) * SFO,l] (T)][A1][E']. We may perform a series of
quotient to term forcings to embed M; into a model of the form W[Q x T x A;],
where T is generic for some p-closed product of term forcings defined in W, and
we may assume that 7" is generic for forcing of size o? (it was for this reason that
we truncated V to V’). Since A; is generic for small p-closed forcing defined in W,
we may do more forcing to embed M; into a model W[Q x L], where LU is
generic for COIlW(p+,UZf> which forms part of L, (p,c3). The quotient to term
forcing used to produce W[Q x L] from Mj also has cardinality at most o?.

Performing the same quotient to term forcing over the larger model M™*, we
obtain a model M** = VLU x hx Rauy] = V[ Laux X Raux), Where Loy, = LY x b is
Laux(p, 0§ )-generic. By construction o, | has the tree property in M**. By Lemma
the passage from M* to M** does not add branches to o, ,;-trees in M*. So

0?1 has the tree property in M and we are done.

9.4.2. The cardinal o, | above the first Prikry point

Let 7 and 7* be successive Prikry points, we will establish the tree property at
olty = A2, (7") in the final model. We can do a similar analysis to that in Section
to find a submodel M of the final model in which all the relevant trees will lie.
As in Section we decompose E as h x Ay X E’.

We need slightly more of the generic object L?(7*)*I°(7*) than we did in Section
because there we only considered o%*-trees for n finite. Recalling that 1°(7*)
is an A x U % S construction whose first few parameters are o{7, 027 |, 00, we
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see that the relevant parts of LP(7*) x I°(7*) are Al’0 (), U(r*), Sh(m*) and
L¥(7*) | 0%%, (which is enough of Lb(r ) to define Al[)0 3 (77) * U (7*) x Sb(%)).
By the same considerations as in Section we may replace Ab(7*) by AS(r*)
which is generic for Add"E!7 ](agil, w+2)

We see that all the relevant trees lie in the model

M =VIEJ[L [ T)[Af ) (7, 77) 5 Ufy ) (T, 77) % S ) (T, 77)]
[Ag (%) x T(r, TL* (%) 1 0] (A7) T oya x Ug(77)  S(77)]

To help keep track of the indices, we note that o2* plays the role of jiy,14 in the
construction A°(7, 7*) x U(T, 7*) % S°(7, 7*).
As in Section [9.4.1] we start by breaking out the generic objects which may be
absorbed by Raux(04*). In this case they are Afy ), Ug ), S5 ) AY (%), LP(7*) |
o o, AY(7*) and U§(7*)* S3(7*). The argument that these generic objects may be
absorbed using a p-closed quotient to term forcing into an Ry (0§*)-generic object
R.ux are exactly as in Section After the absorption process we obtain a model

M = VIEJL [ 7][Af 5 (") U5 (77) % S5 (7T (7, 7°)] [ Ransd]

and just as before the passage from M to M™ does not add branches to o2% |-trees.
Arguing as in Sectlon 1], the generic objects E'x Ay, L | T, A B 3]( VUG (7*)*

S5(7*) and T(7,7*) may be absorbed into a generic object L& for CollV (pt, 0¢")
where the quotient forcing has cardinality a‘f*. Exactly as before we obtain a model
M** = VLSS % h][Raux] = V[Laux X Raux], where the tree property holds at 027,
and the passage from M* to M** does not add branches to ol% ;-trees. So ¢l |

has the tree property in M and we are done.
9.4.3. The cardinal ol at the first Prikry point

Let 7" be the first Prikry point, so that o2, = A2, ,(7"). We use the same
notation as in Section By the usual analysis, all the relevant trees lie in the
model

(L1 71 Apw) * Upnwy * SIAG (FIL(7) T 0 1]
[AL(7) T 042 * Ug (') + S5 ("))

To help keep track of the indices, recall that Ap .y * Uy * S comes from
an A x U xS construction with parameters w, p™,6,0§,.... So the generic objects
that we will absorb into Rauc(0§) are Ajz), Upw)s Spw), Ag (7)), LP(7) | 02,5,
Ab(T') [ 08, s, US(7"), and S§(7’). Forcing with a suitable quotient to term forcing
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to absorb these generic objects into an R,ux(0§)-generic object Raux, we obtain a
model

M* = VIh][L | 7][Ap1,2) * U1 * Spo,1)][Raux]

such that the passage from M to M™ adds no branches to o ,-trees from M.

We then force to absorb L [ 7, Ay 9}, U1, So and Sy into a Collv (pT, 0%)-generic
object LS. Most of these objects are generic for p-closed forcing posets defined in
V' or generic extensions of V. The exception is Sy, which we may absorb because
(by the careful choice of Cy in Section it is the projection of a p-closed term

forcing defined in W. As usual we have absorbed M* into

M* = V[LCOH X h X Raux] = V[Laux X Raux];

aux

without adding branches to o, ;-trees from M*, and o, has the tree property
in M**. So 0%, has the tree property in M and we are done.

10. The tree property above N2 in the final model
10.1. The tree property at N 2,

We argue that in our final model the tree property holds at N,2;. The arguments
are parallel to those in Sinapova’s paper [I8] Section 4], and also use ideas from
work of Sinapova and Unger [20], but there are some additional complications: the
relevant generic supercompactness embeddings are added by a more complex forcing
poset, and there are extra issues with the constraint functions in the Prikry-type
poset P.

Recall that P € V[L][A%99] where A99 is generic over V[L] for the auxiliary forcing
A99 = AddY (N5, jo1(A)), and A99 is < \b, ,-distributive in V[L]. We defined P
using a filter K € V[L][A%] which is Qoc-generic over M.

Before starting the proof, we derive some auxiliary filters F,, from K, working
in V[L][A99]. We recall from the discussion at the end of Section [7.3]that for a € Y,

Qe ) = Jg1 (Q)(e, ).
Definition 10.1. Let B, = {(7,q) : * € P,(\%),q € Q(x(z),x)}.
Note that |B,| = \b.

Definition 10.2. Let C,, be the set of functions F' such that dom(F) € Uy,—1 x Uy,
F(z,y) € Q(z,y) for all z and y and [Fly,_,xv, € K.

If F € Cpny, and 2 € P, A’ is such that {y : (2,y) € dom(F)} € U,41, then
[F(z, =)v,.. € Qr(2), k).
Remark 10.3. In the sequel we will often drop the subscript for the measure in

” where the relevant measure should be clear from

expressions like “[F(x, —)]u,,”,

the context.

Note that C,, includes the functions which can appear as F? for some p € P.
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Definition 10.4. A subset E of B, is downwards closed if whenever (z,q) € E
and ¢’ < q then (x,q') € E

Definition 10.5. Let F,, be the filter on B,, defined as follows. E € F, if and only
there exist a set D € U,, and a function F' € Cy,41 such that (x,q) € E for allz € D
and all ¢ < [F(x, —)]v,, -

Global notation: F,

The following Lemma is immediate from the definition and the agreement be-
tween j, and j3;:

Lemma 10.6. E € F,, if and only if there is a condition r € K such that
(Jo1[A],9) € J51(E) for all g <.

The following Lemma should be viewed as expressing an “ultrafilter-like” prop-
erty of F,.

Lemma 10.7. Let £ C B,, and let E be downwards closed. Then E € F,, or
B, \ E € F,.

Proof. Let D be the dense set of conditions 7 in Q4 such that either (joi[\2],7) €
je1(E) or there is no ¢ < r with (jo1[\%],q) € j& (E). Since D € M; and K is
Qoo-generic over M7, there is r € K N D, and the conclusion follows. O

It is easy to see that F,, is a k-complete filter on B,,. We will also need a version
of normality for families of F,,-large sets indexed by lower parts.

Recall that for p = <ql7, 17y ---Qn—1,Tn—1, f’ru An, Fn+17 An+1, F’n_,_g7 An+2, > a
condition in P, the stem of p is stem(p) = (q17, T17, ---Gn—1, Tn—1, [fn]v, ), the lower
part of p is (q17, %17, ...qn—1, Tn—1), the length of p is Ih(p) = n, and L,, is the set
of lower parts of conditions with length n.

Definition 10.8. Let (E)scr, be a family of subsets of By indexed by some set
L C L, of lower parts. Then the diagonal intersection AgcrEs is {(x,q) € By :
Vse L(s <z = (z,q) € Ey)}.

Lemma 10.9. Let (E)seyr, be such that Es € F,, for alls € L. Then Ase, Es € F,,.

Proof. By the characterization of F,,, for each s € L we choose ry, € K such that
(jo1[\], q) € ji1(Es) for all ¢ < 7. Since (rs)ser, € M by closure, and K is generic
over M7, there is r € K such that r < r, for all s. As usual j§,[L] = {t € jo1(L) :
t < joi[A2]}. For ¢ < r we have (jo1[\o],q) € ji(E); for all t € ji [L], so that
(jo1[\8], q) € ji1(AserEy). It follows that Ayer By € F,. O

Definition 10.10. Let h be a stem. h IF* ¢ if and only if there is a condition p
such that stem(p) = h and p I+ ¢.

Global notation: IF*
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Letv =X =M\ +1- The strategy of the proof will be to introduce an auxiliary
forcing R € V[L][A%9], show that every p-tree in V[L][A99][P] has a branch in
V[L][A9][R][P], and use Lemma to show there is a branch in V[L][A99][P].
Let T in V[L][A%] be a P-name for a p-tree. We assume that T C p x &, and that
level « is a subset of {a} x k: this makes sense because u = x* in V[L][A99][P].

For the following lemma we work in V[L][A99]. Before stating and proving the
lemma we make a remark on compatibility of conditions in P which explains some

complications in the proof.

Remark 10.11. If p and q are compatible conditions in P with lh(p) = lh(q) = n,
it does not follow in general that p and ¢ have a common lower bound r with
Ih(r) = n. The issue is that possibly [f2]y, and [f%]y, are incompatible, so there
is no reasonable choice for f’: compatibility of p and ¢ only guarantees that f?(x)
and f?(z) are compatible for at least one value of z. If p and ¢ have the same stem
h, then they are compatible and there is r < p, ¢ with stem(r) = h.

Lemma 10.12. Let p € P. There are n < w and cofinal I C p, such that for all
a < B both in I, there are a condition p’ < p in P of length n, and £,6 < K such

that: p' IF (o, §) <4 (B, 9).

Proof. Recall from Section [7.3|that we defined an embedding j&; in V[L] witnessing
that x is < Al 1 3-supercompact, and used this to derive the supercompactness
measures U, on P,\>. Let U, be the supercompactness measure on P,y derived
from jg;.

Observe that | P,pu| = u [21]. Since A99 is generic for < A2 4 o-distributive forcing,
it is easy to see that U, is still a supercompactness measure on P, in V[L][A99], and
that taking the ultrapower of V[L][A%9] by U, gives an embedding j: : V[L][A9] —
N which lifts the ultrapower of V[L] by U,,. It follows that j;; induces the measure
U, for every n.

Let p € P have length m, so that the first measure one set appearing in p is
AP € Up,. By the choice of j% we have that j*[A,] € j(A,), so we may form in
J5(P) a one point extension g of j;(p) which forces that x is the Prikry point with
index m.

Let 117,...7m be the Prikry points determined by ¢, so that 7,,, = k, and let
Quow = [T17<icm QN (73, 7ix1). We observe that |Qiow| = A2 1o < i, and that every
extension r of ¢ determines a condition ryow € Qiow-

Now let u = (sup(j;[1]),0) and for all a < p let £ name the unique ordinal
o < Jj(r) such that (55 (@), &a) <ju (g u.

By elementarity and Lemma we may find r <* ¢ together with (sq)a<u,
(ka)a<p such that:

® Tlow = Qlow-
e 5, € Qiow With 54 < Tiow-
ok, <w.
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e If r, is the condition obtained from r by extending row to s., then every
ko-step extension of r, decides &,.

Let I C p be an unbounded set such that for some k < w and s € Qioy, ko = k
and s, = s for all @ € I. Let v’ be obtained from r by extending 7y to s, let 7’/ be
some k-step extension of r’, and for each o € I let &, be the value of fa determined
by r”.

Let 7" have length n. By construction r” < j*(p), and for a < 3 both in I
we have r” Il—%@) (Jp(@),&a) <ju () (4;:(B),€p). The desired conclusion follows by
elementarity. [

Lemma 10.13. There is a forcing poset R € V[L] such that, for all sufficiently
large i < w, there is a forcing poset Py X Py x Py € V[L][R] such that:

Ao is generically p-supercompact in V[L|[A%][R] via P; x Py x Ps.

R is countably closed and < p-distributive in V[L][A99].

A99 is < N ,-distributive in V[L][R].

Py x Py, x P3 is < A, -distributive in V[L][R][A99].

In V[L][R][A%][P, x Pay x Ps3], u has cardinality and cofinality \o_,, and
Py, has the \& | -Knaster property.

e For N = X\b_. there is a forcing poset in V[L|[R]|[A99] which adds N
mutually generic filters for Py x Py x P, preserves the reqularity of X', and
forces that cf(u) > N.

Before starting the proof, we make a remark about how the generic embedding
from the conclusion interacts with the supercompactness measures U, for 17 <
m < 7. The key points are that |P,A%,| = AL, and 28 = A so that subsets of

Pﬁ)\fn are fixed, while the power set of Pﬁ)\fn and the measure U,, are stretched.

Proof. We will use ideas from the proof of Lemma [4.5] in a context which is quite
similar to that of Section [9.2] The analogy with Section [9.2] is slightly imperfect,
because there we only needed to define the embedding on a submodel which contains
all the subsets of the critical point. In the discussion below this means that we need
to deal with the whole of the last component J° in L(k), rather than just A§.

Recall that V[L] = VI[L | s][L(k)], where L(x) = LbxI°x(A.x J¢). Decomposing
further:

o I® = AbxU’x S and is generic for an AxUxS construction with parameters
po = A7, 1 = >\Z+1a H2 = )\34—27 Hn+3 = Al;r

Ao =Add" WAL,

Jo = J§5 « J5 = (A§ = UG * S§) * (A % U % S7), where the parameters are
fo = Mz, 1 = /\EJ+1’ H2 = )\(IL‘FQ’ H3 = )‘f;+3-

A§ x U % S is defined over V% (k)[A§ * US * S§].

Af = Adde(n)()\lf% [)‘gﬂrlv )\3+2)>-

Af = Add" OO N\ )
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The idea is now to construct a generic embedding as in the proof of Lemma [£.5]
where:

e V(k) plays the role of Vg (which coincides with Viny).
e 1Y plays the role of A% U % S.
e A\ plays the role of /i, 5.

Before we can do this we have to embed A, x J¢ into a generic object for a poset
which meets the specifications of Lemma [£.5] This is the job of the auxiliary poset
R. In the terminology of Lemma we will embed A, x J¢ into D° x D2, where
D% D? € V®(k). The poset D° will be A\%_;-Knaster in V'*(k), and D? will be
<Ab 41-directed closed in this model.

We let D? = A, x AS. Before defining D?, we recall from the analysis in Section
that in V% (k) the poset J§ is a projection of A§ x BS x C§, where BS x C§
is < A2 -directed closed. Similarly in V*(k)[JS] the poset J¢ is a projection of
A$ x Bf x C§, where Bf x C§ is < Al ,-directed closed.

We let D? = AS x AV ()(IP BE x C5) x AV (IP « J&, BS x CS).

Definition 10.14. Let R € V[L] be the (iterated) quotient to term forcing to add
generic objects for the second and third factors in D? inducing generic filters B§x C§
and Bf x CY, such that in turn B§x C§ induces U§*S§ and Bf x Cf induces UT *S¥.

Claim 10.15. Let D?, R and A%9 be as above.

(1) D? is < A2 ,-directed closed in V'*(k).

18 countably closed and < p-distributive in .
2) R bly closed and d b V[L][A99
(3) A99 is < AL ,-distributive in V[L][R].

Proof. We take each claim in turn.

(1) D? is the product of three factors. The first term A§ is clearly < A? ;-
directed closed in V'®(x). The second factor is < Al -directed closed by
items [5] and [6] of Lemma together with Lemma and similarly the
third factor is < Al ,-directed closed.

(2) R can be viewed as the product of two (iterated) quotient-to-term forcing
posets, and each factor is countably closed by Lemma Since Ab is
singular, it will suffice for distributivity to show that R is A’-distributive in
V[L][A99] for all large enough ¢ < w.

By the definition of R, V[L][A99][R] = V'*(k)[I® x D° x D? x A%]. By
item [7] of Lemma in V! (k) we may view I° as a projection of I§ x I¥
where I} is an initial segment of I’ with A}, ;-cc and I} is < A}, ;-closed.
We extend V[L][A%9][R] to obtain V' (k)[I§ x I? x DY x D? x A99].

Since L | k* L x (I§ x D°) is generic for )\ZH—CC forcing, by Easton’s
lemma A% is < X _,-distributive in V'*(k)[I} x D], so that I? x D? is
No-distributive in VL | &|[L°][I§ x D° x A99]. It follows that every A}-
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sequence of ordinals from V[L][A99][R] lies in V'*(k)[I§ x D° x A99], which
is a submodel of V[L][A%9].

(3) By items|2land of Lemma B x C§ is XY ,-cc in V¥ (k). Also AL,
is supercompact in V%*(k), and [I°| < AY.,, so it follows by Lemma
that Avlb(“)(]leBg x C§) is Al o-cc in V(). So D? is the product of a
A, o-cc poset DE  and a < Y, ,-closed poset D}Qngh in the model V! (k).

Recall that V[L][R][A99] = V'(k)[I" x D° x Df x Dy, x A%9)]. Since
L | kL is generic over V for )\2)+2—CC forcing, by Easton’s Lemma A9 is
< A ,-distributive in V'*(k), so that D 15 < A, o-closed in V' (k)[A99].
Since L | k* LP x (I' x Dy x D{ ) is generic over V for A, ,-cc forcing,

low

by Easton’s Lemma L | & * LY % (I" x Dy x D2 ) is /\Z+2‘CC in V[A99], so

low

that I® x Dy x D is Ab, 5-cc in V'®(k)[A99].
By Easton’s Lemma Dﬁigh is < Ab,,-distributive in V'*(k)[I® x D° x

x A99] and A% is < A}, ,-distributive in V'*(k)[I” x Dy x DZ . It

low

D120W
follows that every < A ,-sequence of ordinals in V'*(k)[I” x D® x DE  x

low
A99x Dy ) lies in VP (k)[I°x DO x D], so that A%9 is < \], , ,-distributive
in V{L[R).

O

For use later, we record some information about forcing with P over
VIL][A9][R].

Claim 10.16. = st in V[L][A9][R][P).

Proof. By Lemma [10.15] the poset R is < p-distributive and countably closed in
V[L][A99], and the proof of Lemma [8.7] easily shows that P is u-cc in V[L][A99][R].
The claim follows. O

By construction V[L][R] = V% (k)[D° x D?]. Choosing 7 large enough, we may
arrange that in the model V! (k), D° is generic for A’ ;-cc forcing, and D? is
generic for < A\2-directed closed forcing. In fact since DY is adding Cohen subsets
to A}, and D? is < XY | ;-directed closed, any 7 > 19 will work.

We will perform the construction from the proof of Lemma to obtain a
generic embedding with domain V[L][R], and then derive a generic embedding with
domain V[L][A9][R]. The construction in the proof involves a regular cardinal
which in our case is max(v, |DY[, [D?|)*. We note for the record that y > pu.

We summarize the key features of the construction from Lemma [£5] in our
current setting:

e Working in V% (k)[D? x A?

[ w)], we use the indestructible Laver function
added by L' to choose an embedding j which witnesses that A% is x-
supercompact and satisfies some technical conditions. We may assume that

j is the ultrapower by some supercompactness measure W on Pys X, where

we note that (P)\%yx)vlb("“)[DZXA[bﬁm] = (PA%X)V”’(F»).
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e The lifting of j to V[L][R] takes place in a generic extension V[L][R][P; %
P2 X Pg]

o Py xP3 € VI(k)[Abx U S® | [\L_;,A2)][D?] and is < A2 _,-closed in this
model.

o Py = Py, x Py, where Py, = j(AL , x DO)/j[A% , x D°] and Py, =
JAh_ ) /71AS_ ] |

o Py, = Po% x PoE" where PY" is a Cohen poset adding subsets to AL,
and PYY is a Cohen poset adding subsets to A}, both defined in V' (k).

e Py, is a Cohen poset adding subsets to A\2_;, again defined in V**(k).

Let X' = A\, _,. With a view to using Fact in the proof of Lemma|10.19} we
construct an auxiliary forcing P§ x (P¥)* x (PRE")* x B3, x P% € V[L][R] whose
aim is to add A many mutually generic filters for P; x Py x P3.

o P} (resp P3) is the product of A’ copies of Py (resp P3) computed with full
support in V®(x)[A« UY % S® [ [AE_, AP)][D?]. As noted above Py x Pj is
defined and < A2 _,-closed in this model, so P} x P§ is also < A _;-closed in
this model, and since AY9 is generic over this model for highly distributive
forcing Py x P4 is < A2 _;-closed in VP (k)[AbxUbxS® | (A& _, A2)][D?][A%9].

e (P)* is the product of A’ copies of PX*™ computed with < A%, support in
V% (k). Since P¥Y is a Cohen poset adding subsets to A% defined in V(k),
(PX™)* is a similar poset in this model.

. (Inglgh)* (resp IP3;) is the product of A\’ copies of ]P’g;gh (resp Pgp) computed
with full support in V% (k). Since PL5" (resp Py) is a Cohen poset adding
subsets to A2 _, (resp AL_,) defined in V% (k), (PYE")* (vesp P3,) is a similar
poset in this model.

Claim 10.17. It is forced over V[L][R][A%] by P x P5 x P§ that A" remains regular
and cf(p) > N.

Proof. Recall that V[L][A99][R] = V! (x)[I® x D° x D? x A99], DY = A, x A§ is a
Cohen poset adding subsets to A}, defined in V'(k), while D? is < A ;-directed
closed forcing again defined in V(k).

Since P} x P is defined and < A%_;-closed in a generic extension of V*(k), we
may force to extend the model V*(k)[I® x D° x D% x A99][P; x P; x P§] to a
model VP (k)[I® x D° x D? x A99)[P; x T] where T is generic for a term forcing
T which is defined and < A2 _;-closed in V! (k). By more forcing we may use item
of Lemma to extend to a model V®(k)[I§ x I? x D° x D% x A%9][P; x T]
where I} and 14 are defined in V'*(k), and in that model I§ is A2 _,-Knaster and I}
is < A2_s-closed.

We reorganize our expanded model as

VI (8)[D? x A](IG x D° x (P ][I} % (Ppy)" x (Poy)* x T).

]
Note that I§ x DO x (PX™)* is A2 _;-cc in V'®(k). Since D? x A99 is highly distributive,
(PHEMY* % (Pyy)* x T is < AL_s-closed in V'®(x)[D? x A99], and (since its definition
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does not change) I x DY x (PY™)* is A2 _s-cc in V*(k)[D? x A99).

It follows by Easton’s Lemma that A _ is still regular in V?®(k)[I§ x I? x D x
D? x A99][Py x T, and so a fortiori it is regular in V*(k)[I® x D° x D? x A99][ P} x
Py x Pj]. To finish we note that by taking I® as the projection of the product of a
At _,-Knaster poset and a < \%_,-closed poset, we may repeat the argument with

Al in place of A% .. This allows us to conclude that A2, is also still regular in
VI (g)[I® x DY x D? x A99][Pf x Py x P], and that cf(u) > A% _, in this model. [

Claim 10.18. The poset Py x Poy, x P3 is < \b_| -distributive in V[L][R][A%9].

Proof. The argument is very similar to that for Claim [I0.17] so we just sketch it.
We force to extend V! (k)[I° x D? x D% x A99][P; x Py, x P3] to a model V' (k)[I° x
D x D? x A99][ Py, x T) where T is generic for a term forcing T which is defined and
< A2, -closed in V!*(k), and then to a model V'®(k)[D? x A99][I4 x DO][I? x Py, x T
where I} and I} are defined in V'°(k), and in that model 1§ is A% _;-Knaster and
and 1§ is < A2 _;-closed.

In the model V' (k)[D? x A99] we appeal to Easton’s lemma to see that all
< Al _,-sequences of ordinals from V[L][R][A%][P1 x Pap x P3] lie in V! (k)[D? x
A99][1E x DY]. O

It is now easy to see that u has cardinality and cofinality A% , in the model
V[L][R][A99][Py x Pap x P3], and that Py, is A% _;-Knaster in this model.

At this point we have produced a generic y-supercompactness embedding
j : VIL][R] — N with critical point A% which exists in V[L][R][Py23]. By con-
struction N = {j(F)(a) : F € VI]L]|[R],dom(F) = Z} where a = j[x] and
— (p/\%X)V[LM][Lb]_

Now let Zy = (P/\%,u)v[”“”L”]. Factoring j in the standard way we obtain
a generic p-supercompactness embedding jo : V[L][R] — Np, such that Ny =
{jo(Fo)(ap) : Fo € V[L][R],dom(F) = Zy} where ag = jo[u]. Since A9 is generic
for p-distributive forcing in V[L][R] and |Zp| = u, it is easy to see that jo[A99]
generates an N-generic filter and we may lift jo onto V[L][R][A%9]. Note that the
lifted jo exists in V[L][A99][R][ P 2,3]. O

Lemma 10.19. There exist in V[L][A%][R] a set J, a stem h and a sequence
(uq | @ € J) such that:

o J C I and J is unbounded.

e h has length n.

® u, is a node of level a.

o Foralla,f € J witha < B, hIF uy < ug.

Proof. We work for the moment in V[L][A%9]. Let 7 be so large that an elementary
embedding with critical point A% is guaranteed to fix each stem for a condition of
length n, together with the set of all such stems. Let jo be an elementary embedding
with critical point A% constructed as in Lemma
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Let S be the set of stems for conditions of length n in P. Define relations (Rp,)nes
on I x x as follows: (a,n)Rp(B,¢) if and only if there is a condition p € P with
length n and stem h such that p IF (a,n) <4 (8,(). Since T names a tree and
conditions with the same stem are compatible, it is easy to verify that this set of
relations forms a system.

We will show that forcing with R+[P; 5 3 adds a system of branches (bh’i)(h’i)esx,{.
Let 7y € jo(I) with sup jo[u] < . By the choice of 7 we have |S| < A and jo(S5) = S.
Let a € dom(by,;) if and only if there exist n < k and p € jo(P) with stem h such
that p Ib (jo(a),n) <; (7 (7,7), and in this case let by ;(c) be the unique 7 for
which this holds. It is easy to see that this is a system of branches with by, ; forming
a branch through Rj,.

Using Claim and appealing to Fact in the model V[L][A%][R], there
exists (h, i) € S x k such that by, ; € V[L][A99][R] and dom(by, ;) is unbounded in p.
Now let J = dom(by,;), and for a € J let uq = (a0, bp (). If o < f with o, 8 € J
there is a condition p € jo(PP) with stem h such that p IF jo(ua), jo(ug) <y (1,9,
so p Ik jo(ua) <o(7) Jo(ug). Since Jo(h) = h, by elementarity there is p € P with
stem h such that p IF v <; ug. O

Suppose that a stem h’ has the form (q17,z17,...¢m—1,Tm-1, [g]u,,), and that
(z,q) € B,,. We write h/ + (z,q) for the stem (q17,Z17,..-Gm-1,Tm—1,9(x), 2, q).
This is technically illegal because it depends on the choice of g, but we will only

use this notation in a context where the choice of g is explicit.
Global notation: i’ + (z, q)
Fix J, h and (uq : @ € J) as in the conclusion of Lemma [10.19

Lemma 10.20. Let b’ be a stem of the form {(q17, %17, ---Qm—1, Tm—1, |9]U,, ). Assume
that there exists in V[L][A%][R] an unbounded set J C J, such that ' IF* u < ug
for all o, B € J with o < f5.

Then there exist p < p and a sequence (Eq)qcp\, in VIL][R][A] such that:

(1) E, C By, and E,, € Fp,.
(2) For alla, B € J\ p with a < 8 and all (z,q) € EoNEg, N+ (x,q) IF* 1, <
ug, where ' + (x,q) is computed using the function g.

Before proving Lemma [10.20] we rewrite the conclusion in a way that is less
concise but will be useful later. Refining FE,, if necessary, we may fix D, € U,
and F, € Cpy1 such that E, = {(x,q) € By, : © € Dy,q < [Fo(z,—)]}. Now
([Fal)acq, € M7 by the distributivity of A% and the closure of MY, [F,] € K
for all o, and K is generic over M. It follows that there is F* € C,, such that
[F*] < [F,] for all o, and shrinking D,, we may assume that [F*(z.—)] < [Fy(z, —)]
for all z € D,,. Refining F, again we may assume that E, = {(z,q) € By, : © €
De,q < [F*(z,—)]}

Then (z,q) € E, N Ep if and only if + € D, N Dg and ¢ < [F*(x,—)], and the
conclusion amounts to saying that if € D, N Dg then b’ + (z, [F*(z, —)]) IF" uq <
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ug. Readers of [15] and [I8] will notice that Lemma[10.20|is parallel to [I5, Lemma
3.5] and [I8, Lemma 16].

Proof. Choose n* such that m +20 < n* < w, and let j; : V[L][R][A%] — N; be
a generic jy-supercompactness embedding with critical point A’. constructed as in
Lemma [10.13] The embedding is added by a certain product Py x Py x P5. We will
work for the moment in V[L][R][A%][P; x Py x Ps].

Let v € j1(J) be such that sup ji[u] < v, and let v = ji(u),. By elementarity,
for every o € J there is a condition 7, € 71 (P) such that r, has stem A’ and
ro IF ji(ua) <j(r) v. Now ji(g) = g, and [glu,, = [11(9)]jw,) = [faelinwn-
Shrinking AT« if necessary, we may assume that ATe C dom(g) and fle =g | Ale.

For each y € A, the minimal one-point extension of r,, by y forces ji (ua) <j, (1)
v. Since g(y) = j1(9)(y) = fr=(y), the stem of the minimal one-point extension is
(@17, %17, @1, Tm—1,9(y),y,r) where r = [F* | (y, —)]v,...- We conclude that
there is a ji (F,)-large set X such that b’ + (y,7) I} 5y j1(ua) <j (1) v for all
(y,7) € Xo. Membership of X, in ji(Fy,) is witnessed by A and F,?, .

For (z,q) € B, let Jo g ={a € J: M + (2,q) I}, 5) j1(ua) < v}. It is easy to
see that for 5 € J, 4, we have that o € J, NS if and only if b/ + (2, q) IFp ua < ug,
so that J, , N B € V[L][A%].

Since p has cardinality and cofinality A%. _; in in V[L][R][A99][ Py x Py, x P3], and
Py, has the \b. ;-approximation property in this model, it follows that whenever
Jz 4 is unbounded in g we have J, , € V[L][R][A99][Py x Py, x P3]. It is important
to notice that even in this case the definition of j; (and hence qu) requires P,

Working in V[L][R][A%9][P1 X Py x Ps], let Jy 4 be the set of unbounded subsets
C of p such that some condition in Py, forces jw’q = (. It is easy to see that

° |\7w,q| < A?L*—l'

e The function (z,q) — Ju,q is in V[L][R][A99][P; x Py, x Ps].

o IfC € J,;4and S € C, then CN} is the set of v < B such that A'+(z,q) IF5
Uq < UB.

o If 01, Cy € j%q with C; 75 C5 then C7 N Cq is bounded in L.

Let p < p be such that C1y N Cy C p for all (z,q) € By, and all C1,Cs € Ty 4
with Cy # Cs. For (2,q) € By, and o € J \ p, let f(x, g, ) be the unique C € 7, ,
such that a € C if such a C exists, and let it be undefined otherwise.

Let ap = min(J \ p), and let A% be the set of (z,q) € B,, such that:

o f(x,q,a) and f(z,q,ap) are both defined.

L4 f(xqua) = f(x7QuaO)~
Claim 10.21. A% € F,.
Proof. Otherwise By, \ A%, € F.,', so that applying j; we have By, \ A% = j1(Bm \
Az) € j1(Fn)t. For each B € J\ p, choose (25,q5) € Xay N Xa N XN (B \ AL).

Since cf(u) > |By,| in VIL][A99][R][P1 X P2y x P3], we may find (z,q) € B,
such that (23, q¢3) = (z, ¢) for unboundedly many 3. For all such 8 we have by the
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choice of X that 1’ + (2, q) I}, ) j1(us) <ji(r) v, s0 Jz.q is unbounded and hence
Jz,q = C for some C' € Ty 4.

Since (z,q) € Aa, @ € J, 4, = C so that f(x,q,«) is defined and f(x,q,a) = C.
The same is true for ag, so f(x,q,a) = f(x,q,a0) = C, and (z,q) € A%. This is a
contradiction since by construction (z,q) € B, \ A%. O

Define relations (Ry.,q)(z,q)eB,, on (J \ p) x 1 as follows: (a, 0) Ry 4(8,0) if and
only if A’ + (x,q) IF" us <1 ug. It is easy to see that these relations form a system
on (J\ p) x 1 in the sense of Definition the main point is that if a, 3 € J \ p
with o < ( then by hypothesis b’ IF* u, < ug, and any minimal one-point extension
of a suitable condition witnessing this will witness that h’' + (2, q) IF* uo < ug for
some (z,q) € By,.

For every (z,q) € B, let by, = {a € J\ p: (x,q) € AL}. If a, B € b, 4 With
a < f, then (z,q) € Al N A%, so f(z,q,a) = f(z,¢,8) = C € Jpq and hence
W +(z,q) IF" uq < ug, that is (o, 0) R, 4(5,0). Let b}, , be the function with domain
beq and b} (o) = (a,0) for all a € by 4.

Claim 10.22. (b} ,) is a system of branches through (R 4) in the sense of Defini-
tion [2.14)

Proof. Let 3 € by, and let @ < f be such that b’ + (z,q) IF* ue <1 ug. As
(x,q) € A%, we have f(z,q,8) = f(z,q, o) = C where C € J, 4. By the properties
of Jy.q we have a € C, so that f(z,q, o) = C = f(x,q,a0) and (z,q) € A%, hence
a € by 4. Finally for every a € J \ p we have a € b, , for any (z,q) € A%. O

Let E be the set of (x,q) € B,, such that b,, € V[L|[A%][R] and b, 4 is
unbounded. By the distributivity of Py x Pgj, x P3, we have E € V[L]|[A%9][R]. We
now work below a condition in P; x Py, x P53 that determines the value of E.

Claim 10.23. F € F,,.

Proof. Suppose for a contradiction that B,, \ E € F[. The set {b} , : (z,q) €
B, \ E} is still a system of branches through (R, ), since for every ao € J \ p we
may choose (z,q) € (B, \ £) N A}, to witness that o € dom(b} ,)-

Now we appeal to Fact with A = X0, 4 P = Py x Py, x P3, and Q =
PT x P35, x P35 defined as in the discussion preceding Claim It follows that
there is (z,q) € B, \ E such that b, , € V[L][A%9][R] and b, 4 is unbounded, an
immediate contradiction. O

By distributivity, (bsq)@.qer € VIL][A%][R]. For every a € J \ p, let E, =
{(z,q) € E : a € by} Since E, = EN A}, E, € Fp,. For all a,8 € J\ p with
a < fand all (z,q9) € Eo N Eg, a,f € by g and hence b’ + (z,q) IF* uq <ug. O

Lemma 10.24. There exist p < p and a sequence of conditions (pa)acy\p 0
V[L][A99][R] such that:

e For all o the stem of ps is h.
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o For all a and f with a < 3, po ADg IF ua < ug.

Proof. Let the stem h from the conclusion of Lemma be q17,...Tn-1,[g]-

We will construct an increasing sequence (pm)n<m<ew Of ordinals less than p,
together with sets (A5, )n<m,acs\pn,. and functions (F, ,)n<m such that the fol-
lowing properties hold, along with another one to be stated below:

o A2 € U,,.
(] ’:’L—‘rl 6 Cm+1.

o A2 xTANEYL Cdom(F) ).

For m > n, a € J\ p,, say that a lower part s is good for a at m if and only if:

s has the the form ¢{,,...2],_;.

¢ < qr and zj, =z, for 17 < k < n.
x), € AL for n < k <m.

QG < Fi (o), 7y ) forn <k <m—1.
q, < g(x)) if m > n.

The final key property is that:

e For a, 8 € J\ ppm, if a lower part s of form ¢}, ...}, is good for both «
and S at m, then s + [g] IF" uy < ug if m = n, and s + [F}; (x] =)] I+

m—1»
Uq < ug if m > n.

To initialize the construction we set p, = 0, and verify that the key property
holds for m = n. Suppose that «, 8 € J with a < 3, and s is good for both « and
at n. That is to say s has the the form ¢, ...xz,—1 where ¢, < g; for 17 < k < n.
Therefore s+ [g] <* h, and so by the conclusion of Lemma[10.19]s + [g] IF* uq < ug.

Continuing the initialization apply Lemma to the stem h, set J and se-
quence (Uqg)acs. Let pny1 be the ordinal p from the conclusion of that lemma, and
choose sets (A5)ae\p,,, and a function F;,; € Cpy as in the discussion following
the statement of Lemma[I0.20] We verify that the key property holds for m = n+1.

Suppose that «,8 € J\ ppa1 with a < §, and s is good for both « and 3
at n + 1. That is to say s has the the form ¢i;,...2,—1,¢, ¢ where ¢, < ¢ for
17<k<n,qg<g(z),ze ASNAB. Let t = qi7,...7,_1, S0 that by construction
h4(z, [Fy i (z,—)]) = t+g(z)+o+[Fr (z, —)] IF uy < ug. Since s <* t+g(x)+,
s+ [Frii(z,—)] IF uq < wug as required.

Now suppose that m > n and we have constructed pg for & < m + 1,
(Af)aenpps, for k < m and Fj; for k < m + 1. Let s be a lower part of form
di7y-- -z, and let J® be the set of o € J\ py41 such that s is good for a at m + 1.
By construction s + [F, (2], —)] IF" ua < ug for a, B € J® with o < f.

For every lower part s such that J° is bounded, let p* = sup(J®). For s such
that J® is unbounded, we apply Lemma to the unbounded set J* and the
stem s + [Fr 1 (x;,, —)]. We obtain p° < p and sets (Ef)acye\p, i Fpo1, such



September 17, 2025 16:29 treepaper jml

118 J. Cummings, Y. Hayut, M .Magidor, I. Neeman, D. Sinapova € S. Unger

that s + F 1 (2),,2) + (2,q) IF* uq < ug for all a, 5 € J*\ p® with a < 3 and all
(z,q) € B, N ES.

Now let pp12 = sup, p*, and for a € J \ ppi2 let EMHL = Ag acgs ES, that is
Entl={z:Vs <z acJ® = x¢& ES}. It follows that for a, 3 € J \ ppmr2 with
a < B, (z,q) € E™IN Eg”'l, and s as above such that s < z and s is good for
both o and 3 at m + 1 we have s + Fy, (z),, ) + (%, q) F* uq < ug.

As in the discussion following Lemma [10.20} we now (shrinking E7*! if neces-
sary) choose (A% 1)acs\pp o and Fr o such that E7 M = {(z,¢) : 2 € A% ,1,¢ <
[Fyr4o(x, —)]}. To finish the construction we verify that we have maintained the key
property. So let s be a lower part of form ¢, ...x},,4q,,,1,2;,,, which is good for
both o and 8 at m+2. Let ¢ be the initial segment ¢/, ...x;, of s, so that ¢t < x4
and ¢t is good for a and § at m + 1. By definition ¢, 41 < Fy (7, 27,4,) and
a1 € ATTIN Ag”'l, by construction t + Fy, i (2],, 2}, 1) + = + [Fp oz, —)] IF*
Uq < ug, 80 s+ [F o(x, —)] IF" uq < ug as required.

Now let p = sup,,<,;,<, Pn, and for a € J '\ p define p,, as follows:

® p, has ¢i17,...x,_1 as an initial segment.
o fhr =gl A5
o FPo = Fr | AY | xT AY forn < k < w.

Let o, 8 € J\ p with & < 8, and suppose for a contradiction that there is
q < pa,pp such that ¢ IF u, £ ug. Let the lower part of ¢ be t = ¢{7,...2,,_1,
where without loss of generality m > n. By definition ¢ is good for both « and
at m, and f% < F*(z),_,,—), so that a fortiori [f%] < [F*(z),_1,—)] The stem
of g is h =t + [f%], and so by construction h IF* u, < ug for an immediate
contradiction. O

Lemma 10.25. The tree property at pn holds in the model V[L][A99][R][P].

Proof. Let p be arbitrary. Our whole construction could have been done below p,
so that the conditions p, from the conclusion of Lemma can be taken to
be extensions of p. Since P is p-cc, by Lemma there is « such that p, forces
{B : ps € G} to be unbounded. But for § < v with pg, p, € G, we have pgAp, € G,
so that ug <7 u,. It follows that p, forces that the ug such that pg € G form a
cofinal branch. O

Lemma 10.26. The tree property at u holds in the model V[L][A99][P].

Proof. We need to verify that we have satisfied the hypotheses of Lemma [2:21] as
listed at the start of Section V[L][A99] plays the role of V', and P plays the role
of P.

Hypothesis |1| is immediate. By Lemma k is a cardinal and g = k7T in
V[L][A99][P], taking care of the first part of Hypothesis [2| Claim takes care
of the rest of Hypothesis[2] Hypothesis [3] follows from Lemma. The remaining

hypotheses follow from Lemmas and
The conclusion is now immediate from Lemmas [10.25] and [2.211 O
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10.2. The tree property at A = N 24

Recall from Section m that v = A and g = Al ;. Let A = Al _,, so that in our
final model the cardinal A is destined to become R 2,5. We will establish that the
tree property holds at \ in V[L][A99][P]. The argument is quite similar to that from
[3, Theorem 3.1], but there are extra complications.

We start by constructing a suitable generic embedding with critical point A
whose domain is a generic extension of V[L][A99]. Now that the desired critical
point is A the poset L | & *L? * I’ counts as small forcing, and the main obstacle is
to deal with J§ * J§. We note that the situation here is very like the n = 0 case in
Section in particular the proof of Claim in that section.

We start by writing V[L][A99] = Vi (k)[J§][Jf][Ae X A99]. Recall that BY is
defined and < A-closed in V% (x)[J§], and U§ = (B§)T41. Similarly C§ is defined
and < A-closed in V% (k)[J5], S§ = (C§)*41.

Parallel to the proof of Claim , let TBC = A" (®)[A45+U5) (S5, BS x CS), so that
TBC is defined and < A-closed in V% (k)[AE*Ug]. Let QTT be the two-step iteration
of term forcing which adds a TBC-generic object inducing U % S{. Exactly as in the
proof of Claim QTT is < p-closed in V% (k)[J§ * J¢]. Forcing with QTT over
V[L][A99], we obtain a model V[L][A99][QTT] = VI (k)[J§][A] x TBC][A. x A%9].

We will do the construction for Lemma[d.10]with appropriate parameter settings.
Start by recalling that in the context of AS x US % S§ x A we have pg = 8-,
1 = )\ZH = U, lg = )\fthQ =\ ug = )\2,+3. Accordingly we will set the parameters
for Lemma [£.10] as follows:

e n=0_0.

o = pz =N

o Viinis V.

o Vier is VP(k), so that Vaer[A | fint2 * U | piny2] is VI (k)[A§ x US].
o V' is VI (R)[AE x U§ * S§ * AS).

o D? = AY9,

e D3 = TBC.

o D0 =A,.

o D*mall ig trivial forcing.

[ ]

V/[D%23] is V[L][A99][QTT].

Following the argument for Lemma[£.10] we will start with a suitable embedding
j : V[A99] — N, defined in V[A99] and witnessing that A is y-supercompact in
V[A99] for some large enough value of x. Since L | % L® % I” is generic for small
forcing, it is easy to lift j to an embedding j : V% (k)[A99] — N[L | &][L*][I"],
defined in V'*(k)[A99] and witnessing that \ is x-supercompact in this model. We
note that the models V and V[A99] agree on < A-sequences of ordinals, as do V()
and V' (k)[A99).

We will force over V[L|[A99][QTT] with a product Py x P35 defined as in the
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proof of Lemma To analyze Py, we note that
b
A§ = Add" (A, N1, A 4))
9 r][LY
= Add" IO TN A 1))

By elementarity,
J(A5) = AdaNEFIET (O DL G(,))).
Since V[A%][L | K][L"] £ XNIL | #|[L*] C N[L | #][L"],
J(Ag) = AddVAIERET O 130 G(L5)))
= Add"" (A3, [ (A 40)))-

By this and similar arguments for A{ and A, we have:

. b (e 3

o J(AG)/A5 = Add" (A7 (N 12) \ Niya):

o Jj(Ae)/Ac = Add" (N7, j (O 15) \ NG )
o J(A])/AT = Add” (H)(Ag+1»j()\g;+3) \j[)\f,+3]).

In summary P, is a Cohen poset to add subsets of A}, defined in V**(k), and Py,
is a Cohen poset to add subsets of AY,; defined in the same model.

To analyze P3, it is useful to recall that U | p; and S¢ | puy are both trivial.
It follows that Ps is defined in V" (k)[A§ x A x A9] and is < A’ ;-closed in
VI () [Ag+US * S§|[AS x B x C§ x A99]. Tt is important that, as we noted in the proof
of Lemma P3 collapses A to become an ordinal of cofinality p and cardinality
. We note for use later that a fortiori Ps is < p-closed in VI (k)[J§]|[J¢ x A99].

As in Lemma we lift j to obtain a generic embedding with critical point
A which has domain V[L][A%][QTT] and exists in V[L|[A9][QTT][P> x Ps]. In
the current setting we may restrict the domain to V[L][A99], so we have a generic
embedding with domain V[L][A99] obtained by forcing over V[L][A%9] with Py x
(P x QTT).

By Lemma [2.54 Py x Py is A-cc in V[L][A%99]. It follows from Lemma that
P; has the A-approximation property in V[L][A99]. By another similar appeal to
Lemmas and Py, has the p-approximation property in V[L][A%9][Pay, x
Py x QTT].

By the preceding analysis QTT is < p-closed in V% (k)[J¢], and since A9 is
highly distributive the same is true in V% (k)[J¢|[A%99], which is the submodel of
V[L][A%9] missing only A.. As we noted above P3 is also < p-closed in this model,
so that P3 x QTT is < p-closed in this model.

We claim that Py, is < p-distributive in V*%(k)[J¢][A%9]. To see this we note
that we need to show that Py is A\2-distributive for all n, and this will follow by
the usual arguments using term forcing and Easton’s Lemma.
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It follows that P3 x QTT is < p-closed in V% (x)[J¢][A99][Pap). Therefore P3 x
QTT is formerly < p-closed in the sense of Fact in the model

VP ()[4 [AY)[Poy][Pea x Ac] = VIL][A][Py)].

The key points are that AS added A subsets of A}, and that Po, x A, is p-cc in
VI () [ ] [A99] [Py). _

Let T € V[L][A9] be a P-name for a A-tree. We assume that level o is a subset
of {a} x p.

Lemma 10.27. In V[L][A99] there exist a stem h, an unbounded set I C X and
(ua)acr such that uq is a node of level a for all o € I, and hIF* uy <4 ug for all
a, B €1l with a < .

Proof. Let j be the generic embedding with domain V[L][A99] and critical point A,
added by forcing over V[L]|[A%9] with Py x (P3 x QTT). Define a system on A X
indexed by stems as follows: uRpv <= hI-" u <j v.

In V[L]|[A%9][P][P5][QTT] define a branch b, through Rj as follows: a €
dom(b) if and only if there is ) < p such that h IF5) (a,m) <;i7 (A,0). It is
routine to check that the branches b, form a system of branches in the sense of
Definition It is also routine that if o € dom(by) then 8 € dom(by) N« if and
only if there is ¢ such that & -5 (5,() <4 («,n), and in this case by, (8) = ¢ for the
unique such ¢. In particular b, [ a € V[L][A%] for all o € dom(bp,).

We now appeal to Lemma with P3 x QTT in place of P, Py, x A, in place
of E, V% (k)[J¢][A99][Pap) in place of V, and AS. in place of §. It follows that there
is h such that by, € V[L][A%9][P,] and dom(by) is unbounded in A. Since Py has the
A-approximation property in V[L][A%9], it follows that b, € V[L][A99]. Now we set
I = dom(by,) and u, = (o, bp()) to finish. O

We can now describe the main idea of the proof that A has the tree property. As
in the proof of the tree property for p in Section [10.1] we will construct conditions
(pa) for all sufficiently large « in I, such that p, A pg II—%{[L] [4%] Uq < ug for a < B.
This time we will construct this sequence of conditions in V[L][A%9][Ps x QTT]: as
in Section this will give a branch in V[L][A%][Ps x QTT][P], and we will need
to use a suitable branch lemma to find a branch in V[L][A99][P].

Let h be of the form (8, [g]) for some lower part 5 and some 1-variable function
g. We note that if S € I then IN B ={a: hIF" uy <ug}.

Let § = [g] and let the length of h = (5, q) be t. For all relevant ¢, fix g, such

that ¢ = [g,]. We take care to choose gz = g.

Remark 10.28. Let F' € F,,, that is to say F'is a potential value of F? for some p € P.
Then for all relevant z, [F(z, —)] = [gr(z,~], that is to say F(z,y) = g{p(,-)(¥)
for many y. Taking a diagonal intersection, we may shrink the domain of F' to
arrange that F'(z,y) = g[r(s,—)(y) for all (z,y) € dom(F'). In the sequel we will
arrange that all 2-variable constraint functions have been treated in this way.
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As in Section we can use the functions g, to prolong a stem (s, g) to stems
(s,q) + (z,7) = (s,94(x), z,7) for each (z,r) with z € dom(g,). In the natural way
we use this to define (recursively) a notion of extension for stems.

In the generic extension V[L][A99][P,][Ps][QTT] where j is defined, let v = j(u)5
where X is the A\*® point of j(I). We work below some condition in Py x P3 x QTT
which fixes the values of A and v. This condition forces “for all a € I, (5,q) IF*
e < v”. So in V[L][A99][P:][Ps][QTT] we may choose a sequence (r'q)qcr, such
that r, € j(P) with stem (5, q) and 7y IF ug < v.

For all stems (s, q) extending (3, 7), define

Joqg={a€l]|(s,q)IFp) ta < v}

We note that in general the definition of J, 4 involves the generic embedding j,
so it takes place in V[L]|[A%][P,][Ps][QTT]. However, it is clear that Js5 = I. As
usual if 8 € Jgq, then Js, N B = {a < B : (s,9) IF" ua < ug}, so in particular
JsqN B € VI[L][A99].

Recall that in V[L][A%][P; x QTT x Py, A has cardinality and cofinality u,
while Py, is p-cc and has the p-approximation property. It follows that if Js 4 is
unbounded then Jg , € V[L][A%][Ps x QTT x Py).

Working in V[L][A99][Ps x QTT x Pay), let Js 4 be the set of all possible un-
bounded values for Js 4. Since Py, is p-cc, |Js,q| < 1, and for any name C for a
bounded subset of A there is § < A such that IFp,, C' C 5. We use these facts to
choose p < A so large that:

e It is forced by Py, that for all (s, q), if J; 4 is bounded in A then Js , C p.
e For all (s,¢) and all distinct C, D € 54, CND Cp.

For o € T\ p, define a partial function f, by setting f((s,q),a) equal to the
unique C € J; 4 such that o € C. We note that J5,; = {I}, so that f((5,q),a) =1
for all a € I'\ p.

Let ap = min(7 \ p). Fix a length & > ¢, we will consider stems (s,q) of this
length extending (5, ). Let o € I'\ p, and define By, ,, as the set of pairs (s, ¢q) such
that (s, q) extends (5, q), (s,q) has length k, and f((s,q),a) = f((s,q), o).

Given (s,q) € By q, define

Fot=A{(z,7): (s,9) + (2,7) € Bryia}
We note that for all o € I\ p:
e Since f((ga (j)v a) = f((ga ‘j)aa()) = Ia (53 (j) € Bt,a-
e By the distributivity of P x QTT x Py, (Bi,a)t<kcw € V[L][A99] and
(Fas’q)(s,q) extends (5, q) € V[L] [Agg].
Remark 10.29. The following Claim is an assertion in V[L][A%][Ps x QTT x Py
about sets which all lie in V[L][A99], but are defined in terms of the function f

which only exists in V[L][A%9][Ps x QTT x Py), and in turn is defined using the
embedding j which only exists in V[L][A99][Ps x QTT x Py]. We will prove it (as
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one would expect) by a forcing argument involving both Pg x QTT x Pgj, and Ps,.
Similar remarks apply to Claim [10.31] below. Throughout we will only discuss f and
j in appropriate generic extensions, or in formulae which are being forced to hold
in such extensions.

Claim 10.30. For alla € I\ p and all (s,q) € Bi,a, F3? € Frt1.

Proof. If not then let p € P3 x QTT x Py, be such that

V[L][A99 “ : :
p I e “(5.4) € Bro and F37 ¢ Fipy”.

Since j fixes sets of rank below A,
V L A!lg 13 ; S . ”
(P, 1rs.) i mrote, “Brt \ F3? € j(Fip)*.
Forcing below p we obtain P3 x QTT X Py, such that (s,q) € By,o and F57 ¢ Fiiq
in V[L][A%9][Ps; x QTT x Py).
Let f((s,q),a) = f((s,q),a0) = C. Since C € J,4, C is a possible value for
Js,q, and so we may choose p € Py, such that

P |FE‘X{2[(IL][AQQ][P3XQTTXP2”] “C=Jug"

Forcing below p we obtain Ps,, such that C = J; , in V[L][A%][Ps x QTT x Ps].

So ag, & € Js g, that is to say (s, q) IFp) tag: ta < v. We choose p’ € j(P) with
stem (s, q) such that p' IF; ) ta,, ta < 0.

Take a minimal one-step extension p” of p/, arranging that the stem of p” is
(s,q)+(x,7) and (z,7) € B \F39. p" IFjp) Uy, ta < v, so that (s,q)+(z,7) I
Uy s U < V.

We have ag,a € J(5,q)4(x,r)- Since a,aq > p we see that Jis g4 (z,r) 1S un-
bounded. So Jis g)1(x,r) € T(s,q9)+(x,r)> SAY it is D.

Returning to the model V[L][A%][P; x QTT X Py)], we have ag,a € D, so
F((5,0)+(3,7),0) = D = f((5,9) +(2,7), a0), that is to say (5,q)+ (%, 7) € By
Therefore (x,r) € F2'9 by definition, contradicting our choice of (x,r) as an element
of Biy1 \ F219. O

The following claim will ultimately be used to create a branch using the nodes
Ug-

Claim 10.31. Let o, 8 € I\ p and let (s, q) have length k with (s,q) € By,o N By g.
Then (s,q) IF* uq < ug.

Proof. We work in V[L][A%][P; x QTT X Ps]. By the definitions of By, and

B, £(5,9),0) = f((5:0),00) = [((5,),8) = C say. There is p € Py, forcing
that C = J, 4: if we force below p then in the extension «, § € J;, and we may
choose r € j(P) with stem (s, q) such that r I (B) Uasup < v, from which it follows
that 7 IF;p) ua < ug. By elementarity there is ro € P with stem (s, q) such that

o IFp ua < ug, so (s,q) IF* uq < ug. O



September 17, 2025 16:29 treepaper jml

124 J. Cummings, Y. Hayut, M .Magidor, I. Neeman, D. Sinapova € S. Unger

Claim [10.32| exposes a “monotonicity” property of the sets By o, which will be
crucial in the proof of Lemma below.

Let (s,q) € Bi,o and (s',q") be a direct extension of (s,q), then (s',¢') € By o-

Proof. Let f((s,q),a) = f((s,q),a0) = C and let p € Py, force that J,, = C.
Force below p, choose r € j(P) with stem (s,q) such that r I ua,,us < v, and
refine r to a condition " with stem (s',¢’), so that v’ |- ua,, us < v and hence
(s,¢") IF* Uag,ua < v. So ap, v € Jg g, since p < o < « we see that Jg 4 is
unbounded, say Jy o = D € Ty . Then f((s',¢), ) = f((s',¢'),0) = D, so that
(s',q') € By o- O

At this point we are ready to construct the conditions p, for a € I'\ p. We will
perform the construction of the entries in p, in V[L][A99][Ps x QTT x Py, and
it will follow by distributivity that p, € V[L][499] (so that p, € P) for each a.
However the sequence (pa)acn, only exists in V[L][A99][P3 x QTT x Py).

Define p, for a € I'\ p, where

Pa = (5,9 | AY, AL FE AL FE ).

To start the construction of p,, recall that (8,q) € By, so that F59 € F;11 by
Claim [10.30] We will begin by choosing A¢ and F%, so that:

o AY and F | witness that 57 € Fyq, that is to say (z, [ (z, —)]) € F31
for all z € Ag.

o AY C dom(g).

e r €AY and g[ptil(m_)](y) = F2  (x,y) for all (z,y) € dom(F7,,).

We note for the record that for all x € A%:

o (5,q) + (z,[Ffyi (2, -)]) € Biy1,a-
e Since g = g4, the stem of the minimal extension of p, by adding x will be

(5.0) + (2, [Fi (2, -)]).

We will complete the choice of Fy%; once we have chosen Af,,, by defining Fy?,; =
F2 | A9 x4 AP, Note that F | retains all the properties listed above for ;.

Now assume that & > ¢ and we have defined sets (A$) for ¢t < i < k, together
with functions F® for t < i < k and a function F, k1> satisfying:

o dom(F) =AY | x4 A¥ fort <i <k,

e v € Af for all (x,y) € dom(F, ).

® JiFe,  (x,-)] (y) = Fl?+1(x7y) for all (z,y) € dom(F’,?Jrl).

* Q[Fg(x,—)](y) = F{(x,y) for all (z,y) € Af; x4 A

e For all <-increasing sequences ¥ = (z;)i<i<k with z; € A, let b/ (&) be the
stem

(5,0) + (4, [Fh (e, 2)]) + o (@h—, [F (@1, =)]) + (@, [Fi (2, =),
then:
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Remark 10.33. By the choice of the functions F}*,

h’/(f) = (§’g(l‘t),Ft(i_1($t7xt+1)7 ) 7xk—17FI?(xk—lvxk)7xka [Fka-‘,-l(xk'? _)])

In this round of the construction we will choose Ay, ; and F‘,f‘+2, and will then
define FY, | as F‘,S‘H I A% x4 Ag, . For each <-increasing sequence & = (z;)t<i<rk

with z; € A%, 1/ (&) € Bj41,o by our induction hypothesis, and thus Fg(f) € Frao

by Claim [10.30 By Lemma we have AzFL ) € Fi+2, where
AfFO}Z’(f) ={(z,r): V¥ <2z = (a,r) € Fgl(f)}-

We choose Af,; and F_, so that:

o A% | and Ff,, witness that A;gF,iLl(f) € Fi42, or to be more explicit
(z, [F oz, —)]) € AFE® ¢ Fryo forall z € A .
e v € Ay, and 9IFg, 5 (2,-)] (y) = F,?H(x,y) for all (x,y) € dom(F,?‘+2).

Then we define F', | as Fk&ﬂ [ AR x < AR .

It remains to check that we have propagated our induction hypotheses. Only
the last clause requires any work. Let (;)i<i<k+1 with ; € AY, and let ' be the
stem

(57 Q) + (wtﬂ [Ft(fl»l(mtv _)]) +.o. (mkﬂ [F;?+1(-Tk, _)]) + ($k+17 [Fka+2(xk+17 _)])7

where we note that

B = (g,g(xt)aiﬂu Fto—éi-l(xtaxt+1)v vy Ty F1?+1($ka $k+1)7$k+1a [FI?+2(:L'/€+1’ *)])

Let & = (2;)¢<i<k, and note that [, | (zr, —)] = [F, 1 (zr, —)], so that h'(¥) as
defined above is the stem obtained from h’ ,by deleting the last entry. Becausp T <
i and (i1, [F(@nin, —)]) € AgFa P, (@, [P (ang, -))) € Fi @, so
that b’ € Bk+2,a.

To finish we consider the stem of the minimal extension of p, by the sequence
(@;)i<i<k+1, recalling that by our induction hypothesis h'(Z) is the stem of the
minimal extension of p, by (x;)i<i<k. Recalling that the one-variable function in the
minimal extension by (2;)¢<i< is i, | (Tx, —), and that by our induction hypothesis
9IFe, (or,—)] (Tp41) = Fi' q (h, Tpq1), it is clear that A is the stem of the minimal
extension of py by (2;)i<i<k+1 as required.

We have now constructed in V[L][A%9][Ps; x QTT x Pyy| a sequence (py,)acr such

that
Pa = <§7.g rA?aAngtcj-lvA?—i-lthCi%' . >

and for every minimal extension ¢ of p, by a sequence (z;)i<i<k, the stem of ¢ is
in Bk+1,a'
The following Lemma is analogous to Lemma [10.24
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Lemma 10.34. For o, € I\ p with o < 3, po A pg IF ug < ug.

Proof. Suppose for a contradiction that p < p,,ps and p I- uq £ ug. Assume that
p is an s-step extension of p, and pg for some s > 2. Let

/
b= <3 3 Cty Tt v Cogps—15 Tt4s—1, ft+s»At+S7 Ft+s+17At+s+17 .- >

Let & = (2;)t<i<t+s- The stem of p directly extends the stem of the minimal
extension of p, by Z. By construction the stem of this minimal extension lies in
Biis ., and so by Claim stem(p) € Biys,q. Similarly stem(p) € Biys g. By
Claim stem(p) IF* uqy < ug, contradicting p I+ uy, £ ug. O

Lemma 10.35. The tree T has a cofinal branch in V[L|[A%9][Ps x QTT x Py|[P].

Proof. The proof is essentially the same as the proof of Lemma The main
difference is that A is no longer a cardinal in V[L][A99][P5s x QTT x Py), in fact it
has become an ordinal of cofinality . Since P has only v stems and conditions with
the same stem are compatible, P still enjoys the p-cc in V[L][A99][Ps x QTT x Py,
and the argument goes through. O

Lemma 10.36. The tree T has a cofinal branch in V[L][A99][P].

Proof. We start by claiming that P3 x QTT is formerly < p-closed in
V[L][A99][Pa)[P], with a view to using Fact [2.12] This is easy: because of the
robust p-cc of P, A, x P is p-cc in VP (k)[J¢]|[A99][Pap], and we can argue as in
the discussion preceding Lemma it follows that 7" has a cofinal branch in
V{L)[A%][Po][P). )

Now we claim that Pg;, has the A-approximation property in V[L][A99][P]. Again
this is easy, because P x Py, is »-Knaster in V[L][A99]. It follows that T has a cofinal

branch in V[L][A99][P] as required. O

10.3. The tree property at N 243

The proof that the tree property holds at N,2,3 in our final model is very sim-
ilar to that for R 2,5, so we only sketch it. The main point is to get a suitable
generic embedding with domain V[L][A99] and critical point A’ 4. This is much
more straightforward than it was for A’ , in Section mostly because Y, 5 is
supercompact in V" (x)[J§], so that we only need to account for J¢, A, and A99.
Moreover A, and A9 are both adding Cohen subsets to cardinals below the critical
point.

We recall that J{ is a single round of the A x U x S construction defined in
Vi (k)[JS]. The parameters are A 1, A% 5, and A} ;.

~ o K
o Af = AddV )(>‘31+1a [)‘E;+27>‘£z+3))-
o AYYI = Add‘;()\ZJr% A"), where A* = jo1(AG)-
o A, =Add” (H)()\lfw)\g%)'
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We fix an embedding j witnessing that A 13 is highly supercompact in V', and
lift it trivially to V% (k)[J5]. We will lift j onto V[L][A99] much as we would in
Lemma if our goal was to prove that A’ ; has the tree property in V[L][A99].

We will step through the construction from the proof of Lemma [£.5] adapted to
a situation where the A x U %S construction only runs for one round. In our current
context the parameters are set as follows:

e n=0.

® lipg= )\E)+1, M1 = )\EJ+27 M2 = )\(Izi+3‘

L] AO *Uo*SOZJE

o Vier = VP (k)[J§]. There is no need for Viyy,.
o D = A499.

o D0 =A,.

The generic embedding is added to V[L][A%] by a product forcing Py x P3 =
Py, x Pop, x P35, where:

o Py = j(A%9)/A%, 50 Poy = Add" (M 42, J(A") \ j[A")).

o Pay = j(Ac x Af)/Ac x Af, 0 Pay = Add” (N7, 50 15) \ Mos)
Add” OO0, (M) \ M),

e P; is defined in and < X’ ,-closed in V% (k)[J¢], and retains this closure
in VIi(k)[J¢][A99].

As in the proof of Lemma Ps is still < )\Z+2—closed in
V”’i(/@)[(]c] [Agg] [PQb] — Vlbi(n)[JC] [A“gg]’

where A99 is the j(A9%9)-generic object obtained by combining 499 and Pyy,. In this
b
model A, x Py, is A, ,-Knaster and 2*+1 = A\l .
To summarize the key points:

e Py is A\ 5-Knaster in V[L][A99].
e Py is formerly < A ,-closed forcing in V/[L][A99][P].

With this information in hand, we may finish the proof exactly as in Section [10.2
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Appendix A. A lifting argument

As promised, we give here the details of the generic supercompactness for 6 in the
statement of Lemma

Let Q € V be < #-directed closed and let H be Q-generic over V. Decompose
V oas VoA x U? | 0][L°] where L° is generic over Vo[A? x U° | 6] for the Laver
preparation L°. Let R be an Add(w, 0) = U0 | f-name for the two-step iteration
R=L%xQ. Appealing to the properties of § and ¢g in Vy we fix i : Vj — Ny such
that for an appropriate v > ¢ (which may be chosen arbitrarily large):

1 witnesses that 6 is «-supercompact in Vj.

~TT is a fixed point of i.

i(o)(0) = R.

The first point of dom(i(¢g)) past € is greater than +.

Let A’ be Add(w,i(8) \ 0)-generic over V[H]. Our goal is to find a lifting of ¢
onto V[H] defined in V[H][A].

The main point is that i(B®) agrees with BY up to 6, uses the name R at stage 6,
and then has nothing in its support until past v. By a straightforward adaptation
of the argument of [16, Claim 4.7], and using the gap in the support which we just
mentioned, i(B°) | (6,i(0)) is y-closed in Ny. An easy counting argument shows
that the set of maximal antichains of i(B°) | (6,4(#)) which lie in Ny has cardinality
at most v in Vg, so we may build B € V; which is i(B°) | (6,4(0))-generic over Nj.

Let R be the term forcing A (Add(w,8) « U0 | 6, R), so that R is < #-closed in
Vo, and hence i(R) is < i(6)-closed in Np. Since y < i(6) the poset i(R) is y-closed in
Vo. By choosing v large enough we may assume that the set of maximal antichains
of z(R) which lie in Ny has size v* in V, and we may build R* € Vj which is
i(R)-generic over Ny. We will eventually make sure that R* contains a term for a
master condition but we defer the description of this term.

Let A* be obtained by combining A° and A’ in the natural way, so that A* is
Add(w, i(#))-generic over Vo and i[A°] C A*. Keep in mind that A’ was obtained
by forcing over V[H] = Vo[A? x U x H], so it is mutually generic with U® x H over
Vo[AY]. We note for use later that by this analysis:

o A*xUY | 0 is generic over Ny for Add(w,i(0)) *i(U°) | 6.
e A’ is mutually generic with L° x H over V,[A° « U° | 6].

Recall that we built B € Vj to be generic over Ny for the forcing i(B°) | (8,i(6)),
which is y-closed in Ny. It is easy to see that Add(w,i(6)) = i(U) [ € is 6-cc in Ny,
and so by Easton’s Lemma B is i(B°) | (,i(0))-generic over No[A* x U | 6].

Now we recall that LO+ H is LY * Q-generic over Vo[A%+U° | 0], so a fortiori it is
L0 % Q-generic over No[A? + U | 0]. As we noted above A’ is mutually generic with
L%« H over Vy[A°+U° | 0], so these objects are mutually generic over Ny[A?*U° | 6]
and hence L°  H is L° x Q-generic over Ny[A* « U° | 0]. Since R = i(1)(6) and it
names L0 Q, we see that A%+ (U® | 0% L%+ H) is Add(w, i(0)) *i(U°) | 6+ 1-generic
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over Ny.

Choosing « large enough we can arrange that L° * H is generic for ~7-
cc forcing, so that by Easton’s Lemma again B is i(BY)(0,i(0))-generic over
No[A* % (U° | 0% LY H)]. As in Fact |3.3|it follows that the upwards closure of B in
i(BO)A™+(UI0=LH) (9 (0)) is generic for this forcing over No[A* x (U° | 0% LO x H)]:
combining the upwards closure of B with A* x (U° | 0% LY H) we obtain A* x Ui*(e)
which is Add(w,i()) * i(U° | 6)-generic over Ny. Note that we can rearrange
A*x(U° | 0xLOxH) as A°xU xH+A', and that Uy € Vo[A%UxH+A'] = V[H][A].
By standard arguments we can lift i to obtain a generic embedding i : Vo[A% % (U° |
0)] — No[A* * Ui*(a)].

Recall that R is defined in Vy as the set of A® % U° [ f-names for elements
of R. Choosing ~ large enough we may arrange that i | R € Ny, and it follows
readily that ¢ | R € No[A* = U, ]. By the construction of Uj, we have that
LY H € No[A* % Ujy)], so that i[L° x H] € No[A* x Uy, ]. Since i(R) is < i(6)-
directed closed, i[L?* H] has a lower bound in i(R) and we claim that we can choose
a term 7 € Z(R) which is forced to denote a lower bound: this is easy because 7 has
a simple definition in terms of 7 | R and the i(A% x UV | 0)-generic object. At this
point we return to the choice of R*, an object which has not been used up to now,
and make sure that 7 € R*.

Now we can realize the set of names R*, and obtain a filter Rt C i(R) such
that i[L° * H] € R*. In order to complete the lifting and obtain i : V[H] —
No[A* * Uy |[R7], it only remains to verify that R is generic over No[A* + Uj, .
Recall that we chose R* € Vj to be generic over Ny. Since R* is generic over Ny
for < i(f)-closed forcing and A* x Ul is generic over Ny for i(0)-cc forcing, by
Easton’s Lemma R* is generic over Ng[A* * Uz'*(e)]' It follows that R™ is generic over
No[A* % Ui*(G)]'
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