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NEEMAN, ITAY

Abstract. We show how to construct an ℵ1-Suslin tree which is indestructible

under forcing with a given c.c.c. poset of size ℵ1, in L(x) for any real x. This

answers a recent question of Woodin. More generally we do this at any regular
uncountable cardinal which is not weakly compact, and the construction can

be carried out in any model satisfying standard condensation properties.

1. Introduction

Say that a κ-Suslin tree is P-indestructible if it remains Suslin in the extension
by P. Say that a model M has the indestructible Suslin tree property at κ if it
satisfies that for every κ-c.c. poset P of size κ, there is a P-indestructible κ-Suslin
tree.

In his talk at the 2023 Very Informal Gathering of Logicians at UCLA, Woodin
[3] raised the following question: Is it true that for every real x, the model L(x)
has the indestructible Suslin tree property at ℵ1?

This question came up as part of the work in Woodin [4] on generic MA-models.
Woodin proved the indestructible Suslin tree property at ℵ1 in L(x) for a cone of
reals x, and this was sufficient for his work in [4]. He noted that the property likely
holds in more models, including in particular L, and that this would give additional
information on generic MA-models, for example implying that generic MA-models
over L satisfy “V = HOD.”

Given enough determinacy, obtaining the indestructible Suslin tree property at
ℵ1 on a cone of reals x reduces to showing that for every real x, there is a real
y ≥T x so that the property holds in L(y). Woodin does this by forcing over L(x),
first to add ω2 generic ℵ1-Suslin trees, and then to code these by a single real y.

In this short paper we construct indestructible Suslin trees using an adaptation
of the classical construction of Jensen [1]. This allows us to show that every model
that satisfies condensation, satisfies the indestructible Suslin tree property at ℵ1. In
particular this applies to the models L and L(x) for all reals x, answering Woodin’s
question in the positive.

A key ingredient in the construction is a new diamond principle, that requires
guessing some sets on a club while simultaneously guessing that club. We call this
principle coherent diamond, and we prove it from condensation. This is done in
Section 2.

In Section 3 we use coherent diamond to construct indestructible Suslin trees.
The general structure of the construction follows the classic construction of a Suslin
tree in [1]. The key new ingredient here is folding in a construction of nodes that
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are outright forced to belong to guessed names for antichain. The proof that this
works makes use of coherent diamond.

We work in greater generality than trees on ℵ1, handling all regular uncountable
cardinals in Section 2, and regular uncountable cardinals which satisfy a certain
square principle in Section 3. In L and in L(x) the needed square principle is
equivalent to not being weakly compact, by a classical result of Jensen [1]. This
equivalence generalizes to higher Jensen-indexed fine structural inner models by
work of Schimmerling-Zeman [2] and Zeman [5], leading to our final result that
in all such models, at regular uncountable cardinals, the indestructible Suslin tree
property holds when the cardinal is not weakly compact, and is therefore equivalent
to the existence of a Suslin tree.

2. Coherent diamond

Fix a regular uncountable cardinal κ. Say that the sequences A⃗ = ⟨Aα | α < κ⟩
and C⃗ = ⟨Cα | α < κ⟩ coherently guess a set A ⊆ κ on a club C ⊆ κ if for every
α ∈ C we have that Aα = A ∩ α and Cα = C ∩ α. Note that C, the guessing club,
must itself be guessed correctly at α; it is not enough to guess just the set A. This
will be key to the construction of indestructible Suslin trees later on.

Below we view a given sequence ⟨Xα | α < κ⟩ of subsets of κ as a binary predicate
on κ, namely the predicate which holds of ⟨α, ξ⟩ iff ξ ∈ Xα.

Definition 2.1. Coherent diamond at κ, denoted ⋄cκ, states that for any finitely
many predicates ∆1, . . . ,∆n on κ, and any first order sentence φ, there are se-

quences A⃗ = ⟨Aα ⊆ α | α < κ⟩ and C⃗ = ⟨Cα ⊆ α | α < κ⟩, with the property that

if there is A ⊆ κ so that (κ;∆1, . . . ,∆n, A⃗, C⃗, A) |= φ, then one can find such A, and

a club C ⊆ κ, so that A is coherently guessed by A⃗ and C⃗ on C. Moreover one can do

this in such a way that for every α ∈ C, (α; ∆1↾α, . . . ,∆n↾α, A⃗↾α, C⃗↾α,A∩α) |= φ.

When using this principle we will take A to code a pair ⟨U, Y ⟩ of subsets of κ, and
will be interested primarily in guessing the first coordinate, U . In such a situation

one can view φ as specifying a Σ1
1 property of U in parameters ∆1, . . . ,∆n, A⃗, C⃗,

namely the property that there exists Y so that (κ;∆1, . . . ,∆n, A⃗, C⃗, ⟨U, Y ⟩) |= φ.
Coherent diamond in this context implies that if this Σ1

1 property is satisfiable,
then it is satisfied by a set which is guessed coherently (by the first coordinates of
the Aαs) on a club.

Claim 2.2. ⋄cκ implies ⋄κ(E) for every stationary E ⊆ κ.

Proof. For a set of ordinalsX, let (X)0 = {ξ | 2ξ ∈ X} and (X)1 = {ξ | 2ξ+1 ∈ X}.
This allows us to view X as coding the pair of sets (X)0 and (X)1.

Let E ⊆ κ be stationary. Recall that ⋄κ(E) states that there is a sequence U⃗ so
that for every U ⊆ κ, the set {α ∈ E | Uα = U ∩ α} is stationary. Let φ be the
sentence which states that U = (A)0 and a club Y = (A)1 witness that the sequence
⟨(Aα)0 | α < κ⟩ is not a ⋄κ(E) sequence, meaning that (∀α ∈ E ∩ (A)1)(Aα)0 ̸=
(A)0∩α, phrased in the language of structures (κ;∈, E,∆, A⃗, C⃗, A), where ∆ is the
graph of ordinal multiplication.

Let A⃗, C⃗ witness coherent diamond for this sentence φ. We claim that ⟨Uα =
(Aα)0 | α < κ⟩ is a ⋄κ(E)-sequence.

Suppose otherwise. Then there is U ⊆ κ and a club Y ⊆ κ so that U is not
guessed correctly by Uα for any α ∈ E ∩ Y . Letting A be such that (A)0 = U
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and (A)1 = Y we have that (κ;∈, E,∆, A⃗, C⃗, A) |= φ. By ⋄cκ, and replacing A by

another witness for φ if needed, we may assume that A is coherently guessed by A⃗

and C⃗ on some club C. This implies that for every α ∈ C, Aα = A∩α, and hence,
if α is closed under ordinal multiplication, (Aα)0 = (A)0 ∩ α. At the same time,

since (κ;∈, E,∆, A⃗, C⃗, A) |= φ, for every α ∈ E ∩ (A)1, (Aα)0 ̸= (A)0 ∩ α. Since
E ∩ (A)1 ∩ C includes ordinals which are closed under ordinal multiplication, this
is a contradiction. □

We will not actually use Claim 2.2. It is included as a justification for viewing
⋄cκ as a diamond principle.

Lemma 2.3. L satisfies ⋄cκ for every regular uncountable cardinal κ. Similarly for
L(x) for any real x.

Proof. We prove the lemma for L. The proof for L(x) is similar.
Let HLγ (X) denote the Skolem hull of X in Lγ .
Fix κ. Fix predicates ∆1, . . . ,∆n on κ, and a sentence φ.
For notational simplicity below, we will use P to refer to the sequence of predi-

cates ∆1, . . . ,∆n, A⃗, C⃗, and will use P ↾α to refer to ∆1↾α, . . . ,∆n↾α, A⃗↾α, C⃗↾α.
Define Aα and Cα by recursion on α as follows: If there is A ⊆ α so that

(α;P ↾α,A) |= φ, then let Aα be the <L-least such set, let δα be least so that
α, P ↾α,Aα ∈ Lδα+1, and let Cα be the set of β < α such that HLδα+1(β ∪
{α, P ↾α,Aα}) ∩ α = β.

This recursive definition determines the sequences A⃗ = ⟨Aα | α < κ⟩ and C⃗ =
⟨Cα | α < κ⟩. It remains to show that these sequences satisfy the requirements of
coherent diamond for φ.

Suppose that there is A ⊆ κ so that (κ;P,A) |= φ, and fix the <L-least one. Let
δ be least so that κ, P,A ∈ Lδ+1. Let C be the set of β < κ so that HLδ+1(β ∪
{κ, P,A}) ∩ κ = β.

It is clear that C is club in κ. For α ∈ C, let Hα = HLδ+1(α∪{κ, P,A}), let Mα

be the transitive collapse of Hα, and let πα : Hα →Mα be the collapse embedding.
Since Hα∩κ = α, πα maps κ to α. It is clear by condensation and elementarity that
Mα is precisely equal to Lδα+1, that (α;P ↾α,A∩α) |= φ, that A∩α = πα(A) = Aα,
and consequently that Cα = C ∩ α. □

Remark 2.4. We phrased Lemma 2.3 for L and L(x), but the only properties of L
used in the proof are the fact that it has a definable wellordering, the absoluteness
of this wellordering to sufficiently closed initial segments, and condensation of the
Skolem hulls used in the proof to initial segments. These properties hold in all
standard fine structural inner models, and the proof of Lemma 2.3 can be adapted
to show that coherent diamond holds at all regular uncountable cardinals in all
these models.

3. indestructible Suslin trees

Recall that □(κ) is the statement that there is a sequence of clubs Gα ⊆ α, for
limit α < κ, which is: (a) coherent, meaning that α ∈ lim(Gβ) → Gα = Gβ ∩ α,
and (b) not threadable, meaning that there is no club G ⊆ κ so that G ∩ α = Gα

for all α ∈ lim(G).
One way to ensure that ⟨Gα | α < κ⟩ is not threadable is to require the existence

of a stationary E ⊆ κ so that the sets lim(Gα) are all disjoint from E.
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It is standard to use □(κ,E) to denote the resulting principle, namely the prin-
ciple asserting that there is a coherent sequence of clubs Gα ⊆ α, for limit α < κ,
with the sets lim(Gα) all disjoints from E.

The principle □(κ,E) was isolated by Jensen [1], and the following result is
among the first applications of fine structure. Jensen proved the result in L, but
the same proof relativizes to L(x) for every real x. That (3) implies (2) implies
(1) is clear. The main work is to show that (1) implies (3), and this is done in
Theorems 5.2 and 6.1 of [1].

Lemma 3.1 (Jensen [1]). In L, and similarly in L(x) for every real x, the following
are equivalent for every uncountable regular cardinal κ:

(1) κ is not weakly compact.
(2) There is a stationary non-reflecting subset of κ.
(3) There is a stationary E ⊆ κ so that □(κ,E).

Jensen [1, Theorem 6.2] relies on this characterization to construct κ-Suslin trees
in L, for regular uncountable κ which are not weakly compact. The construction
uses □(κ,E) and ⋄κ(E) for a stationary E ⊆ κ. The next lemma provides a parallel
of this construction, for indestructible Suslin trees, and using coherent diamond.

Lemma 3.2. Let κ be a regular uncountable cardinal and let P be a κ-c.c. poset of
size κ. Suppose ⋄cκ holds, and suppose there is a stationary E ⊆ κ so that □(κ,E)
holds. Then there is a κ-Suslin tree which is P-indestructible.
Proof. Readers familiar with the construction of a Suslin tree T in Jensen [1] will
recall that it hinges on using ⋄κ(E) to predict at each stage α ∈ E an initial segment
Aα of a potential maximal antichain, and (if the initial segment is a maximal
antichain in T ↾α) sealing it, meaning constructing level α of the tree so that all
nodes on that level extend nodes in Aα. This implies that all nodes on levels α
or higher are compatible with nodes in Aα, so that Aα cannot be contained in an
antichain of size κ.

We wish to follow a similar strategy, but predicting initial segments of P-names
for antichains, so that we can create a P-indestructible Suslin tree T . To do this
in the ground model we need to generate nodes of T which are outright forced to
extend nodes in the predicted antichain name. We will incorporate a process to
produce such nodes into the construction of T .

Without loss of generality assume that P is a poset on κ.
Fix a □(κ,E) sequence of clubs Gα ⊆ α, for limit α < κ.

Work with sequences A⃗ = ⟨Aα ⊆ α | α < κ⟩ and C⃗ = ⟨Cα ⊆ α | α < κ⟩. We will
define a κ-tree T , using these sequences.

Let (X)i = {ξ | 4ξ + i ∈ X} for i ∈ {0, 1, 2, 3}. This allows us to view X as
coding four sets. We will use (Aα)1 as our predicted P-names for antichains, and
(Aα)0 as conditions forcing this. We will use (Aα)2 and (Aα)3 to witness some Σ1

1

statements.
As we construct T , we make sure that (∀β < α < κ) every node on level β of T

extends to a node on level α of T .
We use T ↾α to denote the restriction of T to nodes on levels below α. We will

construct T so that its αth level is a subset of {α} × α for infinite α, and a subset
of {n} × 2n for finite n. The construction is by recursion on α. At stage α of
the construction we determine the ≤T -predecessors of the nodes ⟨α, ξ⟩. If α is a
successor, we do this in such a way that each node on level α−1 has two successors
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on level α. As usual with Suslin tree constructions, this ensures that any chain of
size κ in T gives rise to an antichain of size κ, so that T is Suslin provided it has
no antichains of size κ.

To be specific: Let ⟨0, 0⟩ be the only node of T on level 0. For m ≤ n < ω,
k < 2m, and l < 2n, set ⟨m, k⟩ ≤T ⟨n, l⟩ iff the remainder of l divided by 2m

equals k. For infinite α, set ⟨α, ξ⟩ ≤T ⟨α + 1, η⟩ for η ∈ {fα(0, ξ), fα(1, ξ)}, where
fα : 2× α→ α+ 1 is a fixed bijection.

At limit α, we will attempt to produce for each node u ∈ T ↾α two (or fewer)
cofinal branches b(α, u) and e(α, u) in T ↾α. Then using fixed bijections gα : 2×(α×
α) → α, for each u ∈ T ↾α ⊆ α×α, if b(α, u) is defined then we put ⟨α, gα(0, u)⟩ into
T and set its ≤T -predecessors to be the nodes in b(α, u), and similarly if e(α, u) is
defined then we put ⟨α, gα(1, u)⟩ into T and set its ≤T -predecessors to be the nodes
in e(α, u). We refer to ⟨α, gα(0, u)⟩ as a cap for b(α, u), and similarly with gα(1, u)
and e(α, u). At least one of b(α, u) and e(α, u) will be defined, and capping the
defined branch(es) ensures, among other things, that every node on a level β < α
extends to a node on level α.

The above structural specifications are all standard for a Suslin tree construction
from a diamond principle, with the slight variation that we are attempting to
construct two cofinal extensions of u, instead of one. What is new here is that we
construct b(α, u) below in a way that produces nodes which are outright forced to
extend nodes in predicted antichain names.

Recall that P ⊆ κ. When X ⊆ κ is a singleton {p} for a condition p ∈ P, then
abusing notation we will refer to X as if it were the condition p, for example saying
that X forces a statement θ in the P forcing language if p ⊩ θ.

Fix a bijection h : κ → κ<ω. Abusing notation we can view a canonical P-name
for an antichain in T as a subset of T × P ⊆ κ × κ × κ. Hence every canonical
P-name for an antichain in T can be viewed as h′′X for some X ⊆ κ.

By recursion attempt to construct nodes vα,uξ (vξ for short when α, u are clear

from the context) forming a cofinal chain in T ↾α extending u.
Set v0 = u.
At limit γ, if {vξ | ξ < γ} has a cap in T ↾α, set vγ to be the least one. If

{vξ | ξ < γ} is not yet cofinal in T ↾α, and fails to have a cap in T ↾α, then abandon
the construction and leave b(α, u) undefined. If {vξ | ξ < γ} is cofinal in T ↾α, then
set b(α, u) to be the cofinal branch of T ↾α generated by this set.

Most importantly, at successor stages, work as follows to define vξ+1: Let δ be
the least element of Cα strictly above the level of vξ in T if there is one; otherwise
abandon the construction and leave b(α, u) undefined. If (Aα)0 forces in P that vξ
extend an element of h′′(Aα)1 in T , then let vξ+1 be the least node of T on level
δ which extends vξ. If there is a condition in P below (Aα)0 which forces that vξ
does not extend an element of h′′(Aα)1, and forces some node v ≥T vξ on level δ
to extend an element of h′′(Aα)1, then let vξ+1 be the least node v for which this
happens. If neither of these two options holds, then abandon the construction and
leave b(α, u) undefined.

If α ̸∈ E, or the construction of b(α, u) failed, then by recursion construct nodes
wα,u

ξ (wξ for short when α, u are clear from the context) forming a cofinal chain in

T ↾α extending u, and let e(α, u) be the cofinal branch of T ↾α generated by these
nodes. Set w0 = u. At limit γ where {wξ | ξ < γ} is not yet cofinal in T ↾α, let wγ

be the least cap for this set in T ↾α. We will check below that such a cap exists. At
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successors stages, let δ be the least element of Gα strictly above the level of wξ in
T , and let wξ+1 be the least node of T on level δ which extends wξ.

This completes the construction of b(α, u) and e(α, u), and with it the construc-
tion of the tree order ≤T and the tree T .

Claim 3.3. The caps needed in the construction of e(α, u) exist.

Proof. Fix α and u. Inductively we may assume that e(δ, u) are constructed and
capped in T for all δ ∈ E strictly below α with u ∈ T ↾δ.

Let wα,u
ξ be constructed as above, for ξ < γ, with γ a limit ordinal, and with

the nodes wα,u
ξ for ξ < γ not cofinal in T ↾α. Let δξ be the level of wα,u

ξ in T . Let

δγ = sup{δξ | ξ < γ}. We have to show that there is a node on level δγ of T which
extends all the nodes wα,u

ξ , ξ < γ. Our argument for this is the standard one, using

□(κ,E) in a manner similar to its use in Jensen [1].
By construction the levels δξ, ξ < γ, form an increasing sequence in Gα. Since

Gα is club in α, it follows that δγ ∈ Gα, and in fact δγ ∈ lim(Gα). This implies
that δγ ̸∈ E. Hence e(δγ , u) was constructed, and (by induction) capped in T . By
the coherence of the □(κ,E) sequence, Gδγ = Gα ∩ δγ . It follows from this that

the nodes w
δγ ,u
ξ , used in stage δγ of the construction of T , are exactly equal to the

nodes wα,u
ξ , for ξ < γ. In particular e(δγ , u) contains these nodes. Hence the cap

for e(δγ , u) on level δγ of T is a cap for the nodes wα,u
ξ , ξ < γ. □

The tree (T ;≤T ) was constructed with reference to the sequences A⃗ and C⃗.

When we wish to emphasize this dependence we write T (A⃗, C⃗) and ≤T (A⃗, C⃗).
Let ∆mult, ∆rem, ∆f , ∆g, and ∆h be predicates on powers of κ that code the

multiplication function on κ, the remainder function on ω, the sequences of func-

tions fα and gα, and the function h used above. Let ∆⃗ denote the sequence of these
predicates.

Claim 3.4. There is a sentence ψtree in the language of the structure (κ;∈,≤P,

∆⃗, G⃗, A⃗, C⃗, E0, E1, T,≤T ), where E0 and E1 are ternary predicates, so that:

(1) If T = T (A⃗, C⃗) and ≤T= ≤T (A⃗, C⃗) then there are unique E0 and E1 so

that (κ;∈,≤P, ∆⃗, G⃗, A⃗, C⃗, E0, E1, T,≤T ) |= ψtree.

(2) If there are E0, E1 so that (κ;∈,≤P, ∆⃗, G⃗, A⃗, C⃗, E0, E1, T,≤T ) |= ψtree, then

T = T (A⃗, C⃗) and ≤T=≤T (A⃗, C⃗).

Proof. Take ψtree to express the statement that E0, E1, T , and ≤T are constructed
as above, where E0 and E1 consist of all the tuples ⟨α, u, vα,uξ ⟩ and ⟨α, u,wα,u

ξ ⟩
respectively. It is clear that the construction rules are first order over the resulting
structure. □

Claim 3.5. There is a sentence ψmac so that, letting T = T (A⃗, C⃗) and ≤T =

≤T (A⃗, C⃗):

(1) If (κ;∈,≤P, ∆⃗, G⃗, A⃗, C⃗, A) |= ψmac then (A)0 forces in P that h′′(A)1 is a
maximal antichain of size κ in (T ;≤T ), and (A)2 is a club of α < κ which
are elementary in (κ; ∆h,≤P, T,≤T , (A)0, h

′′(A)1).
(2) If p forces in P that h′′Z is a maximal antichain of size κ in (T ;≤T ), and

U is a club of α < κ which are elementary in (κ; ∆h,≤P, T,≤T , {p}, h′′Z),
then there exists A so that (κ;∈,≤P, ∆⃗, G⃗, A⃗, C⃗, A) |= ψmac, with (A)0 =
{p}, (A)1 = Z, and (A)2 = U .
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Proof. Immediate from Claim 3.4, using (A)3 to code E0, E1, T , and ≤T , and
rephrasing ψtree to refer to the coded objects. The coding can be done definably

over (κ;∈,≤P, ∆⃗, G⃗, A⃗, C⃗, A) using the function h. The properties of (A)0, (A)1,
≤P, T , ≤T , and (A)2 in the current claim are clearly first order. □

We are now ready to pick the tree that witnesses Lemma 3.2. Let A⃗ and C⃗

witness coherent diamond on κ for the predicates ∈, ≤P, ∆⃗, and G⃗, with the
sentence ψmac, strengthened to incorporate an explicit statement that (A)2 is club.

Let T = T (A⃗, C⃗), and let ≤T = ≤T (A⃗, C⃗). We will prove that (T ;≤T ) is P-
indestructibly Suslin.

Suppose otherwise. Then there is a condition in P forcing the existence of a
maximal antichain in (T ;≤T ) of size κ. Using condition (2) of Claim 3.5 it follows

that there exists A ⊆ κ so that (κ;∈,≤P, ∆⃗, G⃗, A⃗, C⃗, A) |= ψmac. Using coher-

ent diamond, fix such an A which is guessed coherently by A⃗ and C⃗ on a club
C ⊆ κ. Moreover, using the final clause in Definition 2.1, do this in such a way

that (α;∈,≤P↾α, ∆⃗↾α, G⃗↾α, A⃗↾α, C⃗↾α,A ∩ α) |= ψmac for every α ∈ C. Since we
incorporated the statement that (A)2 is club into ψmac, this implies in particular
that (A)2 is unbounded in α for each α ∈ C, and hence, using the closure of (A)2,
C ⊆ (A)2.

Using condition (1) of Claim 3.5, and letting p ∈ P be such that (A)0 = {p},
Z = (A)1, Y = h′′Z, and U = (A)2, we have that p forces Y to be a maximal
antichain of (T ;≤T ) of size κ, and U is a club of α < κ which are elementary in
(κ; ∆h,≤P, T,≤T , {p}, Y ). We also saw above that C ⊆ U .

Recall that Y is a subset of T × P ⊆ κ3. We use Y ↾α to denote Y ∩ α3. Using
the elementarity of α relative to ∆h, and the fact that α is a limit ordinal, it is easy
to see that Y ↾α = h′′(A ∩ α)1.

Claim 3.6. Let α ∈ U , let q ∈ P ∩ α, and let w ∈ T ↾α. Then q forces in P that w
extends an element of Y iff q forces in P that w extends an element of Y ↾α.

Proof. Clear using the elementarity of α in (κ; ∆h,≤P, T,≤T , {p}, Y ), and the fact
that P is κ-c.c. □

Claim 3.7. (1) For every u ∈ T , there is w ∈ T extending u, so that w is
forced by p to extend an element of Y .

(2) For every α ∈ C, and for every u ∈ T ↾α, there is w′ on level α of T
extending u, so that w′ is forced by p to extend an element of Y .

Proof. To prove the second condition from the first, note that C ⊆ U , so that
α is elementary in (κ; ∆h,≤P, T,≤T , {p}, Y ). Assuming the first condition of the
current claim, this implies that every u ∈ T ↾α has an extension w in T ↾α which is
forced by p to extend an element of Y . Any extension w′ of w to level α witnesses
the second condition.

We prove the first condition. Fix u ∈ T . Suppose for contradiction that no
extension of u is forced by p to extend an element of Y . Construct a chain in
T extending u as follows. Set v0 = u, and let δ0 be the level of u. At limit γ, if
{vξ | ξ < γ} does not have a cap on level δγ = sup{δξ | ξ < γ}, end the construction.
If {vξ | ξ < γ} does have a cap on level δγ , let vγ be the least one. For the successor
stage, having defined vξ on level δξ of T , and letting δξ+1 be the first element of C
above δξ, if there is a condition in P below p which forces that vξ does not extend
an element of Y , and forces some node v ≥T vξ on level δξ+1 to extend an element
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of Y , then let vξ+1 be the least node v for which this happens. If no such node
exists, end the construction.

Note that our construction exactly matches the construction of the nodes vα,uξ ,
for α ∈ C. This is because Cα = C ∩ α, Aα = A ∩ α, because for every α ∈ C,
our assumption that no extension of u is forced by p to extend an element of Y
eliminates the corresponding case in the definition of vα,uξ+1, and because, using the
elementarity of α, Claim 3.6 equates forcing a node in T ↾α to extend an element
of Y with forcing it to extend an element of h′′(Aα)1.

Thus, for every α ∈ C above the level of u, and every ξ so that δξ < α (if
defined), our vξ is defined iff vα,uξ is defined, and the two are equal when defined.

This implies in particular that the construction of vξ cannot fail first at a limit
γ. This is because, by construction of T , there is a node on level δγ which caps
b(δγ , u) = {vξ | ξ < γ}.

The construction of vξ cannot fail at a successor stage either. To see this, note
that by assumption there is q ≤ p forcing that vξ does not extend an element of
Y . Since p forces Y to be a maximal antichain in (T ;≤T ), we can find a w ∈ T
extending vξ, and a condition q′ ≤ q, forcing that w extends an element of Y .
Since δξ+1 ∈ C ⊆ U , and by the elementarity of all elements of U in (κ; ∆h,≤P
, T,≤T , {p}, Y ), such w can be found on a level below δξ+1. Then any extension v
of w to level δξ+1 witnesses the condition in the definition of vξ+1.

So the construction of vξ proceeds without fail at all ξ < κ.
For each ξ, by construction there is a condition below p forcing that vξ does not

extend an element of Y , but vξ+1 does. Let qξ be such a condition. If ξ < η then
vξ+1 ≤T vη so qη forces that vξ+1 does not extend an element of Y , and hence qη
is is incompatible with qξ. This gives an antichain in P of size κ, contradicting the
κ-chain condition. □

Claim 3.8. At every α ∈ C, the construction of b(α, u) succeeds, and all nodes in
b(α, u) except possibly u are forced by p to extend an element of Y .

Proof. Suppose not, and fix the least α ∈ C for which the construction fails, or
includes nodes other than u which are not forced by p to extend a node in Y .

Note that the construction cannot fail at a successor stage. This is a consequence
of Claim 3.7: since α ∈ C we have that Cα = C ∩ α, hence the least δ ∈ Cα above
the level of vα,uξ is an element of C, and hence by Claims 3.7 and 3.6, there is

v ≥T vα,uξ on level δ which is forced by p to extend an element of Y ↾α = h′′(Aα)1.

This also shows that the very first node above u, vα,u1 , is forced by p to extend
an element of Y , and hence so are all subsequent nodes.

Finally, the construction cannot fail at a limit stage γ either. To see this, let δξ
for ξ < γ be the level of vα,uξ , and let δ = sup{δξ | ξ < γ}. Since δ ∈ Cα = C ∩ α,
we have Aδ = A ∩ δ = Aα ∩ δ and Cδ = C ∩ δ = Cα ∩ δ. From this agreement, and

from Claim 3.7, it follows that the constructions of vδ,uξ and vα,uξ are identical for

ξ < γ. By the minimality of α, vδ,uξ for ξ < γ are all defined, and capped at level
δ. So vα,uγ is defined, and equal to the least such cap. □

Having produced enough nodes which are forced by p to extend elements of Y ,
we can now conclude the proof of Lemma 3.2 following the usual lines in a Suslin
tree construction.
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Fix α ∈ C ∩E. Since, by Claim 3.8, b(α, u) is defined for all u ∈ T ↾α, and since
α ∈ E, we do not construct the branches e(α, u) for any u ∈ T ↾α. Thus, level α
of T consists only of caps for the branches b(α, u). By Claim 3.8, these caps are
all forced by p to extend elements of Y . This implies that all nodes of T on levels
α and higher are forced by p to extends nodes in Y . Since Y is forced by p to be
an antichain, it follows that it is forced by p to not have any nodes on levels α or
greater. This contradicts the fact that p forces Y to have size κ. □

Remark 3.9. In the case of κ = ω1, the assumption in Lemma 3.2 that there
exists a stationary E so that □(κ,E) becomes vacuous, since it holds trivially
with E consisting of all limit ordinals below ω1, as witnessed by taking Gα for limit
α < ω1 to be a cofinal subset of α of ordertype ω containing only successor ordinals.
With these Gαs, the proof of Lemma 3.2 simplifies slightly: e(α, u) is constructed
only if the construction of b(α, u) fails, and Claim 3.3 is not needed, since there are
no limit cases in the construction of e(α, u).

Corollary 3.10. In L, and in L(x) for every real x, the indestructible Suslin tree
property holds at every regular uncountable κ which is not weakly compact.

Proof. Immediate from Lemmas 2.3, 3.1, and 3.2. □

Remark 3.11. If κ = µ+ for a strongly inaccessible cardinal µ, then the assump-
tion in Lemma 3.2 that there exists a stationary E so that □(κ,E) can be dropped.
This fact, and the necessary modification to the proof of Lemma 3.2, exactly par-
allel the situation with Jensen’s construction of a κ-Suslin tree. The modifications
are as follows: Take E to be the set of α < κ of cofinality µ. Set Gα for each limit
α < κ to be a cofinal club in α of ordertype ≤ µ consisting entirely of ordinals of
cofinality < µ, so that Gα is disjoint from E. Modify the tree construction in the
proof of Lemma 3.2 to cap all cofinal branches through T ↾α when α has cofinality
< µ. This modification is compatible with the narrowness requirements of the tree
since µ is strongly inaccessible. It removes the need for Claim 3.3 and with it the
need for any coherence assumptions on the clubs Gα.

Corollary 3.12. In the standard Jensen-indexed fine structural inner models, the
indestructible Suslin tree property holds at every regular uncountable cardinal which
is not weakly compact.

Proof. The proof parallels the proof of Corollary 0.3 in Zeman [5]. By Lemma
3.2, Lemma 2.3, and Remark 2.4, it is enough to either establish that there is a
stationary E so that □(κ,E), or, using Remark 3.11, argue that κ is the successor
of a strongly inaccessible cardinal. This is done in cases. If κ itself is inaccessible
(but not weakly compact), then by Theorem 0.1 of [5] there is a stationary E
so that □(κ,E) holds. If κ = µ+ where µ is not subcompact, then the results of
Schimmerling-Zeman [2] give the existence of a □µ sequence, and any such sequence
is a □(κ,E) sequence where E consists of α < κ of cofinality µ. Finally, if κ = µ+

where µ is subcompact, then κ is the successor of a strongly inaccessible cardinal.
□

Since weakly compact cardinals cannot carry Susin trees, it follows from Corol-
lary 3.12 that, in Jensen-indexed fine structural models, for every regular uncount-
able κ, the indestructible Suslin tree property at κ is equivalent to the existence of
a κ-Suslin tree.
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