INDESTRUCTIBLE SUSLIN TREES

NEEMAN, ITAY

ABSTRACT. We show how to construct an Ni-Suslin tree which is indestructible
under forcing with a given c.c.c. poset of size Ry, in L(z) for any real z. This
answers a recent question of Woodin. More generally we do this at any regular
uncountable cardinal which is not weakly compact, and the construction can
be carried out in any model satisfying standard condensation properties.

1. INTRODUCTION

Say that a k-Suslin tree is P-indestructible if it remains Suslin in the extension
by P. Say that a model M has the indestructible Suslin tree property at k if it
satisfies that for every k-c.c. poset P of size k, there is a P-indestructible xk-Suslin
tree.

In his talk at the 2023 Very Informal Gathering of Logicians at UCLA, Woodin
[3] raised the following question: Is it true that for every real x, the model L(x)
has the indestructible Suslin tree property at N;7

This question came up as part of the work in Woodin [4] on generic MA-models.
Woodin proved the indestructible Suslin tree property at X; in L(x) for a cone of
reals z, and this was sufficient for his work in [4]. He noted that the property likely
holds in more models, including in particular L, and that this would give additional
information on generic MA-models, for example implying that generic MA-models
over L satisfy “V = HOD.”

Given enough determinacy, obtaining the indestructible Suslin tree property at
N; on a cone of reals = reduces to showing that for every real x, there is a real
y >7 x so that the property holds in L(y). Woodin does this by forcing over L(z),
first to add wy generic Ny-Suslin trees, and then to code these by a single real y.

In this short paper we construct indestructible Suslin trees using an adaptation
of the classical construction of Jensen [1]. This allows us to show that every model
that satisfies condensation, satisfies the indestructible Suslin tree property at ¥;. In
particular this applies to the models L and L(z) for all reals z, answering Woodin’s
question in the positive.

A key ingredient in the construction is a new diamond principle, that requires
guessing some sets on a club while simultaneously guessing that club. We call this
principle coherent diamond, and we prove it from condensation. This is done in
Section 2.

In Section 3 we use coherent diamond to construct indestructible Suslin trees.
The general structure of the construction follows the classic construction of a Suslin
tree in [1]. The key new ingredient here is folding in a construction of nodes that
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are outright forced to belong to guessed names for antichain. The proof that this
works makes use of coherent diamond.

We work in greater generality than trees on N;, handling all regular uncountable
cardinals in Section 2, and regular uncountable cardinals which satisfy a certain
square principle in Section 3. In L and in L(z) the needed square principle is
equivalent to not being weakly compact, by a classical result of Jensen [1]. This
equivalence generalizes to higher Jensen-indexed fine structural inner models by
work of Schimmerling-Zeman [2] and Zeman [5], leading to our final result that
in all such models, at regular uncountable cardinals, the indestructible Suslin tree
property holds when the cardinal is not weakly compact, and is therefore equivalent
to the existence of a Suslin tree.

2. COHERENT DIAMOND

Fix a regular uncountable cardinal x. Say that the sequences A= (Ay | @ < R)
and C = (Cyo | @ < K) coherently guess a set A C k on a club C C & if for every
a € C we have that A, = AN« and C, = C Na. Note that C, the guessing club,
must itself be guessed correctly at «; it is not enough to guess just the set A. This
will be key to the construction of indestructible Suslin trees later on.

Below we view a given sequence (X, | @ < k) of subsets of k as a binary predicate
on k, namely the predicate which holds of («, &) iff £ € X,.

Definition 2.1. Coherent diamond at k, denoted ¢, states that for any finitely
many predicates Aj,...,A, on k, and any first order sentence ¢, there are se-
quences A = (A, Ca|a < k) and € = (C, C a | a < k), with the property that
if there is A C k so that (k; Ay, ..., Ay, A,C, A) = @, then one can find such A, and
aclub C' C k, so that A is coherently guessed by A and C on C. Moreover one can do

this in such a way that for every a € C, (a; Aq[ay, ..., Ay, Ala,Cla, ANa) E .

When using this principle we will take A to code a pair (U, Y') of subsets of x, and
will be interested primarily in guessing the first coordinate, U. In such a situation
one can view ¢ as specifying a ¥} property of U in parameters Ay, ..., A,, /Y, é,
namely the property that there exists Y so that (r;Aq, ..., An, A, C, (U, Y)) |= .
Coherent diamond in this context implies that if this 31 property is satisfiable,
then it is satisfied by a set which is guessed coherently (by the first coordinates of
the A,s) on a club.

Claim 2.2. of implies o.(E) for every stationary E C k.

Proof. For aset of ordinals X, let (X)o = {€] 26 € X} and (X); = {£] 2§+1 € X}.
This allows us to view X as coding the pair of sets (X)o and (X);.

Let E C k be stationary. Recall that o, (E) states that there is a sequence U so
that for every U C k&, the set {a € E | U, = U N «a} is stationary. Let ¢ be the
sentence which states that U = (A)p and a club Y = (A); witness that the sequence
((Aa)o | @ < k) is not a o, (E) sequence, meaning that (Vo € E N (A4)1)(Aq)o #
(A)g N, phrased in the language of structures (k; €, E, A, A,C, A), where A is the
graph of ordinal multiplication.

Let ff, C witness coherent diamond for this sentence . We claim that (U, =
(An)o | @ < k) is a o, (E)-sequence.

Suppose otherwise. Then there is U C k and a club Y C k so that U is not
guessed correctly by U, for any o € ENY. Letting A be such that (A)g = U
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and (A); = Y we have that (x; €, E,A, A,C, A) = ¢. By o¢, and replacing A by
another witness for ¢ if needed, we may assume that A is coherently guessed by A
and C on some club C. This implies that for every a € C, A, = AN a, and hence,
if a is closed under ordinal multiplication, (A4)o = (A)o N . At the same time,
since (k;€,B,A, A, C,A) |= ¢, for every o € EN (A)1, (Aa)o # (A)o Na. Since
E N (A); N C includes ordinals which are closed under ordinal multiplication, this
is a contradiction. O

We will not actually use Claim 2.2. It is included as a justification for viewing
0% as a diamond principle.

Lemma 2.3. L satisfies of, for every regular uncountable cardinal k. Similarly for
L(zx) for any real x.

Proof. We prove the lemma for L. The proof for L(xz) is similar.

Let HL+(X) denote the Skolem hull of X in L,.

Fix k. Fix predicates Aq,..., A, on k, and a sentence .

For notational simplicity below, we will use P to refer to the sequence of predi-
cates Aq,..., An,f_f, C_", and will use Pla to refer to Aqla, ..., A, q, ff[a, 6[04.

Define A, and C, by recursion on « as follows: If there is A C « so that
(a; Pla, A) = o, then let A, be the <j-least such set, let J, be least so that
a,Pla, Ay € Ls, .1, and let C, be the set of 3 < « such that Hls«+1(8 U
{a, Pla, Aq}) Nae = B.

This recursive definition determines the sequences A = (4, | a < ) and C =
(Cq | @ < k). It remains to show that these sequences satisfy the requirements of
coherent diamond for .

Suppose that there is A C & so that (k; P, A) = ¢, and fix the <p-least one. Let
§ be least so that x, P, A € Ls;1. Let C be the set of 8 < k so that HEs+1(3U
{k,P,A}) Nk = p.

It is clear that C'is club in k. For a € O, let H, = H"5+1(aU{x, P, A}), let M,
be the transitive collapse of H,, and let 7, : H, — M, be the collapse embedding.
Since H, Nk = «a, 7, maps k to a. It is clear by condensation and elementarity that
M, is precisely equal to Ls_ 11, that (a; Pla, ANa) | ¢, that ANa = 74(A) = A,,
and consequently that C, = C N a. O

Remark 2.4. We phrased Lemma 2.3 for L and L(z), but the only properties of L
used in the proof are the fact that it has a definable wellordering, the absoluteness
of this wellordering to sufficiently closed initial segments, and condensation of the
Skolem hulls used in the proof to initial segments. These properties hold in all
standard fine structural inner models, and the proof of Lemma 2.3 can be adapted
to show that coherent diamond holds at all regular uncountable cardinals in all
these models.

3. INDESTRUCTIBLE SUSLIN TREES

Recall that O(x) is the statement that there is a sequence of clubs G, C «, for
limit & < &, which is: (a) coherent, meaning that « € lim(Gg) — G, = Gz N a,
and (b) not threadable, meaning that there is no club G C « so that G Na = G,
for all @ € lim(G).

One way to ensure that (G, | & < k) is not threadable is to require the existence
of a stationary E C & so that the sets lim(G,) are all disjoint from E.
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It is standard to use (k, E) to denote the resulting principle, namely the prin-
ciple asserting that there is a coherent sequence of clubs G, C «, for limit a < &,
with the sets lim(G,,) all disjoints from E.

The principle O(k, E) was isolated by Jensen [1], and the following result is
among the first applications of fine structure. Jensen proved the result in L, but
the same proof relativizes to L(z) for every real x. That (3) implies (2) implies
(1) is clear. The main work is to show that (1) implies (3), and this is done in
Theorems 5.2 and 6.1 of [1].

Lemma 3.1 (Jensen [1]). In L, and similarly in L(x) for every real , the following
are equivalent for every uncountable reqular cardinal k:

(1) & is not weakly compact.
(2) There is a stationary non-reflecting subset of k.
(3) There is a stationary E C k so that O(k, E).

Jensen [1, Theorem 6.2] relies on this characterization to construct x-Suslin trees
in L, for regular uncountable x which are not weakly compact. The construction
uses U(k, E') and o, (F) for a stationary E C k. The next lemma provides a parallel
of this construction, for indestructible Suslin trees, and using coherent diamond.

Lemma 3.2. Let k be a reqular uncountable cardinal and let P be a k-c.c. poset of
size k. Suppose ¢ holds, and suppose there is a stationary E C k so that O(k, E)
holds. Then there is a k-Suslin tree which is P-indestructible.

Proof. Readers familiar with the construction of a Suslin tree 7" in Jensen [1] will
recall that it hinges on using o, (E) to predict at each stage o € E an initial segment
A, of a potential maximal antichain, and (if the initial segment is a maximal
antichain in T'a) sealing it, meaning constructing level « of the tree so that all
nodes on that level extend nodes in A,. This implies that all nodes on levels «
or higher are compatible with nodes in A,, so that A, cannot be contained in an
antichain of size &.

We wish to follow a similar strategy, but predicting initial segments of P-names
for antichains, so that we can create a P-indestructible Suslin tree T. To do this
in the ground model we need to generate nodes of T" which are outright forced to
extend nodes in the predicted antichain name. We will incorporate a process to
produce such nodes into the construction of T

Without loss of generality assume that P is a poset on k.

Fix a O(k, E) sequence of clubs G, C a, for limit a < &.

Work with sequences A = (A, Ca|a<k)and C = (Cy C | a < k). We will
define a k-tree T', using these sequences.

Let (X); ={€ |4 +i¢€ X} for i € {0,1,2,3}. This allows us to view X as
coding four sets. We will use (A,)1 as our predicted P-names for antichains, and
(Ay)o as conditions forcing this. We will use (A,)2 and (A, )3 to witness some 1
statements.

As we construct T', we make sure that (V8 < a < k) every node on level 8 of T
extends to a node on level « of T'.

We use T'[a to denote the restriction of T to nodes on levels below «. We will
construct T so that its ath level is a subset of {a} X « for infinite «, and a subset
of {n} x 2™ for finite n. The construction is by recursion on «. At stage « of
the construction we determine the <p-predecessors of the nodes (o, &). If « is a
successor, we do this in such a way that each node on level o — 1 has two successors
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on level a. As usual with Suslin tree constructions, this ensures that any chain of
size k in T gives rise to an antichain of size k, so that T is Suslin provided it has
no antichains of size k.

To be specific: Let (0,0) be the only node of T on level 0. For m < n < w,
E < 2m and I < 2", set (m,k) <p (n,l) iff the remainder of [ divided by 2™
equals k. For infinite a, set (a, &) <r (a+ 1,n) for n € {fa(0,&), fa(1,&)}, where
fa:2xXa— a+1is a fixed bijection.

At limit «, we will attempt to produce for each node u € T'lax two (or fewer)
cofinal branches b(«, u) and e(a, u) in T'[a. Then using fixed bijections g4 : 2 X (o x
a) = a, for each u € Tl C ax a, if b(«, u) is defined then we put (o, g (0,u)) into
T and set its <p-predecessors to be the nodes in b(«, ), and similarly if e(a, u) is
defined then we put {«a, go(1,u)) into T" and set its <p-predecessors to be the nodes
in e(a, u). We refer to (o, go(0,u)) as a cap for b(co, u), and similarly with g, (1, u)
and e(a,u). At least one of b(a,u) and e(a,u) will be defined, and capping the
defined branch(es) ensures, among other things, that every node on a level 8 < «
extends to a node on level a.

The above structural specifications are all standard for a Suslin tree construction
from a diamond principle, with the slight variation that we are attempting to
construct two cofinal extensions of u, instead of one. What is new here is that we
construct b(a, u) below in a way that produces nodes which are outright forced to
extend nodes in predicted antichain names.

Recall that P C k. When X C & is a singleton {p} for a condition p € P, then
abusing notation we will refer to X as if it were the condition p, for example saying
that X forces a statement 6 in the P forcing language if p IF 6.

Fix a bijection h: k — k<“. Abusing notation we can view a canonical P-name
for an antichain in T as a subset of T x P C k X kK X k. Hence every canonical
P-name for an antichain in 7" can be viewed as h” X for some X C k.

By recursion attempt to construct nodes v."" (ve for short when a,u are clear
from the context) forming a cofinal chain in Ta extending wu.

Set vg = u.

At limit v, if {ve | £ < 7} has a cap in T'|a, set v, to be the least one. If
{ve | £ < v} is not yet cofinal in T'[¢, and fails to have a cap in T'[«, then abandon
the construction and leave b(c, u) undefined. If {ve | £ < v} is cofinal in T'[«, then
set b(a, u) to be the cofinal branch of T'[« generated by this set.

Most importantly, at successor stages, work as follows to define veyi: Let J be
the least element of C, strictly above the level of v¢ in T if there is one; otherwise
abandon the construction and leave b(c, u) undefined. If (A, )¢ forces in P that ve
extend an element of h”(Ay)1 in T, then let veyq be the least node of T on level
d which extends ve. If there is a condition in P below (As)o which forces that ve
does not extend an element of h”(A,)1, and forces some node v >7 ve on level §
to extend an element of h"/(Ay)1, then let vey;1 be the least node v for which this
happens. If neither of these two options holds, then abandon the construction and
leave b(c, u) undefined.

If a € E, or the construction of b(a, u) failed, then by recursion construct nodes
w?u (we for short when a,u are clear from the context) forming a cofinal chain in
T'la extending u, and let e(c, u) be the cofinal branch of T'Ta generated by these
nodes. Set wo = u. At limit v where {we | £ < v} is not yet cofinal in T'[c, let w,
be the least cap for this set in T'[a. We will check below that such a cap exists. At
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successors stages, let § be the least element of G, strictly above the level of wg in
T, and let we4q be the least node of T on level § which extends we.

This completes the construction of (e, u) and e(a, u), and with it the construc-
tion of the tree order <7 and the tree T.

Claim 3.3. The caps needed in the construction of e(a,u) exist.

Proof. Fix o and u. Inductively we may assume that e(d,u) are constructed and
capped in T for all § € E strictly below o with uw € T'[§.

Let w?’“ be constructed as above, for £ < v, with v a limit ordinal, and with
the nodes wg"" for £ < v not cofinal in T'[a. Let d¢ be the level of wg™ in T'. Let
0, = sup{d¢ | £ < v}. We have to show that there is a node on level ., of T which
extends all the nodes w?’u, & < 7. Our argument for this is the standard one, using
O(x, F) in a manner similar to its use in Jensen [1].

By construction the levels d¢, £ < v, form an increasing sequence in G,. Since
Gy is club in a, it follows that 6, € G4, and in fact 6, € lim(G,). This implies
that d, ¢ E. Hence e(d,,u) was constructed, and (by induction) capped in T'. By
the coherence of the ((k, E) sequence, G5, = G, N d,. It follows from this that
the nodes wg”’u7 used in stage d, of the construction of 7', are exactly equal to the
nodes w?’“, for £ < «. In particular e(d,,u) contains these nodes. Hence the cap
for e(d.,u) on level 6, of T is a cap for the nodes w?’“, E< . O

The tree (T;<r) was constructed with reference to the sequences A and C.
When we wish to emphasize this dependence we write T'(A, C) and < (A, C).

Let Apmuie, Arem, Af, Ay, and Ay be predicates on powers of x that code the
multiplication function on x, the remainder function on w, the sequences of func-
tions f, and g, and the function h used above. Let A denote the sequence of these
predicates.

Claim 3.4. There is a sentence Piee in the language of the structure (k; €, <p,
A, G,A,C,Ey, E1,T,<7), where Ey and Ey are ternary predicates, so that:

(1) If T = T(A, C) and <= <p(A,C) then there are unique Ey and E) so
that (H <, <]1J>,A G A C Ey, Eq, T, <T ):wtree

(2) If there are EO,E1 so that (k; €, <[p>,A G,A,C,Ey, Er, T, <7) E Ytree, then
T= T(A,C) and STZST (A,C)

Proof. Take 10 to express the statement that Ey, E7, T, and < are constructed
as above, where Ey and E; consist of all the tuples <a,u,v§a’"> and <a,u,w?’")
respectively. It is clear that the construction rules are first order over the resulting
structure. ([l

Claim 3.5. There is a sentence Yymac S0 that, letting T = T(/T, C_") and <p =
ST(A: C_:)

(1) If (k;€,<p, A, G, A,C,A) = thmac then (A)g forces in P that h"(A)y is a
maximal antichain of size k in (T;<r), and (A)z2 is a club of o < Kk which
are elementary in (k; Ap, <p, T, <7, (A)o, K" (A4)1).

(2) If p forces in P that h'Z is a mazimal antichain of size k in (T; <r), and
U is a club of a < k which are elementary in (k; Ap, <p, T, <p,{p},h"Z),
then there exists A so that (k; e, <p, A G, A C, A) E Ymac, with (A)g =
{p}, (A1 =2, and (A)2 =U.
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Proof. Immediate from Claim 3.4, using (A)3 to code Fy, Fy, T, and <p, and
rephrasing ¥..c to refer to the coded objects. The coding can be done definably
over (k;€, S]p,&,é, /T, 6, A) using the function h. The properties of (A)g, (A)1,
<p, T, <p, and (A)s in the current claim are clearly first order. O

We are now ready to pick the tree that witnesses Lemma 3.2. Let A and C
witness coherent diamond on k for the predicates €, <p, 5, and é, with the
sentence Ymac, strengthened to incorporate an explicit statement that (A)y is club.
Let T = T(A,C), and let <7 = <4(A,C). We will prove that (T;<r) is P-
indestructibly Suslin.

Suppose otherwise. Then there is a condition in P forcing the existence of a
maximal antichain in (T'; <r) of size . Using condition (2) of Claim 3.5 it follows
that there exists A C k so that (k; e, <p, A, G, A, C, A) = tYmac. Using coher-
ent diamond, fix such an A which is guessed coherently by A and C on a club
C C k. Moreover, using the final clause in Definition 2.1, do this in such a way
that (a;€7§p[a,&[a,é[a,gfa,éfa,A N ) E Ymac for every a € C. Since we
incorporated the statement that (A)s is club into ¥mac, this implies in particular
that (A)s is unbounded in « for each o € C, and hence, using the closure of (A)s,
C C (A)s.

Using condition (1) of Claim 3.5, and letting p € P be such that (A4)g = {p},
Z = (A)1,Y =h"Z, and U = (A)y, we have that p forces Y to be a maximal
antichain of (T'; <r) of size k, and U is a club of @ < k which are elementary in
(k; Ap, <p, T, <7, {p},Y). We also saw above that C C U.

Recall that Y is a subset of T x P C k3. We use Y [« to denote Y N 3. Using
the elementarity of « relative to Ay, and the fact that « is a limit ordinal, it is easy
to see that Ya = h"(ANa);.

Claim 3.6. Let a € U, let q € PNa, and let w € T'[a. Then q forces in P that w
extends an element of Y iff q forces in P that w extends an element of Y .

Proof. Clear using the elementarity of « in (k; Ap, <p, T, <7, {p},Y), and the fact
that PP is k-c.c. (]

Claim 3.7. (1) For every w € T, there is w € T extending u, so that w is
forced by p to extend an element of Y.
(2) For every a € C, and for every u € Tla, there is w' on level o of T
extending u, so that w' is forced by p to extend an element of Y.

Proof. To prove the second condition from the first, note that C C U, so that
« is elementary in (k; Ap, <p, T, <7,{p},Y). Assuming the first condition of the
current claim, this implies that every v € T'[a has an extension w in T'[a which is
forced by p to extend an element of Y. Any extension w’ of w to level a witnesses
the second condition.

We prove the first condition. Fix uw € T. Suppose for contradiction that no
extension of u is forced by p to extend an element of Y. Construct a chain in
T extending u as follows. Set vy = u, and let §y be the level of u. At limit ~, if
{ve | € < v} does not have a cap on level 6, = sup{d¢ | £ < 7}, end the construction.
If {ve | £ < v} does have a cap on level ., let v, be the least one. For the successor
stage, having defined v on level d¢ of T, and letting d¢41 be the first element of C
above d¢, if there is a condition in P below p which forces that ve does not extend
an element of Y, and forces some node v >7 v¢ on level d¢41 to extend an element
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of Y, then let vg1 be the least node v for which this happens. If no such node
exists, end the construction.

Note that our construction exactly matches the construction of the nodes v?’“,
for « € C. This is because C, = C Na, A, = AN «, because for every a € C,
our assumption that no extension of u is forced by p to extend an element of Y
eliminates the corresponding case in the definition of v?fl, and because, using the
elementarity of «, Claim 3.6 equates forcing a node in T'[a to extend an element
of Y with forcing it to extend an element of h”(A44)1-

Thus, for every o € C above the level of u, and every £ so that d¢ < « (if
defined), our v¢ is defined iff vg"“ is defined, and the two are equal when defined.

This implies in particular that the construction of v¢ cannot fail first at a limit
~. This is because, by construction of T', there is a node on level 6, which caps
(6, u) = fue | € < ).

The construction of ve cannot fail at a successor stage either. To see this, note
that by assumption there is ¢ < p forcing that ve does not extend an element of
Y. Since p forces Y to be a maximal antichain in (T;<r), we can find a w € T
extending ve, and a condition ¢’ < ¢, forcing that w extends an element of Y.
Since d¢41 € C C U, and by the elementarity of all elements of U in (k;Ap, <p
T, <p,{p},Y), such w can be found on a level below d¢41. Then any extension v
of w to level d¢41 witnesses the condition in the definition of vey;.

So the construction of v¢ proceeds without fail at all £ < k.

For each £, by construction there is a condition below p forcing that v¢ does not
extend an element of Y, but vey; does. Let g¢ be such a condition. If £ < n then
ve41 <7 vy S0 gy forces that veyq does not extend an element of Y, and hence ¢
is is incompatible with g¢. This gives an antichain in IP of size x, contradicting the
k-chain condition. O

Claim 3.8. At every a € C, the construction of b(a, u) succeeds, and all nodes in
b(a,u) except possibly u are forced by p to extend an element of Y.

Proof. Suppose not, and fix the least o € C for which the construction fails, or
includes nodes other than uw which are not forced by p to extend a node in Y.

Note that the construction cannot fail at a successor stage. This is a consequence
of Claim 3.7: since o € C we have that C, = C'N «, hence the least § € C, above
the level of U?’u is an element of C, and hence by Claims 3.7 and 3.6, there is
v > v?’“ on level § which is forced by p to extend an element of Yoo = h''(Ay);1.

This also shows that the very first node above u, vi"", is forced by p to extend
an element of Y, and hence so are all subsequent nodes.

Finally, the construction cannot fail at a limit stage v either. To see this, let J¢
for £ < 7 be the level of vg"", and let § = sup{d¢ | £ < 7}. Since 6 € Co = C N ay,
we have As = ANd=A,Ndand Cs = CN6=C,N4G. From this agreement, and

a,u

from Claim 3.7, it follows that the constructions of vg’u and v are identical for

¢ < 7. By the minimality of «, vg’“ for £ <  are all defined, and capped at level

0. So v§" is defined, and equal to the least such cap. ([

Having produced enough nodes which are forced by p to extend elements of Y,
we can now conclude the proof of Lemma 3.2 following the usual lines in a Suslin
tree construction.
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Fix « € CNE. Since, by Claim 3.8, b(«, ) is defined for all u € T'la, and since
«a € E, we do not construct the branches e(a, u) for any u € T'la. Thus, level «
of T consists only of caps for the branches b(«,u). By Claim 3.8, these caps are
all forced by p to extend elements of Y. This implies that all nodes of T on levels
a and higher are forced by p to extends nodes in Y. Since Y is forced by p to be
an antichain, it follows that it is forced by p to not have any nodes on levels « or
greater. This contradicts the fact that p forces Y to have size . O

Remark 3.9. In the case of Kk = wy, the assumption in Lemma 3.2 that there
exists a stationary E so that O(k, E) becomes vacuous, since it holds trivially
with E consisting of all limit ordinals below wy, as witnessed by taking G, for limit
«a < w1 to be a cofinal subset of « of ordertype w containing only successor ordinals.
With these G4s, the proof of Lemma 3.2 simplifies slightly: e(a,u) is constructed
only if the construction of b(a, u) fails, and Claim 3.3 is not needed, since there are
no limit cases in the construction of e(a, ).

Corollary 3.10. In L, and in L(x) for every real x, the indestructible Suslin tree
property holds at every regular uncountable k which is not weakly compact.

Proof. Immediate from Lemmas 2.3, 3.1, and 3.2. |

Remark 3.11. If k = p for a strongly inaccessible cardinal u, then the assump-
tion in Lemma 3.2 that there exists a stationary F so that O(k, E) can be dropped.
This fact, and the necessary modification to the proof of Lemma 3.2, exactly par-
allel the situation with Jensen’s construction of a xk-Suslin tree. The modifications
are as follows: Take E to be the set of o < k of cofinality p. Set G, for each limit
a < Kk to be a cofinal club in « of ordertype < p consisting entirely of ordinals of
cofinality < u, so that G, is disjoint from E. Modify the tree construction in the
proof of Lemma 3.2 to cap all cofinal branches through T [a when « has cofinality
< p. This modification is compatible with the narrowness requirements of the tree
since p is strongly inaccessible. It removes the need for Claim 3.3 and with it the
need for any coherence assumptions on the clubs G,.

Corollary 3.12. In the standard Jensen-indexed fine structural inner models, the
indestructible Suslin tree property holds at every regular uncountable cardinal which
is not weakly compact.

Proof. The proof parallels the proof of Corollary 0.3 in Zeman [5]. By Lemma
3.2, Lemma 2.3, and Remark 2.4, it is enough to either establish that there is a
stationary F so that O(k, E), or, using Remark 3.11, argue that & is the successor
of a strongly inaccessible cardinal. This is done in cases. If k itself is inaccessible
(but not weakly compact), then by Theorem 0.1 of [5] there is a stationary E
so that ((k, F) holds. If k = u™ where u is not subcompact, then the results of
Schimmerling-Zeman [2] give the existence of a [J,, sequence, and any such sequence
is a O(k, F) sequence where F consists of o < k of cofinality u. Finally, if x = pu*
where p is subcompact, then k is the successor of a strongly inaccessible cardinal.

O

Since weakly compact cardinals cannot carry Susin trees, it follows from Corol-
lary 3.12 that, in Jensen-indexed fine structural models, for every regular uncount-
able k, the indestructible Suslin tree property at x is equivalent to the existence of
a k-Suslin tree.
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