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Abstract. We prove, in ZFC, that certain Σ1
2 functions cannot injectively

embed ω1 into a Borel class of fixed countable rank. This had been proved
under determinacy or large cardinals by Harrington and Hjorth for all Σ1

2

functions. Our contribution is to identify conditions under which the deter-

minacy and large cardinal assumptions can be removed. These conditions are
sufficient for a recent use of the in-existence of Σ1

2 injections of ω1 into Borel

classes by Day and Marks.

1. Introduction

Hjorth [3] discusses and applies an absoluteness principle due to Jacques Stern
[4]. In this short article we provide another consequence of this principle, enhancing
one of Hjorth’s applications, to eliminate the large cardinal assumption in proving
that certain Σ1

2 injections of ω1 into levels of the Borel hierarchy cannot exist.
We give a quick survey of Stern’s absoluteness principle in Section 2. Roughly

quoting [3], the principle states that if a Π0
α set can be introduced into the universe

by forcing, and membership in the set is sufficiently independent of the generic
filter, then the set can be introduced by a small forcing notion.

In Section 3 we present the result on Σ1
2 injections of ω1 into levels of the Borel

hierarchy. This is a refinement of a well known theorem of Harrington [2, Theorem
4.5], that under the axiom of determinacy, there are no injections of ω1 into the
pointclass Π0

α for any α < ω1. Hjorth [3, Theorem 3.1] re-proves Harrington’s
theorem using Stern’s absoluteness principle. The first part of his proof uses de-
terminacy to convert a counterexample to the theorem into a Σ1

2 function. His
argument then proceeds to derive a contradiction using Stern absoluteness theorem
and some additional mild consequences of determinacy. In a subsequent comment
in [3], Hjorth notes that if the function were provably ∆1

2, the contradiction could
be derived in ZFC.

Our own contribution here is a slight improvement of this note, giving a ZFC
arguments which applies to Σ1

2 functions whose domain is absolutely unbounded.
This slight improvement is of some importance because it has a corollary, 3.8 below,
which matches with the use of Harrington’s theorem in the work of Day-Marks [1] on
the decomposability conjecture, allowing their proof to go through in ZFC without
any large cardinal assumptions.

2. Stern’s absoluteness principle

Let M ⊆ N be two wellfounded models of ZFC so that ωN
1 ⊆ OrdM . Recall

that ∆1
1 sets in M have canonical extensions to N . There are several ways to reach
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these extensions. For example, given a ∆1
1 subset A ∈ M of Baire space, let Tin

and Tout in M be trees on ω × ω which project to A and to R − A respectively,
and then let A∗N be the projection of Tin taken in N . By absoluteness, A∗N is an
extension of A, meaning that A∗N ∩ M = A. By absoluteness and using the fact
that ωN

1 ⊆ OrdM , A∗N is the complement of the projection of Tout in N , and this
implies that A∗N is independent of the choice of the tree Tin. The extension can
be defined similarly for other Polish spaces.

Remark 2.1. Another way to obtain the extension A∗N is to take, in M , a real
which codes the Borel definition of A, and then take A∗N to be the interpretation
of the same definition in N . The precise way in which one sets up Borel codes is
not important, so long as the process of obtaining a set from its code is Σ1

1—as it
will be with any of the standard coding approaches—so that the reinterpretation
of the code in N is trivially equal to the extension A∗N defined above.

Remark 2.2. Let M ⊆ N ⊆ P be three wellfounded models of ZFC so that ωP
1 ⊆

OrdM . Let A ∈ M be ∆1
1. Then it is clear using absoluteness that A∗P = (A∗N )∗P

and that A∗P ∩N = A∗N .

Definition 2.3. Let P be a forcing notion, let τ be a P-name for a ∆1
1 set of reals,

and let p ∈ P. We say that ⟨τ, p⟩ is invariant if for any generic Gl × Gr for P × P
with ⟨p, p⟩ ∈ Gl ×Gr, τ [Gl]

∗V [Gl×Gr] = τ [Gr]
∗V [Gl×Gr]. (The subscript “l” and “r”

here stand for “left” and “right”.) We say that a ∆1
1 set of reals in an extension

V [G] by P is invariant if there is an invariant ⟨p, τ⟩ so that p ∈ G and τ [G] = A.

Claim 2.4. Let P be a forcing notion, let τ be a P-name for a ∆1
1 set of reals, let

G be generic for P over V , and let p ∈ G. Suppose that for every P-generic G′ over
V [G] with p ∈ G′, the sets τ [G]∗V [G×G′] and τ [G′]∗V [G×G′] are equal. Then τ [G] is
invariant.

Proof. Rephrasing the claim assumptions in the forcing language over V [G] and us-

ing Ġ′ to name the generic, we have that p forces in P over V [G] that τ [Ġ′]∗V [G][Ġ′] =

τ [G]∗V [G][Ġ′]. This is a statement about V [G], so must be forced over V by a
condition q ∈ G. We claim that ⟨τ, q⟩ is invariant. Suppose Gl × Gr for P × P
with ⟨q, q⟩ ∈ Gl × Gr. Let G′ be generic for P over V [Gl × Gr] with p ∈ G′.

Since q ∈ Gl and p ∈ G′ we have that τ [Gl]
∗V [Gl×G′] = τ [G′]∗V [Gl×G′]. Using

Remark 2.2 this implies that τ [Gl]
∗V [Gl×Gr×G′] = τ [G′]∗V [Gl×Gr×G′]. Similarly

τ [Gr]
∗V [Gl×Gr×G′] = τ [G′]∗V [GlGr××G′]. So τ [Gl]

∗V [Gl×Gr×G′] = τ [Gr]
∗V [Gl×Gr×G′].

Using Remark 2.2 again this implies that τ [Gl]
∗V [Gl×Gr] = τ [Gr]

∗V [Gl×Gr]. □

Lemma 2.5 (Stern’s absoluteness principle). Let α < ω1. Let P be a forcing notion
and let G be generic for P over V . Suppose that G collapses Vω+α to ω and let
N ⊇ V be a submodel of V [G] in which Vω+α is countable. Suppose that A ∈ V [G]
is an invariant Π0

1+α set. Then there is a Π0
1+α set Ā ∈ N so that Ā∗V [G] = A.

We refer the reader to Section 1 of Hjorth [3] for a proof of this lemma. Hjorth’s
presentation involves Borel codes, rather than Borel sets and their extensions. Using
Remark 2.1 it is clear that Corollary 1.8 in [3] implies Lemma 2.5 as stated here.
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3. Injections of ω1 into Π0
α

Our goal in this section is to prove in ZFC that there cannot be a Σ1
2 injection of

ω1 into a Borel class Π0
α, whose domain is absolutely unbounded. We begin with

the relevant definitions.
Recall that for A ⊆ R × Z, and for w ∈ R, the w-section of A, denoted Aw, is

the set {z ∈ Z | ⟨w, z⟩ ∈ A}.

Remark 3.1. Let M ⊆ N be two wellfounded models of ZFC so that ωN
1 ⊆ OrdM .

Let A ∈ M be a∆1
1 set of pairs of reals and let w ∈ R∩M . Then (A∗N )w = (Aw)

∗N .
This is easy to check using a tree projecting to Aw which is induced from a tree
projecting to A.

Fix α < ω1, and fix a universal Π0
α set U , meaning that U ⊆ R × R is Π0

α and
the sections Uw, w ∈ R, produce all Π0

α subsets of R.
Let LO be the Polish space of linear orders of ω. Let WO ⊆ LO be the set of

wellorders of ω. For e ∈ WO we use |e| to denote the ordertype of e.

Definition 3.2. A Σ1
2 presentation of a (partial) map from ω1 into Π0

α is a partial
function f : WO → R so that that graph of f is Σ1

2 as a subset of LO × R, and
so that e1, e2 ∈ dom(f) ∧ |e1| = |e2| → Uf(e1) = Uf(e2). We view f as a Σ1

2

presentation of the function |e| 7→ Uf(e) for e ∈ dom(f), and we refer to this map

as the function presented by f . A (partial) function from ω1 into Π0
α is Σ1

2 if it has
a Σ1

2 presentation.

For B ⊆ Z × R × R we use S(B) to denote the set {z ∈ Z | (∃x ∈ R)(∀y ∈
R)⟨z, x, y⟩ ∈ B}. Every Σ1

2 subset of Z is of the form S(B) for a Borel set B.

Definition 3.3. Let f be a Σ1
2 subset of WO × R. We say that f has absolutely

unbounded domain if there is a Borel B ⊆ (LO × R)× R× R so that:

(1) f = S(B).
(2) For every forcing extension V [G] of V , {|e| | (∃w)⟨e, w⟩ ∈ SV [G](B∗V [G])}

is unbounded in ω
V [G]
1 .

Theorem 3.4. Let α < ω1. There are no Σ1
2 partial injections of ω1 into Π0

1+α

with absolutely unbounded domain.

Proof. Suppose that f is a Σ1
2 presentation which provides a counterexample to

the theorem. Let B witness that f has absolutely unbounded domain.
Let κ = |Vω+α| and let δ = 2κ. Let P = Col(ω, δ) and let G be generic for P over

V . Note that P subsumes the poset Col(ω, κ), and let H ∈ V [G] be generic for this

poset over V . We have that ℵV [G]
1 = δ+, and that (2ℵ0)V [H] = δ.

We intend to extend the function presented by f to act in V [G], show that the

domain of the extended function is unbounded in ℵV [G]
1 and therefore has cardinality

ℵV [G]
1 , show that the extended function (like the original function) is injective, so

that its range also has cardinality ℵV [G]
1 , and show that all the Borel sets in its

range are invariant. Using Lemma 2.5, namely the Stern absoluteness principle, it
follows from the final item that each of these sets is the extension of a Borel set in
V [H]. But this is a contradiction since there are only (2ℵ0)V [H] = δ < δ+ = ℵV [G]

1

Borel sets in V [H].
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Before passing to work in V [G], it is useful to note that the following statements,
expressing the facts that S(B) represents an injective function whose domain is
contained in WO, are all Π1

2 and true in V :

(1) If ⟨e, w⟩ ∈ S(B) then e ∈ WO.
(2) If ⟨e1, w1⟩, ⟨e2, w2⟩ ∈ S(B) and |e1| = |e2|, then Uw1

= Uw2
.

(3) If ⟨e1, w1⟩, ⟨e2, w2⟩ ∈ S(B) and |e1| ̸= |e2|, then Uw1
̸= Uw2

.

By Schoenfield absoluteness, these statements continue to be true in V [G], with
the Borel sets B and U replaced by their extensions B∗V [G] and U∗V [G]. Letting
f∗ = SV [G](B∗V [G]) it follows that, in V [G], f∗ is a presentation of a Σ1

2 function,
and that the function presented by f∗ is injective. Let φ denote this function,

namely |e| 7→ U
∗V [G]
f∗(e) .

Claim 3.5. For every ξ ∈ dom(φ), φ(ξ) is invariant.

Proof. Fix ξ. Fix a P-name ė ∈ V so that ė[G] is a wellorder of ω of ordertype ξ,
and belongs to dom(f∗). Let p ∈ G force that |ė| = ξ̌ and that there exists w so

that ⟨ė, w⟩ ∈ SV [Ġ](B∗V [Ġ]). Fix a name ẇ so that p ⊩ ⟨ė, ẇ⟩ ∈ SV [Ġ](B∗V [Ġ]).

Let τ name the set of z so that ⟨ẇ, z⟩ ∈ U∗V [Ġ]. Note that τ [G] = φ(ξ). By
Claim 2.4, it is enough to show that for every P-generic G′ over V [G] with p ∈ G′,

the sets τ [G]∗V [G×G′] and τ [G′]∗V [G×G′] are equal. Fix such G′.
Let e = ė[G], w = ẇ[G], e′ = ė[G′], and w′ = ẇ[G′]. Since p ∈ G,G′ we have

that |e| = ξ = |e′|, that ⟨e, w⟩ ∈ SV [G](B∗V [G]), and that ⟨e′, w′⟩ ∈ SV [G′](B∗V [G′]).
By Remark 2.2 and Π1

1 absoluteness it follows from the last two items that ⟨e, w⟩
and ⟨e′, w′⟩ both belong to SV [G×G′](B∗V [G×G′]). Using condition (2) above, and

transferring the condition to apply to B∗V [G×G′] and U∗V [G×G′] in V [G×G′] using

Schoenfield absoluteness, it follows that (U∗V [G×G′])w = (U∗V [G×G′])w′ . By Re-

marks 2.2 and 3.1 the set on the left-hand-side is exactly τ [G]∗V [G×G′], and the set

on right-hand-side is exactly τ [G′]∗V [G×G′], so these two sets are equal. □

By Lemma 2.5 it now follows that φ(ξ) is the extension of a Borel set in V [H].
Indeed by Remark 2.2 that Borel set is exactly φ(ξ) ∩ V [H]. Since two distinct
sets cannot be the extensions of two identical sets, and since φ is injective, it must
be that the map ξ 7→ φ(ξ) ∩ V [H] is an injection of dom(φ) into the set of Borel
sets in V [H]. But this is a contradiction, since the set of Borel sets in V [H] is
equinumerous with δ, which is countable in V [G], while the the assumption that f
represents a function with absolutely unbounded domain, together with our choice

of B to witness this, imply that dom(φ) is unbounded in ℵV [G]
1 . □

The criterion of having absolutely unbounded domain is perhaps somewhat ar-
tificial, tailored specifically to the proof of Theorem 3.4. The following criterion is
typically more natural:

Definition 3.6. Let f be a Σ1
2 subset of WO × R. We say that f has provably

unbounded domain via a Π1
2 condition if there is a (lightface) Π1

2 set C ⊆ R, a
lightface Borel set B ⊆ R× LO × R3, and a real r, so that:

(1) ZFC proves that for every t ∈ C, dom(S(Bt)) is unbounded in ω1.
(2) r ∈ C and f = S(Br).
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Notice that the assumption that C and B are lightface definable is implicitly
used in condition (1) above, as the references to these sets in the condition are
really references to their definitions.

Claim 3.7. Suppose that f has provably unbounded domain via a Π1
2 condition.

Then f has absolutely unbounded domain.

Proof. Clear, using the facts that membership in C reflects from V to V [G] by
Schoenfield absoluteness, that any statement provable in ZFC must hold in V [G],
Remark 3.1, and that the extension of a lightface Borel set from V to V [G] is the
interpretation of the set’s lightface Borel code in V [G]. □

Corollary 3.8. Let α < ω1. There are no partial Σ1
2 injections of ω1 into Π0

1+α

which have provably unbounded domain via a Π1
2 condition.

Proof. Clear from Theorem 3.4 and Claim 3.7. □

Remark 3.9. The results above are for for functions in the classΣ1
2, and conditions

which are Π1
2. The factor in the proofs which limits us to this level of definability is

our reliance on Schoenfield absoluteness. If absoluteness holds for higher classes of
descriptive set theoretic complexity, as is the case for example under large cardinal
assumptions, then the results trivially adapt to apply to these higher classes.
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