A FURTHER APPLICATIONS OF STERN ABSOLUTENESS

NEEMAN, ITAY

ABSTRACT. We prove, in ZFC, that certain 25 functions cannot injectively
embed w; into a Borel class of fixed countable rank. This had been proved
under determinacy or large cardinals by Harrington and Hjorth for all Zé
functions. Our contribution is to identify conditions under which the deter-
minacy and large cardinal assumptions can be removed. These conditions are
sufficient for a recent use of the in-existence of Z% injections of w; into Borel
classes by Day and Marks.

1. INTRODUCTION

Hjorth [3] discusses and applies an absoluteness principle due to Jacques Stern
[4]. In this short article we provide another consequence of this principle, enhancing
one of Hjorth’s applications, to eliminate the large cardinal assumption in proving
that certain 33 injections of w; into levels of the Borel hierarchy cannot exist.

We give a quick survey of Stern’s absoluteness principle in Section 2. Roughly
quoting [3], the principle states that if a Hg set can be introduced into the universe
by forcing, and membership in the set is sufficiently independent of the generic
filter, then the set can be introduced by a small forcing notion.

In Section 3 we present the result on X3 injections of w; into levels of the Borel
hierarchy. This is a refinement of a well known theorem of Harrington [2, Theorem
4.5], that under the axiom of determinacy, there are no injections of w; into the
pointclass Hg for any @ < w;. Hjorth [3, Theorem 3.1] re-proves Harrington’s
theorem using Stern’s absoluteness principle. The first part of his proof uses de-
terminacy to convert a counterexample to the theorem into a 2% function. His
argument then proceeds to derive a contradiction using Stern absoluteness theorem
and some additional mild consequences of determinacy. In a subsequent comment
in [3], Hjorth notes that if the function were provably A}, the contradiction could
be derived in ZFC.

Our own contribution here is a slight improvement of this note, giving a ZFC
arguments which applies to 2% functions whose domain is absolutely unbounded.
This slight improvement is of some importance because it has a corollary, 3.8 below,
which matches with the use of Harrington’s theorem in the work of Day-Marks [1] on
the decomposability conjecture, allowing their proof to go through in ZFC without
any large cardinal assumptions.

2. STERN’S ABSOLUTENESS PRINCIPLE
Let M C N be two wellfounded models of ZFC so that w) C Ord™. Recall

that A7 sets in M have canonical extensions to N. There are several ways to reach
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these extensions. For example, given a A subset A € M of Baire space, let Tj,
and Ty in M be trees on w X w which project to A and to R — A respectively,
and then let A*M be the projection of T, taken in N. By absoluteness, A*" is an
extension of A, meaning that A*™ N M = A. By absoluteness and using the fact
that w C Ord™, A*N is the complement of the projection of Tyy in N, and this
implies that A*N is independent of the choice of the tree Ti,. The extension can
be defined similarly for other Polish spaces.

Remark 2.1. Another way to obtain the extension A*V is to take, in M, a real
which codes the Borel definition of A, and then take A*N to be the interpretation
of the same definition in N. The precise way in which one sets up Borel codes is
not important, so long as the process of obtaining a set from its code is ¥1—as it
will be with any of the standard coding approaches—so that the reinterpretation
of the code in N is trivially equal to the extension A*"N defined above.

Remark 2.2. Let M C N C P be three wellfounded models of ZFC so that wf C
Ord™. Let A € M be A}l. Then it is clear using absoluteness that A*F = (A4*N)*P
and that A*F' NN = A*N,

Definition 2.3. Let P be a forcing notion, let 7 be a P-name for a A% set of reals,
and let p € P. We say that (7, p) is invariant if for any generic G; x G, for P x P
with (p,p) € Gy x Gy, T[G)]*VIG*C:] = 7[G,]*VIG1 G (The subscript “I” and “r”
here stand for “left” and “right”.) We say that a A] set of reals in an extension
V[G] by P is invariant if there is an invariant (p, ) so that p € G and 7[G] = A.

Claim 2.4. Let P be a forcing notion, let 7 be a P-name for a Al set of reals, let
G be generic for P over V, and let p € G. Suppose that for every P-generic G' over
VI[G] with p € G', the sets T[G]*VIG*C) and 7[G')*VIE*C] are equal. Then 7[G] is
nvariant.

Proof. Rephrasing the claim assumptions in the forcing language over V[G] and us-
*V[G][G']

ing G’ to name the generic, we have that p forces in P over V[G] that 7[G’]
7[G)*VICNET. This is a statement about V[G], so must be forced over V by a
condition ¢ € G. We claim that (7,¢) is invariant. Suppose G) x G, for P x P
with (q,q) € G) x G;. Let G’ be generic for P over V[G) x G,] with p € G'.
Since ¢ € Gy and p € G we have that 7[Gi*VIG > = 7[G"]*VIG1*E] Using
Remark 2.2 this implies that 7[G)]*VIG1XG:xG'] — 7[@/]*VIG1xG:xG]  Similarly
T[Gr]*V[GlerxG’] _ T[G/}*V[G}GYXXGI]. So T[Gl}*V[GIXGrXGI] _ T[Gr]*V[GlxcfXG,].

Using Remark 2.2 again this implies that 7[G]*VIG1xG] = 7[G,]*VIG1 <Gl O

Lemma 2.5 (Stern’s absoluteness principle). Let o < wy. Let P be a forcing notion
and let G be generic for P over V. Suppose that G collapses V1o to w and let
N DV be a submodel of V[G] in which V1o is countable. Suppose that A € V[G]
15 an invariant H(IJJFQ set. Then there is a H?Jra set A€ N so that A*VIGl = A,

We refer the reader to Section 1 of Hjorth [3] for a proof of this lemma. Hjorth’s
presentation involves Borel codes, rather than Borel sets and their extensions. Using
Remark 2.1 it is clear that Corollary 1.8 in [3] implies Lemma 2.5 as stated here.
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3. INJECTIONS OF w; INTO TT?

Our goal in this section is to prove in ZFC that there cannot be a X3 injection of
w1 into a Borel class Hoa, whose domain is absolutely unbounded. We begin with
the relevant definitions.

Recall that for A C R x Z, and for w € R, the w-section of A, denoted A,,, is
the set {z € Z | (w, z) € A}.

Remark 3.1. Let M C N be two wellfounded models of ZFC so that w{v C Ord™.
Let A € M be a A} set of pairs of reals and let w € RNM. Then (A*N),, = (A,)*N.
This is easy to check using a tree projecting to A,, which is induced from a tree
projecting to A.

Fix a < wy, and fix a universal TI2 set U, meaning that U C R x R is II% and
the sections U,,, w € R, produce all Hg subsets of R.

Let LO be the Polish space of linear orders of w. Let WO C LO be the set of
wellorders of w. For e € WO we use |e| to denote the ordertype of e.

Definition 3.2. A X3 presentation of a (partial) map from w; into ITY is a partial
function f: WO — R so that that graph of f is E% as a subset of LO x R, and
so that er,ea € dom(f) A ler| = |e2| = Upey) = Ug(ey). We view f as a 2}
presentation of the function |e| — Uy for e € dom(f), and we refer to this map
as the function presented by f. A (partial) function from w; into ITY, is X3 if it has
a X3 presentation.

For B C Z x R x R we use S(B) to denote the set {z € Z | (Jz € R)(Vy €
R)(z,z,y) € B}. Every X3 subset of Z is of the form S(B) for a Borel set B.

Definition 3.3. Let f be a 2% subset of WO x R. We say that f has absolutely
unbounded domain if there is a Borel B C (LO x R) x R x R so that:

(1) f=58(B).
(2) For every forcing extension V[G] of V, {|e| | Gw)(e,w) € SVICI(B*VIC])}
. ate)
is unbounded in wy "
Theorem 3.4. Let o < wy. There are no Xy partial injections of wy into H?+a
with absolutely unbounded domain.

Proof. Suppose that f is a E% presentation which provides a counterexample to
the theorem. Let B witness that f has absolutely unbounded domain.

Let k = |Vytal| and let § = 2. Let P = Col(w, §) and let G be generic for P over
V. Note that P subsumes the poset Col(w, ), and let H € V[G] be generic for this

poset over V. We have that NY[G] = %, and that (2%)VIH] = .

We intend to extend the function presented by f to act in V[G], show that the
domain of the extended function is unbounded in NY[G]

NY[G], show that the extended function (like the original function) is injective, so

that its range also has cardinality NY[G}, and show that all the Borel sets in its
range are invariant. Using Lemma 2.5, namely the Stern absoluteness principle, it
follows from the final item that each of these sets is the extension of a Borel set in
V[H]. But this is a contradiction since there are only (2%0)VIH] = § < 5+ = NY[G]

Borel sets in V[H].

and therefore has cardinality
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Before passing to work in V[G], it is useful to note that the following statements,
expressing the facts that S(B) represents an injective function whose domain is
contained in WO, are all I3 and true in V:

(1) If {e,w) € S(B) then e € WO.
(2) If {e1,wy), (e2,w2) € S(B) and |e1| = |ea], then Uy, = Uy,.
(3) If {e1,w1), (e2,w2) € S(B) and |e1| # |ea], then Uy, # Uy,.

By Schoenfield absoluteness, these statements continue to be true in V|[G], with
the Borel sets B and U replaced by their extensions B*V[¢] and U*VIE]. Letting
f* = SVIG(B*VIG]) it follows that, in V[G], f* is a presentation of a 2 function,
and that the function presented by f* is injective. Let ¢ denote this function,

namely |e| — U}‘V([ec):]

Claim 3.5. For every & € dom(y), (&) is invariant.

Proof. Fix £. Fix a P-name é € V so that é[G] is a wellorder of w of ordertype &,
and belongs to dom(f*). Let p € G force that |é¢| = £ and that there exists w so
that (¢, w) € SVICI(B*VIE]). Fix a name b so that p - (é,1) € SVIC] (B*V[G]).

Let 7 name the set of z so that (w,z) € U*VICl. Note that T[G] = ¢(&). By
Claim 2.4, it is enough to show that for every P-generic G’ over V[G] with p € G/,
the sets 7[G]*V1E*C'] and 7[G']*VI€*C] are equal. Fix such G

Let e = é[G], w = w[G], € = é|G’], and v’ = w[G’]. Since p € G,G" we have
that |e| = & = |¢/|, that (e, w) € SVIC(B*VIE]) and that (¢/,w') € SVIET(B*VIE),
By Remark 2.2 and II} absoluteness it follows from the last two items that (e, w)
and (¢/,w’) both belong to SVIE*F1(B*VIE=G')  Using condition (2) above, and
transferring the condition to apply to B*VI¢*G'] and U*VIE*GT in V|G x G'] using
Schoenfield absoluteness, it follows that (U*VI¢xG'l), = (U*VIGxG) . By Re-
marks 2.2 and 3.1 the set on the left-hand-side is exactly 7[G]*VI¢*S] and the set
on right-hand-side is exactly 7[G']*VIE*G'] 5o these two sets are equal. O

By Lemma 2.5 it now follows that ¢(§) is the extension of a Borel set in V[H].
Indeed by Remark 2.2 that Borel set is exactly ¢(&) N V[H]. Since two distinct
sets cannot be the extensions of two identical sets, and since ¢ is injective, it must
be that the map & — (&) N V[H] is an injection of dom(y) into the set of Borel
sets in V[H]. But this is a contradiction, since the set of Borel sets in V[H] is
equinumerous with §, which is countable in V[G], while the the assumption that f
represents a function with absolutely unbounded domain, together with our choice

. . . RN
of B to witness this, imply that dom(p) is unbounded in ¥ [, a

The criterion of having absolutely unbounded domain is perhaps somewhat ar-

tificial, tailored specifically to the proof of Theorem 3.4. The following criterion is
typically more natural:

Definition 3.6. Let f be a E% subset of WO x R. We say that f has provably
unbounded domain via a 11} condition if there is a (lightface) II} set C C R, a
lightface Borel set B C R x LO x R3, and a real r, so that:

(1) ZFC proves that for every ¢t € C', dom(S(B;)) is unbounded in w;.
(2) re€ Cand f = S(B,).
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Notice that the assumption that C' and B are lightface definable is implicitly
used in condition (1) above, as the references to these sets in the condition are
really references to their definitions.

Claim 3.7. Suppose that f has provably unbounded domain via a 11§ condition.
Then f has absolutely unbounded domain.

Proof. Clear, using the facts that membership in C reflects from V to V[G] by
Schoenfield absoluteness, that any statement provable in ZFC must hold in V]G],
Remark 3.1, and that the extension of a lightface Borel set from V to V[G] is the
interpretation of the set’s lightface Borel code in V[G]. O

Corollary 3.8. Let a < wy. There are no partial 2% injections of wy into H?_m
which have provably unbounded domain via a 113 condition.

Proof. Clear from Theorem 3.4 and Claim 3.7. O

Remark 3.9. The results above are for for functions in the class 33, and conditions
which are IT3. The factor in the proofs which limits us to this level of definability is
our reliance on Schoenfield absoluteness. If absoluteness holds for higher classes of
descriptive set theoretic complexity, as is the case for example under large cardinal
assumptions, then the results trivially adapt to apply to these higher classes.
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