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Abstract. We produce counterexamples to the unique and cofinal branches hypothe-

ses, assuming (slightly less than) the existence of a cardinal which is strong past a Woodin

cardinal.

Martin–Steel [3] introduced the notion of an iteration tree, and with it the
question of iterability: the existence of a method for choosing cofinal branches
through iteration trees in a manner that secures the wellfoundedness of the mod-
els generated by the trees. The question has since become central to the study of
large cardinals, with particular importance to the construction of inner models
and to proofs of determinacy. (For specific examples see Neeman [4] and Neeman
[5].)

Martin–Steel [3] suggested a natural hypothesis, which if true, would combine
with the results they proved to yield iterability for countable elementary sub-
structures of rank initial segments of V, enough for the applications to proofs
of determinacy, and some simple applications to inner model theory. (In the
deeper parts of inner model theory, one wants to construct iterable models sat-
isfying large cardinal hypotheses in situations in which there may be no large
cardinals in V. Here the possibly vacuous iterability of elementary submodels
of V is irrelevant.) The hypothesis, known as the Unique Branches Hypothesis,
or UBH for short, states that every countable iteration tree on V has at most
one cofinal wellfounded branch. Combined with the results of Martin–Steel [3] it
would imply that in fact every countable iteration tree on V which is sufficiently
closed has exactly one cofinal wellfounded branch.

Martin–Steel [3] also coined the Cofinal Branches Hypothesis, CBH for short,
stating that every countable iteration tree on V has at least one cofinal well-
founded branch. For sufficiently closed iteration trees this is a consequence of
UBH.

Woodin refuted UBH about two years after it had been introduced, using very
large cardinals involving embeddings of a rank initial segment of the universe
into itself. In 1999, Woodin went on to refute CBH under the weaker hypothe-
sis that there is a supercompact cardinal with a Woodin cardinal above it; this
gave a counterexample to UBH under the same hypothesis. The counterexam-
ple to UBH, which Woodin presented at the meeting on Core Model Theory at
the American Institute of Mathematics in December 2004, has a very simple
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tree order, involving a single ultrapower by an extender F followed by an alter-
nating chain on the ultrapower model. The tree order associated to Woodin’s
counterexample to CBH is also very simple, involving a single ultrapower by an
extender F followed by a composition of ω alternating chains on the ultrapower
model.

In this paper we construct counterexamples to UBH and CBH using a cardinal
substantially smaller than supercompact. The precise large cardinal assumption
we use is stated in conditions (A1) and (A2) in Section 1. It is slightly weaker
than the assumption that there is an extender which is strong past a Woodin
cardinal.

Our counterexamples have the same simple tree structures used by Woodin.
The structure of the counterexample to UBH, involving a single ultrapower fol-
lowed by an alternating chain, is illustrated in Diagram 1. The structure of the
counterexample to CBH, involving a single ultrapower followed by ω alternating
chains, is illustrated in Diagram 2.

In both our counterexamples the first extender used is overlapped. (An it-
eration tree U has an overlap at ξ if crit(Fξ) < spt(Fα) for some α < ξ so
that α + 1 U ξ + 1, and Fα is said to be overlapped in such a situation. U is
non-overlapping if it has no overlaps.) It should also be noted that the first
extender used, in both counterexamples, is not countably closed.

Our counterexample to UBH shows clearly why UBH ought to have been re-
stricted to non-overlapping iteration trees. Let F be the first extender used in
our counterexample to UBH, and T be the alternating chain on Ult(V, F ) which
constitutes the remainder of the counterexample. Because of the overlap T can
also be regarded as a tree on V. So regarded, T has exactly one wellfounded
branch. However, if T is regarded as a tree on the weaker model Ult(V, F ), as it
may be if overlapping is allowed, then both its branch models are wellfounded,
and in fact more than that, they are equal! Thus our counterexample relies heav-
ily on the fact that in an overlapping tree, one is allowed to discard information
which might differentiate cofinal branches at limit stages.

Our method will not produce a countably closed counterexample to UBH for a
similar reason: if Ult(V, F ) is countably closed, then it is too close to V to hide
the distinction between the branches of T . So far as we can see, overlapping
does not help produce a counterexample in the countably closed case.

Woodin’s counterexamples involve non-overlapping iteration trees. They are
not countably closed, and indeed it is not known if there is any counterexample
to UBH or to CBH in which all extenders used are countably closed in the models
in which they appear. The question is important since the restriction of UBH to
non-overlapping iteration trees which only use countably closed extenders would
suffice for the existing applications of UBH.

The main results on UBH in the positive direction are those of [3], [7], and [6].
The paper [3] shows that if there is any counterexample to UBH, then there is a

δ which is Woodin in L(Vδ ∪ {V♯
δ}). The paper [7] shows that if there is a non-

overlapping counterexample to UBH, then there is an iterable inner model with

infinitely many Woodin cardinals. Finally, [6] shows that in any iterable L[ ~E]
model, UBH holds for non-overlapping “plus two” iteration trees using extenders
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from the images of the coherent sequence. (The plus two condition there is a
stronger condition than the one we define below.)

§1. Preliminaries. We work throughout the paper under the assumption
that there exists a cardinal δ and an extender F so that:

(A1) crit(F ) < δ, spt(F ) = δ, and F is δ–strong (meaning that Vδ ⊂ Ult(V, F )).
(A2) δ is Woodin in the smallest admissible set containing Vδ ∪ {F}.

Let δ and F witness conditions (A1) and (A2), with δ least possible. The fol-
lowing lemma shows that δ must have cofinality ω.

Lemma 1.1. Let δ∗ be a limit cardinal of cofinality > ω and let A∗ ⊂ Vδ∗ .
Let ϕ(v1, v2) be a Π1 formula. Let K∗ be the smallest admissible set containing
Vδ∗ ∪ {δ∗, A∗}. Suppose that δ∗ is inaccessible in K∗ and that K∗ |= ϕ[δ∗, A∗].
Then there is δ̄ < δ∗ so that K̄ |= ϕ[δ̄, Ā] where Ā = A∗ ∩ Vδ̄ and K̄ is the
smallest admissible set containing Vδ̄ ∪ {δ̄,Ā}.

Lemma 1.1 cannot be proved simply by constructing a Σ1 elementary sub-
structure of K∗, since admissibility is not characterized by a Π2 sentence.

Proof of Lemma 1.1. Working in K∗ let R be the tree of attempts to con-
struct a sequence 〈δn,Kn, an, πn | n < ω〉 so that:

1. δn < δ∗, δn is a strong limit cardinal, Kn ∈ Vδ∗ , and Kn is transitive.
2. Vδn

∪ {δn, A∗ ∩ Vδn
} ⊂ Kn, and Kn |= ϕ[δn, A∗ ∩ Vδn

].
3. πn : Kn → Kn+1 is elementary, crit(πn) = δn, πn(δn) = δn+1, and πn(A∗ ∩

Vδn
) = A∗ ∩ Vδn+1

.
4. an ∈ Kn is an ordinal, and an+1 < πn(an).

First we show that R is illfounded. Suppose for contradiction that R is well-
founded and let α be its rank. Since R belongs to K∗, and since K∗ is admissible,
α belongs to K∗. Let K∗‖α denote Lω·α(Vδ∗ ∪ {A∗}). For each node p ∈ R let
ρ(p) be the rank of p in R. Thus ρ : R → α is order preserving and onto. Let
α0 = ρ(∅) < α. Working by induction construct a sequence 〈Hn, αn+1 | n < ω〉
subject to conditions (a)–(c):

(a) Hn ∈ K∗ is an elementary substructure of K∗‖α, {αn, δ∗,Vδ∗ , A∗} ⊂ Hn,
and Hn ∩ Vδ∗ = Vδn

for some δn < δ∗.
(b) Hn−1 ≺ Hn if n > 0 (so that id : Hn−1 → Hn is elementary).

Let Kn be the transitive collapse of Hn and let σn : Kn → Hn be the anticollapse
embedding. Let an = σn

−1(αn). If n > 0 then let πn−1 : Kn−1 → Kn be the
embedding σn

−1 ◦ id ◦ σn−1.

(c) αn+1 is equal to ρ(〈δi,Ki, ai, πi | i ≤ n〉).

It is easy to verify inductively that (i) 〈δi,Ki, ai, πi | i ≤ n〉 is a node in R; and
(ii) αn+1 < αn. Condition (i) is needed to make sense of condition (c) of the
construction, and condition (ii) is needed in the inductive proof of condition (i)
for n + 1.

The fact that αn+1 < αn for each n is of course a contradiction. The contra-
diction shows that R must have an infinite branch.

Let 〈δn,Kn, an, πn | n < ω〉 form an infinite branch through R. Let δ̄ =
sup{δn | n < ω} and let Ā = A∗ ∩ Vδ̄. Let K∞ be the direct limit of the chain
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〈Kn, πn | n < ω〉 and let πn,∞ be the direct limit embeddings. By condition (3),
πn,∞(δn) = δ̄ and πn,∞(A∗ ∩ Vδn

) = Ā. It follows that K∞ ⊃ Vδ̄ ∪ {δ̄, Ā} and
that K∞ |= ϕ[δ̄, Ā]. By condition (4) K∞ is illfounded. The wellfounded part
of K∞ is admissible by standard arguments, contains Vδ̄ ∪ {δ̄, Ā}, and satisfies
ϕ[δ̄, Ā] since ϕ is Π1. δ̄ is smaller than δ∗ since δ∗ has uncountable cofinality. ⊣

The basic component of our counterexamples is an alternating chain, which
we construct next. Though the precise formulations we have in this section do
not appear in previous literature, the constructions are well known, tracing back
to Martin–Steel [3].

Remark 1.2. Recall that an iteration tree U of limit length θ, consisting of a
tree order U , and a sequence 〈Nξ, Fξ, kζ,ξ | ζ U ξ < θ〉 of models, extenders, and
embeddings is a plus two tree if

strengthNα(Fα) ≥ sup{crit(Fξ) | ξ > α ∧ U−pred(ξ + 1) ≤ α} + 2

for each α < θ. This technical condition is needed for the proof of iterability in
Martin–Steel [3].

All the iteration trees in this paper are plus two, though we do not mention
this explicitly from now on.

Definition 1.3. A length ω iteration tree consisting of a tree order T and a
sequence of models, extenders, and embeddings 〈Mn, En, jm,n | m T n < ω〉 is
called an alternating chain just in case that for each n ≥ 2, the T–predecessor
of n is n − 2.

We refer to the tree order of an alternating chain as T alt, and to the alternating
chain as 〈Mn, En, jm,n | m T alt n < ω〉. The tree order of an alternating chain
has precisely two infinite branches: the branch 0 T alt 2 T alt 4 · · · , called even,
and the branch 0 T alt 1 T alt 3 T alt 5 · · · , called odd. We use jn,odd and jn,even

to denote the direct limit embeddings along these branches.

Definition 1.4. For a model Q and a set A ⊂ Q‖ δ1 with the property that
A ∩ (Q‖ γ) ∈ Q for each γ < δ, let us say that two embeddings j and j′ acting
on Q agree on A just in case that

⋃
γ<δ j(A ∩ (Q‖ γ)) =

⋃
γ<δ j′(A ∩ (Q‖ γ)).

We use this terminology in cases where j(δ) = j′(δ) = δ. For A which belong
to Q the statement that j and j′ agree on A is then equivalent to the statement
that j(A) = j′(A). But the former is more general, applying also when A 6∈ Q.
We need the greater generality in Lemma 3.1.

Lemma 1.5. (Assuming that δ and F witness conditions (A1) and (A2) above,
with δ least possible.) There exists an alternating chain T = 〈Mn, En, jm,n |
m T alt n < ω〉 so that:

1. M0 = M1 = V.
2. For each n, En belongs to Mn‖ j0,n(δ).
3. For each n, crit(En) > crit(F ).
4. crit(j0,even) < crit(j0,odd).
5. j0,even(δ) = j0,odd(δ) = δ (in particular both Meven and Modd are well-

founded to δ + 1).

1Q‖ δ in the case of a coarse model Q stands for VQ
δ

.
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6. j0,even and j0,odd agree on F .

Proof. By Lemma 1.1, applied with A = F and ϕ(δ, F ) =“δ is Woodin and
crit(F ) < δ,” the minimality of δ implies that δ has cofinality ω. Let 〈ζn | n < ω〉
be an increasing sequence cofinal in δ. Let K be the smallest admissible set
containing Vδ ∪ {F}. Andretta [1, Section 3] shows how to use the fact that δ

is Woodin in K to construct an alternating chain 〈Mn, En, jm,n | m T alt n < ω〉
so that:

(i) M0 = M1 = V.
(ii) For each n, En belongs to Mn‖ j0,n(δ).
(iii) For each n, crit(En+1) > j0,n(ζn).
(iv) crit(j0,even) < crit(j0,odd).

Constraining the construction there to use only extenders which are strong with
respect to F—there are enough such extenders for the construction as δ is
Woodin in an admissible set containing Vδ ∪{F}—one can obtain the additional
condition:

(v) In Mn, En is κn–strong with respect to j0,n(F ), where κn = crit(En+1).

A simple computation using condition (iii) and the fact that 〈ζn | n < ω〉
is cofinal in δ shows that each of the sequences 〈crit(jn,even) | n even〉 and
〈crit(jn,odd) | n odd〉 is increasing and cofinal in δ. From this it follows that
both j0,even(δ) and j0,odd(δ) are equal to δ.

Let Fn = j0,n(F )↾ κn. Using condition (v) one can check that Fn+1 extends Fn

for each n. Let Fω =
⋃

n<ω Fn. Again using the fact that each of 〈crit(jn,even) |
n even〉 and 〈crit(jn,odd) | n odd〉 is increasing and cofinal in δ it is easy to see
that j0,even(F ) and j0,odd(F ) are both equal to Fω. ⊣

Remark 1.6. With the assumption that δ is Woodin in K strengthened to the
assumption that δ is outright Woodin in V, the construction of the alternating
chain in the proof of Lemma 1.5 is a well known application of the one-step
lemma of Martin–Steel [2], see particularly Section 5 of that paper. Andretta
[1, Section 3] shows how the methods of Martin–Steel [2] can be refined to apply
when δ is only assumed to be Woodin in K. (Andretta produces iteration trees
with the most general tree orders possible. The specific case of an alternating
chain is due to Steel.) The reader who is familiar with the alternating chain
construction of Martin–Steel [2] but not with the refinement of Andretta [1] may
replace “admissible set” with “set satisfying enough of ZFC for the construction
of Martin–Steel [2]” in Lemma 1.5. The replacement has no effect on the proof
of the lemma and on the rest of the paper, except that the same replacement
would have to be made in the hypothesis of the main results (in condition (A2)
above to be precise), and the use Lemma 1.1 would be eliminated, replaced by
a straightforward reflection.

Remark 1.7. We include the last two paragraphs in the proof of Lemma 1.5
to make it clear that the proof that j0,even and j0,odd agree on F uses the fact
that the support of F is precisely equal to supn<ω κn, and therefore implicitly
uses the fact that spt(F ) has cofinality ω.



6 ITAY NEEMAN AND JOHN STEEL

§2. A counterexample to UBH. The following theorem produces a coun-
terexample to UBH.

Theorem 2.1. (Assuming conditions (A1) and (A2) in Section 1.) There
exists an iteration tree U on V, with exactly two cofinal branches, both leading
to wellfounded direct limits.

Proof. Fix an alternating chain T = 〈Mn, En, jm,n | m T alt n < ω〉 satisfy-
ing the conditions of Lemma 1.5. Let Modd and Meven be the direct limits along
the odd branch and the even branch of T respectively. Let jodd : V → Modd and
jeven : V → Meven be the direct limit embeddings. The alternating chain is such
that jeven(F ) = jodd(F ).

Note that since V and Ult(V, F ) agree to δ, and since all the extenders used
in T are taken from Vδ and its images, T can be viewed as acting on Ult(V, F ).
We show that the iteration tree U consisting of an application of F to V followed
by an application of T to Ult(V, F ) has both its cofinal branches wellfounded.

To be precise, let U be the tree order determined by the conditions:

• 0 U 1.
• For n,m ≥ 1, m U n iff (m − 1) T alt (n − 1).

Let F0 = F and for n ≥ 1 let Fn = En−1. Let N0 = V, let N1 = Ult(V, F ),
and let k0,1 be the ultrapower embedding. Let N2 = N1 and let k1,2 be the
identity. For n ≥ 2 let Nn+1 = Ult(Nn−1, Fn) and let kn−1,n+1 be the ultrapower
embedding. Let the remaining embeddings km,n, m U n, be determined by
composition. Let U be the iteration tree 〈Nn, Fn, km,n | m U n < ω〉.

δ

κ3

κ2

E3

κ1

E2

κ0

E1

τ

F

N0
// N1

%%

N2 99
N3

%%

N4 N5

Diagram 1. The structure of U .

U has two cofinal branches, 0 U 1 U 2 U 4 U 6 · · · , which we refer to as the
odd branch since it corresponds to the odd branch of T , and 0 U 1 U 3 U 5 · · · ,
which we call the even branch. Let Nodd and Neven be the direct limits along
these branches, and let kn,odd and kn,even be the direct limit embeddings.
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Since N1 = Ult(V, F ) and V have the same bounded subsets of δ, the embed-
dings k1,odd and k1,even agree with jodd and jeven on bounded subsets of δ. Since
δ is a fixed point of these embeddings it follows that:

(i) k1,odd(Z) ∩ δ = jodd(Z) ∩ δ and k1,even(Z) ∩ δ = jeven(Z) ∩ δ for every
Z ∈ N1.

Recall that the support of F is δ. Let τ = crit(F ).

Claim 2.2. Every element of Nodd has the form k0,odd(f)(a) for a ∈ [δ]<ω

and f : [τ ]lh(a) → V.

Proof. Fix x ∈ Nodd. Since each of the extenders used along k1,odd has
critical point less than δ and support contained in δ, and since δ is fixed by
k1,odd, x can be written as k1,odd(g)(b) where b ∈ [δ]<ω and g : [δ]lh(b) → N1

with g ∈ N1.
Since g is an element of N1 = Ult(V, F ), it can be written as k0,1(h)(c) where

c ∈ [δ]<ω and h : [τ ]lh(c) → V.
x is therefore equal to (k0,odd(h)(k1,odd(c)))(b). Since b and (using the fact

that k1,odd(δ) = δ) k1,odd(c) both belong to [δ]<ω, and since k0,odd(τ) > δ, this

expression in turn can be written as k0,odd(f)(a), with a ∈ [δ]<ω and f : [τ ]lh(a) →
V. ⊣

Let Fodd = jodd(F ). Since jodd(δ) = δ and crit(jodd) > τ , Fodd is an extender
with support equal to δ and critical point equal to τ .

Claim 2.3. Let a ∈ [δ]<ω and let X ⊂ [τ ]lh(a). Then X has (Fodd)a–measure
one iff a ∈ k0,odd(X).

Proof. For an extender E in a model Q let i
Q
E denote the ultrapower em-

bedding of Q by E. X has (Fodd)a–measure one iff a ∈ iVFodd
(X). The following

equivalences lead from a ∈ iVFodd
(X) to a ∈ k0,odd(X).

a ∈ iVFodd
(X) ⇐⇒ (1) a ∈ iModd

Fodd
(X)

⇐⇒ a ∈ jodd(iVF )(X)

⇐⇒ (2) a ∈ jodd(iVF )(jodd(X))

⇐⇒ a ∈ jodd(iVF (X))

⇐⇒ (3) a ∈ k1,odd(iVF (X))

⇐⇒ (4) a ∈ k1,odd(k0,1(X))

⇐⇒ a ∈ k0,odd(X).

The equivalence marked (1) holds because τ is within the agreement between V

and Modd, and hence the ultrapower embeddings iVFodd
and iModd

Fodd
agree on subsets

of τ . The equivalence marked (2) holds because crit(jodd) > τ so that jodd does
not move X. The equivalence marked (3) holds by condition (i) above as a ⊂ δ.
The equivalence marked (4) holds because k0,1 is the ultrapower embedding by
F . ⊣

Claim 2.2 shows that Nodd is isomorphic to the ultrapower of V by the (τ, δ)
pre-extender derived from k0,odd. Claim 2.3 shows that this pre-extender is
precisely equal to Fodd. So Nodd is isomorphic to Ult(V, Fodd).
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A similar argument applies to the even branch, demonstrating that Neven is
isomorphic to Ult(V, Feven) where Feven = jeven(F ).

Remember now that the alternating chain T was obtained through an appli-
cation of Lemma 1.5, so that jeven(F ) = jodd(F ), i.e., Feven = Fodd. Thus

Nodd
∼= Ult(V, Fodd)

= Ult(V, Feven)
∼= Neven.

By Martin–Steel [3] at least one of the infinite branches of U leads to a well-
founded direct limit. (U has precisely two infinite branches. If they both led
to illfounded direct limits, the tree would be continuously illfounded.) Since
the direct limit models, Nodd and Neven, are isomorphic, they must both be
wellfounded, and in fact equal. 2 (Theorem 2.1)

Remark 2.4. Our proof of Theorem 2.1 resembles the constructions of itera-
tion trees with weaker forms of branch-ambiguity in Martin–Steel [3, 5.1,5.2].

Definition 2.5. An extender E in a model M is countably closed in M if

(Ult(M,E)ω)
M ⊂ Ult(M,E), meaning that every countable subset of Ult(M,E)

in M belongs to Ult(M,E).

The following proposition shows that our method will not produce a counterex-
ample to UBH if we demand that the first extender F in our tree be countably
closed.

Proposition 2.6. Let T be a countable iteration tree on Vδ, and let F be a
countably closed extender over V such that Vδ ⊂ Ult(V, F ). Then for any branch
b of T , b is wellfounded when T acts on Ult(V, F ) if and only if b is wellfounded
when T acts on V.

Proof sketch. Let E be the long extender of the branch b, which is the same
no matter which model we consider T as acting on. Let α ≤ δ be least such that
T is an iteration tree on Vα. Suppose α is a limit ordinal; we leave the other case
to the reader. Since T is countable, cof(α) = ω, and thus Vα+1 ⊂ Ult(V, F ).
Let M = Ult(V, F ). From the fact that M and V agree to α + 1 it follows
that iVE↾ Vα+1 = iME ↾ Vα+1. Moreover, Ult(V, E) is wellfounded iff iVE preserves
wellfoundedness of relations on Vα, and Ult(M,E) is wellfounded iff iME preserves
wellfoundedness of relations on Vα. So Ult(V, E) is wellfounded iff Ult(M,E) is
wellfounded, as desired. ⊣

An extender F with strength (F ) = spt(F ) and cof(spt(F )) = ω cannot be
countably closed, since that would imply that F ∈ Ult(V, F ). In our particular
construction, it was important for the extenders used in T to have critical points
cofinal in the support of F , and consequently it was important for spt(F ) to
have cofinality ω, see Remark 1.7 and the proof of Lemma 1.5. This introduced
the lack of countable closure to our counterexample.

It is not known whether there is a counterexample to UBH which uses only
countably closed extenders.
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§3. A counterexample to CBH. Our counterexample to CBH is an iteration
tree of length ω2, consisting of an application of the extender F , followed by a
composition of ω shifts of the alternating chain T . In forming the composition
tree we use the even branch through each of the shifts of T , but we use the
direct limit along the odd branch to do the shifting. This mismatch, which is
possible using the fact that the two branches have the same direct limit, causes
the unique cofinal branch of the composition tree to be illfounded.

The following lemma will be used to shift T :

Lemma 3.1. Let T = 〈Mn, En, jm,n | m T alt n < ω〉 be an alternating chain
satisfying the conditions in Lemma 1.5. Let σ̄ : Vδ → Q‖ δ be elementary, where
Q is a model of ZFC with δ inaccessible in Q. Define σ̄T to be the alternating
chain T ∗ = 〈M∗

n, E∗
n, j∗m,n | m T alt n < ω〉 determined by the conditions M∗

0 = Q

and E∗
n = σ̄(En). (These conditions determine a unique alternating chain on

Q.)
Then T ∗ too satisfies the conditions in Lemma 1.5, with V replaced by Q and

F replaced by F ∗ =
⋃

γ<δ σ̄(F ↾ γ).

Proof. This is easy to verify. Let us just note that the inaccessibility of δ in
Q is used to make sure that δ is a fixed point of each of the individual ultrapower
embeddings used in σ̄T . ⊣

The following lemma abstracts one of the components of the proof of Theorem
2.1:

Lemma 3.2. Let U be an iteration tree of limit length θ, consisting of a tree
order U and a sequence 〈Nξ, Fξ, kζ,ξ | ζ U ξ < θ〉 of models, extenders, and
embeddings. Let b ⊂ θ be a cofinal branch through U , let Nb be the direct limit
of the models along b, and let kξ,b : Nξ → Nb be the direct limit embeddings.
Suppose that

1. spt(F0) = strength(F0) = δ.
2. The extenders Fξ for ξ ≥ 1 all have supports contained in δ, and critical

points above crit(F0).
3. k1,b(δ) = δ.

Let F ∗ =
⋃

γ<δ k1,b(F0↾ γ). Then Nb
∼= Ult(V, F ∗).

Proof. The arguments in the proof of Theorem 2.1, from Claim 2.2 onward,
adapt in a straightforward way to show that Nb and Ult(V, F ∗) are isomorphic.

⊣

Using this lemma, the alternating chain of Lemma 1.5, and Lemma 3.1, we
now produce a counterexample to CBH.

Definition 3.3. Let U be an iteration tree of length θ + 1, leading to a final
model Nθ. Let T be a length ω iteration tree on Nθ, with a tree order T and
extenders 〈ET

n | n < ω〉. Define U⌢T to be the iteration tree U∗ determined by
the conditions: lh(U∗) = θ + ω, U∗↾ θ + 1 = U , EU

∗

θ+n = ET
n for each n < ω, and

θ + m U∗ θ + n iff m T n for m,n < ω. (U∗ here is the tree order of U∗, and
EU

∗

ξ are its extenders.) U∗ is the natural concatenation of U and T . Its models
consist of the models of U up to θ, followed by the models of T .
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Given a branch b of T define [0, θ]U
⌢

b to be the branch [0, θ]U ∪{θ+n | n ∈ b}
of U∗.

Theorem 3.4. (Assuming conditions (A1) and (A2) in Section 1.) There is
an iteration tree on V, of length ω · ω, with only one cofinal branch, and such
that the direct limit of the models along this branch is illfounded.

Proof. Fix an alternating chain T = 〈Mn, En, jm,n | m T alt n < ω〉 satisfy-
ing the conditions of Lemma 1.5. Let beven and bodd denote the even branch and
odd branch of T respectively. Let Meven and Modd be the direct limits along
these branches and let jeven : V → Meven and jodd : V → Modd be the direct limit
embeddings. The alternating chain is such that jeven(δ) = jodd(δ) = δ, and jeven
and jodd agree on F .

First we construct an auxiliary tree S of length ω2, from which the tree U
witnessing ¬CBH will be obtained later. Let α0 = 1, and let αn = ω · n for
n ≥ 1, so that αn+1 = αn +ω for each n. Let S, consisting of a tree order S and
a sequence 〈Nξ, Fξ, σζ,ξ | ζ S ξ < ω · ω〉, be the iteration tree determined by the
following conditions:

1. N0 = V and F0 = F . (So that N1 = Ult(V, F ) and k0,1 : N0 → N1 is the
ultrapower embedding. Notice then that N1‖ δ = Vδ.)

2. S↾ αn+1 = (S↾ αn + 1)⌢(σ̄nT ), where σ̄n = σ1,αn
↾ Vδ.

3. [0, αn+1]S = [0, αn]S
⌢

bodd.

S thus involves an application of F , followed by ω uses of shifts of T . Of course
we have to verify that the direct limit of the models of S↾ αn+1 along the branch
[0, αn]S

⌢
bodd is wellfounded, for otherwise we are not allowed to set [0, αn+1]S

equal to this branch, as we do in condition (3).
Let us inductively assume that all the models of S↾ αn+1 are wellfounded, and

work to show that the direct limit of the models of S↾ αn+1 along the branch
[0, αn]S

⌢
bodd is wellfounded.

Let Nn
even and Nn

odd be the direct limits of the models of S↾ αn+1 along the
branches [0, αn]S

⌢
beven and [0, αn]S

⌢
bodd respectively. Let σn

ξ,even and σn
ξ,odd

be the direct limit embeddings.

Claim 3.5. Suppose that σ1,αn
(δ) = δ. Then:

• σn
αn,even(δ) = σn

αn,odd(δ) = δ.

• σn
αn,even and σn

αn,odd agree on
⋃

γ<δ σ1,αn
(F ↾ γ).

Proof. Immediate from Lemma 3.1, applied with Q = Nαn
and σ̄ = σ̄n. Let

us just note that the inaccessibility of δ in Nαn
follows from the assumption

that δ = σ1,αn
(δ) and the fact that δ is inaccessible (in fact Woodin) in N1 =

Ult(V, F ). ⊣

Notice that σαn,αn+1
is simply the map σn

αn,odd. Thus, assuming that σ1,αn
(δ) =

δ, Claim 3.5 shows that σ1,αn+1
(δ) = δ. By induction then we obtain:

Corollary 3.6. For each n < ω:

• σ1,αn
(δ) = δ.

• σn
1,even(δ) = σn

1,odd(δ) = δ.
• σn

1,even and σn
1,odd agree on F .
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S:

Nω+1
// N1

odd=Nω+ω

33

N2
// N0

odd=Nω

::tt

++WWWWWWW

σω,ω+ω

22eeeeeeeeeeeeeeeee

V
F

// N1

??
~~

''OOOOO
σ1,ω

22fffffffffffff Nω+2
// N1

even

N3
// N0

even

U :

N2
// N0

odd

V
F

// N1

??
~~

''OOOOO k1,ω

,,XXXXXXXXXXXX Nω+1
// N1

odd

N3
// N0

even=Nω

::vv

++WWWWWWW kω,ω+ω

,,YYYYYYYYYYYYYYYY

Nω+2
// N1

even=Nω+ω

,,

Diagram 2. The structure of S, and the counterexample U to CBH.

Claim 3.7. Nn
even is isomorphic to Ult(V,

⋃
γ<δ σn

1,even(F ↾ γ)), and similarly

Nn
odd is isomorphic to Ult(V,

⋃
γ<δ σn

1,odd(F ↾ γ)).

Proof. Immediate using Lemma 3.2 on the tree S↾ αn+1. ⊣

Corollary 3.8. Nn
even is isomorphic to Nn

odd.

Proof. By Corollary 3.6,
⋃

γ<δ σn
1,even(F ↾ γ) is equal to

⋃
γ<δ σn

1,odd(F ↾ γ).
Using Claim 3.7 it follows that Nn

even
∼= Nn

odd. ⊣

If both Nn
even and Nn

odd were illfounded, then σ̄nT would be a continuously
illfounded iteration tree on Nαn

, in contradiction to the results of Martin–Steel
[3]. Thus at least one of Nn

even and Nn
odd is wellfounded. Since the two models are

isomorphic, they must both be wellfounded. In particular Nn
odd, the direct limit

along the branch [0, αn]S
⌢

bodd of S↾ αn+1, is wellfounded, so that the definition
of S, and particularly condition (3) above, is valid.

Notice that Nn
odd and Nn

even, being transitive isomorphic models, are in fact
equal.

Let U , consisting of a tree order U and a sequence 〈Nξ, Fξ, kζ,ξ | ζ U ξ < ω ·ω〉
of models extenders and embeddings, be the iteration tree determined by the
conditions:

4. The sequence of extenders of U is precisely equal to the sequence of exten-
ders of S, and U−pred(ξ + 1) = S−pred(ξ + 1) for each ξ < ω · ω.

5. [0, αn+1]U = [0, αn]U
⌢

beven for each n < ω.

The definition makes sense, and in fact U and S have precisely the same mod-
els and the same embeddings within each of the intervals [αn, αn+1),

2 since
[0, αn]S

⌢
beven and [0, αn]S

⌢
bodd both lead to the same direct limit model in

S↾ αn+1.

2By this we mean that kζ,ξ = σζ,ξ whenever ζ and ξ belong to the same interval [αn, αn+1).
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Of course, the embeddings kαn,αn+1
and σαn,αn+1

are not the same. The former
is taken along the even branch of σ̄nT , while the latter is taken along the odd
branch.

Let κeven be the critical point of jT0,even, and let κodd be the critical point of

jT0,odd. More generally, let κn
even be the critical point of the direct limit embedding

along the even branch of σ̄nT , and define κn
odd similarly with the odd branch.

Notice then that:

(i) crit(σαn,αn+1
) = κn

odd.
(ii) crit(kαn,αn+1

) = κn
even.

Now κn
even is simply σ1,αn

(κeven), and similarly κn
odd is simply σ1,αn

(κodd). By
Claim 1.5, κeven < κodd. Certainly then κeven < σ1,αn

(κodd) for each n. By
condition (i), σ1,αn

(κodd) = κn
odd is the critical point of σαn,αn+1

. So κeven is not
moved by σαn,αn+1

. By induction on n then it follows that σ1,αn
(κeven) = κeven.

In other words:

(iii) κn
even = κeven.

But now by condition (ii),

(iv) kαn,αn+1
(κeven) > κeven for each n < ω.

The iteration tree U has precisely one cofinal branch, the branch generated
by the set {αn | n < ω}. Let N∞ be the direct limit along this branch, and let
kαn,∞ : Nαn

→ N∞ be the direct limit embeddings. Condition (iv) shows N∞

is illfounded: 〈kαn,∞(κeven) | n < ω〉 forms an infinite descending sequence of
ordinals of N∞. 2 (Theorem 3.4)
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