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Abstract. We prove that the restriction of Todorcevic’s open coloring axiom to spaces

of size strictly less than the continuum is consistent with arbitrarily large values of the

continuum.

§1. Introduction. Todorcevic’s open coloring axiom (OCATod) was intro-
duced by Todorcevic in the early 1980s, see [11, Section 8]. Phrased as an axiom
on graphs, it states that every open graph on a vertex set X ⊆ R is either
countably chromatic, or has an uncountable clique. This is clearly a dichotomy.
Here “open” is meant in the topology on [X]2 = {〈x, y〉 ∈ X2 | x 6= y} inherited
from R2. OCATod is a central consequence of the proper forcing axiom, and can
also be forced directly assuming only ZFC. It negates the CH, and has several
key consequences. To name just a few: Todorcevic [11] used it for an analysis
of gaps, Farah [6] showed that it implies that all automorphisms of the Calkin
algebra are inner, Velickovic [12] used OCATod in the context of MA to prove
that all automorphisms of P(ω)/Fin are trivial, and de Bondt-Farah-Vignati [4]
strengthened this result to remove the assumption of MA.

All models of OCATod known to date satisfy that the continuum is ℵ2. It is a
central open question whether the axiom determines the value of the continuum
to be ℵ2, or is consistent with higher values.

There have been only a few partial results on this question.
OCATod breaks into the conjunction of two statements: The first, which we

denote OCATod(ℵ1), is the restriction of OCATod to graphs on vertex sets X of
size ℵ1. The second, called reflection, is the statement that if an open graph G
on a vertex set X ⊆ R is not countably chromatic, then there is X̄ ⊆ X of size
ℵ1 so that the restriction of G to X̄ is not countably chromatic.

Farah, in unpublished work [5], showed that OCATod(ℵ1) is consistent with
arbitrarily large values of the continuum. He also showed that the same is true
adding MA(ℵ1). Working on reflection, he noted that it holds in the forcing
extension adding arbitrarily many Cohen reals to a model of CH.

Moore [8] considered the conjunction of OCATod with another open coloring
axiom, that had been introduced prior to Todorcevic [11] by Abraham-Rubin-
Shelah [1]. Their axiom OCAARS states that if X ⊆ R has size ℵ1, and c : [X]2 →
{0, 1} is open, then X can be partitioned into countably many c-homogeneous
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sets, meaning sets Ai so that c is constant on each [Ai]
2. Here “open” means that

the c preimages of {0} and {1} are both open in the topology on [X]2 inherited
from R2.
OCATod is often phrased as a statement about homogeneous sets for the char-

acteristic function cG of the graph G. Indeed this is closer to the original for-
mulation in [11]. It then resembles OCAARS, and in fact some of the methods
leading to OCATod trace back to Abraham-Rubin-Shelah [1], along with earlier
work of Baumgartner [2, 3]. But there are some key differences between the two
axioms: In OCATod only one of the cG-preimages of {0}, {1} is assumed to be
open, and the axiom only provides an actual partition of X on one side of its
dichotomy, while OCAARS lacks the reflection component of OCATod.

Moore [8] showed that the conjunction OCATod + OCAARS implies that the
continuum is exactly ℵ2. Gilton-Neeman [7] later showed that OCAARS is con-
sistent with arbitrarily large values of the continuum. These results underline
the question of whether OCATod determines the value of the continuum.

Moore [10] demonstrated some essential difficulties in obtaining OCATod with
large continuum, for example showing that a c.c.c. forcing adding reals over a
model of OCATod will destroy OCATod unless it adds a dominating real. Since
OCATod implies that b = ℵ2, adding too many dominating reals is itself a danger
to OCATod.

As we noted above, the question of whether OCATod is consistent with large
continuum remains open. In this paper we provide the following partial result.
Let OCATod(< κ) denote the restriction of OCATod to graph on vertex sets of
size < κ. Define OCATod(κ) similarly.

Theorem 1.1. Let θ be a Mahlo cardinal, and let δ > θ be a cardinal so that
δ<θ = δ. Then there is a θ-c.c. forcing extension where θ = ℵ2, c = δ, and
OCATod(< c) holds. The extension preserves ℵ1 if the CH holds in the ground
model.

In particular, assuming the consistency of a Mahlo cardinal, OCATod(< c) is
consistent with arbitrarily large values of the continuum.

Let MA(Knaster,ℵ1) denote the restriction of Marin’s Axiom to meeting ℵ1

dense sets in Knaster posets.

Theorem 1.2. Under the assumptions of Theorem 1.1, one can in fact obtain
a model of OCATod(< c) + MA(Knaster,ℵ1).

In particular, assuming the consistency of a Mahlo cardinal, OCATod(< c) +
MA(Knaster,ℵ1) is consistent with arbitrarily large values of the continuum.

Our models witnessing these theorems also satisfy that b = ℵ2. Thus both
theorems can be strengthened to include this in their conclusions.

Moore’s proof that OCATod + OCAARS implies c = ℵ2 does not use the full
strength of OCATod, but only OCATod(ℵ2) + b = ℵ2, plus OCAARS of course.
Our results, specifically the fact that OCATod(ℵ2) + b = ℵ2 is consistent with
arbitrarily large continuum, therefore show that the techniques of Moore [8]
would not work without assuming OCAARS. This complements [10, Theorem 3].

The structure of our paper is as follows:
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In Section 2 we specify a precise way of selecting which names for conditions
are used in forcing iterations, that will help us with technical points later on.

In Section 3 we prepare for the countably closed part of our forcing con-
struction. This part (working with δ and θ as in Theorems 1.1 and 1.2) involves
adding δ subsets of ω1, and then forcing with an iteration of length θ, where each
iterand is a product of size δ of “stems and commitments” posets. Our work
in Section 3 centers on maintaining a large degree of symmetry for these posets
under permutations of δ, maintaining a large degree of compatibility between
shifts of conditions under such permutations, and observing some consequences
of the symmetry and compatibility. The purpose of the added subsets of ω1

is not so much to increase 2ℵ1 as in Moore [9], but to generate almost disjoint
sets that reduce the interference between the clique adding factors of the large
products to be used in the next section.

In Section 4 we present one step of our intended iteration. This step handles
a specific (name for) an open graph, but forces to simultaneously add cliques in
all shifts of this name under permutations of δ. It breaks into a countably closed
part, and a c.c.c. part. The countably closed part is a “stems and commitments”
poset which can be folded into an iteration of large products as in Section 3. It
adds a subset of the graph of size ℵ1, so that forcing with finite subcliques of this
subset is c.c.c. The second part is this c.c.c. clique-adding forcing. This kind
of division is standard for forcing OCATod. Crucially here we perform this step
simultaneously, through a large symmetric product, on all shifts of the given
graph name by permutations of δ. We use δ almost disjoint subsets of ω1 to
reduce the interference between the factors of this product, and to maintain the
countable chain condition for the δ-sized product of the shifted clique-adding
posets, see the proof of Lemma 4.11. To make this work we need a stronger
assumption on the graph than not being countably chromatic. This is explained
in Remark 4.1.

In Section 5 we put these components together to obtain a proof of Theorems
1.1 and 1.2. Even though we end with a continuum of size δ, our iteration is
of length θ. In stage κ < θ we guess some specific (name for a) graph, and
we simultaneously and symmetrically handle, in the manner of Section 4, this
graph and all shifts of this graphs by permutations of δ. This is essential for
obtaining a continuum of size δ. As mentioned above, doing this requires a
stronger assumption on the graph than not being countably chromatic. It is in
Section 5 that we must derive this stronger assumption for the graphs we are
handling. One part of this derivation involves symmetrizing a countable coloring
of the graph being handled. This is done in Claim 5.15, and relies on the use
of finite supports when adding reals, in a manner similar to some of the key
ideas of Farah [5], though the forcing construction here is very different. The
second part of the proof involves internalizing the symmetrized coloring into an
elementary substructure. This is done in the paragraphs that follow the proof
of Claim 5.15. This is the part of the argument that relies on the vertex set of
the graph being smaller than the continuum.

It is natural to ask whether some variant of our argument could be used to
obtain the full OCATod with large continuum. Doing this would require a different
internalization argument.
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§2. A note on forcing compositions and iterations. There are differing
standard approaches to specifying the precise set of conditions when defining
forcing iterations. In some cases the choice of which approach to take can make
a difference, at least on a technical level, to the argument. For example in closure
arguments it can be important that the set of conditions is rich enough to be full
at each coordinate. Fullness will be important for our argument, and more than
this we will need the fullness to be witnessed by conditions which are frugal in
their use of the first poset in our iteration. The following definitions and claims
will be useful for this.

Definition 2.1. Let P be a poset (with largest element 1). A P-name ẋ is
efficiently below p ∈ P if for all 〈ẏ, q〉 ∈ ẋ:

1. q ≤ p.
2. ẏ is efficiently below q.

ẋ is efficient if it is efficiently below 1.

Claim 2.2. For every P-name ẋ, and every p ∈ P, there is a name ẋ∗ which
is efficiently below p, so that p 
 ẋ∗ = ẋ. In particular there is an efficient name
ẋ∗ so that 
 ẋ∗ = ẋ.

Proof. By induction on the rank of ẋ. For each 〈ẏ, q〉 ∈ ẋ and q∗ ≤ q,
find ẏ∗ẏ,q∗ which is efficiently below q∗ and so that q∗ 
 ẏ∗ẏ,q∗ = ẏ, and fix any
Aq ⊆ P which is maximal among conditions extending both q and p, in the
sense that any such condition is compatible with a condition in Aq. Then set
ẋ∗ = {〈ẏ∗ẏ,q∗ , q∗〉 | 〈ẏ, q〉 ∈ ẋ ∧ q∗ ∈ Aq}. a

Say that a name ẋ is of forcing-hereditary size at most κ, if |ẋ| ≤ κ, and for
every 〈ẏ, p〉 ∈ ẋ, ẏ is of forcing-hereditary size at most κ.

Claim 2.3. Suppose P is κ+-c.c. Then given ẋ of forcing-hereditary size at
most κ, the conclusion of Claim 2.2 holds with ẋ∗ which is also of forcing hered-
itary size at most κ.

Proof. Follow the proof of Claim 2.2, pick Aq to be antichains, so that they
have size at most κ, and inductively pick ẏ∗ẏ,q∗ to be of forcing-hereditary size at
most κ. Then the resulting ẋ∗ is of forcing-hereditary size at most κ. a

By the von Neumann rank of a set u we mean the least α so that u ∈ Vα+1.

Claim 2.4. Suppose P ∈ Vκ, p ∈ P, ẋ is efficiently below p, and p forces that
the von Neumann rank of ẋ is α. Then the name ẋ belongs to Vκ+3·(α+1).

Proof. By induction on α. Note that if 〈ẏ, q〉 ∈ ẋ, then q ≤ p, ẏ is efficiently
below q, and q 
 ẏ ∈ ẋ, so that in particular q forces the von Neumann rank
of ẏ to be strictly smaller than α. It follows inductively that ẏ ∈ Vκ+3·α. Since
P ∈ Vκ, this implies that the ordered pair 〈ẏ, q〉 belongs to Vκ+3·α+2. So ẋ is a
subset of Vκ+3·α+2, i.e., an element of Vκ+3·(α+1). a

Corollary 2.5. For each α ∈ Ord, and for each p ∈ P, the collection of
names ẋ which are efficiently below p and forced by p to have rank ≤ α, is a set
(not a proper class). In particular for any name Q̇, the collection of efficient

names for elements of Q̇ is a set.
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Proof. Clear from Claim 2.4. a
We take 〈Pα, Q̇β | α ≤ δ, β < δ〉 to be a countable (respectively finite) support

forcing iteration of length δ if:

1. P0 is the trivial poset with ∅ as the sole condition.
2. Q̇β is a Pβ-name for a poset.
3. Conditions in Pα are function with countable (respectively finite) domain

contained in α.
4. For p ∈ Pα and µ ∈ dom(p), p(µ) is an efficient Pµ-name forced to be an

element of Q̇µ.
5. p∗ ≤Pα p iff for all µ ∈ dom(p), p∗�µ 
Pµ p

∗(µ) ≤Q̇µ p(µ).

This definition falls into the standard template for forcing iterations with count-
able (respectively finite) support. The only part where we are being more specific
is the use of efficient names in condition (4). Note that our iteration posets Pα
are all sets (not proper classes), by Claim 2.5. Note also that the collection of
p(µ) allowed by condition (4) is full, meaning that for every antichain A in Pµ,

and for every list of names u̇a for a ∈ A so that a 
 u̇a ∈ Q̇µ, there is a name
u̇∗ allowed as p(µ) by condition (4), so that a 
 u̇∗ = u̇a for each a ∈ A. To see

this, use the standard merging argument to get a name v̇ so that 
 v̇ ∈ Q̇µ and
a 
 v̇ = u̇a, and then apply Claim 2.2 to get an efficient u̇∗ which is forced to be
equal to v̇. The fullness implies that all the standard results about forcing iter-
ations, including in particular the ones constructing lower bounds in descending
chains with countable support, hold for the definition above.

For consistency, we define forcing compositions with the same restriction to
efficient names: conditions in P ∗ Q̇ are pairs 〈p, q̇〉 where p ∈ P, and q̇ is an

efficient P-name forced to be an element of Q̇.

§3. Preparing for the countably closed preparation. Fix a cardinal δ
of cofinality at least ℵ1. We eventually intend for δ to become the continuum,
but this is not relevant for the time being.

The first part of the preparation is the forcing A = Add(ℵ1, δ), adding δ
subsets of ℵ1. Later on we will use these to produce almost disjoint subsets of
ω1 that will allow us to properly separate different clique-forcing posets, but this
too is not relevant for the time being.

We view conditions in A as countable partial functions from ω1 × δ into 2.
The support of a condition a, denoted Sp(a), is the smallest (countable) set S
so that dom(a) ⊆ ω1 × S. Given a generic A for A, we write Aξ, ξ < δ, for the

ξth subset of ω1 added by A. We use Ȧξ for the canonical name for the ξth set
added by A.

By A�X, for X ⊆ δ, we mean the restriction of A to conditions a with
dom(a) ⊆ ω1 × X. Given a generic A, we write A�X for A ∩ A�X. For a
condition a we write a�X for the restriction of the function a to ω1 ×X. Note
that A�X is equal to {a�X | a ∈ A}, since A is a filter.

Claim 3.1. Any extension of a�X in A�X is compatible with a in A. Conse-
quently A�X is a complete subposet of A, and if A is generic for A over V , then
A�X is generic for A�X.
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Proof. Clear. a
The forcing A is homogeneous under permutations of δ. We will preserve this

homogeneity for the future steps of the preparation. Before we continue with the
definitions of these steps, let us fix some notation, and establish some claims,
related to this homogeneity.

Claim 3.2. Let σ be a permutation of δ, meaning a bijection of δ with itself.
Then σ extends to an automorphism of A by setting σ(a)(α, σ(ξ)) = a(α, ξ).
This in turn allows extending σ to act on A generics and names in the obvious
way, with the properties that σ(a) ∈ σ(A) ⇐⇒ a ∈ A and σ(ẋ) = {〈σ(ẏ), σ(b)〉 |
〈ẏ, b〉 ∈ ẋ}, so that σ(ẋ)[σ(A)] = ẋ[A] and Ȧσ(ξ)[σ(A)] = Ȧξ[A].

Proof. Clear. a

Claim 3.3. Let a ∈ A. If σ is a permutation of δ so that σ is the identity on
Sp(a) ∩ σ′′ Sp(a), then a and σ(a) are compatible, and a ∪ σ(a) is their largest
lower bound.

Proof. Using the fact that σ is the identity on Sp(a) ∩ σ′′ Sp(a), check that
a and σ(a) agree on the common part of their domains. a

Claim 3.4. Let σ be a permutation of δ, and extend σ in the manner of Def-
inition 3.2. Let Ṗ be a A-name for a poset. Then σ induces an isomorphism
of A ∗ Ṗ into A ∗ σ(Ṗ) given by 〈a, ṗ〉 7→ 〈σ(a), σ(ṗ)〉. We refer to the map as
σ. Note that this map fixes the interpretation of the second coordinate, meaning
that if A ∗ P is generic for A ∗ Ṗ, then σ′′(A ∗ P ) = σ(A) ∗ P . As in Claim 3.2,

σ then extend further to act on A ∗ Ṗ names and generics.

Proof. Clear. a

Definition 3.5. 1. In the context of Claim 3.2, a name Ẋ is invariant if
σ(Ẋ) = Ẋ for all σ. The name Ẋ is invariant modulo e ⊆ δ if σ(Ẋ) = Ẋ
for all σ which are the identity on e.

2. We make the same definition for A ∗ Ṗ-names in the context of Claim 3.4.
This makes sense when Ṗ is invariant, so that the extended σ maps A ∗ Ṗ-
names to A ∗ Ṗ-names.

If Ẋ names a structure, for example a poset or a poset with additional rela-
tions, Ẋ is invariant (and similarly modulo e) if the invariance condition holds
for the underlying set and all implicit relations, such as the poset order.

Define the A-support of an A-name σ to be the smallest S ⊆ δ so that σ is an
A�S-name, or, equivalently, Sp(σ) =

⋃
〈τ,a〉∈σ Sp(τ) ∪ Sp(a).

Similarly, working with a composition A ∗ Ṗ, define the A-support of an A ∗ Ṗ-
name σ, denoted Sp(σ), to be

⋃
〈τ,〈a,ṗ〉〉∈σ Sp(τ) ∪ Sp(a) ∪ Sp(ṗ).

We refer to the A-support simply as support, when the intention is clear from
the context.

We say that two conditions p, u in a poset P are equivalent if p ≤ u∧u ≤ p. We
write p ≈ u in this case. The conditions do not have to be equal, and in forcing
compositions and iterations there are typically equivalent conditions which are
not equal to each other.
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Definition 3.6. Let Ṗ be an A-name for a poset. Let κ < δ. Then Ṗ is
κ-appropriate if:

1. (Invariance) Ṗ is invariant.

2. (Support size) For every 〈u̇, a〉 ∈ Ṗ, there is an efficient name ṗ for an

element of Ṗ so that a 
 ṗ ≈ u̇ and |Sp(ṗ)| ≤ κ. (Note that 〈a, ṗ〉 is then an

element of A∗Ṗ.) Moreover such ṗ can be found with Sp(ṗ) ⊆ Sp(a)∪Sp(u̇).

3. (Shift compatibility) Say that 〈a, ṗ〉 ∈ A ∗ Ṗ shifts compatibly if 〈a, ṗ〉 and
〈σ(a), σ(ṗ)〉 are compatible for every permutation σ which is the identity

on (Sp(a) ∪ Sp(ṗ))
⋂
σ′′(Sp(a) ∪ Sp(ṗ)). Then there is D ⊆ A ∗ Ṗ so that:

(a) D is dense in A ∗ Ṗ.
(b) If 〈a, ṗ〉 ∈ D and ρ is a permutation of δ then 〈ρ(a), ρ(ṗ)〉 ∈ D.
(c) If 〈a, ṗ〉 ∈ D and a 
 ṗ′ ≈ ṗ then 〈a, ṗ′〉 ∈ D.
(d) Every 〈a, ṗ〉 ∈ D shifts compatibly.

Ȧ is κ-appropriate modulo e ⊆ δ if it satisfies the above conditions with invariance
replaced by invariance modulo e, and condition (3) revised to permutations ρ
which are the identity on e, and to conditions 〈a, ṗ〉 which shift compatibly modulo
e, meaning that 〈a, ṗ〉 is compatible with 〈σ(a), σ(ṗ)〉 for σ which are the identity
on e and on (Sp(a) ∪ Sp(ṗ))

⋂
σ′′(Sp(a) ∪ Sp(ṗ)).

Lemma 3.7. The trivial poset (having ∅ as its only element) is κ-appropriate.

Proof. Clear. We only note that all conditions in A ∗ Ṗ shift compatibly by
Claim 3.3. a

Claim 3.8. If Ṗ is κ-appropriate and κ′ ∈ [κ, δ), then Ṗ is κ′-appropriate.

Proof. Clear. a

Claim 3.9. Let Ṗ be κ-appropriate. If ẋ is an A∗Ṗ-name of forcing-hereditary
size ≤ κ, then there is ẋ∗, forced to equal ẋ and still of forcing-hereditary size
at most κ, with |Sp(ẋ∗)| ≤ κ. Moreover if ẋ is efficient (respectively efficient
below 〈a, ṗ〉), then ẋ∗ can be picked to also be efficient (respectively efficient below
〈a, ṗ〉).

Proof. Let 〈ẏ, u〉 ∈ ẋ. By induction there is żẏ,u, of forcing hereditary size
at most κ and with support of size ≤ κ, which is forced to equal ẏ. If ẏ is
efficient below u we can pick żẏ,u to also be efficient below u. By the support

size condition (2) of Definition 3.6, we can find wu ∈ A ∗ Ṗ which is equivalent
to u, and has support of size ≤ κ.

Now set ẋ∗ = {〈żẏ,u, wu〉 | 〈ẏ, u〉 ∈ ẋ}. Then ẋ∗ inherits any efficiency enjoyed
by ẋ, and using the fact that |ẋ| ≤ κ it is clear that |Sp(ẋ∗)| ≤ κ. a

Let A be generic for A, and let J ⊆ δ. Note that A�J is generic for A�J
over V . Some A-names σ have the property that σ[A] belongs to V [A�J ], and
is independent of A�δ − J . We want in this case to define an A�J-name (σ�J)
with the property that (σ�J)[A�J ] = σ[A].

Say that a fixes σ at J if there is an A�J-name σ̄ so that a 
 σ = σ̄. Recall
that Sp(σ) is minimal so that σ is an A�Sp(σ)-name. Then, for a generic A with
a ∈ A, we have σ[A] = σ[A� Sp(σ)] = σ̄[A�J ], and it follows from this that σ[A]
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belongs to V [A�(Sp(σ)∩J)]. So we may assume that σ̄ is an A�(Sp(σ)∩J)-name.
We then have that already a�Sp(σ) forces σ = σ̄.

If 〈τ, b〉 ∈ σ, then any condition c ≤ a�Sp(σ), b forces that τ ∈ σ̄, and therefore
has an extension c′ which fixes τ at J . There is therefore an antichain Xσ,a(τ, b),
contained in A�Sp(σ), maximal among extensions of a� Sp(σ), b, so that all c ∈
Xσ,a(τ, b) fix τ at J .

Definition 3.10. (Using the notation above.) When a fixes σ at J , define
σ|aJ = {〈τ |cJ, c�J〉 | 〈τ, b〉 ∈ σ ∧ c ∈ Xσ,a(τ, b)}. (The definition is by recursion
on von Neumann rank.) If the empty condition fixes σ at J , then define σ|J to
be σ|∅J .

Claim 3.11. Suppose that a fixes σ at J . Then Sp(σ|aJ) ⊆ J ∩ Sp(σ), and
a 
 σ|aJ = σ.

Proof. Clear from the definitions by induction on rank. We only note that
if c fixes σ and τ at J , and σ̄ and τ̄ are A�J-names witnessing this in the sense
that c 
 σ = σ̄ ∧ τ = τ̄ , and if c 
 τ ∈ σ, then c�J 
 τ̄ ∈ σ̄. This fact comes up
in the inductive proof. a

Lemma 3.12. Let A be generic for A. Suppose Ṗ is κ-appropriate. Let J ⊆ δ,
and suppose that δ − J is uncountable.

1. Ṗ[A]∩V [A�J ] (meaning the poset, with its order) belongs to V [A�J ] and is
independent of A�(δ − J).

We write P�J for Ṗ[A]∩ V [A�J ]. Given a generic P we write P �J for P ∩ P�J .

We write ṖJ for the natural A-name for P�J , namely {〈ṗ, b〉 | (∃a)〈ṗ, a〉 ∈ Ṗ, b ≤
a, b 
 ṗ ∈ V [Ȧ�J ]}. Condition (1) shows that the empty condition in A fixes ṖJ
at J . We set Ṗ�J = ṖJ |J . By Claim 3.11, this is an A�J-name for P�J .

2. Suppose that |J | ≥ κ+. Then A�J ∗ Ṗ�J is a complete subposet of A ∗ Ṗ.

We denote A�J ∗ Ṗ�J as (A ∗ Ṗ)�J .

Proof. To prove condition (1), we show that if a1, a2 ∈ A, a1�J = a2�J , and
ẋ is a A�J-name, then a1 and a2 cannot force incompatible information about
the membership status of ẋ in Ṗ. A similar argument applies to membership in
the poset order of Ṗ.

Suppose otherwise, and fix witnesses a1, a2, ẋ. Since δ − J is uncountable,
and since Sp(a1) and Sp(a2) are both countable, we can fix a permutation σ of
δ, which is the identity on J , and such that Sp(a1) − J and Sp(σ(a2)) − J are
disjoint. Since a1�J = a2�J , this implies that a1 and σ(a2) are compatible, and
hence so are σ−1(a1) and a2.

Work with a generic A for A which contains σ−1(a1) and a2. Note that since
σ is the identity on J , ẋ[A�J ] = ẋ[σ(A)�J ]. Call this element x. Then, by choice

of a1, a2, and since a2 ∈ A while a1 ∈ σ(A), we have x ∈ Ṗ[A] iff x 6∈ Ṗ[σ(A)].

In particular Ṗ[A] 6= Ṗ[σ(A)]. Since Ṗ[A] = σ(Ṗ)[σ(A)], this contradicts the

invariance of Ṗ.
Next we prove condition (2) of the claim. We have to show that A�J ∗ Ṗ�J

and A ∗ Ṗ agree on compatibility, and that conditions in A ∗ Ṗ have residues in
A�J ∗ Ṗ�J .
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To handle compatibility, fix 〈a1, ṗ1〉, 〈a2, ṗ2〉 ∈ A�J ∗ Ṗ�J and suppose that

〈a∗, ṗ∗〉 is a lower bound for these conditions in A ∗ Ṗ. Using the support size
condition (2) of Definition 3.6, we may replace each 〈ai, ṗi〉 with an equivalent
condition that has support of size ≤ κ, still contained in J . We may similarly
assume that 〈a∗, ṗ∗〉 has support of size ≤ κ. Since |J | ≥ κ+, we can find a
permutation σ of δ which is the identity on Sp(a1) ∪ Sp(a2) ∪ Sp(ṗ1) ∪ Sp(ṗ2),
and maps the support of 〈a∗, ṗ∗〉 into J . Then 〈σ(a∗), σ(ṗ∗)〉 is a condition in

A�J ∗ Ṗ�J . By the invariance of the poset ordering, it is a lower bound for the
conditions 〈σ(ai), σ(ṗi)〉 = 〈ai, ṗi〉, with the equality holding because σ fixes the
support of the conditions.

Finally, we show that every condition 〈a, ṗ〉 in A∗ Ṗ has a residue in A�J ∗ Ṗ�J ,

meaning 〈ā, ˙̄p〉 ∈ A�J ∗ Ṗ�J so that every extension of 〈p̄, ˙̄a〉 in A�J ∗ Ṗ�J is

compatible with 〈a, ṗ〉 in A ∗ Ṗ.
Fix 〈a, ṗ〉. By the support size condition (2) of Definition 3.6, we may assume

there is U ⊆ δ of size κ so that Sp(a),Sp(ṗ) ⊆ U . We need to find a residue
for 〈a, ṗ〉, and we will do this by taking the image of the condition under a
permutation that shifts U − J into J .

Since |J | ≥ κ+ and |U | = κ, we have |J − U | ≥ κ. We can therefore find
Y ⊆ J − U of size |U − J | ≤ κ. Let σ be a permutation of δ which sends U − J
to Y , sends Y to U − J , and is the identity otherwise. Let τ = σ−1, and note
that J ∩ τ ′′J = J −Y , and hence τ is the identity on J ∩ τ ′′J . We also have that
σ′′U ⊆ J .

Let ā = σ(a) and let ˙̄p = σ(ṗ). Then Sp(ā),Sp( ˙̄p) ⊆ σ′′U ⊆ J . So 〈ā, ˙̄p〉 ∈
A�J ∗ Ṗ�J . We will prove that any extension of 〈ā, ˙̄p〉 in A�J ∗ Ṗ�J is compatible
with 〈a, ṗ〉.

Fix 〈b, q̇〉 ∈ A�J ∗ Ṗ�J extending 〈ā, ˙̄p〉.
Let D witness the shift compatibility condition (3) of Definition 3.6. Note first

that 〈b, q̇〉 has an extension 〈b′, q̇′〉 which still has support contained in J , and
belongs to D. This is a consequence of the density and invariance properties of
D: By the support size condition, modifying q̇ but keeping its support contained
in J , we may assume that |Sp(q̇)| ≤ κ. Let 〈b′, q̇′〉 be any extension of 〈b, q̇〉
in D. Again using the support size condition, we can find q̇′′, forced by b′

to be equivalent to q̇′, with |Sp(q̇′′)| ≤ κ. Then 〈b′, q̇′′〉 ∈ D, and |Sp(b′) ∪
Sp(q̇′′)| ≤ κ. Since |J | ≥ κ+ we can find a permutation ρ of δ that sends
Sp(b′) ∪ Sp(q̇′′) into J , without moving any of the ordinals in Sp(b) ∪ Sp(q̇).
Then 〈ρ(b′), ρ(q̇′′)〉 ≤ 〈ρ(b), ρ(q̇)〉 = 〈b, q̇〉, Sp(ρ(b′)) ∪ Sp(ρ(q̇′′′)) ⊆ J , and, by
the permutation invariance of D, 〈ρ(b′), ρ(q̇′′)〉 ∈ D.

We can therefore assume that 〈b, q̇〉 itself belongs to D, still preserving the
fact that Sp(b) ∪ Sp(q̇) ⊆ J . By the shift compatibility condition, and since τ
is the identity on J ∩ τ ′′J , it follows that 〈τ(b), τ(q̇)〉 and 〈b, q̇〉 are compatible.
Since 〈τ(b), τ(q̇)〉 extends 〈τ(ā), τ( ˙̄p)〉 = 〈a, ṗ〉, this implies that 〈a, ṗ〉 and 〈b, q̇〉
are compatible. a

It is worth noting that in the situation of condition (1) of Lemma 3.12, P �J
need not be generic for P�J over V [A�J ].

Remark 3.13. Work under the assumptions of condition (2) of Lemma 3.12.

Fix 〈a, ṗ〉 ∈ A ∗ Ṗ with Sp(a),Sp(ṗ) ⊆ U and |U | ≤ κ. Fix any permutation σ of
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δ so that σ′′(U − J) ⊆ J − U , and so that σ is the identity on J − σ′′(U − J).
The proof of Lemma 3.12 then shows that 〈σ(a), σ(ṗ)〉 is a residue of 〈a, ṗ〉 in the

poset A�J ∗Ṗ�J , in the sense that any condition in A�J ∗Ṗ�J which is compatible
with 〈σ(a), σ(ṗ)〉 in A�J ∗ Ṗ�J , is compatible with 〈a, p〉 in A ∗ Ṗ.

Claim 3.14. Let Ṗ be κ-appropriate. Let A ∗ P be generic for A ∗ Ṗ. Let
J1 ⊆ J2 ⊆ δ, with |J2 − J1| ≥ κ+. Let 〈a, ṗ〉 ∈ A ∗ P , with Sp(a),Sp(ṗ) ⊆ U and
|U | ≤ κ. Then there is a permutation σ of δ, which maps U − J2 into J2 − J1,
maps σ′′(U − J2) onto U − J2, is the identity otherwise, and so that 〈σ(a), σ(ṗ)〉
belongs to A ∗ P .

Proof. Suppose not, and let 〈b, q̇〉 ∈ A ∗ P force this. Without loss of gen-
erality we may assume that 〈b, q̇〉 ≤ 〈a, ṗ〉. By the support size condition (2)
of Definition 3.6, we may assume that Sp(b),Sp(q̇) are contained in a set U∗

of size κ, and we may assume U∗ ⊇ U . Now take any permutation σ which
maps U∗ − J2 into J2 − (J1 ∪ U∗), maps σ′′(U∗ − J2) back onto U∗ − J2, and
is the identity otherwise. Such a permutation exists since |J2 − J1| ≥ κ+. Then
〈σ(b), σ(q̇)〉 is compatible with 〈b, q̇〉 by Remark 3.13. But any condition wit-
nessing this is an extension of 〈b, q̇〉 which forces 〈σ(a), σ(ṗ)〉 into the generic
object, a contradiction. a

Claim 3.15. Let Ṗ be κ-appropriate. Let I ⊆ δ with |I| ≥ κ+ and |δ−I| ≥ κ+.

Let A�I ∗ P �I be generic for A�I ∗ Ṗ�I. Let 〈ai, ṗi〉 ∈ A ∗ Ṗ, for i ∈ {1, 2}. Let
Ui ⊇ Sp(ai) ∪ Sp(ṗi) and suppose that |Ui| ≤ κ. Suppose there are generics

Ai ∗ Pi for A ∗ Ṗ, containing A�I ∗ P �I, with 〈ai, ṗi〉 ∈ Ai ∗ Pi. Suppose finally
that U1 − I and U2 − I are disjoint. Then 〈a1, ṗ1〉 and 〈a2, ṗ2〉 are compatible.

Proof. Let J = I ∪ U2. Let Ā2 ∗ P̄2 = A2�J ∗ P2�J , a generic for A�J ∗ Ṗ�J
containing 〈a2, ṗ2〉 and A�I ∗ P �I.

By Claim 3.14, with J1 = U1 and J2 = I, we can find a permutation σ of δ,
which maps U1 − I into I − U1, maps σ′′(U1 − I) back to U1 − I, is the identity
otherwise, and so that 〈σ(a1), σ(ṗ1)〉 belongs to A1 ∗P1, hence to A�I ∗P �I, and
hence to Ā2 ∗ P̄2. In particular 〈σ(a1), σ(ṗ1)〉 is compatible with 〈a2, ṗ2〉, and
this can be witnessed by 〈b, q̇〉 ∈ Ā2 ∗ P̄2. By Remark 3.13, 〈σ(a1), σ(ṗ1)〉 is a

residue of 〈a1, ṗ1〉 to A�J ∗ Ṗ�J . It follows that 〈a1, ṗ1〉 is compatible with 〈b, q̇〉,
and hence with 〈a2, ṗ2〉. a

Definition 3.16. Let A be generic for A, and let Ṗ be an A-name for a poset.
Define P(≤κ) to be the restriction of Ṗ[A] to condition ṗ[A] with |Sp(ṗ)| ≤ κ.

Let Ṗ(≤κ) name this poset.

Lemma 3.17. Let A be generic for A. Suppose Ṗ is κ-appropriate. Let J ⊆ δ.
Then:

1. Ṗ(≤κ)[A] ∩ V [A�J ] is dense in Ṗ[A] ∩ V [A�J ]. In particular the two posets
are forcing isomorphic.

2. Ṗ(≤κ)[A] ∩ V [A�J ] belongs to V [A�J ] and is independent of A�(δ − J).

3. Suppose that |J | ≥ κ+. Then A�J ∗ Ṗ(≤κ)�J is a complete subposet of A∗ Ṗ.

Proof. Condition (1) is immediate using the support size condition (2) of

Definition 3.6. Indeed every condition in Ṗ[A]∩V [A�J ] has an equivalent condi-

tion in Ṗ(≤κ)[A] ∩ V [A�J ]. Conditions (2) and (3) follow from Lemma 3.12 and
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its proof if δ − J is uncountable. So we may assume otherwise. In particular we
can write J as a strictly increasing union

⋃
ξ<κ+ Jξ.

Note that if p = ṗ[A] ∈ Ṗ(≤κ)[A]∩V [A�J ] then p has a name ṗ′ with Sp(ṗ′) ⊆ J
and |Sp(ṗ′)| ≤ κ. This is immediate from the fact that, for any ṗ, A�Sp(ṗ) and
A�J are mutually generic extensions of A�(Sp(ṗ) ∩ J).

It follows that Ṗ(≤κ)[A]∩ V [A�J ] is equal to
⋃
ξ<κ+ Ṗ(≤κ)[A]∩ V [A�Jξ]. Since

δ − Jξ is uncountable, each Ṗ(≤κ)[A] ∩ V [A�Jξ] belongs to V [A�Jξ] and is inde-
pendent of A�(δ − Jξ). Condition (2) of the current lemma follows from this.

For condition (3), fix 〈a, ṗ〉 ∈ Ṗ(≤κ)[A], let ξ < κ+ be large enough that
Sp(a) ∩ J, Sp(ṗ) ∩ J ⊆ Jξ, and let 〈ā, ˙̄p〉 be a residue of 〈a, ṗ〉 in the poset

A�Jξ+1 ∗ Ṗ(≤κ)�Jξ+1, obtained through a permutation σ as in Remark 3.13 for
Jξ+1. Then by the remark, the same condition 〈ā, ˙̄p〉 is in fact a residue of 〈a, ṗ〉
in A�Jη ∗ Ṗ(≤κ)�Jη for any η ≥ ξ+ 1. From this it follows that 〈ā, ˙̄p〉 is a residue

of 〈a, ṗ〉 in
⋃
η<κ+ A�Jη ∗ Ṗ(≤κ)�Jη = A�J ∗ Ṗ(≤κ)�J . a

Definition 3.18. A poset Q is (κ,ℵ1)-stemmed if it is equipped with a well-
founded pre-order s so that:

1. Q/s has size κ. By Q/s we mean the collection of equivalence classes of s,
that is equivalence classes of the relation p s q ∧ q s p.

2. Each s-equivalence class is countably directed, meaning that every count-
able subset of the equivalence class has a lower bound in the class.

3. The rank of s, meaning the least ordinal into which s embeds, is ω1.
4. For every countable α, the set of p of rank α in s is predense in Q.
5. If qi, i < ω, are compatible in Q, then

⋃
i<ω qi is a condition in Q and a

largest lower bound for qi.
6. If q is a largest lower bound for qi, i < ω, and similarly with q′ and q′i, and

if for each i, qi and q′i are in the same s-equivalence class, then q and q′ are
in the same s-equivalence class.

A typical example of a (κ,ℵ1)-stemmed poset is any “stems and commit-
ments” poset where the stems come from a set of size κ, any countably many
commitments can be joined, and stems are sequences of countable length. The
relation s witnessing the conditions of Definition 3.18 is stem extension. For
condition (5), take a condition with stem s and commitment H to formally be
({0} × s) ∪ ({1} ×H).

Definition 3.19. Suppose Ṗ is κ-appropriate. Let Q̇ be an A ∗ Ṗ-name for a
poset. Then Q̇ is invariantly (κ,ℵ1)-stemmed modulo e if:

1. Q̇ is forced to be (κ,ℵ1)-stemmed, with witnessing preorder ṡ say.

2. Q̇, together with the poset order, the preorder ṡ, and a name ḟ forced to
give an injection of Q̇/ṡ into κ (viewed as an ṡ-invariant function on Q̇), is
invariant modulo e.

3. For each q̇ ∈ dom(Q̇), there is q̇′ of forcing-hereditary size ≤ κ, so that

 q̇′ = q̇.

If e = ∅ then we say that Q̇ is invariantly stemmed.

Definition 3.20. Let Q̇ be invariantly stemmed modulo e, and let ṡ and ḟ
witness this. Let 〈a, ṗ, q̇〉 ∈ A ∗ Ṗ ∗ Q̇. We say that 〈a, ṗ〉 fixes ḟ around q̇ if there
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are q̇i, i < ω, so that 〈a, ṗ〉 forces q̇ to be a largest lower bound for the q̇is, and

forces a value for ḟ(q̇i) for each i.

Claim 3.21. Let Ṗ be κ-appropriate, and let Q̇ be invariantly (κ,ℵ1)-stemmed

modulo e, with witnesses ṡ and ḟ say. Then for any 〈a, ṗ, q̇〉 ∈ A ∗ Ṗ ∗ Q̇, there

is 〈a∗, ṗ∗〉 ≤ 〈a, ṗ〉 which fixes ḟ around q̇.

Proof. Clear, as we can simply extend 〈a, ṗ〉 to fix a value for ḟ(q̇), and take
all q̇i to equal q̇. a

Claim 3.22. Let Ṗ be κ-appropriate, and let Q̇ be invariantly (κ,ℵ1)-stemmed

modulo e, with witnesses ṡ and ḟ say. Suppose that 〈a, ṗ〉 fixes ḟ around each q̇n,

and forces q̇ to be a largest lower bound for the q̇ns. Then 〈a, ṗ〉 fixes ḟ around
q̇.

Proof. For each n we have q̇n,i, i < ω, so that 〈a, ṗ〉 forces that q̇n is the

largest lower bound for conditions q̇n,i, and 〈a, ṗ〉 forces a value for ḟ(q̇n,i). Since
〈a, q̇〉 forces q̇ to be the largest lower bound for the conditions q̇n,i, i, n < ω, these

conditions witness that 〈a, ṗ〉 fixes ḟ around q̇. a

Claim 3.23. Let Q̇ be invariantly stemmed modulo e, and let ṡ and ḟ witness
this. Suppose that 〈a, ṗ〉 fixes ḟ around q̇. Let σ be a permutation of δ with
σ�e = id. If 〈a, ṗ〉 and 〈σ(a), σ(ṗ)〉 are compatible, then every lower bound for
these two conditions forces q̇ and σ(q̇) to be compatible.

Proof. Let 〈a∗, ṗ∗〉 be a lower bound for 〈a, ṗ〉 and 〈σ(a), σ(ṗ)〉. Fix q̇i,
i < ω, so that 〈a, ṗ〉 forces q̇ to be a largest lower bound for the q̇is, and forces

a value for ḟ(q̇i) for each i. By the invariance of ḟ , and since ḟ maps into V ,

〈σ(a), σ(ṗ)〉 forces the same value for ḟ(σ(q̇i)) that 〈a, ṗ〉 forces for q̇(q̇i). Since
〈a∗, ṗ∗〉 extends both 〈a, ṗ〉 and 〈σ(a), σ(ṗ)〉, it forces the same values, and in
particular forces q̇i and σ(q̇i) into the same ṡ-equivalence class. It follows by
condition (6) of Definition 3.18 that 〈a∗, ṗ∗〉 forces q̇ and σ(q̇) into the same
ṡ-equivalence class, and hence forces them to be compatible. a

An A ∗ Ṗ-name Q̇ for a poset can also be viewed as a A-name for a Ṗ-name for
a poset, and as such it can be composed with Ṗ. Our next lemma is that, under
some assumptions, mainly that P is appropriate and Q̇ is invariantly stemmed,
this composition retains the property of being appropriate.

To maintain the support size condition (2) of Definition 3.6, we need the
following claims.

Claim 3.24. Suppose that Ṗ is κ-appropriate, and suppose that A∗Ṗ is κ+-c.c.
Let Q̇ be invariantly (κ,ℵ1)-stemmed modulo e. Let q̇ be an A ∗ Ṗ-name for an

element of Q̇. Then there is an efficient name q̇∗ forced in A ∗ Ṗ to equal q̇, and
so that |Sp(q̇∗)| ≤ κ.

Proof. Let Z be a maximal antichain of conditions 〈a, ṗ〉 ∈ A ∗ Ṗ for which

there is u̇ ∈ dom(Q̇) so that 〈a, ṗ〉 
 q̇ = u̇. For each 〈a, ṗ〉 ∈ Z let u̇a,p ∈ dom(Q̇)
be such that 〈a, ṗ〉 
 q̇ = u̇a,ṗ. By condition (3) of Definition 3.19, there is
u̇′a,ṗ of forcing-hereditary size ≤ κ, forced to equal u̇a,ṗ. Now using the chain

condition and a standard merging of names argument, we can produce q̇′, of
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forcing-hereditary size ≤ κ, so that each 〈a, ṗ〉 ∈ Z forces q̇′ = u̇′a,ṗ. In particular

it is forced that q̇′ = q̇.
By Claim 2.3, there is an efficient q̇′′, forced to equal q̇′, and still of forcing-

hereditary size ≤ κ. By Claim 3.9, there is q̇∗, forced to equal q̇′′, which is still
efficient, and with |Sp(q̇∗)| ≤ κ. a

Claim 3.25. Suppose that Ṗ is κ-appropriate, and suppose that A∗Ṗ is κ+-c.c.
Let 〈a, ṗ〉 ∈ A ∗ Ṗ, let ẋ, ẋ∗ be A ∗ Ṗ-names, and let J ⊆ δ with |J | > κ. Suppose
that Sp(ẋ) ⊆ J , |Sp(ẋ∗)| ≤ κ, ẋ∗ is efficient, and 〈a, ṗ〉 
 ẋ∗ = ẋ. Then 〈a, ṗ〉
forces that there is an efficient ẏ with the same interpretation as ẋ, and with
|Sp(ẏ)| ≤ κ and Sp(ẏ) ⊆ J .

Proof. Say that an A ∗ Ṗ-name u̇ is frugal if for all 〈ẇ, 〈b, ṙ〉〉 ∈ u̇ we have
that |Sp(b)|, |Sp(ṙ)| ≤ κ, and ẇ is frugal. By the support size condition (2) of
Definition 3.6, we may assume that ẋ is frugal, while maintaining that Sp(ẋ) ⊆ J .

We prove the claim by induction on the von Neumann rank of ẋ∗. In fact we
prove the stronger claim, that for any I ⊆ J with |I| = κ+ and I ⊇ J ∩ Sp(ẋ∗),
we can obtain the conclusion of the claim with Sp(ẏ) ⊆ I.

Fix I as above. We may assume, using the support size condition (2) of
Definition 3.6, that |Sp(a)|, |Sp(ṗ)| ≤ κ. It is enough to handle a more specific
case, where we add the assumption that Sp(a) ∩ J, Sp(ṗ) ∩ J ⊆ I. To see that
the specific case implies the general case, consider a general 〈a, ṗ〉 and suppose
for contradiction that 〈a, ṗ〉 does not force the existence of an efficient ẏ with the
same interpretation as ẋ∗ and so that Sp(ẏ) ⊆ I and |Sp(ẏ)| ≤ κ. Extending
〈a, ṗ〉 we may assume it forces that such ẏ does not exist. Fix any permutation
σ which maps (Sp(a) ∪ Sp(ṗ)) ∩ (J − I) into I − (Sp(ẋ∗) ∪ Sp(a) ∪ Sp(ṗ)), maps
σ′′((Sp(a) ∪ Sp(ṗ)) ∩ (J − I)) back onto (Sp(a) ∪ Sp(ṗ)) ∩ (J − I), and is the
identity otherwise. Note that the claim assumptions hold for σ(ẋ), σ(ẋ∗) = σ(ẋ),
σ′′J = J , σ(a), and σ(ṗ). Moreover Sp(σ(a)) ∩ J, Sp(σ(ṗ)) ∩ J ⊆ I, and hence
using only the specific case mentioned above, we have that 〈σ(a), σ(ṗ)〉 forces
the existence of an efficient ẏ with the same interpretation as of ẋ∗, and so that
Sp(ẏ) ⊆ I and |Sp(ẏ)| ≤ κ. Hence 〈a, ṗ〉 and 〈σ(a), σ(ṗ)〉 are incompatible. Let

Ĵ = I ∪ (Sp(a)∪Sp(ṗ)−J). Without loss of generality, shrinking I if needed, we

may assume that δ − Ĵ is uncountable. Then by Remark 3.13, 〈σ(a), σ(ṗ)〉 is a

residue of 〈a, ṗ〉 to A�Ĵ ∗Ṗ�Ĵ . In particular 〈a, ṗ〉 and 〈σ(a), σ(ṗ)〉 are compatible,
a contradiction.

Suppose then that Sp(a) ∩ J, Sp(ṗ) ∩ J ⊆ I. Fix J1 ⊆ J2 ⊆ I with the same
properties as I (meaning that |Ji| = κ and Ji ⊇ J ∩ (Sp(ẋ∗) ∪ Sp(a) ∪ Sp(ṗ)))
and so that |I − J2| = |J2 − J1| = κ+.

Fix a generic A ∗ P containing 〈a, p〉. To prove the claim, we will show that
for such generics, ẋ∗[A ∗ P ] depends only on A�J2 ∗ P �J2. We can then take
ẏ = τ(ẋ∗) for a permutation τ which is the identity on J2, maps Sp(ẋ∗) into I,
and maps 〈a, ṗ〉 to an element of A ∗ P . Such τ can be found using Claim 3.14.

By Claim 3.12, A�J1 ∗ Ṗ�J1 is a complete subposet of A ∗ Ṗ. By induction, all
elements of ẋ∗[A ∗ P ] belong to V [A�J1 ∗ P �J1].

Suppose now that there is another generic A′ ∗ P ′ containing 〈a, p〉, with
A′�J2 = A�J2, P ′�J2 = P �J2, yet ẋ∗[A′ ∗ P ′] 6= ẋ∗[A ∗ P ]. Then there is some
e = ė[A�J1 ∗P �J1] on which ẋ∗[A∗P ] and ẋ∗[A′ ∗P ′] disagree. For definitiveness
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suppose that e ∈ ẋ∗[A ∗ P ] and e 6∈ ẋ∗[A′ ∗ P ′]. This implies in particular that
e ∈ ẋ[A ∗ P ].

We may assume that ė is frugal. Then both ė and ẋ are A∗ Ṗ(≤κ)-names, with
support contained in J . By Lemma 3.17, the fact that ė ∈ ẋ must be forced by
some condition 〈b1, q̇1〉 ∈ A�J ∗ P (≤κ)�J .

Let U = Sp(a) ∪ Sp(ṗ) ∪ Sp(ẋ∗). Let E = J1 ∪ U . By Lemma 3.12, A�E ∗
Ṗ�E is a complete subposet of A ∗ Ṗ. Since ė[A′ ∗ P ′] 6∈ ẋ∗[A′ ∗ P ′], and since
Sp(ẋ∗),Sp(ė) ⊆ E, there must be a condition 〈b2, q̇2〉 ∈ A′�E ∗P ′�E forcing that
ė 6∈ ẋ∗. Extending 〈b2, q̇2〉, and since 〈a, ṗ〉 ∈ A′�E ∗ P ′�E, we may assume that
〈b2, q̇2〉 ≤ 〈a, ṗ〉.

By Claim 3.14 we can find a permutation ρ of δ, which maps U − J2 into
J2 − J1, maps ρ′′(U − J2) back onto U − J2, and is the identity otherwise, with
〈ρ(b2), ρ(q̇2)〉 ∈ A′ ∗ P ′.

Since A′�J2 = A�J2, and P ′�J2 = P �J2, we have 〈ρ(b2), ρ(q̇2)〉 ∈ A ∗ P . In
particular 〈ρ(b2), ρ(q̇2)〉 and 〈b1, q̇1〉 are compatible, and indeed have a lower
bound in A�J ∗ P (≤κ)�J . Note U ∩ J ⊆ J1 ⊆ J2, and hence U − J2 = U − J .
So ρ maps U − J into J − (U ∩ J), maps ρ′′(U − J) back onto U − J , and is
the identity otherwise. By Remark 3.13 it follows that 〈ρ(b2), ρ(q̇2)〉 is a residue

of 〈b2, q̇2〉 in A�J ∗ Ṗ(≤κ)�J . Since 〈ρ(b2), ρ(q̇2)〉 and 〈b1, q̇1〉 have a lower bound

in A�J ∗ Ṗ(≤κ)�J , this implies that 〈b1, q̇1〉 is compatible with 〈b2, q̇2〉. But this
is impossible since the former forces ė ∈ ẋ and the latter extends 〈a, ṗ〉 while
forcing ė 6∈ ẋ∗. a

Lemma 3.26. Let Ṗ be κ-appropriate, and let Q̇ be invariantly (κ,ℵ1)-stemmed

modulo e. Suppose A ∗ Ṗ is countably closed and κ+-c.c. Then Ṗ ∗ Q̇ is κ-
appropriate modulo e.

Proof. The invariance condition (1) of Definition 3.6 for Ṗ ∗ Q̇ is immediate

using the invariance of Ṗ and the invariance of Q̇ modulo e.
For the support size condition (2), fix a condition 〈a, ṗ, q̇〉. Let U = Sp(a) ∪

Sp(ṗ) ∪ Sp(q̇). Using the support size condition for A ∗ Ṗ, there is an efficient

name ṗ′ for an element of Ṗ, forced by a to be equivalent to ṗ, with support of
size ≤ κ contained in U . If |Sp(q̇)| = κ, then there is nothing further to do.
Suppose |Sp(q̇)| > κ. In particular |U | > κ. By Claim 3.24 there is an efficient
q̇′ with support of size ≤ κ, which is outright forced to equal q̇. By Claim 3.25,
there is an efficient q̇′′, outright forced to equal q̇′, with support of size ≤ κ and
contained in U . Then a forces that 〈ṗ, q̇〉 and 〈ṗ′, q̇′′〉 are equivalent, and 〈ṗ′, q̇′′〉
has the required support.

It remains to prove the shift compatibility condition (3) of Definition 3.6 for

Ṗ ∗ Q̇. Let D witness this condition for Ṗ. Let D∗ consists of 〈a, ṗ, q̇〉 so that

〈a, ṗ〉 ∈ D and 〈a, ṗ〉 fixes ḟ around q̇. Conditions (3a)–(3c) for D∗ are easy to

check from the same conditions for D, the invariance of ḟ and Q̇, and Claim 3.21
in the case of density.

To prove condition (3d), fix 〈a, ṗ, q̇〉 ∈ D∗, and fix a permutation σ which
fixes e and is the identity on J∗

⋂
σ′′J∗, where J∗ = e ∪ Sp(a) ∪ Sp(ṗ) ∪ Sp(q̇).

In particular σ is the identity on J
⋂
σ′′J where J = e ∪ Sp(a) ∪ Sp(ṗ). Since

〈a, ṗ〉 ∈ D it follows that 〈a, ṗ〉 and 〈σ(a), σ(ṗ)〉 are compatible. Let 〈a∗, ṗ∗〉
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witness this. By Claim 3.23, 〈a∗, ṗ∗〉 forces q̇ and q̇∗ to be compatible. So
〈a, ṗ, q̇〉 and 〈σ(a), σ(ṗ), σ(q̇)〉 are compatible. a

For the next lemma we will deal with products of images of Q̇ under permu-
tations. To make the products invariant, we index them not using ordinals, but
using the sequences of subsets of ω1 added by A. Here is the precise definition:

Recall that the generic A for A adds δ subsets of ω1, and that Aξ = Ȧξ[A] is
the ξth set. Given h : κ→ δ, let c(h) be the map ξ 7→ Ah(ξ). Let ċ(h) name this
map. Note that, for a permutation σ of δ, ċ(σ ◦ h) = σ(ċ(h)).

Definition 3.27. Let Q̇ be an A ∗ Ṗ-name for a poset, and let h : κ → δ.
Suppose that Q̇ is invariant modulo range(h). For expository purposes fix a

generic A ∗P for A ∗ Ṗ. By
∏(h)
τ τ(Q̇)[A ∗P ] with countable (respectively finite)

support we mean the countable (respectively finite) support product of the posets

τ(Q̇)[A ∗ P ], taken over all possible values of τ ◦ h for permutations τ of δ in

V , with τ(Q̇)[A ∗ P ] indexed by c(τ ◦ h). Conditions in
∏(h)
τ τ(Q̇)[A ∗ P ] are

functions r with countable (respectively finite) domain, each k ∈ dom(r) is equal

to c(τ◦h) for a permutation τ ∈ V of δ, and r(k) is an element of τ(Q̇)[A∗P ]. The

ordering is defined coordinate-wise in the natural way.
∏(h)
τ τ(Q̇) itself names

the poset
∏(h)
τ τ(Q̇)[A ∗ P ], in such a way that for each ṙ ∈ dom(

∏(h)
τ τ(Q̇)),

there is a countable (respectively finite) K(ṙ) ∈ V so that it is outright forced
that dom(ṙ) = {c(τ ◦ h) | τ ◦ h ∈ K(ṙ)}. We refer to K(ṙ) as the underlying
support of ṙ. The actual support is {c(τ ◦h) | τ ◦h ∈ K(ṙ)}, and does not belong
to V .

When we use this notation without explicitly stating the support size, we mean
the countable support product. We refer to h as the base of the product, and to

κ as the base height. When we write
∏(h)
τ∈Z τ(Q̇) we mean the restriction of the

above product to conditions with underlying support contained in {τ ◦h | τ ∈ Z}.

The invariance of Q̇ modulo range(h) is used to make sense of Definition 3.27:
while there may be many different permutations τ yielding the same τ ◦ h, they
all give rise to the same name τ(Q̇).

The forcing
∏(h)
τ τ(Q̇)[A ∗ P ] is isomorphic to the standard product of the

indexed posets. But the product as we defined it is highly symmetric, in the
sense of the next claim, while the standard product is not.

Claim 3.28. Work under the assumptions of Definition 3.27. Let σ be a per-

mutation of δ. Then σ(
∏(h)
τ τ(Q̇)) =

∏(h)
τ τ(Q̇), in both the countable and finite

support cases.

Proof. Clear, using the fact that σ(ċ(τ ◦ h)) = ċ(σ ◦ τ ◦ h). For each τ , in

both σ(
∏(h)
τ τ(Q̇)) and

∏(h)
τ τ(Q̇), the poset indexed by σ(ċ(τ ◦h)) = ċ(σ ◦ τ ◦h)

is σ(τ(Q̇)). a

In light of the last claim, we refer to
∏(h)
τ τ(Q̇) as an invariant product. Let

Ḃ denote this product. In light of the invariance, we can view permutations σ of
δ as acting on A ∗ Ṗ ∗ Ḃ-names. In particular, they can act on the names Ḃτ for
the components of the Ḃ generic, with Ḃτ generic for τ(Q̇).



16 NEEMAN, ITAY

Claim 3.29. (Under the assumptions of Definition 3.27 and with the notation

above.) σ(Ḃτ ) = Ḃσ◦τ .

Proof. Again clear from the fact that σ(ċ(τ ◦ h)) = ċ(σ ◦ τ ◦ h). a

Remark 3.30. Note that c(τ ◦ h) has von Neumann rank κ + 1. If the con-

ditions in τ(Q̇)[A ∗ P ] have rank at most µ, then it follows that the conditions

in
∏(h)
τ τ(Q̇)[A ∗ P ] each have von Neumann rank below max{κ, µ} + ω. This

would not be true for the standard product of δκ factors; with a standard product
indexed by ordinals, the ranks would be at least unbounded in δ.

Remark 3.31. Let J ⊆ δ, and suppose that b ∈
∏(h)
τ τ(Q̇)[A ∗ P ] belongs

to V [A�J ∗ P �J ]. Then b belongs to the restricted product
∏(h)
τ∈Z(J)(Q̇)[A ∗ P ],

where Z(J) consists of the permutations τ so that (τ ◦ h)′′κ ⊆ J . This is clear
from the definition, since for any τ so that c(τ ◦ h) belongs to the domain of b,
and every ξ ∈ (τ ◦ h)′′κ, Aξ is coded into c(τ ◦ h) and hence coded into b. This
remark, like Remark 3.30, would fail for the standard product.

Remark 3.32. As with all products (independently of our specific indexing),

the restricted product
∏(h)
τ∈Z(Q̇)[A∗P ] is a complete subposet of the full product.

The residue of a condition b in the full product is b�{c(τ ◦ h) | τ ∈ Z}. We refer
to this residue as b|Z. We have that b ≤ b|Z, and as usual, any extension of b|Z
in the restricted product is compatible with b.

Claim 3.33. Let Ṗ be κ-appropriate. Let Q̇ be an A ∗ Ṗ-name which is in-
variantly (κ,ℵ1)-stemmed modulo e, with witnesses ṡ and ḟ say. Then for every

permutation τ of δ, τ(Q̇) is invariantly (κ.ℵ1)-stemmed modulo τ ′′e, with wit-

nesses τ(ṡ) and τ(ḟ).

Proof. Clear from the definitions, as they are all preserved under permuta-
tions. a

Lemma 3.34. Let Ṗ be κ-appropriate. Suppose A ∗ Ṗ is κ+-c.c. and count-
ably closed. Let Q̇ be invariantly (κ,ℵ1)-stemmed modulo e. Let h : κ → e be

surjective. Let B =
∏(h)
τ τ(Q̇). Then Ṗ ∗ Ḃ is κ-appropriate.

Proof. Fix ṡ and ḟ witnessing that Q̇ is invariantly (κ,ℵ1)-stemmed modulo
e.

For each permutation τ of δ, we may use Lemma 3.26 and its proof for τ(Q̇).
The assumptions of the lemma on being invariantly stemmed hold using Claim
3.33. It follows that Ṗ∗ τ(Q̇) is κ-appropriate modulo τ ′′e, for all τ . This is used
implicitly below.

Let us now check that the conditions of Definition 3.6 hold for Ṗ ∗ Ḃ.
The invariance condition (1) of Definition 3.6 is clear, using the invariance of

Ṗ and Claim 3.28.
The support size condition (2) is immediate from the same condition for Ṗ ∗

τ(Q̇) for each τ , using: the restriction to countable underlying support in V for

the product
∏(h)
τ τ(Q̇), the κ+-chain condition for A∗ Ṗ, and a merging of names

argument in the style of Claim 3.24.
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It remains to prove the shift compatibility condition (3) of Definition 3.6. Let

D witness this condition for Ṗ and let D∗ consist of 〈a, ṗ, ḃ〉 so that 〈a, ṗ〉 ∈ D,

〈a, ṗ〉 forces a value K for the underlying support of ḃ, and for each ρ = τ ◦h ∈ K,

〈a, ṗ〉 fixes τ(ḟ) around ḃ(ċ(ρ)). (By ḃ(ċ(ρ)) we mean the name for the value of

the function named by ḃ, at ċ(ρ).)

It is clear that D∗ is dense, since for any 〈a, ṗ, ḃ〉, one can strengthen 〈a, ṗ〉 to

force a value for the underlying domain of ḃ, then strengthen in countably many
steps to fix τ(ḟ) around ḃ(ċ(ρ)) for each ρ = τ ◦ h in the underlying domain,
and finally strengthen to get into D. It is also clear that D∗ is invariant under
permutations σ, and under replacing 〈a, ṗ, ḃ〉 with 〈a, ṗ′, ḃ′〉 when a 
 ṗ = ṗ′ and

〈a, ṗ〉 
 ḃ = ḃ′.

Suppose now that 〈a, ṗ, ḃ〉 ∈ D∗, and σ is a permutation which is the identity

on J ∩σ′′J where J = Sp(a)∪Sp(ṗ)∪Sp(ḃ). Since 〈a, ṗ〉 ∈ D we have that 〈a, ṗ〉
and 〈σ(a), σ(ṗ)〉 are compatible. Let 〈a∗, ṗ∗〉 be any common extension of these
conditions.

Let K be the value that 〈a, ṗ〉 forces for the underlying support of ḃ. Let

τi ◦h, i ∈ ω, enumerate K without repetitions. Let ḃi be the coordinate of ḃ that
corresponds to the factor supported by ċ(τi ◦ h). Note that τ ′′i e ∪ Sp(ḃi) ⊆ J ,

since ḃ has support contained in J , and since τ ′′i e is needed to support ċ(τi ◦ h),

which in turn is incorporated into ḃ. If it happens that σ fixes τ ′′i e, then the
assumptions on σ in the definition of shift compatibility modulo τ ′′i e all hold,

and hence by Lemma 3.26 applied to the factor τi(Q̇) of Ḃ we have that 〈a∗, ṗ∗〉
forces ḃi and σ(ḃi) to be compatible.

We will therefore be done if we can show that all common coordinates of the
domains of ḃ and σ(ḃ) fall under this case. In other words we need to show that

whenever a member ċ(τi ◦h) of the domain of ḃ is equal to a member σ(ċ(τj ◦h))

of the domain of σ(ḃ), we have that i = j and σ fixes range(τi ◦ h).

Suppose that ċ(τi ◦h) = σ(ċ(τj ◦h)). Then τi ◦h = σ ◦ τj ◦h. Since Sp(ḃ) ⊆ J ,
it must be that range(τi ◦ h) ⊆ J . Similarly range(σ ◦ τj ◦ h) ⊆ σ′′J . Using
the fact that σ is the identity on J ∩ σ′′J it follows immediately that σ is the
identity on range(τi ◦ h). This implies that σ ◦ τi ◦ h = τi ◦ h = σ ◦ τj ◦ h, hence
τi ◦ h = τj ◦ h, and therefore i = j. a

Definition 3.35. Define Efast to be the following version of the forcing to add
a fast club in ω1. Conditions are sets of the form u(e,H) = ({0}×e)∪ ({1}×H)
where e is a bounded closed subset of ω1, and H is a countable collection of club
subsets of ω1. The ordering is given by u(e∗, H∗) ≤ u(e,H) iff e∗ ⊇ e, H∗ ⊇ H,
and e∗ − e ⊆

⋂
H.

Lemma 3.36. Let Ṗ be κ-appropriate. Suppose that A ∗ Ṗ is countably closed

and κ+-c.c., and suppose the CH holds in V . Let Ė name EV [A∗P ]
fast . Then:

1. Ė is invariantly (κ,ℵ1) stemmed.

2. Ṗ ∗ Ė is κ-appropriate.

Proof. The second condition follows from the first using Lemma 3.26. So it
is enough to prove that Ė is invariantly (κ,ℵ1)-stemmed.
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It is clear that Ė is forced to be (ℵ1,ℵ1)-stemmed, and hence (κ,ℵ1)-stemmed,
with ṡ naming the order of stem extension. By the chain condition, every subset
of ω1 in the extension by A ∗P has a name of forcing-hereditary size ≤ κ, and so
do countable sets of subsets of ω1. So Ė satisfies condition (3) in Definition 3.19.

The invariance condition (2) is clear from the invariance of Ṗ and the fact that
V [A ∗ P ] = V [σ(A ∗ P )] for permutations σ, so long as we take ṡ to invariantly

name the order of stem extension, and take ḟ to invariantly name the function
that maps a condition u(e,H) with stem e to f̃(e), where f̃ is a bijection in V
of ω<ω1

1 into ω1. a

Definition 3.37. By C(ℵ1, κ) we mean the forcing to add a surjection of ω1

onto κ, by countable approximations with ordinal domain.

Lemma 3.38. Let Ṗ be κ-appropriate. Suppose that A ∗ Ṗ is countably closed
and κ+-c.c., and suppose the CH holds in V . Let C = C(ℵ1, κ). Then:

1. Č is invariantly (κ,ℵ1)-stemmed.

2. Ṗ ∗ Č is κ-appropriate.

Proof. The first condition is obvious with s being the order of extension.
The second condition follows from the first using Lemma 3.26. a

Next we want to prove that countable support iterations of posets as in Lem-
mas 3.34, 3.36, and 3.38 preserve appropriateness, and preserve the κ+-c.c.,
which we need for the successor cases of the iterations since it is assumed in
these lemmas. In handling the limit stages, we will need to preserve a bit more.

We say that a map π between two posets C,D preserves incompatibility, if
whenever x, y are incompatible in C, π(x), π(y) are incompatible in D. We do
not require the map to preserve anything else, and in particular it need not
preserve the poset ordering. The existence of an incompatibility preserving map
from C to D is enough to ensure that any chain condition enjoyed by D is also
enjoyed by C.

For a set X, let Fctbl(X,κ) denote the poset of countable partial functions
from X into κ, ordered by reverse inclusion. If κω = κ, then this poset has the
κ-chain condition, by a standard ∆-system argument.

Definition 3.39. Ṗ is neatly κ-appropriate modulo e if it is κ-appropriate
modulo e, and there is a witness D for the shift compatibility condition (3) of
Definition 3.6, so that:

1. Every countable descending chain in D has a largest lower bound, and this
lower bound is itself in D.

2. There is an incompatibility preserving π : D → Fctbl(X,κ) for some X.
3. For σ as in the shift compatibility condition (3) of Definition 3.6, and
〈a, ṗ〉 ∈ D, the conditions π(a, ṗ) and π(σ(a), σ(ṗ)) are compatible in
Fctbl(X,κ).

If e = ∅ we say that P is neatly κ-appropriate.

Remark 3.40. If κω = κ, then condition (2) of Definition 3.39 implies that

A∗Ṗ is κ+-c.c. Condition (3) of the definition implies condition (3d) of Definition
3.6.
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Claim 3.41. Work under the assumptions of Lemma 3.26, and suppose that
Ṗ is neatly κ-appropriate modulo e. Let D, X, and π witness this. Then Ṗ ∗ Q̇
is neatly κ-appropriate modulo e, and moreover there are witnesses D∗, X∗, and
π∗ which neatly extend D, X, and π, meaning that:

1. X∗ ⊇ X.
2. If 〈a, ṗ, q̇〉 ∈ D∗ then 〈a, ṗ〉 ∈ D, and π∗(a, ṗ, q̇)�X = π(a, ṗ).
3. If π∗(a, ṗ, q̇) and π∗(a′, ṗ′, q̇′) are compatible in Fctbl(X

∗, κ), then for any
common extension 〈a∗, ṗ∗〉 of 〈a, ṗ〉 and 〈a′, ṗ′〉, there is q̇∗ so that 〈a∗, ṗ∗, q̇∗〉
is a common extension of 〈a, ṗ, q̇〉 and 〈a′, ṗ′, q̇′〉

Similarly for the posets Ḃ, Ė, and C (modulo the empty set) under the assump-
tions of Lemmas 3.34, 3.36, and 3.38.

Proof. Define D∗ from D exactly as in the proof of Lemma 3.26. Let X∗

be the disjoint union of X and (a copy of) ω. For 〈a, ṗ, q̇〉 ∈ D∗, there are by
the definition of D∗ some q̇i so that 〈a, ṗ〉 forces q̇ to be a largest lower bound

for the q̇is, and forces a value for ḟ(q̇i) for each i. Let e ∈ κω map i to the

value that 〈a, ṗ〉 forces for ḟ(q̇i). Let π∗(a, ṗ, q̇) = π(a, ṗ) ∪ e. Choose q̇i above
so that the map associating e to 〈a, ṗ, q̇〉 is invariant under permutations σ as in
the shift compatibility condition (3) of Definition 3.6. This is possible (using a

well ordering of κω and the invariance of ḟ) since the proof of Lemma 3.26 shows
that the map giving the set of possible {q̇i} for each 〈a, ṗ, q̇〉 ∈ D∗ is invariant.

It is clear from the proof of Lemma 3.26 that D∗, X∗, and π∗ satisfy the
conditions of the current claim, including in particular condition (3), which gives
condition (2) Definition 3.39, and also satisfy condition (3) of the Definition. It
remains to check that D∗ satisfies the condition on closure under largest lower
bounds.

Let 〈ai, ṗi, q̇i〉 be descending in D∗. Since D is neat, there is a largest lower
bound 〈a∗, ṗ∗〉 for 〈ai, ṗi〉 in D. Let q̇∗ name the union of q̇i. By condition (5) of
Definition 3.18, 〈a∗, ṗ∗〉 forces q̇∗ to be a largest lower bound for q̇i. By Claim

3.22, 〈a∗, ṗ∗〉 fixes ḟ around q̇∗. So 〈a∗, ṗ∗, q̇∗〉, which is a largest lower bound
for 〈ai, ṗi, q̇i〉, belongs to D∗.

This proves the current lemma in the case of a poset Q̇ as in Lemma 3.26. The
situation in Lemmas 3.36 and 3.38 is a special case of this. For B as in Lemma
3.34 the proof is similar: Take X∗ to be the disjoint union of X and I×ω, where
I = {τ ◦ h | τ ∈ V is a permutation of δ}. Define D∗ as in the proof of Lemma

3.34. For 〈a, ṗ, ḃ〉 ∈ D∗, and ρ in the underlying support K of ḃ, define eρ : ω → κ

as we defined e above, working with the factor of Ḃ at coordinate ċ(ρ). Then

define e : K × ω → κ by e(ρ, i) = eρ(i), and set π∗(a, ṗ, ḃ) = π(a, ṗ) ∪ e. The
proof of Lemma 3.34 shows that this yields condition (3) of the current claim,
and condition (3) of Definition 3.39. Closure under largest lower bounds can be

proved using the argument above for each factor of the product Ḃ in the domain
of the conditions handled. a

Lemma 3.42. Let 〈Ṗα, Q̇β | α ≤ γ, β < γ〉 name a countable support iteration

of limit length γ over the extension by A. Suppose that for each α < γ, Ṗγ is

countably closed and neatly κ-appropriate. Let Dα, Xα, πα witness that Ṗα is
neatly κ-appropriate. Suppose that for every α < β < γ:
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1. Xα ⊆ Xβ.
2. If 〈a, ṗ〉 ∈ Dβ then a forces a value d(ṗ) for dom(ṗ), and d(ṗ) is closed

under ordinal successor below β.
3. If 〈a, ṗ〉 ∈ Dβ, and α ∈ d(ṗ) or α is least so that d(ṗ) ⊆ α, then 〈a, ṗ�α〉 ∈
Dα and πα(a, ṗ�α) = πβ(a, ṗ)�Xα.

4. If πβ(a, ṗ) and πβ(a′, ṗ′) are compatible in Fctbl(Xβ , κ), then for any com-

mon extension 〈a∗, ˙̄p〉 of 〈a, ṗ�α〉 and 〈a′, ṗ′�α〉 in A∗Ṗα, there is a common

extension 〈a∗, ṗ∗〉 of 〈a, ṗ〉 and 〈a′, ṗ′〉 in A ∗ Ṗβ with ṗ∗�α = ˙̄p.

Then Ṗγ is neatly κ-appropriate, with witnesses Dγ , Xγ , πγ which secure condi-
tions (1)–(4) for the case β = γ.

Proof. The invariance and support conditions (1) and (2) of Definition 3.6
are clear. We work on the shift compatibility condition (3) of Definition 3.6, the
neatness conditions of Definition 3.39, and the conditions of the current lemma
with β = γ.

If γ has uncountable cofinality, then set Xγ =
⋃
α<γ Xα, put 〈a, ṗ〉 in Dγ

iff a forces a limit ordinal value µ for sup(dom(ṗ)) and 〈a, ṗ〉 ∈ Dµ, and set
πγ(a, ṗ) = πµ(a, ṗ). Most of the necessary conditions are easy to check in this
case. We only comment on condition (4) of the current lemma. (Note that this
condition implies condition (2) of Definition 3.39.) Fix 〈a, ṗ〉, 〈a, ṗ′〉 ∈ Dγ with
πγ(a, ṗ) and πγ(a′, ṗ′) compatible. Let µ, µ′ be the values forced by a, a′ for
sup(dom(ṗ)) and sup(dom(ṗ′)). Then πµ(a, ṗ) and πµ′(a

′, ṗ′) are compatible.
We work by induction on max(µ, µ′) to show that this implies the conclusion
of condition (4). If α ≥ max(µ, µ′), then 〈a∗, ṗ∗〉 itself is already a common
extension of 〈a, ṗ〉, 〈a′, ṗ′〉. So suppose α < max(µ, µ′). If µ = µ′ we can use
condition (4) with β = µ. So suppose µ < µ′. If α ≥ µ, then we can take
ṗ∗ which agrees with ˙̄p up to α, and agrees with ṗ′ from α onwards, to get a
common extension 〈a∗, ṗ∗〉 of 〈a, ṗ〉 and 〈a′, ṗ′〉. So suppose α < µ. Let β be
the least element of d(ṗ′) − µ. Let µ̄ be least so that d(ṗ′) ∩ β ⊆ µ̄. Then
πµ′(a, ṗ

′�µ′)�Xµ̄ = πβ(a, ṗ′�β)�Xµ̄ = πµ̄(a, ṗ′�µ̄), so πµ(a, ṗ) and πµ̄(a′, ṗ′�µ̄) are
compatible. By induction we can find a common extension as in condition (4)
for 〈a, ṗ〉 and 〈a′, ṗ′�µ̄〉. Since d(ṗ) and d(ṗ′) are disjoint from µ̄ upwards, this
can be completed to a common extension of 〈a, ṗ〉 and 〈a′, ṗ′〉.

Suppose now that cof(γ) = ω. Fix αn, n < ω, increasing and cofinal in γ.
Put 〈a, ṗ〉 ∈ Dγ iff a forces a value d(ṗ) for dom(ṗ), d(ṗ) is closed under ordinal
successor, and (∀n)αn ∈ d(ṗ)) ∧ 〈a, ṗ�αn〉 ∈ Dαn . It is clear that Dγ inherits
conditions (3b) and (3c) of Definition 3.6 from the Dαns. Using the fact that
each Dαn is dense and closed under largest lower bounds, and using conditions
(3) and (4) of the current lemma, it is easy to check that Dγ is dense, and closed
under largest lower bounds.

Set Xγ =
⋃
α<γ Xα =

⋃
n<ωXαn . For 〈a, ṗ〉 ∈ Dγ , set πγ(a, ṗ) equal to⋃

n<ω παn(a, ṗ�αn). This makes sense, and is a condition in Fctbl(
⋃
n<ωXαn , κ) =⋃

Fctbl(Xγ , κ), by the definitions and condition (3) of the current lemma. It is
clear using this condition that πγ(a, ṗ)�α = πα(a, ṗ�α) for all α ∈ d(ṗ).

It is also clear from the definition that πγ inherits condition (3) of Definition
3.39 from the παns.
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It remains to check condition (4) of the current lemma for β = γ. (This, plus
the fact that each πα is incompatibility preserving, implies that πγ is incompat-
ibility preserving, so that there is no need to separately check condition (2) of
Definition 3.39.) But this is clear. Fix any n large enough that α < αn, and
using condition (4) at the αis, find ṗi for i ≥ n so that 〈a∗, ṗi〉 is a common ex-
tension of 〈a, ṗ�αi〉 and 〈a′, ṗ′�αi〉, with ṗn�α = ˙̄p and (if i > n) ṗi�αi−1 = ṗi−1.
Then take ṗ∗ =

⋃
ṗi. a

§4. One step. We continue to work with δ, κ, and A as in Section 3, and
we fix an A-name Ṗ which is κ-appropriate, countably closed, and κ+-c.c.. Fix
further an A ∗ Ṗ-name Ṡ for a poset.

For expository simplicity, fix a generic A ∗ P for A ∗ Ṗ, and a further generic
S for S = Ṡ[A ∗ P ].

It will be convenient sometimes to think of A∗ Ṗ∗ Ṡ-names in V as S-names in
V [A ∗P ]. To avoid confusion, given an A ∗ Ṗ ∗ Ṡ-name ṙ ∈ V we will use ṙ[A ∗P ]
to denote the resulting S-name. We will use similar notation with other poset
compositions.

Fix A ∗ Ṗ ∗ Ṡ-names Ẋ for a set of reals and U̇ for a graph on Ẋ which is open
in the relative topology. Assume that these properties of Ẋ and U̇ are outright
forced to hold. Let X = Ẋ[A ∗ P ∗ S] and U = U̇ [A ∗ P ∗ S].

Fix I ⊆ δ of size κ, an injection g : κ→ I, and an A�I ∗ Ṗ�I-name ˙̄S. Suppose
that the following hold, and that conditions (6) and (8) are outright forced in

A ∗ Ṗ.

1. Ṡ is invariant (under permutations of δ, as a A ∗ Ṗ-name).
2. κℵ0 = κ.
3. Ṡ is forced to be c.c.c.
4. For every ṡ ∈ dom(Ṡ), there is ṡ′ forced to be equivalent to ṡ in Ṡ, and of

forcing-hereditary size ≤ κ.
5. A�I ∗ Ṗ�I is a complete subposet of A ∗ Ṗ.

6. S̄ = ˙̄S[A�I ∗ P �I] is a complete subposet of S, of hereditary size at most

κ. Moreover for every ṡ ∈ dom( ˙̄S) there is an A�I ∗ Ṗ�I-name ṡ′ of forcing
hereditary size ≤ κ, forced to be equivalent to ṡ. Let S̄ denote S ∩ S̄.

7. Ẋ and U̇ are A�I ∗ Ṗ�I ∗ ˙̄S-names. In particular X and U belong to V [A�I ∗
P �I ∗ S̄].

8. If ṫi ∈ V [A ∗ P ], for i < ω, are S-names for closed sets of reals so that

ṫi ∩ Ẋ[A ∗P ] are forced in S to be 1-colorable in U̇ [A ∗P ], then there is an

S̄-name ẋ ∈ V [A�I ∗ P �I], forced in S to belong to Ẋ[A ∗ P ]−
⋃
i<ω ṫi.

Remark 4.1. The final assumption implies in particular that U , which be-
longs to V [A�I ∗ P �I ∗ S̄], is not countably colorable in V [A ∗ P ∗ S]. If we
allowed ẋ in the condition to be an S-name in V [A ∗ P ], the assumption would
be equivalent to U not being countably colorable. But we require ẋ to be a
S̄-name, and this makes the assumption stronger.

Definition 4.2. An S̄-name u̇ is careful if for every 〈v̇, s〉 ∈ u̇:

1. There is an A�I ∗ Ṗ�I-name ẏ so that s = ẏ[A�I ∗ P �I] and ẏ is of forcing-
hereditary size at most κ.
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2. v̇ is careful.

Similarly an S-name is careful if it satisfies the above conditions with A�I ∗ Ṗ�I
relaxed to A ∗ Ṗ.

Claim 4.3. Every S̄-name in V [A�I ∗ P �I] is equivalent to a careful S̄-name
in V [A�I ∗P �I]. Moreover every S̄-name in V [A�I ∗P �I] for a set of hereditary
size at most κ has a careful S̄-name in V [A�I ∗P �I] of forcing-hereditary size (in
S̄) at most κ. Similarly with S̄ relaxed to S and V [A�I ∗P �I] relaxed to V [A∗P ].

Proof. Immediate from assumptions (6) and (4), with the addition of as-
sumption (3) for the second part of the claim. a

Claim 4.4. If u̇ ∈ V [A�I ∗ P �I] is a careful S̄-name of forcing hereditary size
(in S̄) at most κ, then u̇ = ẏ[A�I ∗P �I] for some ẏ of forcing hereditary size (in

A�I ∗ Ṗ�I) at most κ. Similarly with S̄ relaxed to S, and V [A�I ∗P �I] relaxed to
V [A ∗ P ].

Proof. Clear from definition 4.2, and the κ+-chain condition for A�I ∗ Ṗ�I
and A�Ṗ. a

For a permutation σ of δ, let σ(X) = σ(Ẋ)[A∗P∗S] and σ(U) = σ(U̇)[A∗P∗S].

This makes sense using the invariance of A, Ṗ, and Ṡ. We have that σ(X) is a set

of reals, and σ(U) is an open graph on this set. Similarly let σ(S̄) = σ( ˙̄S)[A ∗P ].
Then σ(S̄) is a complete poset of S, and σ(X), σ(U) ∈ V [A�σ′′I∗P �σ′′I][S∩σ(S̄)].

We work under the assumptions above to force to add uncountable cliques
simultaneously in all the graphs σ(U), with σ ranging over permutations of δ.

We will use a variation of Todorcevic’s [11] clique forcing poset on each graph
σ(U). One part of the variation involves working with S̄-names for reals, and
using the extra strength referenced in Remark 4.1. Producing this extra strength
will eventually use homogenizing ideas that trace back to work of Farah [5] and
internalizing ideas that are new to this work. Another part of the variation uses
almost disjoint subsets of ω1 to handle all graphs σ(U) uniformly over σ. This
will be important in maintaining the invariance of the overall forcing, and the
appropriateness of the preparation.

The first step is to collapse κ to ℵ1. Let C = C(ℵ1, κ). Let C be generic for
C over V [A ∗ P ∗ S]. Note that C collapses the set of canonical S̄-names for
elements of X to have size ℵ1, since S̄ is c.c.c. of size κ, and since κℵ0 = κ. Fix
h ∈ V [A�I ∗P �I ∗C] which enumerates this set in ordertype ω1. Let ḣ ∈ V name
h, and suppose that the above property of h is outright forced to hold. For a
permutation σ of δ, let σ(h) = σ(ḣ)[A ∗ P ∗C]. Then σ(h) is an enumeration of
the canonical σ(S̄)-names for elements of σ(X). σ(h) depends only on σ�I, and
we will use the notation below for any injection σ : I → δ.

Work in V [A ∗ P ∗ C]. By a Farah-Todorcevic commitment (commitment for

short) we mean an S-name ṫ for a closed set of reals so that ṫ ∩ Ẋ is forced in

S to be 1-colorable in U̇ [A ∗ P ]. Since C is countably closed, and S is c.c.c.,
the former does not add canonical S-names for closed sets of reals. So we may
always assume ṫ belongs to V [A ∗ P ].

Let Ḟ ∈ V [A ∗ P ] be an S-name for a closed subset of Rl, for some l ≥ 1. Let
σ1, . . . , σk be injections of I into δ in V . Let α < ω1. We say that a commitment
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ṫ is generated by Ḟ and σ1, . . . , σk below α if there are ẋ1, . . . , ẋl−1 ∈ {σi(h)(ξ) |
i ≤ k, ξ < α} so that ṫ is the canonical S-name for {x | 〈x, ẋ1[S], . . . , ẋl−1[S]〉 ∈
Ḟ [S]}. Note that only countably many commitments can be generated by F and
σ1, . . . , σk below each α.

Recall from the definition of symmetric products in Section 3 that, for an
injection σ : I → δ, we use c(σ ◦ g) to denote the map ξ 7→ Aσ(g(ξ)), from κ into
P(ω1). Aι, ι < δ, are the subsets of ω1 added by the generic A. c(σ ◦ g) codes
σ in the sense that the map σ 7→ c(σ ◦ g) is one-to-one, since the sets Aι are
pairwise distinct. Below when we say code for an injection σ : I → δ we mean
c(σ ◦ g).

By a code for a closed set we mean a real coding the closed set, in some fixed
standard manner.

Definition 4.5. Let TI be the following poset in V [A ∗ P ∗ C]. Conditions
are pairs 〈u,F〉, viewed formally as ({0} × u) ∪ ({1} × F), where:

• u is a function on a countable ordinal.
• For each α ∈ dom(u), u(α) is a careful canonical S̄-name in V [A�I ∗ P �I]

for a real which belongs to Ẋ. (Note the restriction to S̄.)
• F is a countable collection of codes for injections of I into δ in V , and

careful canonical S-names in V [A ∗ P ] for codes for closed subsets of finite
powers of R.

The ordering is given by 〈u∗,F∗〉 ≤ 〈u,F〉 iff:

• u∗�dom(u) = u
• F∗ ⊇ F .
• For every α ∈ dom(u∗) − dom(u), every Ḟ ∈ F , every list of injections
σ1, . . . σk with c(σ1◦g), . . . , c(σk◦g) ∈ F , and every commitment ṫ generated

by Ḟ and σ1, . . . , σk below α, it is forced in S that u̇∗(α) 6∈ ṫ.
Let ṪI name TI in A ∗ Ṗ ∗ C.

Remark 4.6. For the purpose of analyzing the poset TI , we could have used
the actual injections as commitments rather than their codes, and similarly with
the closed sets. The use of codes reduces the von Neumann rank of the objects
used in conditions, and hence the rank of the conditions themselves, from roughly
δ to roughly κ. This will allow us to bound the von Neumann rank of names for
conditions, in Claim 4.19. The bounds are needed later on, in Section 5.

Claim 4.7. ṪI is invariantly (κ,ℵ1)-stemmed modulo I.

Proof. This is immediate from the definitions. The pre-order s witnessing
definition 3.19 is the pre-order of stem extension. There are at most κ stems
u by assumptions (2), (3), and (6), and the restriction to canonical names in
Definition 4.5. Since the stems all exist in V [A�I ∗ P �I], we can find a bijection
of κ with the set of stems which belongs to V [A�I∗P �I], and hence is in particular
invariant modulo I. The fact that every condition can be extended to have stem
of arbitrary countable length is proved using assumption (8), and using Claim
4.3 to convert the arbitrary name given by assumption (8) to a canonical careful
name. The size requirement in condition (3) of Definition 3.19 can be proved
using the restriction to careful canonical names in Definition 4.5, the fact that
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the objects comprising conditions in TI are small enough (canonical names for
reals, and functions from κ into P(ω1)), Claim 4.4, and the κ+-chain condition

for A ∗ Ṗ. a

Definition 4.8. Let Ṫ =
∏(g)
τ τ(ṪI). This refers to Definition 3.27 over the

extension by A ∗ Ṗ ∗ Č.

Let Ė name the poset Efast of Definition 3.35 as computed in the extension by
A ∗ Ṗ ∗ Č ∗ Ṫ. Our full forcing for this one step of the preparation is Č ∗ Ṫ ∗ Ė.

Lemma 4.9. Ṗ ∗ Č ∗ Ṫ ∗ Ė is κ-appropriate. A ∗ Ṗ ∗ Č ∗ Ṫ ∗ Ė is κ+-c.c. and
countably closed. If Ṗ is neatly κ-appropriate, then so is Ṗ∗Č∗Ṫ∗Ė, by a witness
that neatly extends the witness for Ṗ.

Proof. Immediate from the definitions, Claim 4.7, Lemmas 3.38, 3.34 and
3.36, and from Claim 3.41. a

Let T be generic for T = Ṫ[A ∗P ∗C], and let E be generic for E = Ė(A ∗P ∗
C ∗ T ). Write T as a product

∏(g)
τ (T τ ), where τ ranges over permutations of δ,

and T τ is generic for τ(ṪI). Note that T τ depends only on τ�I; if τ�I = τ ′�I
then T τ and T τ

′
are the same factor of T . Let TI = T id, which is generic for TI .

For each τ , let ~uτ = 〈u̇τα | α < ω1〉 be the union of the stems occurring in T τ ,
namely

⋃
{u | (∃F)〈u,F〉 ∈ T τ}. Let u̇α = u̇idα , so that 〈u̇α | α < ω1〉 is the

union of the stems of TI . Note that τ(u̇α) = u̇τα, by Claim 3.29.

Claim 4.10. For every τ , every Ḟ , and every σ1, . . . , σk, for all large enough
α, u̇τα is forced in S to be outside any commitment generated by F and σ1, . . . , σk
below α.

Proof. Clear from the genericity of T τ for τ(TI). There is some condition

〈u,F〉 ∈ T τ so that F includes codes for Ḟ , σ1, . . . , σk. (This uses Claim 4.3, to
find careful names for these codes.) The claim then holds for all α ≥ dom(u). a

We will use the points u̇τα[S] to construct the clique adding posets. But we
will use only the points indexed by elements of the fast club E.

Abusing notation, we view the fast club E both as a set and as the function
on ω1 which enumerates the elements of the club in increasing order. Let K be
the poset of finite cliques in the restriction of U to {u̇α[S̄] | α ∈ E} = {u̇E(µ)[S̄] |
µ < ω1}, ordered by reverse inclusion. For any d ⊆ ω1, let Kd be the restriction
of K to tuples contained in {u̇E(µ)[S̄] | µ ∈ d}. Define Kτ and Kτd similarly using

u̇τα. Let K̇, K̇d, K̇τ , and K̇τd name these posets in A ∗ Ṗ ∗ Ċ ∗ Ṫ ∗ Ė ∗ Ṡ. Note that

τ(K̇) = K̇τ , and τ(K̇d) = K̇τd .
Let ψ : P<ω1

(ω1 × ω1) → ω1 be a bijection in V . We will use ψ to create
unbounded almost disjoint subsets of ω1. Note to this end that if A,B ⊆ ω1×ω1

are distinct and uncountable, then ψ′′{A∩(γ×γ) | γ < ω1} and ψ′′{B∩(γ×γ) |
γ < ω1} are almost disjoint, and unbounded in ω1.

Recall that Aξ, for ξ < δ, are the subsets of ω1 added by the generic A. Recall
that C collapses κ to ω1. Abusing notation we view C as a surjection from ω1

onto κ. For τ : I → δ, let Aτ consist of the sets Aτ(g(ξ)), ξ < κ, arranged as a
single subset of ω1 × ω1 using C, meaning that 〈ν, η〉 ∈ Aτ ↔ η ∈ Aτ(g((C(ν))).

Let Ȧτ name Aτ , and note that Ȧτ = τ(Ȧid). (This uses the invariance of Ċ.)
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Let dτ = ψ′′{Aτ ∩ (γ × γ) | γ < ω1}, and let ḋτ name dτ . Let ḋ = ḋid and

note that τ(ḋ) = ḋτ . Note also that the sets dτ are almost disjoint unbounded
subsets of ω1 as τ�I varies, meaning that if τ�I 6= τ ′�I then dτ and dτ ′ are almost
disjoint.

Lemma 4.11. Let τ1, . . . , τn be permutations of δ so that τ1�I, . . . , τn�I are
distinct. Then Kτ1dτ1 × · · · ×Kτndτn is c.c.c.

Proof. Suppose not, and let 〈b1(ξ), . . . , bn(ξ)〉, ξ < ω1, be an antichain. Let
li(ξ) be the size of bi(ξ). By thinning the antichain we may assume that these
are independent of ξ. Denote the sizes by l1, . . . , ln. Without loss of generality
we may assume that l1 + · · ·+ ln is minimal.

Write bi(ξ) as a sequence of points xi1(ξ), . . . , xili(ξ). These points form a clique
in τi(U). Since τi(U) is an open graph, there are basic open neighborhoods
N i
j(ξ), j = 1, . . . , li, of xij(ξ) so that any two points of τi(X) in any two of these

neighborhoods are connected in τi(U). By thinning the antichain we may assume
that these neighborhoods are independent of ξ, equal to N i

1, . . . , N
i
li say. This

implies that an incompatibility between bi(ξ) and bi(ζ) must be due to points
xij(ξ) and xik(ζ) with j = k.

By a ∆-system argument, and noting that an incompatibility between two
conditions bi(ξ), bi(ζ) cannot be due to any points in bi(ξ)∩bi(ζ), we may assume
that for each i, the conditions bi(ξ), ξ < ω1, are pairwise disjoint.

By dropping an initial segment of the antichain we may now assume that
bi(ξ) ⊆ Kτidτi−η, where η < ω1 is large enough that dτ1 − η, . . . , dτn − η are

pairwise disjoint. This point, which uses the fact that dτ1 , . . . , dτn are almost
disjoint, is key to the rest of the argument. It will allow us to adapt Todorcevic’s
proof of the countable chain condition for his clique forcing poset in [11].

Recall that E is a fast club, relative to all clubs in V [A ∗P ∗C ∗ T ]. Since the
surjections τi(h) and the sequences 〈u̇τiα | α < ω1〉 belong to V [A∗P ∗C ∗T ], this
implies that for all large enough γ ∈ E, and for all i, {u̇τiα | α < γ} ⊆ τi(h)′′γ.
By increasing η, we may assume this holds for γ = E(ξ) for all ξ ≥ η.

Each point xij(ξ) ∈ bi(ξ) is of the form uτiE(µ) for some µ ∈ dτ i−η. Let Ri(ξ) be

the set of these µ, so that bi(ξ) = {uτiE(µ) | µ ∈ R
i(ξ)}. Let R(ξ) =

⋃n
i=1R

i(ξ).

Since we have made sure that dτ1 − η, . . . , dτn − η are disjoint, each µ ∈ R(ξ)
belongs to exactly one of R1(ξ), . . . , Rn(ξ). In particular for each ξ, there is
exactly one i so that max(R(ξ)) ∈ Ri(ξ). By thinning the antichain we may
assume that this i is fixed independently of ξ. By re-ordering τ1, . . . , τn we may
assume this i is equal to 1. By re-ordering the enumeration x1

1(ξ), . . . , x1
l1(ξ) of

b1(ξ) we may assume that for i = j = 1, xij(ξ) = uτ1E(max(R(ξ))), and that for all

other i, j, xij(ξ) = uτiE(µ) for some µ < max(R(ξ)). Let u̇ij(ξ) = u̇τiE(µ) for this µ.

Then u̇ij(ξ) names xij(ξ), and, through our use above of the fact that E is fast,

for all i, j other than i = j = 1, u̇ij(ξ) ∈ τ i(h)′′E(max(R(ξ))).

Let b(ξ) = b1(ξ)_ · · ·_bn(ξ). Let l = l1 + · · · + ln, so that b(ξ) ∈ Rl. Let
F ⊆ Rl be the closure of the set {b(ξ) | ξ < ω1}. Let btail(ξ) be obtained from b(ξ)
by removing its first element x1

1(ξ). For each ξ, let t(ξ) = {x | 〈x〉_btail(ξ) ∈ F}.
Notice that x1

1(ξ) ∈ t(ξ).
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Claim 4.12. For arbitrarily large ξ < ω1, t(ξ) is not 1-colorable in τ1(U).

Proof. By definition F belongs to V [A ∗ P ∗ C ∗ T ∗ E][S]. But since F is

coded by a real, S is c.c.c., and Ċ ∗ Ṫ ∗ Ė is forced to be countably closed, F
belongs to V [A∗P ][S]. Let Ḟ ∈ V [A∗P ] name F in S. Let ṫ(ξ) be the canonical

name for t(ξ) obtained from Ḟ and the names u̇ij(ξ) for the elements of btail(ξ).
Suppose that the claim fails, and fix a condition s ∈ S forcing this. By extending
s, we may assume there is a specific ρ so that s forces ṫ(ξ) to be 1-colorable for

all ξ > ρ. By modifying Ḟ (and carrying these modification to ṫ(ξ)) we may

further assume that any condition incompatible with s forces Ḟ to be empty.
Then for all ξ > ρ, ṫ(ξ) is outright forced in S to be 1-colorable. The condition

s forces this fact by the way it was chosen, and any condition incompatible with
s forces that ṫ(ξ) is empty, hence in particular 1-colorable.

It follows that ṫ(ξ) is a commitment. Moreover it is generated from Ḟ and
τ1�I, . . . , τn�I below E(max(R(ξ))), because the names u̇ij for elements of btail(ξ)

belong to
⋃
i≤n τ

i(h)′′E(max(R(ξ))). So by Claim 4.10, for all large enough ξ,

u̇τ1E(max(R(ξ))) is forced in S to not be an element of ṫ(ξ). This is a contradiction

since u̇τ1E(max(R(ξ)))[S] = x1
1(ξ) ∈ t(ξ). a

For each ξ so that t(ξ) is not 1-colorable, fix two points y1(ξ), y2(ξ) ∈ t(ξ)
which are connected in τ1(U). Fix basic open neighborhoods O1(ξ), O2(ξ) of
y1(ξ), y2(ξ) so that every point in O1(ξ) ∩ τ1(X) is connected to every point in
O2(ξ) ∩ τ1(X) in τ1(U). Fix specific O1, O2, and an unbounded Z ⊆ ω1, so that
for every ξ ∈ Z, O1(ξ) = O1 and O2(ξ) = O2.

Let b1tail(ξ) be obtained from b1(ξ) by removing its first element x1
1(ξ). By the

minimality of l, the conditions 〈b1tail(ξ), b
2(ξ), . . . , bn(ξ)〉, for ξ ∈ Z, do not form

an uncountable antichain in Kτ1dτ1 × · · · × Kτndτn . So there must be ξ 6= ζ in Z

so that 〈b1tail(ξ), b
2(ξ), . . . , bn(ξ)〉 and 〈b1tail(ζ), b2(ζ), . . . , bn(ζ)〉 are compatible.

Since xij(ξ) 6= xij(ζ) it follows in particular that xij(ξ) and xij(ζ) are connected
in τi(U), for all i, j except possibly i = j = 1.

Using the fact that the graphs τi(U) are all open, we can therefore find open
neighborhoods P and Q of btail(ξ) and btail(ζ) in Rl−1, so that any a ∈ P and
b ∈ Q are connected in τ1(U)l1−1 × τ2(U)l2 × · · · × τn(U)ln . Let P ∗ = O1 × P
and let Q∗ = O2 × Q. Since any y1 ∈ O1 and y2 ∈ O2 are connected in τ1(U),
we have that any a ∈ P ∗ and b ∈ Q∗ are connected in τ1(U)l1 × · · · × τn(U)ln .

By choice of the open neighborhoods, we have y1(ξ)_btail(ξ) ∈ P ∗. Since
y1(ξ) ∈ t(ξ), we have y1(ξ)_btail(ξ) ∈ F . So P ∗ is an open neighborhood of a
point in F . By the definition of F it follows that there is ξ∗ so that b(ξ∗) ∈ P ∗.
Similarly, using O2 and y2(ζ)_btail(ζ), there must be ζ∗ so that b(ζ∗) ∈ Q∗. But
then for each individual pair i, j, the points xij(ξ

∗) and xij(ζ
∗) are connected in

τi(U). By the refinements made at the start of the proof of the current lemma,
this implies that 〈b1(ζ∗), . . . , bn(ζ∗)〉 and 〈b1(ξ∗), . . . , bn(ξ∗)〉 are compatible, a
contradiction. a

Claim 4.13. There is ρ < ω1 so that in the forcing Kd−ρ, every condition has
extensions using points uα for arbitrarily large α < ω1. Moreover there is ρ < ω1

for which this statement is outright forced to hold in S.



TODORCEVIC OPEN COLORING AXIOM FOR SPACES SMALLER THAN THE CONTINUUM27

Proof. The second part of the claim is immediate from the first since S is
c.c.c.

Suppose the first part fails. Then we can construct conditions bξ ∈ Kd, for
ξ < ω1, and ordinals βξ < ω1, so that bξ is incompatible with any condition
〈uα〉 for α > βξ, and so that min{α | uα ∈ bξ} is larger than sup{βζ | ζ < ξ}.
But then the conditions bξ form an uncountable antichain in Kd, contradicting
Lemma 4.11. a

Let ρ̇ be an A ∗ Ṗ ∗ Ċ ∗ Ṫ ∗ Ė-name for the least ordinal witnessing Claim 4.13.
For a permutation τ of δ, let ρ̇τ = τ(ρ̇). Let ρτ = ρ̇τ [A ∗ P ∗ C ∗ T ∗ E]. Then
ρτ is the minimal witness for Claim 4.13 for the poset Kτdτ .

Definition 4.14. Let Ḋ =
∏(g)
τ τ(K̇ḋ−ρ̇), taken with finite support.

Let D = Ḋ[A ∗P ∗C ∗ T ∗E][S]. Let D be generic for D. Write D as
∏(g)
τ Dτ .

Then Dτ is generic for Kτdτ−ρτ .

Remark 4.15. Note that every factor of the symmetric product D is a poset
of size ℵ1 in V [A ∗ P ∗ C ∗ T ∗ E][S], whose conditions are finite sets of certain
reals.

Lemma 4.16. D is c.c.c., and hence S ∗ Ḋ[A ∗ P ∗ C ∗ T ∗ E] is c.c.c.

Proof. Clear from Lemma 4.11 and the use of finite support. a

Lemma 4.17. Ṡ ∗ Ḋ (viewed as an A ∗ Ṗ ∗ Ċ ∗ Ṫ ∗ Ė-name) is invariant under
permutations.

Proof. Clear from Claim 3.28. a

Lemma 4.18. In V [A ∗ P ∗ C ∗ T ∗ E][S ∗ D], each of the graphs τ(U) (τ a
permutation of δ) has an uncountable clique.

Proof. The generic Dτ is a clique in τ(U). It is uncountable by Claim 4.13
and since ρτ witnesses the claim for Kτdτ . a

Claim 4.19. Let µ > κ be an inaccessible cardinal. Suppose that S has von
Neumann rank η < µ. Then there is η∗ < µ so that every condition in C ∗ Ṫ ∗ Ė
has von Neumann rank below η∗.

Proof. Let 〈c, ṫ, ė〉 ∈ C ∗ Ṫ ∗ Ė. c is a partial function from ℵ1 into κ of size
< κ, and so has von Neumann rank below κ.

Fix a generic C for C, and consider the von Neumann of t = ṫ[C]. Note
that canonical S-names for reals have von Neumann rank at most η + 3. Each
condition in TI is generated using finitely many pairing operations from such
names, from countable ordinals, and from codes for injections of I into δ. The
codes have von Neumann rank at most κ+ 1. So every condition in TI has von
Neumann rank below max{κ, η, ω1}+ω. (See Remark 4.6 in connection to this.)
By Remark 3.30 this implies that t, which is a condition in a symmetric product
generated from copies of TI , has rank below η′ = max{κ, η, ω1}+ ω · 2.

Since the fact that t has von Neumann rank below η′ holds regardless of the
choice of the generic C, Claim 2.4 gives η′′ < µ, so that the name ṫ has von
Neumann rank below η′′.
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The claim produces η′′ as a function of η′, independently from ṫ. Increasing

η′′ to a limit ordinal if necessary, it follows that C ∗ Ṫ is contained in V
V [A∗P ]
η′′ .

Through another use of Claim 2.4, and since ė names a set of von Neumann
rank at most ω1 + ω, it follows that there is η′′′ < µ so that the name ė has von
Neumann rank below η′′′.

Let η∗ = max{η, η′, η′′, η′′′}, and note that we obtain η∗ through computations
as in Claim 2.4, independently of the choice of c, ṫ, and ė. a

Claim 4.20. Let µ > κ be an inaccessible cardinal. Suppose that S has von
Neumann rank η < µ. Then there is η∗∗ < µ so that, in V [A ∗ P ∗ C ∗ T ∗ E],

S ∗ Ḋ has von Neumann rank below η∗∗.

Proof. Let S be generic for S. Note that every condition d ∈ D = Ḋ[S] has
von Neumann rank below κ + ω. This follows by Remark 3.30 since conditions
in the individual factors of D are just finite sets of reals.

Using Claim 2.4 it follows that there is η′ < µ so that every efficient S-name
for a condition in Ḋ has rank at most η′.

Then S ∗ Ḋ has von Neumann rank at most max{η, η′}+ 3. a

Remark 4.21. Claim 4.20 continues to hold for any poset Ḋ which is a sym-
metric product of height κ of factors whose conditions have von Neumann rank

smaller than κ. In particular it holds for Ḋ =
∏(id�κ)
τ Add(ℵ0, 1)̌ , the symmetric

product, over τ : κ→ δ, of the Cohen poset for adding one real.

Claim 4.22. Suppose 〈a, ṗ, ṡ〉 
 ḋ ∈ Ḋ. Then there is ḋ′ of forcing hereditary

size and support size ≤ κ, so that 〈a, ṗ, ṡ〉 
 ḋ′ = ḋ.

Proof. Modifying A ∗P ∗S if necessary, we may assume 〈a, ṗ, ṡ〉 ∈ A ∗P ∗S.

We saw in the proof of Claim 4.7 that stems in ṪI have A ∗ Ṗ ∗ Ċ-names of
forcing hereditary size ≤ κ. Since conditions in the factor ḊI of Ḋ are finite
sequences of reals with names occurring on stems of TI , it follows that, for any
generic A ∗ P ∗ S, and any name u̇ for a condition in ḊI , there is u̇′ of forcing
hereditary size ≤ κ, so that u̇′[A ∗ P ∗ S] = u̇[A ∗ P ∗ S]. The same is then true

for each of the factors τ(ḊI). And since the product defining D is taken with
finite supports, and indexed by codes which themselves have names of forcing
hereditary size ≤ κ, the same is true for the name ḋ for a condition in Ḋ.

This implies that densely many conditions in A ∗ Ṗ ∗ Ṡ below 〈a, ṗ, ṡ〉 force the

existence of ḋ′ of forcing-hereditary size ≤ κ with ḋ′[A ∗ P ∗ S] = ḋ[A ∗ P ∗ S].

Using a merging of names argument, and the κ+-c.c. for A∗ Ṗ∗ Ṡ, one can obtain
ḋ′, still of forcing-hereditary size ≤ κ, which is forced by 〈a, ṗ, ṡ〉 to equal ḋ.

By the appropriateness of A∗ Ṗ, using the support size condition (2) of Defini-
tion 3.6, and using assumption (4) on the forcing hereditary size of conditions in

Ṡ, each condition of A∗Ṗ∗ Ṡ used in the name ḋ′ can be replaced by an equivalent
condition with support of size ≤ κ. Since ḋ′ is of forcing-hereditary size ≤ κ, the
name resulting from these substitutions has support of size ≤ κ. a

Remark 4.23. If J ⊇ Sp(ḋ), U is the restriction of A ∗ Ṗ ∗ Ṡ to condition with

support contained in J , and U is a complete subposet of A ∗ Ṗ ∗ Ṡ, then one
can find ḋ′ as in Claim 4.22 which is a U-name. This is clear from the proof,
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noticing that all coordinates in the domain of ḋ must involve τ which map into
J , and then the names u̇′ obtained in the proof are all U-names, since the names
occurring on stems of τ(ṪI) have supports contained in τ ′′I. The completeness

of U in A ∗ Ṗ ∗ Ṡ is used to carry out the merging argument while keeping to
U-names. And the support size condition of Definition 3.6 allows keeping all
supports contained in J , in the final part of the proof.

Let W ⊆ δ. Let Z = Z(W ) be the set of injections of I into W . Recall from

Definition 3.27 that
∏(g)
τ∈Z τ(K̇d−ρ̇) is the restriction of D to its factors indexed

by c(τ ◦ g) for τ ∈ Z. Let D|W denote this product, and let D|W = D ∩ D|W .
Then D|W is clearly a complete subposet of the full product D, and D|W is
generic over V [A ∗P ∗C ∗T ∗E][S]. The factor poset D/D|W for adding D over
V [A∗P ∗C ∗T ∗E][S][D|W ] is as usual the restriction of D to conditions d which
are compatible with all elements of D|W . Letting d|W = d�{c(τ ◦ g) | τ ∈ Z} be
the restriction of a condition d ∈ D to factors indexed by c(τ ◦ g) for τ ∈ Z, it is
easy to check that d ∈ D/D|W iff d ∈ D and d|W ∈ D|W .

Claim 4.24. Suppose that d = ḋ[A∗P ∗C∗T ∗E][S] ∈ D, and that Sp(ḋ) ⊆W .
Then d ∈ D|W .

Proof. Each c(τ ◦ g) ∈ dom(d) codes A� range(τ). If it has a name with
support contained in W , then it must be that range(τ) ⊆W . a

Claim 4.25. Let W ⊆ δ. Let d belong to the restricted product D|W . Then

there is an A∗Ṗ∗ Ṡ-name ḋ for d, of forcing hereditary size ≤ κ, and with support
contained in W .

Proof. Since D is taken with finite supports, it is enough to prove the claim
separately for each of the non-trivial coordinates in d. These coordinates are
conditions in (subposets of) Kτ , for permutations τ which map I into W . By

symmetry, and since τ(K̇) = K̇τ , it is therefore enough to prove that every
condition in K has a name of forcing hereditary size ≤ κ with support contained
in I. But this is clear, since any condition in K is a finite subsets {u̇α[S] | α <
ω1}, and u̇α, by Definition 4.5 and Claim 4.4, has an A ∗ Ṗ ∗ Ṡ-name of forcing
hereditary size ≤ κ with support contained in I. a

Claim 4.26. Let W ⊆ δ. Let 〈dn | n < ω〉 be a sequence of conditions in
D/D|W , which belongs to an extension of V [A∗P ∗C ∗T ∗E][S][D|W ] by F which

is generic over V [A∗P ∗C ∗T ∗E][S][D]. Say dn = ḋn[A∗P ∗C ∗T ∗E][S], and

suppose that the sets Sp(ḋn)−W are pairwise disjoint. Then there are infinitely
many n so that dn ∈ D.

Proof. This is a consequence of the use of finite supports in the product
forming D. Suppose the claim fail, and fix N0 < ω and d ∈ D forcing in D/D|W ,
over V [A∗P ∗C ∗T ∗E][S][D|W ][F ], that n > N0 → dn 6∈ D. (This uses the fact
that F is generic over V [A ∗ P ∗C ∗ T ∗E][S][D], and consequently D is generic

for D/D|W over V [A ∗ P ∗ C ∗ T ∗ E][S][D|W ][F ].) Let Wn = Sp(ḋn). Then for
every c(τ ◦ g) ∈ dom(dn) it must be that range(τ) ⊆ Wn. Since (for n 6= m)
Wn ∩ Wm ⊆ W , this implies in particular that the only coordinates c(τ ◦ g)
which belong to both dom(dn) and dom(dm) are ones where range(τ) ⊆W . Let
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C = {c(τ ◦ g) | range(τ) ⊆W}. Then each c(τ ◦ g) ∈ dom(d)−C belongs to the
domain of at most one dn. Since dom(d) is finite, we can pick n > N0 so that
none of these coordinates belongs to dom(dn). So dom(dn)∩dom(d) ⊆ C. Since
dn�C = dn|W and d�C = d|W both belong to D|W , it follows that dn and d are
compatible, and indeed there is a witness d∗ for this so that d∗�C ∈ D|W . But

this is a contradiction, since d∗ forces (in D/D|W ) that dn ∈ Ḋ, while d forces

that dn 6∈ Ḋ. a

§5. Putting everything together. We are now ready to prove Theorem
1.1. Suppose that θ is Mahlo, δ > θ, and δ<θ = δ. Without loss of generality
we may assume that the GCH holds below θ. If the CH holds in the ground
model, this can be arranged without collapsing ℵ1. By adding a Cohen subset
of θ if necessary, we may also assume that there is a �-sequence of length θ,
concentrating on the strongly inaccessible cardinals. In other words we assume

that there is a sequence ~d = 〈dκ | κ < θ〉 so that for every Z ⊆ θ, the set of
strongly inaccessible κ with dκ = Z ∩ κ is stationary.

Let A = Add(ℵ1, δ). Define a countable support iteration 〈Ṗα, Q̇β | α ≤ θ, β <
θ〉 over the extension by A, and a finite support iteration 〈Ṡα, Ḋβ | α ≤ θ, β < θ〉
over the extension by A ∗ Ṗθ, through the following conditions. The conditions
specify the iterands Q̇β and Ḋβ ; the posets Ṗα and Ṡα are the iteration stages

determined from these iterands. The posets Ṗα will be κ-appropriate, and the
posets Ṡα will be c.c.c. Each iterand-name Ḋα will belong to the extension by
A ∗ Ṗα+1, so that Ṡα belongs to the extension by A ∗ Ṗα.

1. If α is not an inaccessible cardinal, then Q̇α = Col(ℵ1, α)̌ , and Ḋα =∏(id�α)
τ Add(ℵ0, 1)̌ (the symmetric product, over τ : α → δ, of the Cohen

poset for adding one real).

2. If κ is an inaccessible cardinal, but dκ ⊆ κ does not code some I, g ˙̄S, Ẋ,
and U̇ which satisfy assumptions (1)–(8) of Section 4 for Ṗκ and Ṡκ, then

again Q̇κ = Col(ℵ1, κ)̌ , and Ḋκ =
∏(id�α)
τ Add(ℵ0, 1)̌ .

3. If κ is an inaccessible cardinal, and dκ ⊆ κ does code some I, g ˙̄S, Ẋ, and
U̇ which satisfy assumptions (1)–(8) of Section 4 for Ṗκ and Ṡκ, then set

Q̇κ = Ċ∗ Ṫ∗ Ė and Ḋκ = Ḋ, for the posets Ċ, Ṫ, Ė, and Ḋ defined in Section

4. We say in this case that stage κ is active using ˙̄S, Ẋ, and U̇ .

We refer in these conditions to a subset of κ coding I, g, ˙̄S, Ẋ, and U̇ as in
Section 4. The coding converts sets of hereditary size κ to subsets of κ. The
precise coding used does not matter, as long as it is continuous in the following
sense: If Z is of hereditary size θ, d ⊆ θ codes Z, T is the transitive closure of Z,
Eα, α < θ, is continuous and ⊆-increasing with |Eα| < θ and

⋃
α<θ Eα = T , and

πα : Eα → Tα are the transitive collapse embeddings, then for a club of α, d∩ α
codes π′′α(Z ∩ Eα). Any reasonable coding will have this continuity property.

For limit γ, we take Ṡγ to literally be the union
⋃
α<γ Ṡα, not just an arbitrary

A ∗ Ṗγ-name for this union. We then have that for every ṡ ∈ dom(Ṡγ), there

is α < γ so that ṡ ∈ dom(Ṡα). We do the same with Ṗα for α of uncountable
cofinality.
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At all stages α, we pick the name Ṡα so that every element of dom(Ṡα) is

outright forced to belong to Ṡα.

Claim 5.1. For each α ≤ θ, Ṗα is neatly |α|-appropriate, and A∗ Ṗα is count-

ably closed. If |α|ω = |α| then A ∗ Ṗ is also |α|+-c.c.

Proof. Countable closure is clear. Appropriateness in the successor case at
active stages is clear from Lemma 4.9. The successor case at non-active stages
is clear from Lemma 3.38 and Claim 3.41. It is also clear from these results that
any witness that Ṗα is neatly |α|-appropriate can be neatly extended to a witness

that Ṗα+1 is neatly appropriate. This (with Claim 3.8) allows for an inductive
construction of witnesses that fits with the assumptions of Lemma 3.42, showing
that Ṗα is neatly |α|-appropriate for all α ≤ δ. The chain condition then follows
by Remark 3.40. a

Claim 5.2. For each α ≤ θ, Ṡα is c.c.c. and invariant under permutations of
δ. The iterands Ḋβ are forced to be symmetric products of posets of size ℵ1. If µ

is inaccessible, and A∗Pµ is generic for A∗ Ṗµ, then for every α < µ, Ṡα[A∗Pµ]

has von Neumann rank below µ, and Ṡµ[A ∗ Pµ] has von Neumann rank at most
µ.

Proof. The claims about Ṡα and Ḋα are clear by induction, using the def-
initions and results in Section 4, in particular Remark 4.15, Lemma 4.16, and
Lemma 4.17 for active stages, and the obvious parallel results for non-active
stages. The claim on the von Neumann rank of Ṡα follows from Claim 4.20 and
Remark 4.21 by induction on α. Since Ṡµ[A ∗ Pµ] =

⋃
α<µ Ṡα[A ∗ Pµ], it then

follows that Ṡµ[A ∗ Pµ] has von Neumann rank at most µ. a

Claim 5.3. Let µ ≤ θ be inaccessible. Let α < µ. If A is generic for A, then
the von Neumann rank of Ṗα[A] is below µ.

Proof. By induction on α, using Claim 4.19 (and Claim 2.4) for the successor
case. To apply Claim 4.19 we need to verify that Sα has von Neumann rank less
than µ, when Pα is generic for Ṗα[A] and Sα = Ṡα[A ∗ Pα]. This is given by
Claim 5.2. a

Let Ṗ = Ṗθ and Ṡ = Ṡθ. Let A ∗ P ∗ S be generic for A ∗ Ṗ ∗ Ṡ. Let P = Ṗ[A]

and let S = Ṡ[A ∗P ]. Similarly let Pα = Ṗα[A] and let Sα = Ṡα[A ∗Pα]. We will
show that the forcing extension by A ∗ P ∗ S witnesses Theorem 1.1.

Claim 5.4. ℵV [A∗P∗S]
1 = ℵV1 , ℵV [A∗P∗S]

2 = θ, and A ∗ Ṗ ∗ Ṡ is θ-c.c., so that
all cardinals of V above θ are preserved in V [A ∗ P ∗ S].

Proof. A ∗ Ṗ is countably closed, so preserves ℵ1. Ṗ incorporates posets to
collapse all κ ∈ (ℵ1, θ) to ℵ1. For cofinally many κ < θ, A ∗ Ṗκ is κ+-c.c. and

hence θ-c.c. Using a ∆-system argument this implies that A ∗ Ṗ is θ-c.c. Since
Ṡ is forced to be c.c.c. this implies that A ∗ Ṗ ∗ Ṡ is θ-c.c., and does not collapse
any cardinals from θ upwards. a

Claim 5.5. cV [A∗P∗S] = δ.
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Proof. The direction cV [A∗P∗S] ≥ δ is clear from the definition in condition
(1) above, since the symmetric product used there has |δα| = δ copies of the
Cohen poset. The direction cV [A∗P∗S] ≤ δ is clear by a name counting argument,
using the facts that S is a finite support iteration of length θ, each iterand
Ḋα[A∗Pα ∗Sα] is a (symmetric) finite support product of δ|α| ≤ δ<θ = δ factors,
each of size ℵ1, and S is c.c.c. a

To complete the proof of Theorem 1.1, it remains to show that V [A ∗ P ∗ S]
satisfies OCATod(< c).

Let Hα, α < θ, be an increasing continuous chain of elementary substructures
of some large enough initial segment of V , with |Hα| < θ, Hα ∩ θ an ordinal,
Hα closed under sequences of length < cof(α) (length ≤ max{ω, α} if α is not
a limit), and with all relevant objects belonging to H0, including in particular

θ, δ,A, Ṗ, Ṡ. Let Hθ =
⋃
α<θHα. Let Mα for α ≤ θ be the transitive collapse of

Hα, and let πα : Hα →Mα be the collapse embedding. Let πα,β : Mα →Mβ be
πβ ◦ π−1

α .

Claim 5.6. For any Q ∈ Mθ, there are stationarily many α < θ so that dα
codes π−1

α (Q), via the coding used for the definition of Pθ.

Proof. Clear from the fact that 〈dα | α < θ〉 is a � sequence, the fact that
Mθ is transitive of cardinality θ, and the continuity of the coding. a

Let Iτ = πτ (δ) = π′′τ (Hτ ∩ δ).

Claim 5.7. Let τ ≤ θ be inaccessible. Let A ∗Pα be generic for A ∗ Ṗα. Then:

1. For every α ≤ τ , A�Iτ ∗ Ṗα�Iτ is a complete subposet of A ∗ Ṗα, and hence
of A ∗ Ṗ.

2. For every α ≤ τ , Ṡα[A ∗ Pα] ∩ V [A�Iτ ∗ Pα�Iτ ] belongs to V [A�Iτ ∗ Pα�Iτ ],
and depends only on A�Iτ ∗ Pα�Iτ .

Let ˙̄Sα,τ be an A�Iτ ∗ Ṗα�Iτ -name for Ṡα[A ∗ Pα] ∩ V [A�Iτ ∗ Pα�Iτ ], and let
˙̄Sτ = ˙̄Sτ,τ .

3. ˙̄Sα+1 is (isomorphic to) ˙̄Sα ∗ Ḋα|Iτ .

4. ˙̄Sα,τ is forced to be a complete subposets of Ṡα. In particular ˙̄Sτ is forced

to be a complete subposets of Ṡτ ., and hence of Ṡ.

Proof. For α < τ , the first condition follows from Claim 3.12, since Ṗα is
α-appropriate and |Iτ | = τ > α. The condition then holds also for α = τ , since

τ is inaccessible and Ṗτ is defined with countable supports.
For the second condition, suppose there are two conditions 〈a1, ṗ1〉 and 〈a2, ṗ2〉

in A ∗ Ṗα/A�Iτ ∗Pα�Iτ which force incompatible information about Ṡα[A ∗Pα]∩
V [A�Iτ ∗ Pα�Iτ ]. Since τ is inaccessible, and using the restrictions to countable

and finite supports in the iterations defining Ṗτ and Ṡτ , we may assume that
α < τ . Using the support size condition (2) of Definition 3.6 we may assume

that |Sp(a1)∪Sp(ṗ1)| ≤ α, and similarly for 〈a2, ṗ2〉. Using the invariance of Ṡα,
and a permutation that fixes all elements of Iτ while shifting Sp(a1)∪Sp(ṗ1)−Iτ
away from Sp(a2) ∪ Sp(ṗ2)− Iτ , we may assume that Sp(a1) ∪ Sp(ṗ1)− Iτ and

Sp(a2) ∪ Sp(ṗ2) − Iτ are disjoint. Now by Claim 3.15, for κ = α, Ṗ = Ṗα and
I = Iτ , it follows that 〈a1, ṗ1〉 and 〈a2, ṗ2〉 are compatible, a contradiction.
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The third conditions holds by Claims 4.24 and 4.25, viewing Ṡα+1 as Ṡα ∗ Ḋα.
The fourth condition is proved by induction on α ≤ τ . The limit case is

trivial since Ṡ is defined with finite supports. The successor case follows from
the inductive hypothesis, the third condition, and the fact that Ḋα|Iτ names a

complete subposet of Ḋα. a
Let S̄α,τ = ˙̄Sα,τ [A�Iτ ∗ Pα�Iτ ], S̄α,τ = S ∩ S̄α,τ , S̄τ = S̄τ,τ , and S̄τ = S̄τ,τ .

Claim 5.8. Let sn = ṡn[A ∗ Pτ ] be conditions in Sτ/S̄τ . Suppose that the
sequence 〈sn | n < ω〉 belongs to V [A∗Pτ ∗ S̄τ ], and that the sets Sp(ṡn)− Iτ are
pairwise disjoint. Then there are infinitely many n so that sn ∈ Sτ .

Proof. Check by induction on α that no condition in Sα/S̄α can force a
value for a bound on the set of n so that sn�α ∈ Sα. The limit case is clear
through the use of finite supports. The successor case follows from the inductive
fact that there are infinitely many n so that sn�α ∈ Sα, using Claim 4.26 (with
W = Iτ ) and condition (3) of Claim 5.7. Note in using Claim 4.26 that the
model V [A ∗ Pτ ∗ S̄τ ∗ Sα], to which the sequence 〈sn�α+ 1 | n < ω, sn�α ∈ Sα〉
belongs, is a generic extension of V [A ∗Pα+1 ∗ S̄α+1,τ ∗Sα] by the tailends of Pτ
and S̄τ from coordinate α + 2 onward, and that these tailends are generic over
V [A ∗ Pα+1 ∗ Sα+1]. a

Claim 5.9. Let τ ≤ θ be inaccessible. Let α ≤ τ . Then:

1. For every ṡ ∈ dom(Ṡα), there is ṡ′ forced to be equivalent to ṡ, of forcing
hereditary and support sizes ≤ α.

2. If ṡ ∈ dom( ˙̄Sα,τ ), then ṡ′ as above can be found with support contained in

Iτ , hence forced into ˙̄Sα,τ .

Proof. Clear by induction on α, using Claim 4.22 and Remark 4.23 for the
active successor case, and the obvious parallel results for the non-active stages.
The remark is used (at successor stage α+1) with J = Iτ and U = A�Iτ ∗ Ṗα�Iτ ∗
˙̄Sα,τ . a

Let C be the club of τ < θ so that Hτ ∩ θ = τ .

Claim 5.10. Let τ ∈ C ∪ {θ} be inaccessible. Then:

1. For every α < τ , πτ (A∗Ṗα∗Ṡα) consists of the elements of A�Iτ∗Ṗα�Iτ∗ ˙̄Sα,τ
which belong to Mτ .

2. πτ (A ∗ Ṗ ∗ Ṡ) consists of the elements of A�Iτ ∗ Ṗτ �Iτ ∗ ˙̄Sτ which belong to
Mτ .

Proof. The first part is clear by induction from the absoluteness to transitive
models of the notions involved in defining A, Ṗα, and Ṡα, and the facts that

πτ (α) = α for α < τ , πτ (~d) = ~d�τ , and πτ (δ) = Iτ . We only note that for the

successor case, the product defining πτ (Ḋα) is (by absoluteness arguments) the

restriction to Iτ of the product defining Ḋα, and this coincides with the restriction
to supports contained in Iτ , by Claims 4.24 and 4.25. A similar argument applies
to Q̇α.

The second part of the claim is immediate from the first, since π(θ) = τ , and
τ is inaccessible. a
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Let στ be a permutation of δ with the property that στ �Iτ is exactly the
inverse of πτ . We will use στ to shift conditions and names, as in Claim 3.2.

Given any injection f : Z → δ, one can define a shift as in Claim 3.2, for
names and conditions with support contained in Z. We will write f(a) and f(u̇)
for these shifts. These definitions are absolute for transitive models of enough
of ZFC, since they are done by transfinite recursion using operations given by
formulas with only bounded quantifiers. For any permutation ρ extending f ,
and any u̇ with support contained in Z, we have that ρ(u̇) = f(u̇).

Claim 5.11. Let τ ∈ C ∪ {θ} be inaccessible.

1. Every 〈a, ṗ, ṡ〉 ∈ A�Iτ ∗ Ṗτ �Iτ ∗ ˙̄Sτ is equivalent some 〈a, ṗ′, ṡ′〉 ∈ A�Iτ ∗
Ṗτ �Iτ ∗ ˙̄Sτ which belongs to Mτ .

2. The condition 〈a, ṗ′, ṡ′〉 above has the additional property that στ (〈a, ṗ′, ṡ′〉) =
π−1
τ (〈〈a, ṗ′, ṡ′〉).

Proof. Since τ is inaccessible, we can find α < τ so that 〈a, ṗ, ṡ〉 is in fact a

condition in A ∗ Ṗα ∗ Ṡα. Since Ṗα is |α|-appropriate, and using the support size
condition (2) of Definition 3.6, there is J ⊆ Iτ and ṗ′ so that 〈a, ṗ′〉 is equivalent
to 〈a, ṗ〉, Sp(a),Sp(ṗ′) ⊆ J , and |J | ≤ |α|. Using Claim 5.9 and the α+-chain

condition for A ∗ Ṗ, and increasing J if needed, we may further find ṡ′, forced to
be equivalent to ṡ, with Sp(ṡ′) ⊆ J .

Since |J | < τ , and since Mτ is < τ -closed, there is a bijection f ∈ Mτ of J
onto an ordinal τ̄ < τ .

Consider the shifted conditions ā = f(a), ˙̄p
′

= f(ṗ′) and ˙̄s
′

= f(ṡ′) in A,

Ṗα, and Ṡα. These all have von Neumann rank below τ . This is clear for ā
since it belongs to Add(ℵ1, τ̄), holds for ˙̄p

′
by Claims 5.3 and 2.4 since ˙̄p

′
is

an Add(ℵ1, τ̄)-name and Add(ℵ1, τ̄) belongs to Vτ , and holds for ˙̄s
′

by Claims
5.2, 5.3, and 2.4, again using the fact that Add(ℵ1, τ̄) ∈ Vτ . Since Mτ ⊇ Vτ ,

it follows that ā, ˙̄p
′
, ˙̄s
′ ∈ Mτ . The reverse shifts a = f−1(ā), ṗ′ = f−1( ˙̄p

′
), and

ṡ′ = f−1( ˙̄s
′
) then belong to Mτ by the absoluteness of the operation of shifting

by f−1. This proves the first part of the claim.
Apply the elementary map π−1

τ to the statements that a = f−1(ā), ṗ′ =

f−1( ˙̄p
′
), and ṡ′ = f−1( ˙̄s

′
). (These statements are true in M by absoluteness.)

The objects ā, ˙̄p
′
, and ˙̄s

′
are not moved by π−1

τ , since they have von Neumann
rank below τ . So we get that π−1

τ (a) = π−1
τ (f−1)(ā), and similarly with ṗ′ and ṡ′.

It is easy to check that π−1
τ (f−1) = π−1

τ ◦f−1 = στ ◦f−1, since dom(f−1) = τ̄ < τ
and range(f−1) ⊆ Iτ . So π−1

τ (a) = (στ ◦ f−1)(ā) = στ (f−1(ā)) = στ (a) and
similarly with ṗ′ and ṡ′. a

Lemma 5.12. V [A ∗ P ∗ S] satisfies OCATod(< c).

Proof. Suppose not. Then the failure of OCATod(< c) must be forced by

the empty condition. This can be seen using the invariance of A ∗ Ṗ ∗ Ṡ un-
der permutations to separate the supports of conditions forcing contradictory
truth values for OCATod(< c), and using the fact that conditions with disjoint
supports in invariant products must have disjoint domains and are therefore au-
tomatically compatible. By a similar argument there is a cardinal ρ which is



TODORCEVIC OPEN COLORING AXIOM FOR SPACES SMALLER THAN THE CONTINUUM35

outright forced to be the minimum size of a counterexample to OCATod(< c).
Since the continuum is forced to be δ, we have ρ < δ.

Fix names Ẋ and U̇ , for a space and an open coloring, which are outright
forced to provide a counterexample to OCATod(< c), of size ρ.

Claim 5.13. There is a name Ẋ ′ with support of size < δ which is forced to
equal Ẋ, and similarly with U̇ .

Proof. This is clear for any name for a real, using the fact that every con-
dition in A ∗ Ṗ ∗ Ṡ is equivalent to a condition with support of size < θ, and
the chain conditions for A, Ṗ, and Ṡ. The claim for Ẋ then holds because Ẋ is
forced to be a set of reals of size ρ < δ, and the claim for U̇ holds because open
sets can be coded by reals. a

In light of Claim 5.13 we may assume that Ẋ and U̇ themselves have supports
of size < δ.

By elementarity we can assume that the names Ẋ and U̇ belong to H0, and

hence to Hα for all α < θ. Let ˙̄Xα = πα(Ẋ) and ˙̄Uα = πα(U̇). Let gθ biject θ
onto Iθ, and let gα = π−1

α,θ◦(gθ�α), which for a club of α is a bijection of α onto Iα.

Using Claim 5.6 on Q = 〈Iθ, gθ, πθ(Ṡ), ˙̄Xθ,
˙̄Uθ〉, and since θ is Mahlo, there is an

inaccessible τ < θ so that gτ bijects τ onto Iτ and dτ = 〈Iτ , gτ , πτ (Ṡ), ˙̄Xτ ,
˙̄Uτ 〉.

Our goal is to show that stage τ of our poset construction is active, and that
(with a possible revision to S) the generic for (Q̇τ ∗ Ḋτ )[A ∗ Pτ ∗ Sτ ] adds an

uncountable clique through U̇ [A ∗P ∗S]. This will contradict the fact that Ẋ, U̇
is forced to provide a counterexample to OCATod(< c).

It is easy to check that Iτ , gτ , πτ (Ṡ), ˙̄Xτ , and ˙̄Uτ satisfy assumptions (1)–(7)

of Section 4 for Ṗτ and Ṡτ . We just note the following: πτ (Ṡ) is forced to be dense

in ˙̄Sτ , and indeed the two posets are forced to be the same up to equivalence

of conditions, by Claims 5.10 and 5.11. We may therefore work with ˙̄Sτ instead
of πτ (Ṡ) throughout. A�Iτ ∗ Ṗτ �Iτ is a complete subposet of A ∗ Ṗτ by Claim

5.7. By the same claim, ˙̄Sτ [A�Iτ ∗ Pτ �Iτ ] is a complete subposet of Ṡτ [A ∗ Pτ ].
Finally the size requirements on conditions in assumptions (4) and (6) hold by
Claim 5.9.

To show that stage τ is active, it remains to prove assumption (8). To this

end, fix A ∗ Ṗτ ∗ Ṡτ -names ṫi, for i < ω. Suppose it is forced in Sτ that ṫi[A ∗Pτ ]

is a closed set of reals, and is 1-colorable in ˙̄Uτ [A�Iτ ∗ Pτ �Iτ ]. We need to show
that there is an S̄τ -name ẋ ∈ V [A�Iτ ∗ Pτ �Iτ ] which is forced in Sτ to belong to
˙̄X[A�Iτ ∗ Pτ �Iτ ]−

⋃
i<ω ṫi[A ∗ Pτ ].

Suppose this is not the case. We will obtain a contradiction by internalizing

shifts of the names ṫi to the model Mτ , and then using the fact that in Mτ , ˙̄U i
is forced to not be countably chromatic.

Claim 5.14. Modifying the generic S if necessary, we can arrange that every

real x ∈ ˙̄X[A�Iτ ∗Pτ �Iτ ∗ S̄τ ] can be forced by some condition in Sτ/S̄τ to belong
to some ṫi[A ∗ Pτ ]. (There is no harm at this stage in modifying S as needed,
since we have not yet made any assumptions involving the specific generic S
used.)
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Proof. Suppose not. Then for densely many conditions s in S̄τ , there is

an S̄τ -name ẋs in V [A�Iτ ∗ Pτ �Iτ ] so that s forces ẋs ∈ ˙̄Xτ [A�Iτ ∗ Pτ �Iτ ], and

s forces in S̄τ that it is forced in S/ ˙̄Sτ that ẋ is outside all ṫi[A�Iτ ∗ Pτ �Iτ ].
Merging these names for a maximal antichain of such s, we can obtain an S̄τ -name
ẋ ∈ V [A�Iτ ∗Pτ �Iτ ] which is outright forced in S̄τ to have the above properties.

This implies that ẋ is forced in Sτ to belong to ˙̄Xτ [A�Iτ ∗Pτ �Iτ ]−
⋃
i<ω ṫi[A∗Pτ ],

contradicting our assumptions on ṫi. a

In witnessing Claim 5.14 we are making an assumption on S̄τ , and so we will
not modify it further.

Abusing notation, we identify the names ṫi for closed sets with names for
reals coding these closed sets. We may assume without loss of generality that
the names ṫi (for reals) are canonical, meaning of the form {〈ň, r〉 | r ∈ Rn}
for antichains Rn. Since τ is inaccessible, and using the chain conditions and
support restrictions for the iterations forming Ṗτ and Ṡτ , there is a cardinal
α < τ so that ṫi are in fact A ∗ Ṗα ∗ Ṡα-names. Each ṫi then has size at most
α, using the fact that Ṗα and Ṡα are α+-c.c. and c.c.c. respectively. Without
loss of generality, using Claim 5.9 and the fact that Ṗα is α-appropriate, we may
assume that each condition appearing in ṫi has support of size at most α. Then
Sp(ṫi) itself has size at most α.

Fix E ⊆ δ of size α so that
⋃
i<ω Sp(ti) ⊆ E.

By Claim 5.14, for each x ∈ ˙̄Xτ [A�Iτ∗Pτ �Iτ∗S̄τ ], there is i < ω and a condition
s = ṡ[A∗Pτ ] ∈ Sτ/S̄τ forcing that x ∈ ṫi[A∗Pτ ]. We may take ṡ to have support

of size < τ . Since ˙̄Xτ [A∗Pτ ] itself has size at most τ (this is because ˙̄Xτ ∈Mτ ),

we can find E∗ ⊇ E, of size τ , so that for each x ∈ ˙̄Xτ [A�Iτ ∗ Pτ �Iτ ∗ S̄τ ], ṡ
as above can be found with Sp(ṡ) ⊆ E∗. Fix a condition 〈ā, ˙̄p, ˙̄s〉 ∈ A ∗ Pτ ∗ S̄τ
which forces this statement. We may assume that |Sp(a) ∪ Sp( ˙̄p)| ≤ τ , and we
have Sp( ˙̄s) ⊆ Iτ .

Fix permutations σn of δ, for n < ω, which are the identity on Iτ , so that
the sets σ′′n(E∗) − Iτ are pairwise disjoint, and so that the shifted conditions
σn(〈ā, ˙̄p〉) all belong to A ∗ Pτ . Permutations σn,1 fixing Iτ and securing the
latter part, with σ′′n,1(Sp(a)∪Sp( ˙̄p)) pairwise disjoint, can be found using Claim
3.14, and then the former part can be secured by composing with additional
permutations σn,2, using the fact that |E∗| < δ.

Claim 5.15. Every real in ˙̄X[A�Iτ ∗ Pτ �Iτ ∗ S̄τ ] belongs to
⋃
i,n<ω σn(ṫi)[A ∗

Pτ ∗ Sτ ].

Proof. By Claim 5.14 and the subsequent choice of E∗ and 〈ā, ˙̄p, ˙̄s〉, shifting
via σn, and using the facts that σn(ā, ˙̄p〉) ∈ A∗Pτ and that σn�Iτ is the identity,
we get for each n < ω some in and a condition sn = ṡn[A ∗ Pτ ] ∈ Sτ/S̄τ forcing
that x ∈ σn(ṫin)[A ∗ Pτ ], with Sp(ṡn) ⊆ σ′′nE

∗. (Since this statement references
S̄τ , the sequence 〈sn | n < ω〉 belongs to the further extension V [A ∗ Pτ ∗ S̄τ ].)

Then Sp(ṡn)−Iτ are pairwise disjoint, so that by Claim 5.8, infinitely many of
the conditions sn belong to Sτ . It follows in particular that x ∈ σn(ṫin)[A∗Pτ∗Sτ ]
for some (indeed infinitely many) n. a
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We have now shown that, in V [A ∗ Pτ ∗ Sτ ], the space ˙̄X[A�Iτ ∗ Pτ �Iτ ∗ S̄τ ] is

covered by countably many sets which are 1-colorable sets in ˙̄U [A�Iτ ∗Pτ �Iτ ∗S̄τ ],
namely the sets σn(ṫi)[A ∗ Pτ ∗ Sτ ]. To do this we homogenized the original
collection of sets ṫi, by passing to the larger collection σn(ṫi). Something similar
to this was done by Farah [5], though in a very different forcing notion.

We will finish the proof that stage τ is active by internalizing, that is shifting
the sets σn(ṫi) into (a generic extension of) Mτ , contradicting the fact that this

model thinks that ˙̄X and ˙̄U name a counterexample to OCATod(< c). This crucial

step is our most essential use of the homogeneity of A ∗ Ṗ under permutations of
δ.

Recall that we have E ⊆ δ, of size α < τ , so that Sp(ṫi) ⊆ E for all i. Let

Ê =
⋃
n<ω σ

′′
nE, so that

⋃
i,n<ω Sp(σn(ṫi)) ⊆ Ê, and |Ê| = α < τ .

Using Claim 5.13 we assumed that Ẋ and U̇ have supports of size < δ. Hence
certainly |δ − (Sp(Ẋ) ∪ Sp(U̇))| ≥ θ (which is all we need below). It follows by

the elementarity of πτ that |Iτ − (Sp( ˙̄X) ∪ Sp( ˙̄U))| ≥ τ .

We can therefore find a permutation σ̂ of δ so that σ̂′′Ê ⊆ Iτ and σ̂ is the

identity on Sp( ˙̄X) ∪ Sp( ˙̄U). Let A′ ∗ P ′τ ∗ S′τ = σ̂(A ∗ Pτ ∗ Sτ ). Shifting the
conclusion of Claim 5.15 by σ̂, and using the fact that σ̂ is the identity on

Sp( ˙̄X)∪Sp( ˙̄U), we have that each of the sets (σ̂◦σn)(ṫi)[A
′∗P ′τ ∗S′τ ] is 1-colorable

in ˙̄U [A′ ∗ P ′τ ∗ S′τ ], and
⋃
i,n<ω(σ̂ ◦ σn)(ṫi)[A

′ ∗ P ′τ ∗ S′τ ] covers ˙̄X[A′ ∗ P ′τ ∗ S′τ ].

Let Ā′ ∗ P̄ ′τ ∗ S̄′τ = (A ∗P ′τ ∗S′τ )∩Mτ . This makes sense using Claims 5.7, 5.9,

5.10, and 5.11, which also show that Ā′∗P̄ ′τ ∗S̄′τ is generic over V for πτ (A∗Ṗ∗Ṡ),
and hence certainly generic over Mτ . Moreover these claims, and the fact that
Sp((σ̂ ◦σn)(ṫi)) ⊆ Iτ , allow us to assume that (σ̂ ◦σn)(ṫi) is a πτ (A∗ Ṗ∗ Ṡ)-name.
Recall that we took ṫi to name reals coding closed sets, rather than the closed
sets themselves, and arranged for ṫi to be canonical names, of size at most some
α < τ . Since Mτ is closed under α-sequences, we can conclude that the names
(σ̂◦σn)(ṫi) belong to Mτ , and so does the sequence of these names. Certainly the

names ˙̄X and ˙̄U belong to Mτ . Thus the conclusion of the previous paragraph
implies that Mτ [Ā′ ∗ P̄ ′τ ∗ S̄′τ ] satisfies that the sets (σ̂ ◦ σn)(ṫi)[Ā

′ ∗ P̄ ′τ ∗ S̄′τ ]

partition ˙̄X[Ā′ ∗ P̄ ′τ ∗ S̄′τ ] into countably many 1-colorable sets in ˙̄U [Ā′ ∗ P̄ ′τ ∗ S̄′τ ].

But this is a contradiction, since ˙̄X and ˙̄U are forced in πτ (A ∗ Ṗ ∗ Ṡ) over Mτ

to name a counterexample to OCATod(< c). This contradiction completes the
proof that stage τ is active.

Since stage τ is active, and by Lemma 4.18, for every permutation σ of δ, the

graph σ( ˙̄Uτ )[A ∗ Pτ ∗ Sτ ] on the space σ( ˙̄X)[A ∗ Pτ ∗ Sτ ] has an uncountable
clique in V [A ∗ Pτ+1 ∗ Sτ+1]. The following claim will therefore suffices to show

that U̇ [A ∗ P ∗ S] has an uncountable clique, and complete the proof of Lemma
5.12.

Claim 5.16. There is a permutation σ of δ so that σ( ˙̄X)[A ∗Pτ ∗Sτ ] ⊆ Ẋ[A ∗
P ∗ S] and so that σ( ˙̄Uτ )[A ∗ Pτ ∗ Sτ ] is the restriction of U̇ [A ∗ P ∗ S] to

σ( ˙̄X)[A ∗ Pτ ∗ Sτ ].
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Proof. Recall that στ is a permutation of δ with the property that στ �Iτ =
π−1
τ . Take σ = στ .

Since σ( ˙̄Xτ )[A ∗ Pτ ∗ Sτ ] and ˙̄Xτ [σ−1(A ∗ Pτ ∗ Sτ )] are equal, we may work

with the latter instead of the former. Similarly with ˙̄U .
By Claims 5.7, 5.9, 5.10, and 5.11, applied with σ−1(A∗Pτ ∗Sτ ) as a generic for

A∗Ṗτ ∗ Ṡτ , we have that σ−1(A∗Pτ ∗Sτ )∩πτ (A∗Ṗ∗ Ṡ) is generic over Mτ (indeed

over V ) for πτ (A ∗ Ṗ ∗ Ṡ). Moreover by Claim 5.11, for 〈a, ṗ, ṡ〉 ∈ Hτ we have
that πτ (〈a, ṗ, ṡ〉) is equivalent to σ−1(〈a, ṗ, ṡ〉), and hence 〈a, ṗ, ṡ〉 ∈ A ∗ Pτ ∗ Sτ
iff πτ (〈a, ṗ, ṡ〉) ∈ σ−1(A ∗Pτ ∗Sτ ). It follows that πτ extends to an isomorphism

π∗τ from Hτ [A ∗ P ∗ S] to Mτ [σ−1(A ∗ Pτ ∗ Sτ ) ∩ πτ (A ∗ Ṗ ∗ Ṡ)], by setting

π∗τ (ẋ[A ∗ P ∗ S]) = πτ (ẋ)[σ−1(A ∗ Pτ ∗ Sτ ) ∩ πτ (A ∗ Ṗ ∗ Ṡ)]. We then have that

π∗τ (Ẋ[A ∗P ∗S]) = ˙̄Xτ [σ−1(A ∗Pτ ∗Sτ )∩ πτ (A ∗ Ṗ ∗ Ṡ)] = ˙̄Xτ [σ−1(A ∗Pτ ∗Sτ )],

and similarly π∗τ (U̇ [A ∗ P ∗ S]) = ˙̄Uτ [σ−1(A ∗ Pτ ∗ Sτ )].

So it remains to prove that π∗τ (Ẋ[A ∗ Pτ ∗ Sτ ]) ⊆ Ẋ[A ∗ P ∗ S], and that

π∗τ (U̇ [A ∗ P ∗ S]) is the restriction of U̇ [A ∗ P ∗ S] to π∗τ (Ẋ[A ∗ Pτ ∗ Sτ ]). But
this is clear from elementarity and the fact that π∗τ is the identify on reals in its

domain. Indeed, π∗τ (Ẋ[A ∗ Pτ ∗ Sτ ]) is simply Ẋ[A ∗ P ∗ S] ∩Hτ [A ∗ P ∗ S], and

π∗τ (U̇ [A ∗ P ∗ S]) is the restriction of U̇ [A ∗ P ∗ S] to this set. a

In light of Claim 5.16 and Lemma 4.18, The generic Dτ adds an uncountable
clique in the graph U̇ [A ∗ P ∗ S] on Ẋ[A ∗ P ∗ S], contradicting the fact that

Ẋ and U̇ are forced in A ∗ Ṗ ∗ Ṡ to give a counterexample to OCATod(< c).
This contradiction completes the proof of Lemma 5.12, and with it the proof of
Theorem 1.1. a

Recall that our definition of the iterands Q̇α and Ḋα divides into three cases:
First when α is not inaccessible, second when α is inaccessible but dα does not
code an appropriate name for an open graph, and third, the active case, when
we add cliques to all shifts of the coded graph. In the first two cases we took Ḋα
to only add Cohen reals.

We can prove Theorem 1.2 by adding an additional case: when α is inaccessi-
ble, and dα codes (a name for) a Knaster poset of size α. In this case we can take

Ḋα to be the symmetric product of all shifts of the Knaster poset coded by dα.
Note that Ḋα is c.c.c., since the product of Knaster posets retains the countable
chain condition. (This could fail if dα were to code a poset which is only c.c.c.,
and it is because of this that we restrict to Knaster posets in Theorem 1.2.) It is
easy to check that our analysis of the properties of S continues to apply with this
change. And it is not too hard to check that this leads to a proof of Theorem
1.2. We leave the details to the reader.

In both the proof of Theorem 1.1 and the proof of Theorem 1.2, only the poset
S adds new reals. This poset incorporates the addition of ℵ2 Cohen reals, and
it is a finite support iteration of finite support products of posets of size ℵ1.
This implies that any collection of ℵ2 mutually generic Cohen reals added (for

example) by Ḋ0 remain unbounded in the full extension by Ṡ. Hence, in the
full generic extension, b ≤ ℵ2. Since OCATod(ℵ1) implies that b > ℵ1, our end
models satisfy that b = ℵ2.
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