TODORCEVIC OPEN COLORING AXIOM FOR SPACES SMALLER
THAN THE CONTINUUM

NEEMAN, ITAY

Abstract. We prove that the restriction of Todorcevic’s open coloring axiom to spaces
of size strictly less than the continuum is consistent with arbitrarily large values of the

continuum.

§1. Introduction. Todorcevic’s open coloring axiom (OCAr.q) was intro-
duced by Todorcevic in the early 1980s, see [11, Section 8]. Phrased as an axiom
on graphs, it states that every open graph on a vertex set X C R is either
countably chromatic, or has an uncountable clique. This is clearly a dichotomy.
Here “open” is meant in the topology on [X]? = {(z,y) € X? | x # y} inherited
from R2. OCAr,q is a central consequence of the proper forcing axiom, and can
also be forced directly assuming only ZFC. It negates the CH, and has several
key consequences. To name just a few: Todorcevic [11] used it for an analysis
of gaps, Farah [6] showed that it implies that all automorphisms of the Calkin
algebra are inner, Velickovic [12] used OCA,q in the context of MA to prove
that all automorphisms of P(w)/Fin are trivial, and de Bondt-Farah-Vignati [4]
strengthened this result to remove the assumption of MA.

All models of OCAT,q known to date satisfy that the continuum is Ny. It is a
central open question whether the axiom determines the value of the continuum
to be No, or is consistent with higher values.

There have been only a few partial results on this question.

OCAT,q breaks into the conjunction of two statements: The first, which we
denote OCATq(X1), is the restriction of OCAtyq to graphs on vertex sets X of
size V1. The second, called reflection, is the statement that if an open graph G
on a vertex set X C R is not countably chromatic, then there is X C X of size
N; so that the restriction of G to X is not countably chromatic.

Farah, in unpublished work [5], showed that OCATeq(RX;) is consistent with
arbitrarily large values of the continuum. He also showed that the same is true
adding MA(Ry). Working on reflection, he noted that it holds in the forcing
extension adding arbitrarily many Cohen reals to a model of CH.

Moore [8] considered the conjunction of OCAt,q with another open coloring
axiom, that had been introduced prior to Todorcevic [11] by Abraham-Rubin-
Shelah [1]. Their axiom OCAaRs states that if X C R has size 8y, and ¢: [X]? —
{0,1} is open, then X can be partitioned into countably many c-homogeneous
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sets, meaning sets A; so that c is constant on each [4;]2. Here “open” means that
the ¢ preimages of {0} and {1} are both open in the topology on [X]? inherited
from R2.

OCAT,q is often phrased as a statement about homogeneous sets for the char-
acteristic function cg of the graph G. Indeed this is closer to the original for-
mulation in [11]. It then resembles OCAaRs, and in fact some of the methods
leading to OCAt,q trace back to Abraham-Rubin-Shelah [1], along with earlier
work of Baumgartner [2, 3]. But there are some key differences between the two
axioms: In OCArp,q only one of the cg-preimages of {0}, {1} is assumed to be
open, and the axiom only provides an actual partition of X on one side of its
dichotomy, while OCARrs lacks the reflection component of OCAT,q.

Moore [8] showed that the conjunction OCAT,q + OCAaRrs implies that the
continuum is exactly No. Gilton-Neeman [7] later showed that OCAsRs is con-
sistent with arbitrarily large values of the continuum. These results underline
the question of whether OCAr,q determines the value of the continuum.

Moore [10] demonstrated some essential difficulties in obtaining OCAr,q with
large continuum, for example showing that a c.c.c. forcing adding reals over a
model of OCA1,q will destroy OCAT,q unless it adds a dominating real. Since
OCAT,q implies that b = N5, adding too many dominating reals is itself a danger
to OCATOd.

As we noted above, the question of whether OCAr,q is consistent with large
continuum remains open. In this paper we provide the following partial result.
Let OCAToa(< k) denote the restriction of OCArp,q to graph on vertex sets of
size < k. Define OCAroq(k) similarly.

THEOREM 1.1. Let 6 be a Mahlo cardinal, and let § > 6 be a cardinal so that
0<0 = §. Then there is a 0-c.c. forcing extension where § = Ro, ¢ = 6, and
OCATod(< ¢) holds. The extension preserves Wy if the CH holds in the ground
model.

In particular, assuming the consistency of a Mahlo cardinal, OCATyq(< ¢) is
consistent with arbitrarily large values of the continuum.

Let MA(Knaster, ®;) denote the restriction of Marin’s Axiom to meeting N
dense sets in Knaster posets.

THEOREM 1.2. Under the assumptions of Theorem 1.1, one can in fact obtain
a model of OCAToq(< ¢) + MA(Knaster, 8y).

In particular, assuming the consistency of a Mahlo cardinal, OCAToq(< ¢) +
MA(Knaster, Xy) is consistent with arbitrarily large values of the continuum.

Our models witnessing these theorems also satisfy that b = Ny. Thus both
theorems can be strengthened to include this in their conclusions.

Moore’s proof that OCAr,q + OCAars implies ¢ = Ny does not use the full
strength of OCAroq, but only OCATq(R2) + b = No, plus OCAxRs of course.
Our results, specifically the fact that OCAT,q(N2) + b = Ny is consistent with
arbitrarily large continuum, therefore show that the techniques of Moore [§]
would not work without assuming OCAags. This complements [10, Theorem 3].

The structure of our paper is as follows:
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In Section 2 we specify a precise way of selecting which names for conditions
are used in forcing iterations, that will help us with technical points later on.

In Section 3 we prepare for the countably closed part of our forcing con-
struction. This part (working with § and 6 as in Theorems 1.1 and 1.2) involves
adding ¢ subsets of wy, and then forcing with an iteration of length 0, where each
iterand is a product of size § of “stems and commitments” posets. Our work
in Section 3 centers on maintaining a large degree of symmetry for these posets
under permutations of §, maintaining a large degree of compatibility between
shifts of conditions under such permutations, and observing some consequences
of the symmetry and compatibility. The purpose of the added subsets of w
is not so much to increase 2™ as in Moore [9], but to generate almost disjoint
sets that reduce the interference between the clique adding factors of the large
products to be used in the next section.

In Section 4 we present one step of our intended iteration. This step handles
a specific (name for) an open graph, but forces to simultaneously add cliques in
all shifts of this name under permutations of §. It breaks into a countably closed
part, and a c.c.c. part. The countably closed part is a “stems and commitments”
poset which can be folded into an iteration of large products as in Section 3. It
adds a subset of the graph of size X1, so that forcing with finite subcliques of this
subset is c.c.c. The second part is this c.c.c. clique-adding forcing. This kind
of division is standard for forcing OCAroq. Crucially here we perform this step
simultaneously, through a large symmetric product, on all shifts of the given
graph name by permutations of §. We use ¢ almost disjoint subsets of w; to
reduce the interference between the factors of this product, and to maintain the
countable chain condition for the J-sized product of the shifted clique-adding
posets, see the proof of Lemma 4.11. To make this work we need a stronger
assumption on the graph than not being countably chromatic. This is explained
in Remark 4.1.

In Section 5 we put these components together to obtain a proof of Theorems
1.1 and 1.2. Even though we end with a continuum of size §, our iteration is
of length 6. In stage k < 6 we guess some specific (name for a) graph, and
we simultaneously and symmetrically handle, in the manner of Section 4, this
graph and all shifts of this graphs by permutations of . This is essential for
obtaining a continuum of size §. As mentioned above, doing this requires a
stronger assumption on the graph than not being countably chromatic. It is in
Section 5 that we must derive this stronger assumption for the graphs we are
handling. One part of this derivation involves symmetrizing a countable coloring
of the graph being handled. This is done in Claim 5.15, and relies on the use
of finite supports when adding reals, in a manner similar to some of the key
ideas of Farah [5], though the forcing construction here is very different. The
second part of the proof involves internalizing the symmetrized coloring into an
elementary substructure. This is done in the paragraphs that follow the proof
of Claim 5.15. This is the part of the argument that relies on the vertex set of
the graph being smaller than the continuum.

It is natural to ask whether some variant of our argument could be used to
obtain the full OCAr,q with large continuum. Doing this would require a different
internalization argument.
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82. A note on forcing compositions and iterations. There are differing
standard approaches to specifying the precise set of conditions when defining
forcing iterations. In some cases the choice of which approach to take can make
a difference, at least on a technical level, to the argument. For example in closure
arguments it can be important that the set of conditions is rich enough to be full
at each coordinate. Fullness will be important for our argument, and more than
this we will need the fullness to be witnessed by conditions which are frugal in
their use of the first poset in our iteration. The following definitions and claims
will be useful for this.

DEFINITION 2.1. Let P be a poset (with largest element 1). A P-name & is
efficiently below p € P if for all (y, q) € i:

1.¢<p.
2. g is efficiently below gq.

I is efficient if it is efficiently below 1.

CLAIM 2.2. For every P-name &, and every p € P, there is a name &* which
1s efficiently below p, so that p Ik &* = &. In particular there is an efficient name
T* so that - &* = x.

PROOF. By induction on the rank of . For each (y,¢q) € & and ¢* < ¢,
find g .. which is efficiently below ¢* and so that ¢* I+ g7 .. =y, and fix any
Ay, C P which is maximal among conditions extending both ¢ and p, in the
sense that any such condition is compatible with a condition in A,;. Then set
" ={(y; 0" | (9,0) €T Ng" € Ay} 4

Say that a name @ is of forcing-hereditary size at most &, if |Z| < k, and for
every (y,p) € &, y is of forcing-hereditary size at most .

CLAIM 2.3. Suppose P is kT -c.c. Then given i of forcing-hereditary size at
most K, the conclusion of Claim 2.2 holds with &* which is also of forcing hered-
itary size at most K.

Proo¥r. Follow the proof of Claim 2.2, pick A, to be antichains, so that they
have size at most r, and inductively pick g7 . to be of forcing-hereditary size at
most k. Then the resulting &* is of forcing-hereditary size at most . -

By the von Neumann rank of a set u we mean the least a so that u € V4.

CLAM 2.4. Suppose P € V,,, p € P, & is efficiently below p, and p forces that
the von Neumann rank of @ is a. Then the name x belongs to V. y3.(a41)-

PRrROOF. By induction on a. Note that if (y,q) € &, then g < p, ¢ is efficiently
below ¢, and ¢ I y € &, so that in particular g forces the von Neumann rank
of y to be strictly smaller than a. It follows inductively that ¢ € Vjy3.o. Since
P € V,, this implies that the ordered pair (g, q) belongs to Vii3.q42. So & is a
subset of Vi1 3.442, i.e., an element of V.| 3.(q41). —

COROLLARY 2.5. For each a € Ord, and for each p € P, the collection of
names © which are efficiently below p and forced by p to have rank < a, is a set
(not a proper class). In particular for any name Q, the collection of efficient
names for elements of Q is a set.
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PRrROOF. Clear from Claim 2.4. =

We take (Pa,Qﬁ | < 6,8 < &) to be a countable (respectively finite) support
forcing iteration of length ¢ if:

1. Py is the trivial poset with () as the sole condition.

2. Qp is a Pg-name for a poset.

3. Conditions in P, are function with countable (respectively finite) domain

contained in a.
4. For p € P, and p € dom(p), p(u) is an efficient P,-name forced to be an
element of @u-

5. p* <p, piff for all u € dom(p), p*[plFp, p* (1) <g, P(1)-
This definition falls into the standard template for forcing iterations with count-
able (respectively finite) support. The only part where we are being more specific
is the use of efficient names in condition (4). Note that our iteration posets P,
are all sets (not proper classes), by Claim 2.5. Note also that the collection of
p(p) allowed by condition (4) is full, meaning that for every antichain A in P,
and for every list of names u, for a € A so that a IF 4, € QM, there is a name
4* allowed as p(u) by condition (4), so that a IF @* = 1, for each a € A. To see
this, use the standard merging argument to get a name ¥ so that IF o € Q# and
a lF © = 1g, and then apply Claim 2.2 to get an efficient @* which is forced to be
equal to ©. The fullness implies that all the standard results about forcing iter-
ations, including in particular the ones constructing lower bounds in descending
chains with countable support, hold for the definition above.

For consistency, we define forcing compositions with the same restriction to
efficient names: conditions in P * Q are pairs (p,q) where p € P, and ¢ is an
efficient P-name forced to be an element of Q.

§3. Preparing for the countably closed preparation. Fix a cardinal §
of cofinality at least 8;. We eventually intend for § to become the continuum,
but this is not relevant for the time being.

The first part of the preparation is the forcing A = Add(Xy,d), adding §
subsets of ;. Later on we will use these to produce almost disjoint subsets of
w1 that will allow us to properly separate different clique-forcing posets, but this
too is not relevant for the time being.

We view conditions in A as countable partial functions from w; x ¢ into 2.
The support of a condition a, denoted Sp(a), is the smallest (countable) set S
so that dom(a) C wy x S. Given a generic A for A, we write A¢, £ < 6, for the
&th subset of wy added by A. We use AE for the canonical name for the £th set
added by A.

By AJX, for X C §, we mean the restriction of A to conditions a with
dom(a) C w; x X. Given a generic A, we write A]X for AN A[X. For a
condition a we write a[X for the restriction of the function a to w; x X. Note
that A[X is equal to {a[X | a € A}, since A is a filter.

CrLAM 3.1. Any extension of a]X in A[X is compatible with a in A. Conse-
quently ATX is a complete subposet of A, and if A is generic for A over V, then
AlX 1is generic for A[X.
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PRrRoOOF. Clear. =

The forcing A is homogeneous under permutations of §. We will preserve this
homogeneity for the future steps of the preparation. Before we continue with the
definitions of these steps, let us fix some notation, and establish some claims,
related to this homogeneity.

CLAM 3.2. Let o be a permutation of 6, meaning a bijection of § with itself.
Then o extends to an automorphism of A by setting o(a)(co,0(§)) = ala,§).
This in turn allows extending o to act on A generics and names in the obvious
way, with the properties that o(a) € 0(A) < a € A and o(z) = {{(c(9), (D)) |
(9,b) € 2}, so that o(&)[o(A)] = z[A] and Aa(g) [0(A)] = A¢[A].

PROOF. Clear. -

CrLAM 3.3. Let a € A. If o is a permutation of § so that o is the identity on
Sp(a) N o’ Sp(a), then a and o(a) are compatible, and a U o(a) is their largest
lower bound.

PRrROOF. Using the fact that o is the identity on Sp(a) N ¢” Sp(a), check that
a and o(a) agree on the common part of their domains. |

CLAIM 3.4. Let o be a permutation of §, and extend o in the manner of Def-
inition 3.2. Let P be a A-name for a poset. Then o induces an isomorphism
of A x P into A x o(P) given by (a,p) — (o(a),o(p)). We refer to the map as
o. Note that this map fixes the interpretation of the second coordinate, meaning
that if Ax P is generic for A P, then 0" (A P) = o(A) * P. As in Claim 3.2,
o then extend further to act on A x P names and generics.

PRrROOF. Clear. =

DEFINITION 3.5. 1. In the context of Claim 3.2, a name X is invariant if
o(X) = X for all . The name X is invariant modulo e C ¢ if o(X) = X
for all o which are the identity on e.

2. We make the same definition for A * P-names in the context of Claim 3.4.
This makes sense when P is invariant, so that the extended o maps A x P-
names to A x P-names.

If X names a structure, for example a poset or a poset with additional rela-

tions, X is invariant (and similarly modulo e) if the invariance condition holds
for the underlying set and all implicit relations, such as the poset order.

Define the A-support of an A-name o to be the smallest S C ¢ so that o is an
AlS-name, or, equivalently, Sp(c) = U, ,ye, SP(7) USp(a).

Similarly, working with a composition A x P, define the A-support of an A x P-
name o, denoted Sp(c), to be U, (4 s9ye0 SP(T) U Sp(a) U Sp(p).

We refer to the A-support simply as support, when the intention is clear from
the context.

We say that two conditions p, v in a poset P are equivalentif p < uAu < p. We
write p = u in this case. The conditions do not have to be equal, and in forcing
compositions and iterations there are typically equivalent conditions which are
not equal to each other.
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DEFINITION 3.6. Let P be an A-name for a poset. Let x < 6. Then P is
K-appropriate if:

1. (Invariance) P is invariant.

2. (Support size) For every (u,a) € P, there is an efficient name p for an
element of P so that a - p ~ @ and | Sp(p)| < k. (Note that (a, p) is then an
element of AxIP.) Moreover such p can be found with Sp(p) € Sp(a)USp(t).

3. (Shift compatibility) Say that (a,p) € A * P shifts compatibly if (a,p) and
(o(a),o(p)) are compatible for every permutation o which is the identity
on (Sp(a) USp(p)) N e”(Sp(a) USp(p)). Then there is D C A * P so that:
(a) D is dense in A % P.

(b) If (a,p) € D and p is a permutation of § then (p(a), p(p)) € D.

(c) If {a,py € D and a IF p' ~ p then (a,p’) € D.

(d) Every (a,p) € D shifts compatibly.
A is k-appropriate modulo e C & if it satisfies the above conditions with invariance
replaced by invariance modulo e, and condition (3) revised to permutations p
which are the identity on e, and to conditions (a, p) which shift compatibly modulo
e, meaning that (a,p) is compatible with (o (a), o(p)) for o which are the identity
on e and on (Sp(a) USp(p)) [ o”(Sp(a) U Sp(p)).

LEMMA 3.7. The trivial poset (having ) as its only element) is k-appropriate.

PROOF. Clear. We only note that all conditions in A * P shift compatibly by
Claim 3.3. -

CLAIM 3.8. If P is k-appropriate and k' € [k,0), then P is k' -appropriate.
PRrOOF. Clear. B

CLAIM 3.9. Let P be k-appropriate. If i is an AxP-name of forcing-hereditary
size < K, then there is &*, forced to equal © and still of forcing-hereditary size
at most k, with |Sp(*)| < k. Moreover if & is efficient (respectively efficient
below {(a, p) ), then &* can be picked to also be efficient (respectively efficient below

(a,p)).

PROOF. Let (y,u) € &. By induction there is Z;,, of forcing hereditary size
at most k and with support of size < k, which is forced to equal y. If gy is
efficient below u we can pick Z;, to also be efficient below u. By the support
size condition (2) of Definition 3.6, we can find w, € A * P which is equivalent
to u, and has support of size < k.

Now set &* = {(%y,4,wy) | (¥,u) € £}. Then &* inherits any efficiency enjoyed
by &, and using the fact that || < it is clear that |Sp(z*)| < k. =

Let A be generic for A, and let J C §. Note that A[J is generic for AJJ
over V. Some A-names o have the property that o[A] belongs to V[A]J], and
is independent of A[§ — J. We want in this case to define an A[J-name (o[J)
with the property that (o[J)[A[]J] = o[A].

Say that a fixes o at J if there is an A[J-name & so that a IF ¢ = 7. Recall
that Sp(o) is minimal so that o is an A Sp(c)-name. Then, for a generic A with
a € A, we have o[A] = o[A] Sp(o)] = 7[A]J], and it follows from this that o[A]
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belongs to V[A[(Sp(e)NJ)]. So we may assume that & is an A[(Sp(c)NJ)-name.
We then have that already a| Sp(c) forces o = 5.

If (r,b) € o, then any condition ¢ < a[ Sp(c), b forces that 7 € &, and therefore
has an extension ¢’ which fixes 7 at J. There is therefore an antichain X%%(7,b),
contained in A|Sp(o), maximal among extensions of a| Sp(c), b, so that all ¢ €
X7(r,b) fix T at J.

DEFINITION 3.10. (Using the notation above.) When a fixes o at J, define
olod = {{7|cJ clJ) | {1,b) € 0 Ac € X7%(7,b)}. (The definition is by recursion
on von Neumann rank.) If the empty condition fixes o at J, then define o|J to
be o|gJ.

Cram 3.11. Suppose that a fizes o at J. Then Sp(o|,J) C J N Sp(o), and
alkol,J =0.

PRrROOF. Clear from the definitions by induction on rank. We only note that
if ¢ fixes o0 and 7 at J, and ¢ and 7 are A[J-names witnessing this in the sense
that clFo =6 A7=7,and if clF 7 € g, then ¢[J IF T € 6. This fact comes up
in the inductive proof. a

LEMMA 3.12. Let A be generic for A. Suppose P is k-appropriate. Let J C 4,
and suppose that § — J is uncountable.

1. P[A]NV[A]J] (meaning the poset, with its order) belongs to V[A]J] and is

independent of Al(§ —J).

We write P[J for P[A]NV[A]J]. Given a generic P we write P|.J for P NPJJ.
We write P; for the natural A-name for P[.J, namely {(p,b) | (3a)(p,a) € P,b <
a,blFpe V[A.[J]}. Condition (1) shows that the empty condition in A fizes Py
at J. We set P[J =P;|J. By Claim 3.11, this is an AlJ-name for P|J.

2. Suppose that |J| > xT. Then AlJ P.J is a complete subposet of A x P.
We denote AlJ «P.J as (A *P)[J.

PROOF. To prove condition (1), we show that if aj,az € A, a1[J = az]J, and
Z is a A[J-name, then a; and ay cannot force incompatible information about
the membership status of & in P. A similar argument applies to membership in
the poset order of P.

Suppose otherwise, and fix witnesses ai,as, . Since § — J is uncountable,
and since Sp(a;) and Sp(az) are both countable, we can fix a permutation o of
0, which is the identity on J, and such that Sp(a;) — J and Sp(c(az)) — J are
disjoint. Since aq[J = az[J, this implies that a; and o(as) are compatible, and
hence so are 0~ 1(a;) and as.

Work with a generic A for A which contains 0~!(a;) and ay. Note that since
o is the identity on J, £[A[J] = &[o(A)[J]. Call this element . Then, by choice
of a1, as, and since ay € A while a; € 0(A), we have = € P[A] iff 2 & P[o(A)].
In particular P[A] # P[o(A4)]. Since P[A] = o(P)[o(A)], this contradicts the
invariance of P.

Next we prove condition (2) of the claim. We have to show that A[J PrJ
and A % P agree on compatibility, and that conditions in A % PP have residues in
Al xP]J.
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To handle compatibility, fix (a1,p1), (as,p2) € AlJ * P|J and suppose that
(a*,p*) is a lower bound for these conditions in A x P. Using the support size
condition (2) of Definition 3.6, we may replace each (a;, p;) with an equivalent
condition that has support of size < k, still contained in J. We may similarly
assume that (a*,p*) has support of size < k. Since |J| > k1, we can find a
permutation o of § which is the identity on Sp(aq) U Sp(ag) U Sp(p1) U Sp(p2),
and maps the support of (a*,p*) into J. Then (c(a*),o(p*)) is a condition in
AlJ = IP’[J . By the invariance of the poset ordering, it is a lower bound for the
conditions (o(a;), o (p;)) = (ai, pi), with the equality holding because o fixes the
support of the conditions.

Finally, we show that every condition (a,p) in AxP has a residue in A].J«P[.J,
meaning (a,p) € AJJ = P|J so that every extension of (p,a) in AlJ * P.J is
compatible with {(a,p) in A x P.

Fix (a,p). By the support size condition (2) of Definition 3.6, we may assume
there is U C § of size x so that Sp(a),Sp(p) € U. We need to find a residue
for (a,p), and we will do this by taking the image of the condition under a
permutation that shifts U — J into J.

Since |J| > T and |U| = k, we have |J — U| > k. We can therefore find
Y CJ—U of size [U — J| < k. Let o be a permutation of § which sends U — J
to Y, sends Y to U — J, and is the identity otherwise. Let 7 = ¢!, and note
that JN7"”J = J—Y, and hence 7 is the identity on JN7".J. We also have that
o"U C J.

Let @ = o(a) and let p = o(p). Then Sp(a),Sp(p) C U C J. So (a,p) €
AlJ «P|.J. We will prove that any extension of (@,p) in Al J * P|J is compatible
with (a, p).

Fix (b,¢) € A]J % P|.J extending (a, p).

Let D witness the shift compatibility condition (3) of Definition 3.6. Note first
that (b, ¢) has an extension (b',¢’) which still has support contained in J, and
belongs to D. This is a consequence of the density and invariance properties of
D: By the support size condition, modifying ¢ but keeping its support contained
in J, we may assume that |Sp(¢)| < k. Let (V/,¢’) be any extension of (b, q)
in D. Again using the support size condition, we can find ¢”, forced by b
to be equivalent to ¢/, with |Sp(¢”)| < k. Then (¥',¢"”) € D, and |Sp(d') U
Sp(¢")] < k. Since |J| > T we can find a permutation p of § that sends
Sp(b') U Sp(¢”) into J, without moving any of the ordinals in Sp(b) U Sp(q).
Then {(p(1), p(d”)) < (p(b), (@) = (b, ), Sp(p(}') USp(p(d")) C J, and, by
the permutation invariance of D, (p(b'), p(¢")) € D.

We can therefore assume that (b, §) itself belongs to D, still preserving the
fact that Sp(b) U Sp(¢) C J. By the shift compatibility condition, and since 7
is the identity on J N 7".J, it follows that (7(b),7(¢)) and (b, ¢) are compatible.
Since (7(b),7(¢)) extends (7(a),7(p)) = (a,p), this implies that (a,p) and (b, ¢)
are compatible. B

It is worth noting that in the situation of condition (1) of Lemma 3.12, P[J
need not be generic for P[J over V[A[J].

REMARK 3.13. Work under the assumptions of condition (2) of Lemma 3.12.
Fix (a,p) € A xP with Sp(a),Sp(p) C U and |U| < k. Fix any permutation o of
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0 so that o” (U — J) C J — U, and so that o is the identity on J — o”(U — J).
The proof of Lemma 3.12 then shows that (o(a),c(p)) is a residue of (a, p) in the
poset A[J*]P’[J, in the sense that any condition in A [J*P[J which is compatible
with (o(a),o(p)) in A]J * P.J, is compatible with (a,p) in A * P.

CLAIM 3.14. Let P be k-appropriate. Let A x P be generic for A x P. Let
J1 C Jy €6, with |Jo — Ji| > k. Let {a,p) € Ax P, with Sp(a),Sp(p) C U and
|U| < k. Then there is a permutation o of 6, which maps U — Jo into Jo — Jp,
maps o’ (U — Ja) onto U — Jo, is the identity otherwise, and so that {(o(a),o(p))
belongs to A x P.

PROOF. Suppose not, and let (b,§) € A * P force this. Without loss of gen-
erality we may assume that (b,¢) < {(a,p). By the support size condition (2)
of Definition 3.6, we may assume that Sp(b),Sp(¢) are contained in a set U*
of size k, and we may assume U* DO U. Now take any permutation ¢ which
maps U* — Jp into Jy — (J; UU*), maps ¢”(U* — J3) back onto U* — Jo, and
is the identity otherwise. Such a permutation exists since |Jo — J1| > k. Then
(o(b),0(¢)) is compatible with (b, ¢) by Remark 3.13. But any condition wit-
nessing this is an extension of (b, ¢) which forces (o (a),o(p)) into the generic
object, a contradiction. =

CLAIM 3.15. Let P be k-appropriate. Let I C & with |I| > &t and |6—1I| > k™.
Let AT « P|I be generic for AT« PI. Let (ai,p;) € A « P, fori e {1,2}. Let
U; 2 Sp(a;) USp(p;) and suppose that |U;] < k. Suppose there are generics
A; % P; for A x P, containing AlI * P|I, with (ai,p;) € A; * P;. Suppose finally
that Uy — I and Us — I are disjoint. Then {a1,p1) and {(az,p2) are compatible.

PROOF. Let J = I UUs,. Let Ay * Py = As]J  Py]J, a generic for AJ «P.J
containing (as, pe) and A[I x P[I.

By Claim 3.14, with J; = Uy and J, = I, we can find a permutation o of 9,
which maps Uy — I into I — Uy, maps ¢”(U; — I) back to Uy — I, is the identity
otherwise, and so that (o(a1),o(p1)) belongs to Ay * Py, hence to A[I* P|I, and
hence to Ay * P». In particular (o(ay),o(p1)) is compatible with (as, o), and
this can be witnessed by (b,q) € Ay * P,. By Remark 3.13, (0(a1),0(p1)) is a
residue of (a1, p1) to A[J % P|J. It follows that (a1,p1) is compatible with (b, ),
and hence with (as, pa). =

DEFINITION 3.16. Let A be generic for A, and let P be an A-name for a poset.
Define P(=%) to be the restriction of P[A] to condition p[A] with |Sp(p)| < k.
Let P(=%) name this poset.

LEMMA 3.17. Let A be generic for A. Suppose P is k-appropriate. Let J C 4.
Then:

1. PES[A|NVI]ALJ] is dense in P[A] N V[A|J]. In particular the two posets

are forcing isomorphic.

2. PEW[A] N V[AJ] belongs to V[A]J] and is independent of A}(5 —J).

3. Suppose that |J| > k. Then AT «P(SR)) T is a complete subposet of A xIP.

ProOOF. Condition (1) is immediate using the support size condition (2) of
Definition 3.6. Indeed every condition in P[A] N V[A[.J] has an equivalent condi-
tion in P(S%)[A] N V[A]J]. Conditions (2) and (3) follow from Lemma 3.12 and
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its proof if 6 — J is uncountable. So we may assume otherwise. In particular we
can write J as a strictly increasing union UE <nt Je-

Note that if p = p[A] € P(sk) [A]NV[A]J] then p has a name p’ with Sp(p’) C J
and | Sp(p')| < k. This is immediate from the fact that, for any p, A Sp(p) and
AlJ are mutually generic extensions of A[(Sp(p) N J).

It follows that P(S®)[A]NV[A[J] is equal to Uent P(S[A]NV[A]Je]. Since
8 — J¢ is uncountable, each P(=%)[A] N V[A[J¢] belongs to V[A]J¢] and is inde-
pendent of AJ(6 — J¢). Condition (2) of the current lemma follows from this.

For condition (3), fix {(a,p) € P(<) [A], let ¢ < kT be large enough that
Sp(a) N J,Sp(p) N J C Je, and let (a,p) be a residue of (a,p) in the poset
AlJeyq P(sk) [Jet1, obtained through a permutation o as in Remark 3.13 for
Jetr1. Then by the remark, the same condition (a, p) is in fact a residue of (a, p)
in AlJ, * P(S®)].J, for any 7 > € + 1. From this it follows that (@, p) is a residue
of (a,p) in U, v ALTy * PEDLT, = AL « PSR .

DEFINITION 3.18. A poset Q is (k, Ny )-stemmed if it is equipped with a well-
founded pre-order s so that:
1. Q/s has size k. By Q/s we mean the collection of equivalence classes of s,
that is equivalence classes of the relation p s g A g s p.
2. Each s-equivalence class is countably directed, meaning that every count-
able subset of the equivalence class has a lower bound in the class.
The rank of s, meaning the least ordinal into which s embeds, is w;.
For every countable «, the set of p of rank « in s is predense in Q.
5. If ¢;, i < w, are compatible in Q, then |J is a condition in Q and a
largest lower bound for g;.
6. If g is a largest lower bound for ¢;, i < w, and similarly with ¢’ and ¢, and
if for each 4, ¢; and ¢} are in the same s-equivalence class, then ¢ and ¢’ are
in the same s-equivalence class.

= w0

<w 4i

A typical example of a (k,N;)-stemmed poset is any “stems and commit-
ments” poset where the stems come from a set of size k, any countably many
commitments can be joined, and stems are sequences of countable length. The
relation s witnessing the conditions of Definition 3.18 is stem extension. For
condition (5), take a condition with stem s and commitment H to formally be
({0} x s) U ({1} x H).

DEFINITION 3.19. Suppose P is k-appropriate. Let @ be an A % P-name for a
poset. Then Q is invariantly (k, R1)-stemmed modulo e if:

1. Q is forced to be (K, N1)-stemmed, with witnessing preorder $ say.

2. Q, together with the poset order, the preorder §, and a name f forced to
give an injection of Q/5 into & (viewed as an $-invariant function on Q), is
invariant modulo e.

3. For each ¢ € dom((@)7 there is ¢’ of forcing-hereditary size < k, so that
¢ = q.

If e = () then we say that Q is invariantly stemmed.

DEFINITION 3.20. Let Q be invariantly stemmed modulo e, and let $ and f

witness this. Let (a,p, ¢) € AxPxQ. We say that (a,p) fizes f around § if there
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are ¢;, i < w, so that (a,p) forces ¢ to be a largest lower bound for the ¢;s, and
forces a value for f(¢;) for each i.

CLAIM 3.21. Let P be k- appropriate, and let Q be invariantly (k,Ny)-stemmed
modulo e, with witnesses $ and f say. Then for any (a,p,q) € Ax P« Q, there
is (a*,p*) < {(a,p) which fizes f around .

PROOF. Clear, as we can simply extend (a, p) to fix a value for f(Q), and take
all ¢; to equal q. -

CLAIM 3.22. Let P be k- appropriate, and let Q be mvamantly (k, Ny)-stemmed
modulo e, with witnesses $ and f say. Suppose that (a,p) fizes f around each ¢y,
and forces ¢ to be a largest lower bound for the ¢,s. Then {(a,p) fizes f around
q.

PRrROOF. For each n we have ¢y, i < w, so that (a,p) forces that ¢, is the
largest lower bound for conditions ¢y, ;, and (a, p) forces a value for f (Gn,;)- Since
(a, ¢) forces ¢ to be the largest lower bound for the conditions ¢y ;, ¢,n < w, these
conditions witness that (a,p) fixes f around g. -

CLAIM 3.23. Let Q be tmvariantly stemmed modulo e, and let s andf witness
this. Suppose that {(a,p) fizes f around ¢. Let o be a permutation of § with

ole =1id. If {a,p) and {o(a),c(p)) are compatible, then every lower bound for
these two conditions forces ¢ and o(q) to be compatible.

PRrROOF. Let (a*,p*) be a lower bound for (a,p) and (o(a),o(p)). Fix ¢;,
i < w, so that (a,p) forces ¢ to be a largest lower bound for the ¢;s, and forces
a value for f (¢;) for each i. By the invariance of f , and since f maps into V,
(o(a),o(p)) forces the same value for f(o(¢;)) that (a,p) forces for (g;). Since
(a*,p*) extends both (a,p) and (o(a),o(p)), it forces the same values, and in
particular forces ¢; and o(¢;) into the same $-equivalence class. It follows by
condition (6) of Definition 3.18 that (a*,p*) forces ¢ and o(¢) into the same
$-equivalence class, and hence forces them to be compatible. n

An A s P-name Q for a poset can also be viewed as a A-name for a P-name for
a poset, and as such it can be composed with P. Our next lemma is that, under
some assumptions, mainly that P is appropriate and Q is invariantly stemmed,
this composition retains the property of being appropriate.

To maintain the support size condition (2) of Definition 3.6, we need the
following claims.

CLAM 3.24. Suppose that P is K-appropriate, and suppose that AxP is kT -c.c.
Let Q be mvamantly (k, Ry)-stemmed modulo e. Let ¢ be an A P-name for an
element of Q. Then there is an efficient name ¢* forced in A+ to equal §, and
so that | Sp(¢*)| < k.

PROOF. Let Z be a maximal antichain of conditions (a,p) € A * P for which
there is @ € dom(Q) so that (a,p) I ¢ = 1. For each (a,p) € Z let 14, € dom(Q)
be such that (a,p) I+ ¢ = 14,. By condition (3) of Definition 3.19, there is
u, p of forcing-hereditary size < k, forced to equal t,,;. Now using the chain
condition and a standard merging of names argument, we can produce ¢, of
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forcmg—heredltary size < k, so that each (a,p) € Z forces ¢ = @, ;. In particular
it is forced that ¢’ = q.

By Claim 2.3, there is an efficient ¢”, forced to equal ¢, and still of forcing-
hereditary size < k. By Claim 3.9, there is ¢*, forced to equal ¢/, which is still
efficient, and with | Sp(¢*)| < &. =

CLAIM 3.25. Suppose that P is k- appropriate, and suppose that AxP is kT -c.c.
Let {a,p) € AP, let &,2* be A xP-names, and let J C & with |J| > k. Suppose
that Sp(z) C J, |Sp( N < K, &* is efficient, and (a,p) Ik &* = &. Then {(a,p)
forces that there is an efficient y with the same interpretation as &, and with
|Sp(9)| < k and Sp(y) C J.

PROOF. Say that an A s P-name @ is frugal if for all (i, (b,7)) € @ we have
that |Sp(b)|,|Sp(7)| < &, and w is frugal. By the support size condition (2) of
Definition 3.6, we may assume that % is frugal, while maintaining that Sp(&) C J.

We prove the claim by induction on the von Neumann rank of £*. In fact we
prove the stronger claim, that for any I C J with |I| = k* and I D J N Sp(z*),
we can obtain the conclusion of the claim with Sp(y) C I.

Fix I as above. We may assume, using the support size condition (2) of
Definition 3.6, that | Sp(a)|,|Sp(p)| < k. It is enough to handle a more specific
case, where we add the assumption that Sp(a) N J,Sp(p) N J C I. To see that
the specific case implies the general case, consider a general (a,p) and suppose
for contradiction that (a,p) does not force the existence of an efficient § with the
same interpretation as #* and so that Sp(y) C I and |Sp(y)| < . Extending
(a,p) we may assume it forces that such y does not exist. Fix any permutation
o which maps (Sp(a) USp(p)) N (J —I) into I — (Sp(2*) USp(a) U Sp(p)), maps
" ((Sp(a) U Sp(p)) N (J — I)) back onto (Sp(a) U Sp(p)) N (J — I), and is the
identity otherwise. Note that the claim assumptions hold for o (%), o(2*) = o(&),
o"J =J, o(a), and o(p). Moreover Sp(c(a)) N J,Sp(c(p)) NJ C I, and hence
using only the specific case mentioned above, we have that (o(a ),U( )) forces
the existence of an efficient § with the same interpretation as of £*, and so that
Sp( ) C I and |Sp(y)| < k. Hence (a,p) and (o(a),o(p)) are incompatible. Let
J = TU(Sp(a)USp(p) — J). Without loss of generality, shrinking I if needed, we
may assume that § — .J is uncountable. Then by Remark 3.13, (0'(a), o(p)) is a
residue of (a, p) to A]J«P|.J. In particular (a,p) and (o(a), o(p)) are compatible,
a contradiction.

Suppose then that Sp(a) N J,Sp(p) N J C I. Fix J; C Jy C I with the same
properties as I (meaning that |J;| = x and J; 2 J N (Sp(2*) U Sp(a) U Sp(p)))
and so that |[I — Jo| = |Jo — Ji| = kT

Fix a generic A * P containing (a,p). To prove the claim, we will show that
for such generics, z*[A * P] depends only on A[Jy % PlJy;. We can then take
y = 7(&*) for a permutation T which is the identity on J5, maps Sp(&*) into I,
and maps (a,p) to an element of A % P. Such 7 can be found using Claim 3.14.

By Claim 3.12, A[J; «P|.J; is a complete subposet of A . By induction, all
elements of 2*[A * P] belong to V[A[Jy * P[J1].

Suppose now that there is another generic A’ * P’ containing (a,p), with
A'lJy = AlJa, P'1Jy = P[Ja, yet @*[A’ % P'] # 2*[A % P]. Then there is some
e = é[A[Jy x P]J1] on which #*[A* P] and £*[A’ « P'] disagree. For definitiveness
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suppose that e € 2*[A * P| and e ¢ #*[A’ x P’]. This implies in particular that
e € i[Ax P).

We may assume that ¢ is frugal. Then both é and & are A x P(=#)_names, with
support contained in J. By Lemma 3.17, the fact that ¢ € £ must be forced by
some condition (b, ;) € AlJ x PSR

Let U = Sp(a) U Sp(p) U Sp(2*). Let E = J; UU. By Lemma 3.12, A[E x
P|E is a complete subposet of A % P. Since é¢[A’  P'] ¢ &*[A’ » P'], and since
Sp(i*),Sp(é) C E, there must be a condition (by, go) € A'|E * P'| E forcing that
¢ ¢ ©*. Extending (bs, ¢2), and since {(a,p) € A’'|E * P'|E, we may assume that
(b2, 42) < (a,p).

By Claim 3.14 we can find a permutation p of §, which maps U — J; into
Jo — Ji, maps p”’ (U — J) back onto U — Js, and is the identity otherwise, with
(p(ba), p(ds)) € A' 5 "

Since A'|Jo = AlJa, and P'|Jo = P|Ja, we have (p(bs),p(¢2)) € Ax P. In
particular (p(b2), p(¢2)) and (b1, ¢1) are compatible, and indeed have a lower
bound in AJJ « P(S®)|J. Note UNJ C J; C Ja, and hence U — J, = U — J.
So p maps U — J into J — (U N J), maps p”"(U — J) back onto U — J, and is
the identity otherwise. By Remark 3.13 it follows that (p(b2), p(¢2)) is a residue
of (by, o) in AT« P(S%) 1], Since (p(b2), p(d2)) and (b1, ) have a lower bound
in AJ * P(SA)]J, this implies that (b1, ¢1) is compatible with (ba, g2). But this
is impossible since the former forces é € & and the latter extends (a,p) while
forcing é & &*. -

LEMMA 3.26. Let P be Kk-appropriate, and let (@ be invariantly (k, N1 )-stemmed
modulo e. Suppose A x P is countably closed and kT -c.c. Then P x Q is k-
appropriate modulo e.

PROOF. The invariance condition (1) of Definition 3.6 for P x Q is immediate
using the invariance of P and the invariance of Q modulo e.

For the support size condition (2), fix a condition (a,p, ). Let U = Sp(a) U
Sp(p) U Sp(¢). Using the support size condition for A x PP, there is an efficient
name ' for an element of P, forced by a to be equivalent to p, with support of
size < k contained in U. If |Sp(¢)| = &, then there is nothing further to do.
Suppose |Sp(¢)| > k. In particular |U| > x. By Claim 3.24 there is an efficient
¢’ with support of size < r, which is outright forced to equal ¢. By Claim 3.25,
there is an efficient ¢”, outright forced to equal ¢/, with support of size < x and
contained in U. Then a forces that (p, ) and (p/,¢"”) are equivalent, and (p/, ¢"")
has the required support.

It remains to prove the shift compatibility condition (3) of Definition 3.6 for
P« Q. Let D witness this condition for . Let D* consists of (a,p,q) so that
(a,p) € D and (a,p) fixes f around ¢. Conditions (3a)-(3c) for D* are easy to
check from the same conditions for D, the invariance of f and @, and Claim 3.21
in the case of density.

To prove condition (3d), fix {(a,p,q) € D*, and fix a permutation o which
fixes e and is the identity on J* [ o”'J*, where J* = e U Sp(a) U Sp(p) U Sp(g).
In particular o is the identity on J()o”J where J = e U Sp(a) U Sp(p). Since
(a,p) € D it follows that (a,p) and (c(a),o(p)) are compatible. Let (a*,p*)
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witness this. By Claim 3.23, (a*,p*) forces ¢ and ¢* to be compatible. So
(a,p,q) and (o(a),o(p),o(q)) are compatible. o

For the next lemma we will deal with products of images of Q under permu-
tations. To make the products invariant, we index them not using ordinals, but
using the sequences of subsets of wy added by A. Here is the precise definition:

Recall that the generic A for A adds & subsets of wy, and that A; = A¢[A] is
the {th set. Given h: k — d, let c(h) be the map & +— Aj(¢). Let ¢(h) name this
map. Note that, for a permutation o of §, ¢(o o h) = a(¢(h)).

DEFINITION 3.27. Let Q be an A % P-name for a poset, and let h: k — 4.
Suppose that Q is invariant modulo range(h). For expository purposes fix a
generic A P for A*P. By H 7(Q)[A * P] with countable (respectively finite)
support we mean the countable (respectively finite) support product of the posets
T(Q)[A * P], taken over all possible values of 7o h for permutations 7 of § in
V, with 7(Q)[A % P] indexed by ¢(r o h). Conditions in H T(Q)[A * P] are
functions r with countable (respectively finite) domain, each k € dom(r) is equal
to ¢(Toh) for a permutation 7 € V of §, and r(k) is an element of 7(Q)[A*P]. The
ordering is deﬁned coordinate-wise in the natural way. H(h) (Q) itself names
the poset H(h) (Q)[A % P], in such a way that for each 7 € dom(H(h) (Q)),
there is a countable (respectively finite) K(r) € V so that it is outright forced
that dom(7) = {c(toh) | Toh € K(i)}. We refer to K(r) as the underlying
support of 7. The actual support is {c¢(Toh) | Toh € K(r)}, and does not belong
to V.

When we use this notation without explicitly stating the support size, we mean
the countable support product. We refer to h as the base of the product, and to
k as the base height. When we write H(The)z 7(Q) we mean the restriction of the
above product to conditions with underlying support contained in {Toh | 7 € Z}.

The invariance of Q modulo range(h) is used to make sense of Definition 3.27:
while there may be many different permutations 7 yielding the same 7 o h, they
all give rise to the same name 7(Q).

The forcing H(h 7(Q)[A * P] is isomorphic to the standard product of the
indexed posets. But the product as we defined it is highly symmetric, in the
sense of the next claim, while the standard product is not.

CrAamM 3.28. Work under the assumptions of Definition 3.27. Let o be a per-
mutation of 6. Then O'(H( 7(Q)) = H(h 7(Q), in both the countable and finite
support cases.

PROOF. Clear using the fact that o(¢(t o h)) = ¢é(o o 7o h). For each 7, in
both U(th) (Q)) and H(Th) (Q), the poset indexed by o(¢(1oh)) = é(coToh)
is o(7(Q)). =

In light of the last claim, we refer to H(h) 7(Q) as an invariant product. Let
B denote this product. In light of the invariance, we can view permutations o of

§ as acting on A x P % B-names. In particular, they can act on the names B, for
the components of the B generic, with B, generic for T(Q).
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CramM 3.29. (Under the assumptions of Definition 3.27 and with the notation
above.) o(B;) = Byor-

PROOF. Again clear from the fact that o(¢(7 o h)) = é(ooToh). o

REMARK 3.30. Note that ¢(7 o h) has von Neumann rank « + 1. If the con-

ditions in 7(Q)[A * P] have rank at most u, then it follows that the conditions
in H(Th) 7(Q)[A % P] each have von Neumann rank below max{x, 1} + w. This
would not be true for the standard product of §* factors; with a standard product
indexed by ordinals, the ranks would be at least unbounded in 4.

REMARK 3.31. Let J C §, and suppose that b € H,(rh)T(Q)[A * P| belongs

to V[A]J % P]J]. Then b belongs to the restricted product Hs-he)Z(J) (Q)[A * P),
where Z(.J) consists of the permutations 7 so that (7 o h)”x C J. This is clear
from the definition, since for any 7 so that ¢(7 o h) belongs to the domain of b,
and every £ € (7 o h)"k, A¢ is coded into ¢(7 o h) and hence coded into b. This

remark, like Remark 3.30, would fail for the standard product.

REMARK 3.32. As with all products (independently of our specific indexing),

the restricted product H(The)z((@) [Ax P] is a complete subposet of the full product.
The residue of a condition b in the full product is b[{c(T o h) | T € Z}. We refer
to this residue as b|Z. We have that b < b|Z, and as usual, any extension of b|Z

in the restricted product is compatible with b.

CLAIM 3.33. Let I be Kk-appropriate. Let Q be an A *.]P’—name which is in-
variantly (k, R1)-stemmed modulo e, with witnesses $ and f say. Then for every

permutation T of 6, T7(Q) is invariantly (k.Ny)-stemmed modulo T"e, with wit-
nesses 7($) and 7(f).

PRrROOF. Clear from the definitions, as they are all preserved under permuta-
tions. B

LEMMA 3.34. Let P be Kk-appropriate. Suppose A x P is kt-c.c. and count-
ably closed. Let Q be invariantly (k,N;)-stemmed modulo e. Let h: k — e be

surjective. Let B = H(Th) T(Q) Then P B is r-appropriate.

PROOF. Fix § and f witnessing that Q is invariantly (, X; )-stemmed modulo
e.

For each permutation 7 of d, we may use Lemma 3.26 and its proof for T(Q)
The assumptions of the lemma on being invariantly stemmed hold using Claim
3.33. Tt follows that P+ 7(Q) is k-appropriate modulo 7”e, for all 7. This is used
implicitly below.

Let us now check that the conditions of Definition 3.6 hold for P % B.

The invariance condition (1) of Definition 3.6 is clear, using the invariance of
P and Claim 3.28.

The support size condition (2) is immediate from the same condition for P %

7(Q) for each 7, using: the restriction to countable underlying support in V' for

the product Hg_h) T((@)7 the xT-chain condition for A *P, and a merging of names
argument in the style of Claim 3.24.
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It remains to prove the shift compatibility condition (3) of Definition 3.6. Let
D witness this condition for > and let D* consist of (a,p,b) so that (a,p) € D,
(a, p) forces a value K for the underlying support of b, and for each p = 7oh € K,
(a,p) fixes 7(f) around b(¢(p)). (By b(é(p)) we mean the name for the value of
the function named by b, at ¢(p).)

It is clear that D* is dense, since for any (a, p, b), one can strengthen (a, p) to
force a value for the underlying domain of i), then strengthen in countably many
steps to fix 7(f) around b(é(p)) for each p = 7 o h in the underlying domain,
and finally strengthen to get into D. It is also clear that D* is invariant under
permutations o, and under replacing (a,p, b) with (a, ', ') when a I p = p’ and
(a,p)IFb=1.

Suppose now that (a, p, b) € D*, and o is a permutation which is the identity
on JNg”J where J = Sp(a) USp(p)U Sp(b) Since (a,p) € D we have that (a, p)
and (o(a),o(p)) are compatible. Let (a*,p*) be any common extension of these
conditions.

Let K be the value that (a,p) forces for the underlymg support of b. Let
T;0h, i € w, enumerate K without repetitions. Let b; be the coordinate of b that
corresponds to the factor supported by ¢(r; o h). Note that 7/'e U Sp( ;) C J,
since b has support contained in J, and since 7’e is needed to support ¢(7; o h),
which in turn is incorporated into b. If it happens that o fixes 7/'e, then the
assumptions on o in the definition of shift compatibility modulo 7/’e all hold,
and hence by Lemma 3.26 applied to the factor Ti(Q) of B we have that (a*, p*)
forces b; and a(l')i) to be compatible.

We will therefore be done if we can show that all common coordinates of the
domains of b and o (b) fall under this case. In other words we need to show that
whenever a member ¢(7; 0 h) of the domain of b is equal to a member o(¢(7j 0 h))
of the domain of o(b), we have that i = j and o fixes range(r; o h).

Suppose that ¢(r; 0 h) = o(é(r50h)). Then 7;0h = o o7 0h. Since Sp(b) C J,
it must be that range(r; o h) C J. Similarly range(c o 7; 0 h) C ¢”’J. Using
the fact that o is the identity on J N o’ J it follows immediately that o is the
identity on range(r; o h). This implies that c o7, 0 h=7,0h =0 o7j o h, hence
7i o h = 7j o h, and therefore 7 = j. -

DEFINITION 3.35. Define E¢, to be the following version of the forcing to add
a fast club in wy. Conditions are sets of the form u(e, H) = ({0} xe)U ({1} x H)
where e is a bounded closed subset of wy, and H is a countable collection of club
subsets of wy. The ordering is given by u(e*, H*) < u(e, H) iff e* D e, H* O H,
and e* —e C( H.

LEMMA 3.36. Let P be k-appropriate. Suppose that A =P is countably closed

and k*-c.c., and suppose the CH holds in V. Let E name ]Eglgf*P], Then:

1. E is invariantly (k,Ry) stemmed.
2. PxE is k- appropriate.

PROOF. The second condition follows from the first using Lemma 3.26. So it
is enough to prove that E is invariantly (k, Y )-stemmed.
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It is clear that | is forced to be (Ry, R;)-stemmed, and hence (k, X; )-stemmed,
with $ naming the order of stem extension. By the chain condition, every subset
of wy in the extension by A %P has a name of forcing-hereditary size < k, and so
do countable sets of subsets of w;. So K satisfies condition (3) in Definition 3.19.
The invariance condition (2) is clear from the invariance of > and the fact that
V[A % P] = V[o(A % P)] for permutations o, so long as we take $ to invariantly
name the order of stem extension, and take f to invariantly name the function
that maps a condition u(e, H) with stem e to f(e), where f is a bijection in V/
of Wi into wy. —|

DEFINITION 3.37. By C(Xy, k) we mean the forcing to add a surjection of w;
onto k, by countable approximations with ordinal domain.

LEMMA 3.38. Let I be K-appropriate. Suppose that A x P is countably closed
and k*-c.c., and suppose the CH holds in V. Let C = C(Ny,k). Then:

1. C is invariantly (r, N1)-stemmed.
2. P« C is k-appropriate.

PROOF. The first condition is obvious with s being the order of extension.
The second condition follows from the first using Lemma 3.26. -

Next we want to prove that countable support iterations of posets as in Lem-
mas 3.34, 3.36, and 3.38 preserve appropriateness, and preserve the xt-c.c.,
which we need for the successor cases of the iterations since it is assumed in
these lemmas. In handling the limit stages, we will need to preserve a bit more.

We say that a map m between two posets C,D preserves incompatibility, if
whenever z,y are incompatible in C, n(z),7(y) are incompatible in D. We do
not require the map to preserve anything else, and in particular it need not
preserve the poset ordering. The existence of an incompatibility preserving map
from C to D is enough to ensure that any chain condition enjoyed by D is also
enjoyed by C.

For a set X, let Fe,1(X, k) denote the poset of countable partial functions
from X into k, ordered by reverse inclusion. If k¥ = k, then this poset has the
k-chain condition, by a standard A-system argument.

DEFINITION 3.39. PP is neatly k-appropriate modulo e if it is k-appropriate
modulo e, and there is a witness D for the shift compatibility condition (3) of
Definition 3.6, so that:

1. Every countable descending chain in D has a largest lower bound, and this
lower bound is itself in D.

2. There is an incompatibility preserving 7: D — Fep1 (X, &) for some X.

3. For o as in the shift compatibility condition (3) of Definition 3.6, and
(a,p) € D, the conditions 7(a,p) and 7w(o(a),o(p)) are compatible in
Fctbl(Xv H)'

If e = ) we say that P is neatly x-appropriate.
REMARK 3.40. If k¥ = &, then condition (2) of Definition 3.39 implies that

AxPis kt-c.c. Condition (3) of the definition implies condition (3d) of Definition
3.6.
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CrAM 3.41. Work under the assumptions of Lemma 3.26, and suppose that
P s neatly k-appropriate modulo e. Let D, X, and m witness this. Then P « Q
is neatly k-appropriate modulo e, and moreover there are witnesses D*, X*, and
7 which neatly extend D, X, and w, meaning that:

1. X* 2 X.

2. If {a,p,q) € D* then {(a,p) € D, and 7*(a,p,§)|X = 7(a,p).

3. If 7*(a,p,q) and 7*(a’,p’,q’) are compatible in Feep1(X*, k), then for any

common extension (a*,p*) of (a,p) and (a’,p’), there is ¢* so that (a*,p*,¢*)
is a common extension of {(a,p,q) and {a',p’,{’)
Similarly for the posets B, E, and C (modulo the empty set) under the assump-
tions of Lemmas 3.84, 3.36, and 3.38.

PRrROOF. Define D* from D exactly as in the proof of Lemma 3.26. Let X*
be the disjoint union of X and (a copy of) w. For {(a,p,q) € D*, there are by
the definition of D* some ¢; so that (a,p) forces ¢ to be a largest lower bound
for the ¢;s, and forces a value for f(ql) for each i. Let e € xk* map 7 to the
value that (a,p) forces for f(qz) Let 7*(a,p,q) = w(a,p) Ue. Choose ¢; above
so that the map associating e to (a,p, ¢) is invariant under permutations o as in
the shift compatibility condition (3) of Definition 3.6. This is possible (using a
well ordering of k¥ and the invariance of f ) since the proof of Lemma 3.26 shows
that the map giving the set of possible {¢;} for each (a,p,§) € D* is invariant.

It is clear from the proof of Lemma 3.26 that D*, X* and 7* satisfy the
conditions of the current claim, including in particular condition (3), which gives
condition (2) Definition 3.39, and also satisfy condition (3) of the Definition. It
remains to check that D* satisfies the condition on closure under largest lower
bounds.

Let (a;, p;, ;) be descending in D*. Since D is neat, there is a largest lower
bound (a*, p*) for {(a;,p;) in D. Let ¢* name the union of ¢;. By condition (5) of
Definition 3.18, (a*,p*) forces ¢* to be a largest lower bound for ¢;. By Claim
3.22, (a*,p*) fixes f around ¢*. So (a*,p*,¢*), which is a largest lower bound
for {a;, pi, gi), belongs to D*.

This proves the current lemma in the case of a poset Q as in Lemma 3.26. The
situation in Lemmas 3.36 and 3.38 is a special case of this. For B as in Lemma
3.34 the proof is similar: Take X* to be the disjoint union of X and I x w, where
I ={7roh| 7€V isapermutation of }. Define D* as in the proof of Lemma
3.34. For (a, p, b> € D*, and p in the underlying support K of b, define €pi W — K
as we defined e above, working with the factor of B at coordinate ¢(p). Then
define e: K x w — & by e(p,i) = e,(i), and set 7*(a,p,b) = 7(a,p) Ue. The
proof of Lemma 3.34 shows that this yields condition (3) of the current claim,
and condition (3) of Definition 3.39. Closure under largest lower bounds can be
proved using the argument above for each factor of the product B in the domain
of the conditions handled. —

LEMMA 3.42. Let (T’a, Qg | @ < 7,8 <) name a countable support iteration
of limit length -y over the extension by A. Suppose that for each o < vy, P, is
countably closed and neatly k-appropriate. Let D, X, 7o witness that Py is

neatly k-appropriate. Suppose that for every a < 8 < ~:



20 NEEMAN, ITAY

1. X, C X5.

2. If (a,p) € Dg then a forces a value d(p) for dom(p), and d(p) is closed
under ordinal successor below 3.

3. If (a,p) € Dg, and a € d(p) or « is least so that d(p) C «, then (a,pla) €
D, and mo(a,pla) = mg(a,p)[ Xa.

4. If mg(a,p) and mg(a’,p’") are compatible in Feopri(Xg, k), then for any com-
mon extension (a*,p) of (a,pla) and {a’,p' ) in AxP,, there is a common
extension {(a*,p*) of (a,p) and {(a’,p') in A x fPB with p* la = P.

Then P'y is neatly k-appropriate, with witnesses D.,, X, ™, which secure condi-
tions (1)—(4) for the case 3 = r.

PROOF. The invariance and support conditions (1) and (2) of Definition 3.6
are clear. We work on the shift compatibility condition (3) of Definition 3.6, the
neatness conditions of Definition 3.39, and the conditions of the current lemma
with § = ~.

If + has uncountable cofinality, then set X, = Ua<,y Xa, put (a,p) in D,
iff a forces a limit ordinal value p for sup(dom(p)) and (a,p) € D, and set
my(a,p) = mu(a,p). Most of the necessary conditions are easy to check in this
case. We only comment on condition (4) of the current lemma. (Note that this
condition implies condition (2) of Definition 3.39.) Fix (a,p), (a,p’) € D~ with
my(a,p) and m,(a’,p") compatible. Let p,p’ be the values forced by a,a’ for
sup(dom(p)) and sup(dom(p’)). Then m,(a,p) and 7, (a’,p’) are compatible.
We work by induction on max(u, ') to show that this implies the conclusion
of condition (4). If o > max(u,u'), then (a*,p*) itself is already a common
extension of (a,p), (a’,p’). So suppose o < max(p,p’). If 4 = p’ we can use
condition (4) with 8 = u. So suppose u < p'. If @ > pu, then we can take
p* which agrees with p up to o, and agrees with p’ from o onwards, to get a
common extension (a*,p*) of (a,p) and (a’,p’). So suppose o < u. Let 8 be
the least element of d(p’) — u. Let i be least so that d(p’) N8 C f. Then
Ty (aap/ F;U’/) rXﬁ = Wﬁ(avp/ [ﬁ) rXﬁ = Wﬂ(aap/ “_j/)a SO Wu(a,]j) and ﬂ—ﬁ(a’/vp/ r/_j’) are
compatible. By induction we can find a common extension as in condition (4)
for {(a,p) and (a’,p'|1). Since d(p) and d(p’) are disjoint from 7 upwards, this
can be completed to a common extension of (a,p) and (a’,p’).

Suppose now that cof(y) = w. Fix a,, n < w, increasing and cofinal in ~.
Put (a,p) € D, iff a forces a value d(p) for dom(p), d(p) is closed under ordinal
successor, and (Vn)a, € d(p)) A (a,plan) € Dg,. It is clear that D, inherits
conditions (3b) and (3c) of Definition 3.6 from the D,,s. Using the fact that
each D, is dense and closed under largest lower bounds, and using conditions
(3) and (4) of the current lemma, it is easy to check that D., is dense, and closed
under largest lower bounds.

Set Xy = Upery Xa = U<y Xa,,- For (a,p) € D, set my(a,p) equal to
Un<w Tan (@, pla,). This makes sense, and is a condition in Feepi (U, <o, Xa,,» £) =
UPFetn1(X5, &), by the definitions and condition (3) of the current lemma. It is
clear using this condition that 7, (a,p)[a = ma(a, pla) for all o € d(p).

It is also clear from the definition that 7, inherits condition (3) of Definition
3.39 from the m,,,s.
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It remains to check condition (4) of the current lemma for g = . (This, plus
the fact that each 7, is incompatibility preserving, implies that 7 is incompat-
ibility preserving, so that there is no need to separately check condition (2) of
Definition 3.39.) But this is clear. Fix any n large enough that o < «,,, and
using condition (4) at the q;s, find p; for i > n so that (a*,p;) is a common ex-
tension of (a,pla;) and (@, p' ), with p,[a = p and (if i > n) p;la;_1 = pi_1.
Then take p* = |Jp;. -

84. One step. We continue to work with d, x, and A as in Section 3, and
we fix an A-name P which is k-appropriate, countably closed, and x'-c.c.. Fix
further an A * P-name S for a poset.

For expository simplicity, fix a generic A * P for A P, and a further generic
S for S = S[Ax P).

It will be convenient sometimes to think of A %P *S-names in V as S-names in
V[Ax P]. To avoid confusion, given an A %P+ S-name 7 € V we will use #[A * P)
to denote the resulting S-name. We will use similar notation with other poset
compositions.

Fix A * P S-names X for a set of reals and U for a graph on X which is open
in the relative topology. Assume that these properties of X and U are outright
forced to hold. Let X = X[A% P+ S] and U = U[A x P * S].

Fix I C § of size k, an injection ¢: k — I, and an A|I * P[I-name S. Suppose
that the following hold, and that conditions (6) and (8) are outright forced in
AxP.

1. S is invariant (under permutations of 8, as a A % P-name).

2. KN = k.

3. S is forced to be c.c.c.

4. For every § € dom(S), there is ¢ forced to be equivalent to § in S, and of
forcing-hereditary size < k.

AlT *.I?’[I is a complete subposet of A x P.
6. S = S[A]I x P|I] is a complete subposet of S, of hereditary size at most

ot

#. Moreover for every $ € dom(S) there is an A[T * ]P’[I—name §' of forcing
hereditary size < r, forced to be equivalent to 5. Let S denote SNS.

7. X and U are A|I P[] *S-names. In particular X and U belong to VAT x
PII  8S].

8. If {; € V[A* P], for i < w, are S-names for closed sets of reals so that
i; N X[A % P] are forced in S to be 1-colorable in U[A % P], then there is an
S-name i € V[A[I x P[], forced in S to belong to X[A * Pl —J,__ ti

REMARK 4.1. The final assumption implies in particular that U, which be-
longs to V[A]I * P|I x S], is not countably colorable in V[A x P * S]. If we
allowed & in the condition to be an S-name in V[A x P], the assumption would
be equivalent to U not being countably colorable. But we require & to be a
S-name, and this makes the assumption stronger.

i<w

DEFINITION 4.2. An S-name 1 is careful if for every (v, s) € 1:

1. There is an A|I x P[I-name 3 so that s = §[A[I = P|I] and § is of forcing-
hereditary size at most «.
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2. v is careful.

Similarly an S-name is careful if it satisfies the above conditions with A[I * PII
relaxed to A x P.

CLAIM 4.3. Every S-name in XC[A 'T % P[] is equivalent to a careful S-name
in VAL x P[I]. Moreover every S-name in V[A[I x P[I] for a set of hereditary
size at most k has a careful S-name in V{AI x P[] of forcing-hereditary size (in

S) at most k. Similarly with S relaved to S and V[A[I* P|1] relaxed to V[Ax P).

PRrROOF. Immediate from assumptions (6) and (4), with the addition of as-
sumption (3) for the second part of the claim. !

Crav 4.4. Ifu € VIA[I * PII] is a careful S-name of forcing hereditary size
(in'S) at most k, then @ = y[A[I = P|1] for some y of forcing hereditary size (in
AT xP[I) at most k. Similarly with S relaxed to S, and V[A[I x P|1] relazed to
V[Ax PJ.

PrROOF. Clear from definition 4.2, and the kT-chain condition for Al x P[]
and A[P. 4

For a permutation o of 4, let 0(X) = (X )[A*PxS] and o(U) = o(U)[A%PxS).

This makes sense using the invariance of A, P, and S. We have that o(X) is a set

of reals, and ¢(U) is an open graph on this set. Similarly let o(S) = o(S)[A * P].

Then o (S) is a complete poset of S, and o(X), o(U) € V[Alo" IxPlo"1][SNo(S)].
We work under the assumptions above to force to add uncountable cliques

simultaneously in all the graphs o(U), with o ranging over permutations of 4.

We will use a variation of Todorcevic’s [11] clique forcing poset on each graph
a(U). One part of the variation involves working with S-names for reals, and
using the extra strength referenced in Remark 4.1. Producing this extra strength
will eventually use homogenizing ideas that trace back to work of Farah [5] and
internalizing ideas that are new to this work. Another part of the variation uses
almost disjoint subsets of w; to handle all graphs ¢(U) uniformly over o. This
will be important in maintaining the invariance of the overall forcing, and the
appropriateness of the preparation.

The first step is to collapse k to 8. Let C = C(Ry, k). Let C be generic for
C over V[A x P x S]. Note that C collapses the set of canonical S-names for
elements of X to have size N, since S is c.c.c. of size x, and since £N° = k. Fix
h € V[A|T* P[I*C] which enumerates this set in ordertype w;. Let h € V name
h, and suppose that the above property of h is outright forced to hold. For a
permutation o of 8, let o(h) = o(h)[A * P % C]. Then o(h) is an enumeration of
the canonical o(S)-names for elements of o(X). o(h) depends only on o[, and
we will use the notation below for any injection o: I — 4.

Work in V[A « P x C|. By a Farah-Todorcevic commitment (commitment for
short) we mean an S-name i for a closed set of reals so that £ N X is forced in
S to be 1-colorable in U[A % P]. Since C is countably closed, and S is c.c.c.,
the former does not add canonical S-names for closed sets of reals. So we may
always assume ¢ belongs to V[A * P].

Let [ € V[A  P] be an S-name for a closed subset of R, for some [ > 1. Let
01,...,0k be injections of I into § in V. Let a < wi. We say that a commitment
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i is generated by F and o1, ..., 04 below « if there are iy, ..., ;1 € {o:(h)(€) |
i < k,& < a} so that f is the canonical S-name for {x | (z,#1[S],...,4;-1[9]) €
F [S]}. Note that only countably many commitments can be generated by F and
o1,...,0% below each a.

Recall from the definition of symmetric products in Section 3 that, for an
injection o: I — ¢, we use c(o o g) to denote the map & — A, (4(¢)), from & into
P(wr). A,, ¢ <9, are the subsets of w; added by the generic A. ¢(o o g) codes
o in the sense that the map o — c¢(o o g) is one-to-one, since the sets A, are
pairwise distinct. Below when we say code for an injection o: I — § we mean
c(ooyg).

By a code for a closed set we mean a real coding the closed set, in some fixed
standard manner.

DEFINITION 4.5. Let T; be the following poset in V[A x P x C]. Conditions
are pairs (u, F), viewed formally as ({0} x u) U ({1} x F), where:

e v is a function on a countable ordinal.

e For each o € dom(u), u(«) is a careful canonical S-name in V[A[I * P|I]
for a real which belongs to X. (Note the restriction to S.)

e F is a countable collection of codes for injections of I into ¢ in V, and
careful canonical S-names in V[A x P] for codes for closed subsets of finite
powers of R.

The ordering is given by (u*, F*) < (u, F) iff:

e u*[dom(u) =u

o F*D F.
e For every a € dom(u*) — dom(u), every F € F, every list of injections
o1, ...0, with ¢(o10g), ..., c(oxog) € F, and every commitment ¢ generated

by F and o4, ..., 0} below a, it is forced in S that @*(«) & .
Let TI name Ty in AxPxC.

REMARK 4.6. For the purpose of analyzing the poset T, we could have used
the actual injections as commitments rather than their codes, and similarly with
the closed sets. The use of codes reduces the von Neumann rank of the objects
used in conditions, and hence the rank of the conditions themselves, from roughly
6 to roughly k. This will allow us to bound the von Neumann rank of names for
conditions, in Claim 4.19. The bounds are needed later on, in Section 5.

CLAIM 4.7. T; is invariantly (k, Ny )-stemmed modulo I.

ProoF. This is immediate from the definitions. The pre-order s witnessing
definition 3.19 is the pre-order of stem extension. There are at most s stems
u by assumptions (2), (3), and (6), and the restriction to canonical names in
Definition 4.5. Since the stems all exist in V[A[I x P[I], we can find a bijection
of k with the set of stems which belongs to V[A[I+P|I], and hence is in particular
invariant modulo I. The fact that every condition can be extended to have stem
of arbitrary countable length is proved using assumption (8), and using Claim
4.3 to convert the arbitrary name given by assumption (8) to a canonical careful
name. The size requirement in condition (3) of Definition 3.19 can be proved
using the restriction to careful canonical names in Definition 4.5, the fact that
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the objects comprising conditions in T; are small enough (canonical names for
reals, and functions from  into P(wy)), Claim 4.4, and the x*-chain condition
for A xP. -

DEFINITION 4.8. Let T = Hig) 7(T;). This refers to Definition 3.27 over the
extension by A x PxC.

Let E name the poset Eg,g of Definition 3.35 as computed in the extension by
A %P+ CxT. Our full forcing for this one step of the preparation is C % T % .

LEMMA 4.9. P x (C «TxE is K-appropriate. A x P x (C « T *'E is kt-c.c. and
countably closed. If P is neatly k-appropriate, then so is PxCxTxE, by a witness
that neatly extends the witness for P.

PrOOF. Immediate from the definitions, Claim 4.7, Lemmas 3.38, 3.34 and
3.36, and from Claim 3.41. -
Let T be generic for T = T[A P x C], and let E be generic for E = E(A % P *
C T). Write T as a product HSJ)(TT), where 7 ranges over permutations of 4,
and T7 is generic for T(TI). Note that T7 depends only on 7|I; if 7]T = 7/I1
then 77 and T7 are the same factor of T. Let T = T which is generic for T;.
For each 7, let @™ = (4], | @ < wy) be the union of the stems occurring in 77,
namely (J{u | 3F)(u, F) € T™}. Let i, = %, so that (i, | @ < w) is the

«

union of the stems of T7. Note that (i) = 7, by Claim 3.29.

CLAIM 4.10. For every T, every F, and every o1, ...,0k, for all large enough
o, ul, is forced in S to be outside any commitment generated by F' and o1, ..., 0%
below «.

PROOF. Clear from the genericity of T7 for 7(T;). There is some condition
(u, F) € T7 so that F includes codes for F', o, ..., 0. (This uses Claim 4.3, to
find careful names for these codes.) The claim then holds for all & > dom(w). -

We will use the points 47, [S] to construct the clique adding posets. But we
will use only the points indexed by elements of the fast club E.

Abusing notation, we view the fast club E both as a set and as the function
on wy which enumerates the elements of the club in increasing order. Let K be
the poset of finite cliques in the restriction of U to {@[S] | @ € E} = {up(,[5] |
i < wi }, ordered by reverse inclusion. For any d C wy, let Ky be the restriction
of K to tuples contained in {tp(,)[S] | p € d}. Define K™ and K} similarly using

. Let K Kd, K™ , and KT name these posets in A x P+ CxTxExS. Note that
(K) K7, and T(Kd) K7.

Let ¥: Pew, (w1 X w1) — wi be a bijection in V. We will use ¢ to create
unbounded almost disjoint subsets of w;. Note to this end that if A, B C w; X wy
are distinct and uncountable, then ¢/ {AN(yx7y) | ¥ < w1} and " {BN(yx7) |
v < w1} are almost disjoint, and unbounded in w;.

Recall that Ag, for £ < 4, are the subsets of w; added by the generic A. Recall
that C collapses k to w;. Abusing notation we view C' as a surjection from w;
onto k. For 7: I — 4, let A, consist of the sets A4, { < K, arranged as a
single subset of w; X w; using C, meaning that (v, 77) € A < n € Arg (Cw)
Let A, name A,, and note that A, = 7(Ass). (This uses the invariance of C.)
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Let d, = ¢¥"{A; N(y X)) | v < w}, and let d, name d,. Let d = d;y and
note that 7(d) = d,. Note also that the sets d, are almost disjoint unbounded
subsets of wy as T|I varies, meaning that if 7[I # 7'|I then d, and d,s are almost
disjoint.

LEMMA 4.11. Let 7y,...,T, be permutations of § so that T [I,..., 7,1 are
distinct. Then KJ' x --- x K" s c.c.c.
T1 ™n

PROOF. Suppose not, and let (b1(£),...,b"(£)), £ < wi, be an antichain. Let
I1(€) be the size of b*(¢). By thinning the antichain we may assume that these
are independent of £. Denote the sizes by I!,...,I". Without loss of generality
we may assume that [* + - -+ [" is minimal.

Write b?(€) as a sequence of points xi (£), ... ,:E} (€). These points form a clique
in 7;(U). Since 7;(U) is an open graph, there are basic open neighborhoods
Ni(€),7=1,...,1', of z%(£) so that any two points of 7;(X) in any two of these
neighborhoods are connected in 7;(U). By thinning the antichain we may assume
that these neighborhoods are independent of &, equal to Ni,..., N}, say. This
implies that an incompatibility between b%(¢) and b*(¢) must be due to points
2%(€) and i}, (¢) with j = k.

By a A-system argument, and noting that an incompatibility between two
conditions b%(£),b%(¢) cannot be due to any points in b*(£)Nb*(¢), we may assume
that for each i, the conditions b%(£), £ < wy, are pairwise disjoint.

By dropping an initial segment of the antichain we may now assume that
bv'(€) € Ky _,, where ) < w; is large enough that dr, —7,...,d,, — 7 are
pairwise disjbint. This point, which uses the fact that d, ,...,d,, are almost
disjoint, is key to the rest of the argument. It will allow us to adapt Todorcevic’s
proof of the countable chain condition for his clique forcing poset in [11].

Recall that E is a fast club, relative to all clubs in V[Ax P« C «T)]. Since the
surjections 7;(h) and the sequences (47 | o < wy) belong to V[Ax PxC «T], this
implies that for all large enough v € E, and for all i, {a7 | a < v} C 7;(h)"y.
By increasing 7, we may assume this holds for v = E() for all { > 7.

Each point z(£) € b*() is of the form ug"(“) for some p € dyi —n. Let R*(€) be

the set of these u, so that b*(¢) = {uj, | € R'(§)}. Let R(§) = U, B'(§).

Since we have made sure that d., —7,...,d, —n are disjoint, each p € R(&)
belongs to exactly one of R(£),..., R™(¢). In particular for each &, there is
exactly one i so that max(R(£)) € R'(¢). By thinning the antichain we may
assume that this ¢ is fixed independently of £. By re-ordering 7, ..., 7, we may
assume this i is equal to 1. By re-ordering the enumeration z1(§), ...,z (§) of
b'(€) we may assume that for i = j =1, 2(§) = UL max(R(e))) 20d that for all

other i,j, z(£) = g,y for some p < max(R(E)). Let ui (&) = U,y for this pu.
Then @) (§) names (), and, through our use above of the fact that E is fast,
for all 7, j other than i = j = 1, %(¢) € 7*(h)” E(max(R(¢))).

Let b(&) = b1(&)™ -7 (€). Let I = I* + --- + 1", so that b(¢) € R'. Let
F C R! be the closure of the set {b(¢) | € < w1 }. Let byai(€) be obtained from b(€)
by removing its first element z1(£). For each &, let t(§) = {x | (z) " ban(€) € F'}.
Notice that z{(£) € ¢(£).
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CrAamM 4.12. For arbitrarily large § < w1, t(§) is not I-colorable in 71 (U).

PROOF. By definition F belongs to V[A* P« C =T % E][S]. But since F is
coded by a real, S is c.c.c., and C « T % E is forced to be countably closed, F
belongs to V[Ax P][S]. Let I € V[AP] name F in S. Let £(¢) be the canonical
name for #(€) obtained from F and the names (&) for the elements of bai (§).
Suppose that the claim fails, and fix a condition s € S forcing this. By extending
5, we may assume there is a specific p so that s forces £(¢) to be 1-colorable for
all £ > p. By modifying F (and carrying these modification to £(¢)) we may
further assume that any condition incompatible with s forces F' to be empty.

Then for all £ > p, £(€) is outright forced in S to be 1-colorable. The condition
s forces this fact by the way it was chosen, and any condition incompatible with
s forces that £(¢) is empty, hence in particular 1-colorable.

It follows that #(¢) is a commitment. Moreover it is generated from F and
I, ..., 71 below E(max(R(£))), because the names ) for elements of byaii (&)
belong to |J,.,, 7'(h)"” E(max(R(€))). So by Claim 4.10, for all large enough &,

.y
E(max

SICe U7 (e [S] = 1 (6) € (6. L

For each & so that t(£) is not l-colorable, fix two points y1(€),y2(§) € (&)
which are connected in 71 (U). Fix basic open neighborhoods Oq(€),02(§) of
y1(£),y2(€) so that every point in O1(€) N7 (X) is connected to every point in
02(&) N11(X) in 71 (U). Fix specific Oy, Oq, and an unbounded Z C wy, so that
for every £ € Z, O1(§) = Oy and O3(§) = Os.

Let b{,; (€) be obtained from b'(§) by removing its first element x}(¢). By the

minimality of [, the conditions (b}, (£),b%(£),...,b™(£)), for £ € Z, do not form
an uncountable antichain in Kgil x -+ x Ki" . So there must be § # ¢ in Z

so that (bl (€),b%(¢),...,b™(&)) and (b},;;(¢),b*(C),...,b"(¢)) are compatible.
Since (§) # 2%(¢) it follows in particular that #(¢) and «(¢) are connected
in 7;(U), for all 4, j except possibly i = j = 1.

Using the fact that the graphs 7;(U) are all open, we can therefore find open
neighborhoods P and Q of b, (&) and biai(¢) in RI™1 so that any a € P and
b € Q are connected in 7 (U)1~! x 7 (U)2 x --- x 7,(U)!». Let P* = O; x P
and let Q* = Oy x Q. Since any y; € O1 and ys € Os are connected in 71(U),
we have that any a € P* and b € Q* are connected in 71 (U)"* x -+ x 7, (U)"n.

By choice of the open neighborhoods, we have y1(§) " btan(§) € P*. Since
y1(&) € t(€), we have y1(§) " brair(€) € F. So P* is an open neighborhood of a
point in F. By the definition of F' it follows that there is £* so that b(£*) € P*.
Similarly, using Oz and y2(¢) " btai(¢), there must be ¢* so that b(¢*) € Q*. But
then for each individual pair 7, j, the points 2%(£*) and «%(¢*) are connected in
7;(U). By the refinements made at the start of the proof of the current lemma,
this implies that (b'(C*),...,b"(¢*)) and (b*(£¥),...,b"(£%)) are compatible, a
contradiction. -

(R(e))) 18 forced in S to not be an element of £(¢). This is a contradiction

CLAIM 4.13. There is p < wy so that in the forcing Kq—,, every condition has
extensions using points u, for arbitrarily large o < wy. Moreover there is p < w
for which this statement is outright forced to hold in S.
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PRrROOF. The second part of the claim is immediate from the first since S is
c.c.c.

Suppose the first part fails. Then we can construct conditions be € Ky, for
§ < wi, and ordinals 3¢ < wi, so that b¢ is incompatible with any condition
(uq) for o > B¢, and so that min{a | uay € be} is larger than sup{f; | ¢ < &}
But then the conditions b¢ form an uncountable antichain in Ky, contradicting
Lemma 4.11. =

Let p be an A P % C % T  E-name for the least ordinal witnessing Claim 4.13.
For a permutation 7 of d, let p, = 7(p). Let p, = p;[A* PxC % T % E]. Then
pr is the minimal witness for Claim 4.13 for the poset K7 .

DEFINITION 4.14. Let D = Hgg) T(Kd;p), taken with finite support.

Let D = D[A* P+C + T * E][S]. Let D be generic for D. Write D as HS‘Q) D-.

Then D, is generic for Kgr* ont

REMARK 4.15. Note that every factor of the symmetric product D is a poset

of size Ny in V[A % P x C % T % E|[S], whose conditions are finite sets of certain
reals.

LEMMA 4.16. D is c.c.c., and hence Sx D[Ax P x C « T * E] is c.c.c.
ProOF. Clear from Lemma 4.11 and the use of finite support. —

LEMMA 4.17. S*D (viewed as an A x PxCx*Tx E—name) s invariant under
permutations.

PRrROOF. Clear from Claim 3.28. -

LEMMA 4.18. In V[A*x P x C x T x E|[S % D], each of the graphs 7(U) (T a
permutation of §) has an uncountable clique.

PROOF. The generic D; is a clique in 7(U). It is uncountable by Claim 4.13
and since p, witnesses the claim for K7 . =

Cram 4.19. Let p > K be an inaccessible cardinal. Suppose that S has von
Neumann rank 1 < p. Then there is n* < u so that every condition in Cx T xE
has von Neumann rank below n*.

PROOF. Let (¢,i,é¢) € C+ T *E. ¢is a partial function from X; into  of size
< K, and so has von Neumann rank below x.

Fix a generic C for C, and consider the von Neumann of ¢t = {[C]. Note
that canonical S-names for reals have von Neumann rank at most n 4+ 3. Each
condition in Tj is generated using finitely many pairing operations from such
names, from countable ordinals, and from codes for injections of I into §. The
codes have von Neumann rank at most x + 1. So every condition in T; has von
Neumann rank below max{x,n,w;} +w. (See Remark 4.6 in connection to this.)
By Remark 3.30 this implies that ¢, which is a condition in a symmetric product
generated from copies of T, has rank below 7' = max{k,n,w1} + w - 2.

Since the fact that ¢ has von Neumann rank below 7’ holds regardless of the
choice of the generic C, Claim 2.4 gives n” < pu, so that the name f has von
Neumann rank below 7.
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The claim produces i as a function of 7/, independently from ¢. Increasing
7" to a limit ordinal if necessary, it follows that C % T is contained in v, V§A«P]

Through another use of Claim 2.4, and since é names a set of von Neumann
rank at most wy + w, it follows that there is " < p so that the name é has von
Neumann rank below 77/ "

Let n* = max{n,n’,n"”,n"'}, and note that we obtain n* through computations

as in Claim 2.4, independently of the choice of ¢, {, and é. -

CLAIM 4.20. Let p > k be an inaccessible cardinal. Suppose that S has von
Neumann rank n < p. Then there is n** < u so that, in V[Ax Px C x T * E],
S« D has von Neumann rank below n**

PROOF. Let S be generic for S. Note that every condition d € D = D[S] has
von Neumann rank below x + w. This follows by Remark 3.30 since conditions
in the individual factors of D are just finite sets of reals.

Using Claim 2.4 it follows that there is 7y < u so that every efficient S-name
for a condition in I has rank at most 7.

Then S * D has von Neumann rank at most max{n,n'} + 3. -

REMARK 4.21. Claim 4.20 continues to hold for any poset I which is a sym-
metric product of height x of factors whose conditions have von Neumann rank
smaller than . In particular it holds for D = Hgdrﬁ) Add(Rg,1)7, the symmetric
product, over 7: kK — §, of the Cohen poset for adding one real.

Cramm 4.22. Suppose {(a,p, $) I+ d € D. Then there is d' of forcing hereditary
size and support size < K, so that {(a,p,$) IF d =d.

PRrROOF. Modifying A * P+ .S if necessary, we may assume (a,p, $) € Ax PxS.

We saw in the proof of Claim 4.7 that stems in T; have A * P x C-names of
forcing hereditary size < k. Since conditions in the factor D; of D are finite
sequences of reals with names occurring on stems of 77, it follows that, for any
generic A * P xS, and any name % for a condition in Dy, there is @' of forcing
hereditary size < k, so that @'[A % P S| = u[A * P % S]. The same is then true
for each of the factors 7(D;). And since the product defining I is taken with
finite supports, and indexed by codes which themselves have names of forcing
hereditary size < k, the same is true for the name d for a condition in D.

This 1mphes that densely many conditions in A x P xS below (a, p, s §) force the
existence of d’ of forcing-hereditary size < k with d'[A * P * 5] = d[Ax P« S].
Using a merging of names argument, and the kT-c.c. for AxPxS, one can obtain
d', still of forcing-hereditary size < k, which is forced by (a,p, 5) to equal d.

By the appropriateness of A %P, using the support size condition (2) of Defini-
tion 3.6, and using assumption (4) on the forcmg hereditary size of conditions in
S each condition of AxPxS used in the name d’ can be replaced by an equivalent
condition with support of size < k. Since d’ is of forcing-hereditary size < &, the
name resulting from these substitutions has support of size < k. B

REMARK 4.23. If J D Sp(d), U is the restriction of A %P xS to condition with
support contained in J, and U is a complete subposet of A * P xS, then one
can find d’ as in Claim 4.22 which is a U-name. This is clear from the proof,
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noticing that all coordinates in the domain of d must involve 7 which map into
J, and then the names 7’ obtained in the proof are all U-names, since the names
occurring on stems of 7(77) have supports contained in 7/I. The completeness
of Uin AP xS is used to carry out the merging argument while keeping to
U-names. And the support size condition of Definition 3.6 allows keeping all
supports contained in J, in the final part of the proof.

Let W C 6. Let Z = Z(W) be the set of injections of I into W. Recall from
Definition 3.27 that Hige)z 7(Kg_;) is the restriction of I to its factors indexed
by ¢(r o g) for 7 € Z. Let D|w denote this product, and let D]y = D ND|w.
Then Dy is clearly a complete subposet of the full product D, and D|w is
generic over V[A* P« C xT % E][S]. The factor poset D/D|y for adding D over
V[A* P+ C«Tx*E][S][D|w] is as usual the restriction of D to conditions d which
are compatible with all elements of D|y . Letting d|yw = d[{c(rog) | T € Z} be
the restriction of a condition d € D to factors indexed by ¢(7 0 g) for 7 € Z, it is
easy to check that d € D/D|w iff d € D and d|w € D|w.

CLAIM 4.24. Suppose that d = d[Ax PxCxTxFE|[S] € D, and that Sp(d) C W.
Then d € D|w .

PrOOF. Each ¢(1 o g) € dom(d) codes Alrange(r). If it has a name with
support contained in W, then it must be that range(r) C W. B

Cramm 4.25. Let W C §. Let d belong to the restricted product D|y. Then
there is an AxPxS-name d for d, of forcing hereditary size < k, and with support
contained in W.

PROOF. Since D is taken with finite supports, it is enough to prove the claim
separately for each of the non-trivial coordinates in d. These coordinates are
conditions in (subposets of) K7, for permutations 7 which map I into W. By
symmetry, and since 7(K) = K7, it is therefore enough to prove that every
condition in K has a name of forcing hereditary size < k with support contained
in I. But this is clear, since any condition in K is a finite subsets {u,[S] | a <
w1}, and 14, by Definition 4.5 and Claim 4.4, has an A x P % S-name of forcing
hereditary size < k with support contained in I. B

CLAIM 4.26. Let W C 6. Let (d, | n < w) be a sequence of conditions in
D/D|w, which belongs to an extension of V[Ax P« C T« E|[S]|[D|w] by F which
is generic over V[Ax PxC T x E][S][D]. Say d, = d,[Ax P+C T  E|[S], and
suppose that the sets Sp(dn) — W are pairwise disjoint. Then there are infinitely
many n so that d, € D.

PRrROOF. This is a consequence of the use of finite supports in the product
forming . Suppose the claim fail, and fix Ny < w and d € D forcing in D/D|y,
over V[Ax P« C«T x E]|[S][D|w][F], that n > Ny — d,, ¢ D. (This uses the fact
that F is generic over V[A * P x C T x E][S][D], and consequently D is generic
for D/D|w over V[Ax P x C x T % E][S][D|w][F].) Let W,, = Sp(d,). Then for
every ¢(7 o g) € dom(d,) it must be that range(r) C W,. Since (for n # m)
W, N W,, € W, this implies in particular that the only coordinates c(7 o g)
which belong to both dom(d,,) and dom(d,,) are ones where range(7) C W. Let
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C ={c(rtog) | range(r) C W}. Then each ¢(7 o g) € dom(d) — C belongs to the
domain of at most one d,,. Since dom(d) is finite, we can pick n > Ny so that
none of these coordinates belongs to dom(d,,). So dom(d,,) Ndom(d) C C. Since
d,|C =dy|w and d[C = d|w both belong to D|w, it follows that d,, and d are
compatible, and indeed there is a witness d* for this so that d*[|C € D|y. But
this is a contradiction, since d* forces (in D/D|w) that d,, € D, while d forces
that d,, € D. o

85. Putting everything together. We are now ready to prove Theorem
1.1. Suppose that 6 is Mahlo, § > 6, and §<% = §. Without loss of generality
we may assume that the GCH holds below #. If the CH holds in the ground
model, this can be arranged without collapsing N;. By adding a Cohen subset
of 6 if necessary, we may also assume that there is a ¢-sequence of length 6,
concentrating on the strongly inaccessible cardinals. In other words we assume
that there is a sequence d = (d, | k < 6) so that for every Z C 6, the set of
strongly inaccessible k with d, = Z N k is stationary.

Let A = Add(X1, d). Define a countable support iteration (Pa, Q@ |la<6,6<
) over the extension by A, and a finite support iteration <Sa, Dg |la<6,8<86)
over the extension by A x Py, ‘through the following conditions. The conditions
specify the iterands @/3 and ]D)g, the posets P, and S, are the iteration stages
determined from these iterands. The posets P, will be s-appropriate, and the
posets Sa will be c.c.c. Each iterand-name D, will belong to the extension by
A x ]P’QH, so that S, belongs to the extension by A x P,.

1. If o is not an inaccessible cardinal, then Q, = Col(Ny, @), and D, =
H(Tidra) Add(Rg, 1) (the symmetric product, over 7: a — ¢, of the Cohen
poset for adding one real).

2. If k is an inaccessible cardinal, but d,; C x does not code some I, g g, X,
and U which satisfy assumptions (1)—(8) of Section 4 for P, and S, then
again Q, = Col(Ry, x)", and D, = [TV Add(Ro,1)".

3. If k is an inaccessible cardinal, and d,; C k does code some I, g g X, and
U which satisfy assumptions (1)—(8) of Section 4 for P, and S,, then set
Q. = C+T*E and D,, = D, for the posets C, T, E, and D defined in Section
4. We say in this case that stage  is active using S X and U.

We refer in these conditions to a subset of k coding I, g, S, X, and U as in
Section 4. The coding converts sets of hereditary size x to subsets of k. The
precise coding used does not matter, as long as it is continuous in the following
sense: If Z is of hereditary size 6, d C 6 codes Z, T is the transitive closure of Z,
E,, a < 0, is continuous and C-increasing with |E,| < 6 and J, g Eo =T, and
To: Eq — T, are the transitive collapse embeddings, then for a club of a, dN«
codes 7, (Z N E,). Any reasonable coding will have this cont1nu1ty property.

For limit ~, we take S to literally be the union | J, . Sa, not just an arbitrary

A x ]P’W—name for this union. We then have that for every $ € dom(Sﬂy)7 there
is @ < 7y so that $ € dom(S,). We do the same with P, for a of uncountable
cofinality.
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At all stages «, we pick the name Sa so that every element of dom(SQ) is

outright forced to belong to S,.

CLAIM 5.1. For each o < 0, P, is neatly |a|-appropriate, and AxP, is count-
ably closed. If |a|“ = |a| then A xP is also |a|t-c.c.

PRrROOF. Countable closure is clear. Appropriateness in the successor case at
active stages is clear from Lemma 4.9. The successor case at non-active stages
is clear from Lemma 3.38 and Claim 3.41. It is also clear from these results that
any witness that P, is neatly |a|-appropriate can be neatly extended to a witness
that Pa+1 is neatly appropriate. This (with Claim 3.8) allows for an inductive
construction of witnesses that fits with the assumptions of Lemma 3.42, showing
that PP, is neatly |ae|-appropriate for all @ < §. The chain condition then follows
by Remark 3.40. =

CLAIM 5.2. For each a < 0, S, is c.c.c. and invariant under permutations of
6. The iterands Dﬁ are forced to be symmetric products of posets of size Ny. If
is inaccessible, and Ax P, is generic for A*IP’H, then for every a < p, Sa [AxP,]
has von Neumann rank below p, and S,[A * P,] has von Neumann rank at most
1t

PROOF. The claims about S, and D, are clear by induction, using the def-
initions and results in Section 4, in particular Remark 4.15, Lemma 4.16, and
Lemma 4.17 for active stages, and the obvious parallel results for non-active
stages. The claim on the von Neumann rank of Sa follows from Claim 4.20 and

Remark 4.21 by induction on a. Since S,[A x P,] = Ua<p SalA * P,], it then

follows that S,[A * P,] has von Neumann rank at most /. =

Cram 5.3. Let 1 < 0 be inaccessible. Let ow < pu. If A is generic for A, then
the von Neumann rank of P [A] is below p.

PROOF. By induction on ¢, using Claim 4.19 (and Claim 2.4) for the successor
case. To apply Claim 4.19 we need to verify that S, has von Neumann rank less
than p, when P, is generic for P, [A] and S, = S, [A % P,]. This is given by
Claim 5.2. -

Let P =Py and S = §p. Let A % P xS be generic for A x P+ S. Let P = P[A]
and let S = S[A % P]. Similarly let P, = P,[A] and let S, = S,[A * P,]. We will
show that the forcing extension by A x P xS witnesses Theorem 1.1.

CLAIM 5.4. NY[A*P*S] =Y, N;/[A*P*S] =0, and A*P xS is 6-c.c., so that
all cardinals of V' above 6 are preserved in V[A* P % S].

PROOF. A x P is countably closed, so preserves N;. P incorporates posets to
collapse all k € (Ry,0) to R;. For cofinally many x < 6, A x P, is xT-c.c. and
hence f-c.c. Using a A-system argument this implies that A x P is 6-c.c. Since
S is forced to be c.c.c. this implies that A x PxSis 0-c.c., and does not collapse
any cardinals from 6 upwards. —

CLAIM 5.5. ¢V[A*P*S] — 5.
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PROOF. The direction ¢¥[4*P*5] > § is clear from the definition in condition
(1) above, since the symmetric product used there has |6%| = § copies of the
Cohen poset. The direction ¢ [4*P*S < § is clear by a name counting argument,
using the facts that S is a finite support iteration of length 6, each iterand
D, [A% P, % S,] is a (symmetric) finite support product of /%l < §<¢ = § factors,
each of size Ny, and S is c.c.c. =

To complete the proof of Theorem 1.1, it remains to show that V[A % P x §]
satisfies OCAToq(< ¢).

Let H,, a < 6, be an increasing continuous chain of elementary substructures
of some large enough initial segment of V, with |H,| < 0, H, N 6 an ordinal,
H, closed under sequences of length < cof(a) (length < max{w,a} if « is not
a limit), and with all relevant objects belonging to Hy, including in particular
0,8,A,P,S. Let Hy = Ua<o Ha- Let M, for o < 0 be the transitive collapse of
H,, and let m,: H, — M, be the collapse embedding. Let 7w g: M, — Mg be
mgom, L.

CLAIM 5.6. For any Q € My, there are stationarily many a < 0 so that d,,
codes ;1 (Q), via the coding used for the definition of Py.

«

PROOF. Clear from the fact that (d, | @ < ) is a ¢ sequence, the fact that
My is transitive of cardinality 6, and the continuity of the coding. .

Let I; = 7. (8) = w/(H, N ).

CLAIM 5.7. Let 7 < 0 be inaccessible. Let Ax P, be generic for AxP,. Then:
L. For every o < 7, All; * P, [I, is a complete subposet of A x P’a, and hence
of A xP. '
2. For every a < 7, S[A* P,)NVI]AIL * P,[I;] belongs to V[A[L. x P,[1I;],
and depends only on AL, * P,[1;.
Let gaﬁ be an AL, x P, |1, -name for Sa[A x Py| N VIAIL * P,[I;], and let
5 5.
3. §a+1 is (isomorphic to) ga * ]D)a|17.
4. gom s forced to be a complete subposets of Su. In particular gT is forced
to be a complete subposets of S,., and hence of S.

ProoOF. For a« < 7, the first condition follows from Claim 3.12, since P, is
a-appropriate and |I.| = 7 > «. The condition then holds also for oo = 7, since
7 is inaccessible and P, is defined with countable supports.

For the second condition, suppose there are two conditions (a1, p1) and {ag, p2)
in AxP, /AL % P, [I. which force incompatible information about Sa [Ax Py]N
V[A|IL; x P,|1I;]. Since 7 is inaccessible, and using the restrictions to countable
and finite supports in the iterations defining P, and S;, we may assume that
«a < 7. Using the support size condition (2) of Definition 3.6 we may assume
that | Sp(a1)USp(p1)| < @, and similarly for (as,ps). Using the invariance of S,
and a permutation that fixes all elements of I- while shifting Sp(aq)USp(p1)—I-
away from Sp(ag) U Sp(p2) — I, we may assume that Sp(ai) U Sp(p1) — I and
Sp(ag) U Sp(p2) — I, are disjoint. Now by Claim 3.15, for k = «, P = P, and
I = I, it follows that {a1,p1) and {as, p2) are compatible, a contradiction.
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The third conditions holds by Claims 4.24 and 4.25, viewing SQH as Sa * ]D)w
The fourth condition is proved by induction on o < 7. The limit case is
trivial since S is defined with finite supports. The successor case follows from
the inductive hypothesis, the third condition, and the fact that ]D)a| 7, hames a
complete subposet of Dag. B

Let Soz,‘r = goz,'r[fél r-['r * P, FIT]7 Sa,‘r =5N Sa,ra S'r = ST,Tv and 5"r = g‘r,r'

CLAIM 5.8. Let s, = $p[A x P;] be conditions in S,/S.. Suppose that the
sequence (s, | n < w) belongs to V[Ax Pr*S;], and that the sets Sp($,) — I are
pairwise disjoint. Then there are infinitely many n so that s, € S-.

PROOF. Check by induction on « that no condition in S, /S, can force a
value for a bound on the set of n so that s,[a € S,. The limit case is clear
through the use of finite supports. The successor case follows from the inductive
fact that there are infinitely many n so that s, [a € S,, using Claim 4.26 (with
W = I;) and condition (3) of Claim 5.7. Note in using Claim 4.26 that the
model V[A x P, % S, % S,], to which the sequence (s, [a+1|n < w,s,[a € S,)
belongs, is a generic extension of VA P11 * SQH,T * Sy] by the tailends of P,
and S; from coordinate o + 2 onward, and that these tailends are generic over
V[A * Pa+1 * Sa+1}- -

CLAIM 5.9. Let 7 < 0 be inaccessible. Let o« < 7. Then:

1. For every $ € dom(S,), there is § forced to be equivalent to 3, of forcing
hereditary and support sizes < a.

2. If $ € dom(Sq,r), then §' as above can be found with support contained in

L., hence forced into Sa,r.

PrOOF. Clear by induction on «, using Claim 4.22 and Remark 4.23 for the
active successor case, and the obvious parallel results for the non-active stages.
The remark is used (at successor stage a+1) with J = I, and U = A[L %P, [,

Sa,r- B
Let C be the club of 7 < 0 so that H. N6 = 7.

CLAIM 5.10. Let 7 € C U {6} be inaccessible. Then:

1. Foreverya <1, 7, (A*Pa *Sa) consists of the elements of A1, *Pa [IT*ga,T
which belong to M. )

2. (A x P « S) consists of the elements of A[I, * P, 1, %S, which belong to
M.

PRrROOF. The first part is clear by induction from the absoluteness to transitive
models of the notions involved in defining A, P,, and S,, and the facts that
7.(a) = a for a < 7, 7,(d) = d|7, and 7, () = I,. We only note that for the
successor case, the product defining 7, (ID,) is (by absoluteness arguments) the
restriction to I of the product defining Dy, and this coincides with the restriction
to supports contained in I, by Claims 4.24 and 4.25. A similar argument applies
to Qq.

The second part of the claim is immediate from the first, since 7(6) = 7, and
7 is inaccessible. =



34 NEEMAN, ITAY

Let o, be a permutation of § with the property that o[l is exactly the
inverse of m.. We will use o, to shift conditions and names, as in Claim 3.2.

Given any injection f: Z — ¢, one can define a shift as in Claim 3.2, for
names and conditions with support contained in Z. We will write f(a) and f(1)
for these shifts. These definitions are absolute for transitive models of enough
of ZFC, since they are done by transfinite recursion using operations given by
formulas with only bounded quantifiers. For any permutation p extending f,
and any 4 with support contained in Z, we have that p(u) = f(u).

CLAM 5.11. Let 7 € C' U {0} be inaccessible.

1. Every (a,p,$) € AL x P.|I, « §T is equivalent some (a,p’,s') € AL *
P, [1; %S, which belongs to M.

2. The condition {a,p’, §') above has the additional property that o ({a,p’,§')) =
7 (({a, 9, 8')).

PROOF. Since 7 is inaccessible, we can find o < 7 so that (a,p, $) is in fact a
condition in A %P, S,. Since P, is |a|-appropriate, and using the support size
condition (2) of Definition 3.6, there is J C I and p’ so that (a,p’) is equivalent
to {(a,p), Sp(a),Sp(p’) C J, and |J| < |a|. Using Claim 5.9 and the a'-chain
condition for A x I?’, and increasing J if needed, we may further find &', forced to
be equivalent to $, with Sp(s') C J.

Since |J| < 7, and since M, is < 7-closed, there is a bijection f € M, of J
onto an ordinal T < 7.

Consider the shifted conditions @ = f(a), p = f(5') and § = f(§') in A,
Pa, and S,. These all have von Neumann rank below 7. This is clear for a
since it belongs to Add(Ry,7), holds for p' by Claims 5.3 and 2.4 since j is
an Add(Xy, 7)-name and Add(Ry,7) belongs to V;, and holds for § by Claims
5.2, 5.3, and 2.4, again using the fact that Add(Xy,7) € V,. Since M, D V,,
it follows that @, ,§ € M,. The reverse shifts a = f~(a), p = f~1(p), and
¢ = f~1(5") then belong to M, by the absoluteness of the operation of shifting
by f~!. This proves the first part of the claim.

Apply the elementary map 7! to the statements that a = f~1(a), p’ =
F71(@), and § = f~1(5). (These statements are true in M by absoluteness.)
The objects a, ﬁ/, and § are not moved by 7!, since they have von Neumann
rank below 7. So we get that 7-!(a) = 71 (f~!)(a), and similarly with p’ and §'.
It is easy to check that 771 (f~1) = m lof ! = o,0f !, sincedom(f~ ) =7 < 7
and range(f~!) C I.. So m;(a) = (0,0 f71)(a) = o.(f"(a)) = o,(a) and
similarly with p’ and §'. -

LEMMA 5.12. V[A % P x S] satisfies OCAToq(< ¢).

PROOF. Suppose not. Then the failure of OCApoq(< ¢) must be forced by
the empty condition. This can be seen using the invariance of A * P % § un-
der permutations to separate the supports of conditions forcing contradictory
truth values for OCAroq(< ¢), and using the fact that conditions with disjoint
supports in invariant products must have disjoint domains and are therefore au-
tomatically compatible. By a similar argument there is a cardinal p which is
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outright forced to be the minimum size of a counterexample to OCAT.q(< ¢).
Since the continuum is forced to be §, we have p < 4.

Fix names X and U, for a space and an open coloring, which are outright
forced to provide a counterexample to OCAT.q(< ¢), of size p.

CrLAM 5.13. There is a name X' with support of size < & which is forced to
equal X, and similarly with U.

PrOOF. This is clear for any name for a real, using the fact that every con-
dition in A * P %S is equivalent to a condition with support of size < 6, and
the chain conditions for A, P, and S. The claim for X then holds because X is
forced to be a set of reals of size p < §, and the claim for U holds because open
sets can be coded by reals. B

In light of Claim 5.13 we may assume that X and U themselves have supports
of size < 4.

By elementarity we can assume that the names X and U belong to Hy, and
hence to H, for all a < 6. Let X, = WQ(X) and U, = WQ(U). Let gg biject 0
onto Iy, and let g, = 71';7190(99 la), which for a club of « is a bijection of « onto I,.

Using Claim 5.6 on Q = (I, ga, ﬂ'g(S), Xp,Up), and since 6 is Mahlo, there is an
inaccessible 7 < # so that g, bijects 7 onto I, and d, = (IT,gT,WT(S),)_(T, U,).

Our goal is to show that stage 7 of our poset construction is active, and that
(with a possible revision to S) the generic for (Q, * D,)[A % P, % S,] adds an
uncountable clique through U [A* P« S]. This will contradict the fact that X, U
is forced to provide a counterexample to OCAT.q(< ¢).

It is easy to check that I, g,, 7, (S), X, and U, satisfy assumptions (1)—(7)
of Section 4 for fP’T and ST. We just note the following: WT(S) is forced to be dense
in S,, and indeed the two posets are forced to be the same up to equivalence
of conditions, by Claims 5.10 and 5.11. We may therefore work with S, instead
of 7, (S) throughout. A]I; * P.|I, is a complete subposet of A % P, by Claim
5.7. By the same claim, S, [A]I, * P,[I,] is a complete subposet of S, [A x Pr].
Finally the size requirements on conditions in assumptions (4) and (6) hold by
Claim 5.9.

To show that stage 7 is active, it remains to prove assumption (8). To this
end, fix A * P, xS, -names t;, for i < w. Suppose it is forced in S, that ¢; [Ax Py
is a closed set of reals, and is 1-colorable in U, [A[I, * P, [I,]. We need to show
that there is an S;-name @ € V[A[I * P;|1;] which is forced in S, to belong to

X[AL: * P11 ] = Ujcy, ti[A* Py).

Suppose this is not the case. We will obtain a contradiction by internalizing
shifts of the names f; to the model M, and then using the fact that in M,, U;
is forced to not be countably chromatic.

Cram 5.14. Modifying the generic S if necessary, we can arrange that every
real ¥ € X[A[L * P, L. *S;] can be forced by some condition in S, /S, to belong
to some t;[A * P.]. (There is no harm at this stage in modifying S as needed,

since we have not yet made any assumptions involving the specific generic S
used.)
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PROOF. Suppose not. Then for densely many conditions s in S,, there is
an S;-name i, in V[A[L, * P,|1.] so that s forces @5 € X [A[l, * P,|I,], and
s forces in S, that it is forced in S/§T that @ is outside all #;[A]I, * Pl
Merging these names for a maximal antichain of such s, we can obtain an S;-name
& € V][A|I, x P;[I.] which is outright forced in S, to have the above properties.
This implies that & is forced in S, to belong to )L(T[A Pl =U;co ti[Ax Py,
contradicting our assumptions on ;. B

In witnessing Claim 5.14 we are making an assumption on S;, and so we will
not modify it further.

Abusing notation, we identify the names f; for closed sets with names for
reals coding these closed sets. We may assume without loss of generality that
the names #; (for reals) are canonical, meaning of the form {(n,r) | r € R,}
for antichains R,,. Since 7 is inaccessible, and using the chain conditions and
support restrictions for the iterations forming P, and S,, there is a cardinal
a < 7 so that #; are in fact A x P, * S,-names. Each {; then has size at most
«, using the fact that P, and S, are at-c.c. and c.c.c. respectively. Without
loss of generality, using Claim 5.9 and the fact that P, is a-appropriate, we may
assume that each condition appearing in f; has support of size at most o. Then
Sp(t;) itself has size at most a.

Fix £/ C § of size a so that | J,_,, Sp(t;) C E.

By Claim 5.14, for each x € X, [A[I, %P, [I,%S,], thereis i < w and a condition
s = §[A*P;] €S, /S, forcing that x € #;[A* P,]. We may take $ to have support
of size < 7. Since X, [A* P,] itself has size at most 7 (this is because X, € M),
we can find E* D E, of size 7, so that for each 2 € X [A[I, * P,[I, * S.], &
as above can be found with Sp(s) C E*. Fix a condition (a,p,5) € A* P, x S,
which forces this statement. We may assume that | Sp(a) U Sp(p)| < 7, and we
have Sp(5) C .

Fix permutations o,, of §, for n < w, which are the identity on I, so that
the sets o//(E*) — I, are pairwise disjoint, and so that the shifted conditions
on({a,p)) all belong to A x P;. Permutations o, fixing I, and securing the
latter part, with o}, 1 (Sp(a)U Sp(p)) pairwise disjoint, can be found using Claim
3.14, and then the former part can be secured by composing with additional
permutations o, 2, using the fact that |[E*| < 4.

CLAIM 5.15. Every real in X[A |I; * P-|I * S;] belongs to J; .., o (t)[A *
P, S;].

PRrROOF. By Claim 5.14 and the subsequent choice of E* and (a, p, 5), shifting
via 0, and using the facts that o, (a,p)) € Ax P, and that o, I, is the identity,
we get for each n < w some i, and a condition s, = $,[A* P.] € S,/S, forcing
that @ € o,(t;, )[A * P;], with Sp(s,,) C o/ E*. (Since this statement references
S., the sequence (s,, | n < w) belongs to the further extension V[A x P, x S;].)

Then Sp($,,) — I, are pairwise disjoint, so that by Claim 5.8, infinitely many of
the conditions s,, belong to S,. It follows in particular that = € o, (£;, )[A*Pr*S,]
for some (indeed infinitely many) n. -
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We have now shown that, in V[A * P,  S;], the space X[A[L, x P, [, * S,] is
covered by countably many sets which are 1-colorable sets in U[A[ L, * P, [ I, *S.],
namely the sets o, (;)[A * P; * S;]. To do this we homogenized the original
collection of sets £;, by passing to the larger collection an(ii). Something similar
to this was done by Farah [5], though in a very different forcing notion.

We will finish the proof that stage 7 is active by internalizing, that is shifting
the sets o, (f;) into (a generic extension of) M, contradicting the fact that this
model thinks that X and U name a counterexample to OCA,q(< ¢). This crucial
step is our most essential use of the homogeneity of A %P under permutations of
d.

Recall that we have E C §, of size a < 7, so that Sp(f;) C E for all 4. Let
E=,.,0"E, so that |J Sp(on(t:)) C E, and |[E| = a < 7.

Using Claim 5.13 we assumed that X and U have supports of size < . Hence

certainly |6 — (Sp(X) USp(U))| = @ (which is all we need below). It follows by

the elementarity of 7, that |I, — (Sp(X) U Sp(U))| > 7.

We can therefore find a permutation & of § so that 6”FE C I, and & is the
identity on Sp(X) U Sp(U). Let A’ x P. x S. = (A * P, x S,). Shifting the
conclusion of Claim 5.15 by &, and using the fact that ¢ is the identity on
Sp(X)USp(U), we have that each of the sets (600, )(f;)[A’x P.*S.] is 1-colorable
in U[A" % P/ + S7], and U, ,, ., (6 © 0) (£)[A" % P % S7] covers X[A" x P/ x S7].

Let A’ P/ +S" = (A P.%S")N M,. This makes sense using Claims 5.7, 5.9,
5.10, and 5.11, which also show that A’ P! %S is generic over V for . (A*PxS),
and hence certainly generic over M,. Moreover these claims, and the fact that
Sp((600,)(t;)) C I, allow us to assume that (6 00,)(f;) is a 7. (A% P+S)-name.
Recall that we took #; to name reals coding closed sets, rather than the closed
sets themselves, and arranged for #; to be canonical names, of size at most some
a < 7. Since M. is closed under a-sequences, we can conclude that the names
(600,)(t;) belong to M, and so does the sequence of these names. Certainly the

i,n<w

names X and U belong to M,. Thus the conclusion of the previous paragraph
implies that M,[A’ P! % S'] satisfies that the sets (6 o 0,,)(£;)[A’ * P! % S’]
partition X[A’x P! x S’] into countably many 1-colorable sets in U[A’ x P x S’].

But this is a contradiction, since X and U are forced in (A x P« S) over M,
to name a counterexample to OCAroq(< ¢). This contradiction completes the
proof that stage 7 is active.

Since stage 7 is active, and by Lemma 4.18, for every permutation o of 4, the
graph o(U,)[A * P, x S;] on the space o(X)[A * P, * S,] has an uncountable
clique in V[A % Pr41 % S;41]. The following claim will therefore suffices to show
that U [A % P x S] has an uncountable clique, and complete the proof of Lemma
5.12.

CLAIM 5.16. There is a permutation o of § so that J()?)[A*PT %S;] C X[Ax
P % S] and so that o(U,)[A * Py x S;] is the restriction of U[A x P x S] to
o(X)[A* P, xS,].
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PrOOF. Recall that o, is a permutation of § with the property that o, [I, =
71, Take 0 = o,.

Since o(X,)[A* P, + S;] and X, [0c7'(A % P, x S;)] are equal, we may work
with the latter instead of the former. Similarly with U.

By Claims 5.7, 5.9, 5.10, and 5.11, applied with 0 =1 (A% P, *S,) as a generic for
AxP, xS, , we have that o~ (A% P, %S, ) N7, (AxPxS) is generic over M, (indeed
over V) for 7, (A P % S). Moreover by Claim 5.11, for (a,p,$) € H, we have
that 7, ({a,p, $)) is equivalent to o~ 1({(a,p, $)), and hence (a,p, $) € A x P, xS,
iff 7-((a,p,$)) € 071 (A* P, xS,). It follows that 7, extends to an isomorphism
7 from H (A P % S] to M.jo (A% P, % S8,)Na-(AxPxS)], by setting
15 (2[Ax P+ 8]) = mp(i)[o (A% Py % S;) Ny (A% PxS)]. We then have that
T (X[AxPxS])) = X, [0 (A P+ S,) N7 (AxPxS) = X, [0 (A% P, % S,)],
and similarly 7*(U[A % P % S]) = U, [0~ (A P. % S,)].

So it remains to prove that 7*(X[A % Pr x S;]) € X[A % P % S], and that
75 (U[A * P % S)]) is the restriction of U[A * P x S] to 7*(X[A * P * S,]). But
this is clear from elementarity and the fact that 7} is the identify on reals in its
domain. Indeed, *(X[A % P, % S;]) is simply X[A % P x S| N H.[A* P« S], and
75 (U[A % P % S]) is the restriction of U[A * P * S] to this set. =

In light of Claim 5.16 and Lemma 4.18, The generic D, adds an uncountable
clique in the graph U [A* P xS] on X [A % P % S], contradicting the fact that
X and U are forced in A * P xS to give a counterexample to OCAr,q(< ¢).
This contradiction completes the proof of Lemma 5.12, and with it the proof of
Theorem 1.1. —

Recall that our definition of the iterands Q, and D, divides into three cases:
First when « is not inaccessible, second when « is inaccessible but d, does not
code an appropriate name for an open graph, and third, the active case, when
we add cliques to all shifts of the coded graph. In the first two cases we took Dy,
to only add Cohen reals.

We can prove Theorem 1.2 by adding an additional case: when « is inaccessi-
ble, and d,, codes (a name for) a Knaster poset of size . In this case we can take
D, to be the symmetric product of all shifts of the Knaster poset coded by d,.
Note that D, is c.c.c., since the product of Knaster posets retains the countable
chain condition. (This could fail if d, were to code a poset which is only c.c.c.,
and it is because of this that we restrict to Knaster posets in Theorem 1.2.) It is
easy to check that our analysis of the properties of S continues to apply with this
change. And it is not too hard to check that this leads to a proof of Theorem
1.2. We leave the details to the reader.

In both the proof of Theorem 1.1 and the proof of Theorem 1.2, only the poset
S adds new reals. This poset incorporates the addition of Ny Cohen reals, and
it is a finite support iteration of finite support products of posets of size Nj.
This implies that any collection of o mutually generic Cohen reals added (for
example) by Dy remain unbounded in the full extension by S. Hence, in the
full generic extension, b < No. Since OCA1,q(R1) implies that b > Ry, our end
models satisfy that b = Ns.
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