A homogeneous model of MA which is accessible to reals, and other exotic models

W. Hugh Woodin

Harvard University

VIG: February 12, 2023

Homogeneous models accessible to reals

Definition

- 1. *V* is accessible to reals if there exists $x \in \mathbb{R}$ such that $\omega_1 = \omega_1^{L[x]}$.
- 2. *V* is **homogeneous** if for all $A \subset \mathbb{R}$, if *A* has an ∞ -Borel code which is OD, then *A* is determined.
 - $A = \{x \in \mathbb{R} \mid HOD[x] = \varphi[x, a]\}$, for some φ and $a \in HOD$.
- V is strongly homogeneous if for all A ⊂ ℝ, if A is OD, then A is determined.

Assume MA_{ω_1} holds and V is accessible to reals. Then $L(\mathbb{R}) \models ZF + \omega_1 \text{-}DC + MA_{\omega_1}.$

A natural question.

Question

Assume MA holds.

- Can V be both homogeneous and accessible to reals?
 - What if $V = L(\mathbb{R})$?

${\sf Generic}\,\,{\rm MA}\,\,{\sf models}$

Definition

Suppose V = L[x] for some $x \in \mathbb{R}$ and \mathbb{P}_{ω_2} is given by a V-generic iteration of length ω_2 , with finite support, of ccc partial orders of size ω_1 . Suppose that

$$\left(L(\mathbb{R})\right)^{V[\mathbb{P}_{\omega_2}]^{\mathbb{P}_{\omega_2}}} \models \mathrm{AC}.$$

Then

$$\left(L(\mathbb{R})\right)^{V[\mathbb{P}_{\omega_2}]^{\mathbb{P}_{\omega_2}}}$$

is a generic MA model over L[x].

Generic MA models from the existence of Suslin trees

Theorem

Suppose that:

For all ccc partial orders P of size ω₁, there exists a Suslin tree T such that P × T is ccc.

Suppose V = L[x] for some $x \in \mathbb{R}$ and \mathbb{P}_{ω_2} is given by a V-generic iteration of length ω_2 , with finite support, of ccc partial orders of size ω_1 .

- Suppose G ⊂ P_{ω2} is V[P_{ω2}]-generic. Then the following hold.
 1. V[G] ⊨ MA + "c = ω2".
 - 2. $V[G] \models$ "There is a wellordering of \mathbb{R} in $L(\mathbb{R})$ ".

• The wellordering is definable from x in $L(\mathbb{R})$.

But is this strong existence of Suslin trees consistent if V = L[x] for some x ∈ ℝ?

- Does it hold in L?
 - If it does then the generic MA model over L satisfies V = HOD.

Forcing the strong existence of Suslin trees

Lemma

Suppose that $G \subset Add(\omega_1, \omega_2)$ is V-generic. Then the following holds in V[G].

For all ccc partial orders P of size ω₁, there exists a Suslin tree T such that P × T is ccc.

▶ But V[G] is far from satisfying V = L[x] for some $x \in \mathbb{R}$.

Theorem

Suppose that V = L[x] for some $x \in \mathbb{R}$. Then there exists a generic extension V[G] such that the following hold in V[G].

- 1. V[G] = L[y] for some $y \in \mathbb{R}^{V[G]}$.
- For all ccc partial orders P of size ω₁, there exists a Suslin tree T such that P × T is ccc.

Proof sketch

Let

 $\begin{array}{l} \langle \sigma_{\alpha}:\alpha<\omega_{2}\rangle\\ \text{be a sequence of uncountable subsets of }\omega_{1} \text{ such that for all}\\ \alpha<\beta<\omega_{2},\ \sigma_{\alpha}\cap\sigma_{\beta} \text{ is countable. Similarly, let}\\ \langle\tau_{\alpha}:\alpha<\omega_{1}\rangle\\ \text{be a sequence of infinite subsets of }\omega \text{ such that for all }\alpha<\beta<\omega_{1}, \end{array}$

 $\sigma_{\alpha} \cap \sigma_{\beta}$ is finite.

• Let $G_0 \subset \operatorname{Add}(\omega_1, \omega_2)$ be V-generic.

Let A be a V[G₀]-generic subset of ω₂.

Let $\sigma \subset \omega_1$ be $V[G_0][A]$ -generic for almost disjoint coding A relative to the sequence $\langle \sigma_\alpha : \alpha < \omega_2 \rangle$ such that

 $A = \{\beta < \omega_2 \mid \sigma_\beta \cap \sigma \text{ is countable}\}.$

Thus $V[G_0][A][\sigma] = L[x][\sigma]$.

Let τ ⊂ ω be V[G₀][A][σ]-generic for almost disjoint coding σ relative to ⟨τ_α : α < ω₁⟩ such that

 $\sigma = \{\beta < \omega_1 \mid \tau_\beta \cap \tau \text{ is finite}\}.$

• Thus $V[G_0][A][\sigma][\tau] = L[x][\tau]$.

• $L[x][\tau]$ witnesses the conclusion of the theorem.

Truth on a Turing cone: the power of the Martin measure

Theorem (Martin)

Assume PD. Then Th(L[x]) is constant on a Turing cone.

Theorem (Kechris, Woodin)

Assume Σ_2^1 -determinacy and that $x^{\#}$ exists for all $x \in \mathbb{R}$. Then $\operatorname{Th}(L[x])$ is constant on a Turing cone.

Theorem

Assume Σ_2^1 -determinacy and that $x^{\#}$ exists for all $x \in \mathbb{R}$. Then for a Turing cone of $x \in \mathbb{R}$,

• if
$$\mathbb{P} \in L[x]$$
 and $L[x] \models$ " \mathbb{P} is ccc and $|\mathbb{P}| = \omega_1$ "

then

 $L[x] \models$ "There exists a Suslin tree T such that $\mathbb{P} \times T$ is ccc".

The main theorem: version 1

Theorem

Assume Σ_2^1 -determinacy and that $x^{\#}$ exists for all $x \in \mathbb{R}$. Then for a Turing cone of $x \in \mathbb{R}$, if N is a generic MA-model over L[x] then the following hold.

1. N is homogeneous but N is not strongly homogeneous.

2. Th(N) does not depend on the choice of N.

- Let D be the set of all $t \in \mathbb{R}^N$ such that in N, every Suslin tree of L[t] which is definable from parameters in the structure $L_{\omega_1}[t]$, is specialized.
 - D is Turing invariant.
 - *D* and $\mathbb{R}^N \setminus D$ are both cofinal in the Turing degrees of *N*.
 - D is OD^N and so OD-Determinacy fails in N.

• By (2), the theory of N is constant on a cone.

A question of Enayat and Kanovei

Question

Suppose every finite nonempty OD set contains only OD members. Must V = HOD?

Theorem (Solovay)

Suppose x is Sacks generic over L. Then in L[x] there is an OD set with exactly 2 members, and neither is OD.

- What if x is Cohen (or random) over L?
- ▶ What if one assumes MA or even MM⁺⁺?

The main theorem: version 2

Theorem

Assume Σ_2^1 -determinacy and that $x^{\#}$ exists for all $x \in \mathbb{R}$. Then for a Turing cone of $x \in \mathbb{R}$, if N is a generic MA-model over L[x] then the following hold.

- 1. N is homogeneous but N is not strongly homogeneous.
- 2. $\operatorname{HOD}^{N} \subset \operatorname{HOD}^{L[x]}$ and does not depend on the choice of N.
- 3. Suppose $Z \in N$, $Z \in OD^N$, and $|Z|^N \le \omega_1^N$. Then $Z \subset OD^N$.
- ▶ In the context of $ZFC + "V = L(\mathbb{R})"$, and with N = V:
 - (3) implies that either V = HOD or that $\neg CH$ holds.

▶ By (2), HOD^{*N*} should be a "canonical" model.

A convenient hypothesis: $M_1^{\#}$ exists

Theorem

The following are equivalent.

- 1. There is an iterable inner model with a Woodin cardinal, restricting to normal strongly closed iteration trees.
- 2. There is an inner model with a Woodin cardinal and $X^{\#}$ exists for all $X \subset \text{Ord}$.

Theorem (after Mitchell-Steel et al)

The following are equivalent.

- 1. $M_1^{\#}$ exists.
- 2. There is an iterable inner model with a Woodin cardinal.
- 3. There is an inner model with a Woodin cardinal and $X^{\#}$ exists for all $X \subset \text{Ord}$.

Strategic enlargements of M_1

• δ_{M_1} is the Woodin cardinal of M_1 .

Definition

Suppose that $M_1^{\#}$ exists. Then for each regular cardinal γ of M_1 such that $\delta_{M_1} \leq \gamma$, $M_1^+[\gamma]$ is the smallest inner model N such that

- 1. $M_1 \subset N$.
- 2. For every 0-maximal normal iteration tree on M_1 of length θ for some $\theta \leq \gamma$, if $\mathcal{T} \in M_1$ and if b_T is the unique cofinal wellfounded branch of \mathcal{T} , then $b_T \in N$.

Theorem

Suppose that $M_1^{\#}$ exists. Then the following hold for each regular cardinal γ of M_1 such that $\delta_{M_1} \leq \gamma$.

- 1. $M_1^+[\gamma] \subset L[M_1^{\#}]$ for all $\gamma \in \text{Ord.}$
- 2. For all sufficiently large γ , $M_1^+[\gamma] = L[M_1^{\#}]$.

The Schlutzenberg-Steel reduction

Theorem

Suppose that $M_1^{\#}$ exists. Let η_0 be the least Silver indiscernible of M_1 and suppose that γ is a regular cardinal of M_1 such that $\delta_{M_1} \leq \gamma < \eta_0$. Then the following hold where $\delta = \delta_{M_1}$.

- 1. $M_1^+[\gamma] \cap V_{\delta} = M_1 \cap V_{\delta}$.
- 2. δ is a Woodin cardinal in $M_1^+[\gamma]$.
- 3. $M_1^+[\delta] \not\subset M_1$.

Theorem (Schlutzenberg, Steel)

Assume that $M_1^{\#}$ exists. Let η_0 be the least Silver indiscernible of M_1 and γ is a regular cardinal of M_1 such that $\delta_{M_1} \leq \gamma < \eta_0$. Then there is a 0-maximal normal iteration tree T on M_1 such that

$$M_1^+[\gamma] = M_1[b_T]$$

where b_T is the unique cofinal wellfounded branch of \mathcal{T} .

The main theorem: version 3

Theorem

Suppose that
$$M_1^{\#}$$
 exists, $x \in \mathbb{R}$, and

$$M_1^\# \in L[x].$$

Suppose N is a generic MA-model over L[x]. Then the following hold.

- 1. N is homogeneous but N is not strongly homogeneous.
- 2. $\operatorname{HOD}^{N} \subset \operatorname{HOD}^{L[x]}$ and does not depend on the choice of N.
- 3. Suppose $Z \in N$, $Z \in OD^N$, and $|Z|^N \le \omega_1^N$. Then $Z \subset OD^N$.
- 4. HOD^N is an iterate of $M_1^+[\delta_{M_1}]$.

$\mathrm{HOD}^{\mathcal{L}[x]}$ on a Turing cone

Theorem (Martin)

Assume Σ_2^1 -determinacy and that $x^{\#}$ exists for all $x \in \mathbb{R}$. Then for a Turing cone of $x \in \mathbb{R}$,

- ► HOD^{L[x]} \models "There is a Δ_3^1 -wellordering of \mathbb{R} ".
- $\blacktriangleright \operatorname{HOD}^{\mathcal{L}[x]} \cap \mathbb{R} = Q_3.$

Theorem

Assume Σ_2^1 -determinacy and that $x^{\#}$ exists for all $x \in \mathbb{R}$. Then for a Turing cone of $x \in \mathbb{R}$, the following hold.

1.
$$\omega_2^{L[x]}$$
 is a Woodin cardinal in HOD^{L[x]}.

2. $\omega_2^{L[x]}$ is the only Woodin cardinal in HOD^{L[x]}.

Theorem (Kechris, Solovay)

Suppose V = L[x], $x \in \mathbb{R}$, and that Σ_2^1 -Determinacy holds.

Then OD-Determinacy holds.

The $\operatorname{HOD}^{\mathcal{L}[x]}$ problem

Appealing to the Schlutzenberg-Steel reduction, one can reduce the HOD^{L[x]} problem to a specific conjecture.

Conjecture

Suppose that $M_1^\#$ exists, $x \in \mathbb{R}$, and $M_1^\# \in L[x].$

Then the following hold.

- 1. HOD^{L[x]} | $\omega_2^{L[x]}$ is an iterate of $M_1|\delta_{M_1}$.
- 2. There exists a 0-maximal normal iteration tree $T \in M_1$ such that $HOD^{L[x]}$ is an iterate of $M_1[b_T]$, where b_T is the cofinal wellfounded branch of T.
- The conjecture is true with L[x] replaced by L[x][G] for a wide class of extensions, including the generic MA models.
 - There is a key empirical monotonicity pattern:
 - ▶ The closer L[x][G] is to L[y] for some $y \in \mathbb{R}^{L[x][G]}$, the closer $M_1[b_T]$ is to M_1 .

Corollary of the main theorem on generic MA models

Theorem

Suppose that $M_1^{\#}$ exists, $x \in \mathbb{R}$, and $M_1^{\#} \in L[x]$. Then there exists $E \in L[x]$ such that the following hold. 1. $E \subset \omega_2^{L[x]}$. 2. $\left(\mathrm{HOD}_E\right)^{L[x]}$ is an iterate of $M_1^+[\delta_{M_1}]$. 3. $\omega_2^{L[x]}$ is the Woodin cardinal of $\left(\mathrm{HOD}_E\right)^{L[x]}$.

Definition

Suppose that $M_1^{\#}$ exists. Then

 $M_1^+ \left[\Delta_2(M_1 | \delta_{M_1}) \right]$

is the smallest inner model N such that $M_1 \subset N$ and such that for every 0-maximal normal iteration tree \mathcal{T} on M_1 , if

• \mathcal{T} has length δ_{M_1}

• \mathcal{T} is Δ_2 -definable from parameters in $M_1 \cap V_{\delta_{M_1}}$; then the cofinal wellfounded branch of \mathcal{T} is in N.

More evidence about $HOD^{L[x]}$

Theorem

Suppose that $M_1^{\#}$ exists, $x \in \mathbb{R}$, and

$$M_1^\# \in L[x].$$

Suppose G is an L[x]-generic subset of $\omega_1^{L[x]}$. Then there is a partial order $\mathbb{P} \in L[x][G]$ such that if $H \subset \mathbb{P}$ is L[x][G]-generic and if

 $\mathbb{R}_H = \mathbb{R}^{L[x][G][H]},$

then the following hold.

- 1. \mathbb{P} has cardinality ω_1 in L[x][G].
- 2. \mathbb{P} is ccc in L[x][G].
- 3. HOD^{$L(\mathbb{R}_H)$} is an iterate of $M_1^+[\Delta_2(M_1|\delta_{M_1})]$.

▶ \mathbb{P} is really an L[x]-generic iteration of length ω_1

• but of "simple" ccc partial orders of cardinality ω_1 .

A conjecture for $HOD^{L[x]}$

Conjecture

Suppose that $M_1^{\#}$ exists, $x \in \mathbb{R}$, and $M_1^{\#} \in L[x]$.

Then there exists a 0-maximal normal iteration tree $T \in M_1$ such that

•
$$HOD^{L[x]}$$
 is an iterate of $M_1[b_T]$,

•
$$M_1 \subseteq M_1[b_T] \subseteq M_1^+ [\Delta_2(M_1|\delta_{M_1})].$$

Conjecture

Suppose that $M_1^{\#}$ exists, $x \in \mathbb{R}$, and $M_1^{\#} \in L[x]$. Then $HOD^{L[x]}$ is an iterate of $M_1^+[\Delta_2(M_1|\delta_{M_1})]$.

What about strongly homogeneous models?

- The generic MA models over L[x] are never strongly homogeneous
 - The models can never satisfy OD-Determinacy.

More generally:

Question

Suppose that

►
$$L(\mathbb{R}) \models \text{ZFC} + \text{``OD-Determinacy''}.$$

Must CH hold?

MM^{++} versus supercompact

A widely believed conjecture:

Conjecture

The following are equiconsistent.

- 1. $ZFC + MM^{++}$.
- **2.**ZFC + SC.

▶ i. e. ZFC + "There is a supercompact cardinal".

But this conjecture is just one of many. For example:

Conjecture

The following are equiconsistent

- 1. $ZFC + MM^{++} + "There is a proper class of huge cardinals".$
- 2. ZFC + SC + "There is a proper class of huge cardinals".

The δ -cover and δ -approximation properties

Definition (Hamkins)

Suppose N is an inner model of ZFC and that δ is an uncountable (regular) cardinal of V.

- 1. *N* has the δ -cover property if for all $\sigma \subset N$, if $|\sigma| < \delta$ then there exists $\tau \in N$ such that:
 - σ ⊂ τ,
 |τ| < δ.
- 2. *N* has the δ -approximation property if for all sets $X \subset N$, the following are equivalent.
 - \triangleright $X \in N$.
 - For all $\sigma \in N$ if $|\sigma| < \delta$ then $\sigma \cap X \in N$.

If V is a (set) generic extension of an inner model N then for all sufficiently large regular cardinals δ:

- *N* has the δ -approximation property.
- *N* has the δ -cover property.

The Hamkins Uniqueness and Universality Theorems

Theorem (Hamkins Uniqueness Theorem)

Suppose N_0 and N_1 both have the δ -approximation property and the δ -cover property. Suppose

$$\blacktriangleright N_0 \cap H(\delta^+) = N_1 \cap H(\delta^+)$$

Then $N_0 = N_1$.

Theorem (Hamkins Universality Theorem)

Suppose that N is an inner model of ZFC with the δ -cover and δ -approximation properties, $\kappa > \delta$, and that κ is a supercompact cardinal.

 \blacktriangleright Then κ is a supercompact cardinal in N.

The Hamkins Universality Theorem holds for almost all large cardinal notions, except the very strongest notions.

The theorem fails for Axiom I₀ cardinals.

Something seems to be missing.

The δ -genericity property and strong universality

Definition

Suppose that N is an inner model of ZFC and δ is strongly inaccessible.

Then N has the δ-genericity property if for all σ ⊂ δ, if |σ| < δ then σ is N-generic for a partial order ℙ ∈ N such that |ℙ|^N < δ.</p>

Theorem (Strong Universality)

Suppose that:

N has the δ-approximation property, the δ-cover property, and the δ-genericity property.

Suppose that there is a proper class of $\operatorname{Axiom} I_0$ cardinals.

▶ Then in N, there is a proper class of Axiom I₀ cardinals.

Inner models by approximation and cover

Theorem (Hamkins)

Suppose δ is strongly compact and that N is an inner model with the δ -approximation property and the δ -cover property.

• Then δ is strongly compact in N.

Theorem (Viale, Weiss)

Assume PFA and that N is an inner model with the ω_2 -approximation property and the ω_2 -cover property such that ω_2 is strongly inaccessible in N.

Then ω_2 is strongly compact in N.

Theorem

Suppose that N is an inner model of ZFC, ω_2 is supercompact in N, and that this is witnessed by normal fine ultrafilters which concentrate on sets which are stationary in V.

Then N has the ω₂-approximation property and the ω₂-cover property.

Equiconsistency by purely combinatorial methods?

Conjecture (Viale, Weiss, Foreman)

Assume MM^{++} . Then there exists an inner model N with the ω_2 -approximation property and the ω_2 -cover property such that ω_2 is strongly inaccessible in N.

- This holds in all known models of MM^{++} .
- This conjecture if true suggests that even the following conjecture might be provable by purely combinatorial methods.

Conjecture

The following are equiconsistent

- 1. $\rm ZFC + \rm MM^{++} +$ "There is a proper class of $\rm I_0$ cardinals".
- 2. ${\rm ZFC}+{\rm SC}+$ "There is a proper class of ${\rm I}_0$ cardinals".

An exotic model of MM^{++}

Theorem (ZF)

Suppose that δ is a Vopěnka cardinal and that there exists an elementary embedding

 $j: V_{\delta} \to V_{\delta}$

such that $V_{\kappa} \prec V_{\delta}$ where $\kappa = CRT(j)$. Then there is a generic extension V[G] of V such that

 $V[G]_{\delta} \models \operatorname{ZFC}$

and such that the following hold in $V[G]_{\delta}$.

- 1. Vopěnka's Principle.
- 2. MM⁺⁺.
- 3. Suppose that N is an inner model with the ω_2 -approximation property and the ω_2 -cover property. Then $H(\omega_2) \subset N$.

Generalizations of Axiom (*)

• Γ^{∞} is the set of all $A \subseteq \mathbb{R}$ such that A is universally Baire.

Definition

1. Axiom $(*)^+$: For each $X \subseteq \mathbb{R}$, there exists $A \subset \mathbb{R}$ and $G \subset \mathbb{P}_{\max}$ such that

$$\blacktriangleright L(A,\mathbb{R}) \models \mathrm{AD}^+.$$

- G is $L(A, \mathbb{R})$ -generic and $X \in L(A, \mathbb{R})[G]$.
- 2. Axiom (*)^++: There exists $\Gamma\subset \mathcal{P}(\mathbb{R})$ and $G\subset \mathbb{P}_{\max}$ such that
 - $\blacktriangleright L(\Gamma, \mathbb{R}) \models \mathrm{AD}^+.$
 - G is $L(\Gamma, \mathbb{R})$ -generic and $\mathcal{P}(\mathbb{R}) \subset L(\Gamma, \mathbb{R})[G]$.
- 3. Axiom (*)_{\rm UB}^{++}: There exists ${\it G} \subset \mathbb{P}_{\max}$ such that
 - G is $L(\Gamma^{\infty}, \mathbb{R})$ -generic.

$$\mathcal{P}(\mathbb{R}) \subset L(\Gamma^{\infty}, \mathbb{R})[G].$$

(And there is a proper class of Woodin cardinals)

The equivalence theorems

Theorem

The following are equivalent.

- 1. Axiom $(*)^+$ holds.
- 2. Axiom $(*)^{++}$ holds.

Theorem

Assume there is a proper class of Woodin cardinals and that $\rm MM^{++}$ holds. Then following are equivalent.

- 1. Axiom $(*)^+$ holds.
- 2. Axiom $(*)^{++}$ holds.
- 3. Axiom $(*)_{UB}^{++}$ holds.
- As a corollary, Axiom (*)⁺ fails in all the known models of MM⁺⁺.

Two key questions about MM^{++}

Definition (A convenient strengthening of Axiom I_0)

Axiom I_0^+ holds at λ if:

- 1. Axiom I_0 holds at $\lambda.$
- 2. (scheme) $V_{\lambda} \prec V$.

Question

Assume Axiom I_0^+ holds at λ and that MM^{++} holds.

Must $\mathbb{R} \subset HOD$?

Theorem (Aspéro, Schindler)

Assume MM^{++} holds. Then Axiom (*) holds.

Question

Assume Axiom I_0^+ holds at λ and that MM^{++} holds.

```
Must Axiom (*)<sup>+</sup> fail?
```

Is there a generalization of Axiom (*) to MM^{++} ?

The condition:

▶ HOD \models "V = Ultimate-L"

is another version of homogeneity for models of $\operatorname{MA}\nolimits.$

Question

Assume there is a proper class of Woodin cardinals and that $\rm MM^{++}$ holds.

• Can HOD
$$\models$$
 " $V =$ Ultimate- L "?

Question

Assume Axiom I_0^+ holds at λ and that MM^{++} holds.

• Can HOD
$$\models$$
 " $V = \text{Ultimate-}L$ "?