Closed groups generated by generic measure preserving transformations

Sławomir Solecki

Cornell University

Supported by NSF grant DMS-1954069

February 2023

Polish groups

Polish groups

Polish groups

Polish group = a topological group whose group topology is Polish

There is **no** Haar measure unless the group is locally compact. But **meagerness** and **Baire property** are translation invariant notions of smallness and regularity.

A convention:

a generic $g \in G$ has property P if $\{g \in G \mid g \text{ has } P\}$ is comeager

Polish groups

The group of measure preserving transformations

 $\textbf{Aut} = \text{the Polish group of all Lebesgue measure } \lambda$ preserving transformations of [0,1]

Measure preserving transformations are identified if they coincide on a set of full measure.

 Aut is taken with composition and the weak topology, that is,

 $T_n \to T$ iff $\lambda(T_n(A) \triangle T(A)) \to 0$, for each Borel $A \subseteq [0, 1]$.

Polish groups

Some important results in Ergodic Theory can be viewed as results about the following **equivalence relation** on Aut:

 $T_1 \sim T_2$ if and only if $T_1 = ST_2S^{-1}$, for some $S \in Aut$.

The study of **generic** elements of Aut has a long history:

Halmos: In general a measure preserving transformation is mixing, Ann. of Math. 1944

Rokhlin: *A* 'general' measure-preserving transformation is not mixing, Doklady Akad. Nauk SSSR 1948

Polish groups

The group of measurable functions

 $\boldsymbol{\mathsf{L}^0}=$ the Polish group of all Lebesgue measurable functions from [0,1] to the unit circle

 L^0 is taken with pointwise multiplication and the topology of convergence in measure.

Polish groups

The unitary group

 $\boldsymbol{\mathcal{U}}=$ the Polish group of unitary transformations of the separable, infinite dimensional, complex Hilbert space

 $\ensuremath{\mathcal{U}}$ is taken with composition and the strong operator topology.

-The question

The question

— The question

The subject matter of the talk

For a Polish group G and $g \in G$, let

$$\langle g \rangle_c = \operatorname{closure}(\{g^n \mid n \in \mathbb{Z}\}).$$

We study closed subgroups of ${\rm Aut}$ generated by generic elements of ${\rm Aut},$ that is, groups of the form

 $\langle T \rangle_c,$

for a generic measure preserving transformation T.

— The question

 $T_1,\,T_2\in {\rm Aut}$

 $\mathcal{T}_1 \sim \mathcal{T}_2$ if and only if $\mathcal{T}_1 = S\mathcal{T}_2S^{-1}$, for some $S \in \operatorname{Aut}$.

 \sim is an equivalence relation on Aut with a complicated behavior even for generic elements of Aut—Rokhlin, Foreman–Weiss.

 $T_1 \equiv T_2$ if and only if $\langle T_1 \rangle_c$ and $\langle T_2 \rangle_c$ are isomorphic as topological groups

 \equiv is an equivalence relation on Aut that is more generous than $\sim.$

Hope: \equiv has a much more uniform behavior than \sim ; maybe even there is a generic \equiv -class, that is, a \equiv -class that is comeager.

The question

The question

Glasner–Weiss: Is it the case that for a generic $T \in Aut$, $\langle T \rangle_c$ is isomorphic to L^0 ?

-The question

Motivation for the question

Qualifications

Glasner–Weiss: $\langle T \rangle_c$ is isomorphic to L^0 for some $T \in Aut$.

Analogy

Melleray–Tsankov: $\langle U \rangle_c$ is isomorphic to L^0 for a generic $U \in \mathcal{U}$.

- The question

Structure

Ageev: For a generic $T \in Aut$, each finite abelian group embeds into $\langle T \rangle_c$.

S.: For a generic $T \in Aut$, there is a Polish linear space L_T and a continuous surjective homomorphism $L_T \to \langle T \rangle_c$.

Dynamics

Glasner–Weiss: For a generic $T \in Aut$, the natural boolean action of $\langle T \rangle_c$ is whirly.

└─ The theorem

The theorem

-The theorem

Theorem (S.)

For a generic transformation $T \in Aut$, the group $\langle T \rangle_c$ is **not** isomorphic to L^0 .

— The theorem

A rough outline of the proof

Prove the following two points.

1. If $L^0 \cong \langle T \rangle_c < \text{Aut}$, for a generic $T \in \text{Aut}$, then **some** ergodic boolean action of L^0 has **spectral properties** similar to spectral properties of a generic $T \in \text{Aut}$.

2. No ergodic boolean actions of L^0 has spectral properties similar to spectral properties of a generic $T \in Aut$.

Spectral behavior

Spectral behavior

Spectral behavior

Spectral behavior of a generic $T \in Aut$

Building on earlier work of Choksi–Nadkarni, Katok, and Stepin, del Junco–Lemańczyk proved:

Theorem (del Junco–Lemańczyk, 1992)

For a generic $T \in Aut$, a strong orthogonality condition holds for convolutions of maximal spectral types $\nu(T^{\ell})$ of powers of T.

Call the condition the **del Junco–Lemańczyk orthogonality condition**.

Spectral behavior

Spectral behavior of L⁰

A unitary representation of ${\cal L}^0$ can be constructed as follows. Given $\phi\in {\cal L}^0,$ let

$$L^2(\lambda) \ni f \to \phi \cdot f \in L^2(\lambda).$$

This is a unitary representation in $\mathcal{U}(L^2(\lambda))$.

Spectral behavior

Spectral behavior of L⁰

A unitary representation of L^0 can be constructed as follows. Given $\phi \in L^0,$ let

$$L^2(\mu) \ni f \to \phi \cdot f \in L^2(\mu),$$

for $\mu \leq \lambda$. This is a unitary representation in $\mathcal{U}(L^2(\mu))$.

Spectral behavior

Spectral behavior of L⁰

A unitary representation of L^0 can be constructed as follows. Given $\phi \in L^0,$ let

$$L^2(\mu) \ni f \to \phi^k \cdot f \in L^2(\mu),$$

for $\mu \leq \lambda$ and $k \in \mathbb{Z}$. This is a unitary representation in $\mathcal{U}(L^2(\mu))$.

-Spectral behavior

One can form a multidimensional version of the above unitary representation determined by

- a finite Borel measure μ on $[0,1]^n$ with marginals absolutely continuous with respect to λ and
- an assignment of powers to the coordinates of $[0,1]^n$: $i \rightarrow k_i$, for $1 \le i \le n$.

Let's call these atomic representations.

There is a semigroup

(*A*,⊕)

each of whose elements encodes n and $i \rightarrow k_i$, for $1 \le i \le n$, of an atomic representation.

The semigroup A consists of all finite functions x such that

 $\emptyset \neq \operatorname{dom}(x) \subseteq \mathbb{Z}^{ imes}$ and $\operatorname{rng}(x) \subseteq \mathbb{N}$

Spectral behavior

Theorem (S., 2014)

 $\xi: L^0 \rightarrow \mathcal{U}$ a unitary representation without non-zero fixed vectors

Then, ξ is built from atomic representations determined by x and finite measures μ_x as x ranges over A.

The sequence $(\mu_x)_{x \in A}$ is unique up to mutual absolute continuity of its entries.

The above is true modulo multiplicity of μ_{x} .

Geography of the proof of the main theorem

Geography of the proof of the main theorem Geography of the proof of the main theorem

We study $\xi: L^0 \to \mathcal{U}$ a unitary representation without non-zero fixed vectors.

The main issue is a comparison, for $x, y \in A$, of

 $\mu_x \times \mu_y$ and $\mu_{x \oplus y}$ computed for ξ .

Geography of the proof of the main theorem

Del Junco–Lemańczyk condition for L⁰

Theorem (Etedadialiabadi, 2020)

 $\xi\colon L^0\to \mathcal{U}$ a unitary representation without non-zero fixed vectors

Assume: for a generic $\phi \in L^0$, the del Junco–Lemańczyk orthogonality condition holds for maximal spectral types $\nu(\xi(\phi)^{\ell})$ of powers of $\xi(\phi)$.

Then

$$\mu_x \times \mu_y \perp \mu_{x \oplus y}$$
, for all $x, y \in A$.

Geography of the proof of the main theorem

Theorem on Koopman representations of L⁰

A continuous homomorphism $\zeta \colon G \to Aut$ is called a **boolean** action.

Given a boolean action $\zeta \colon G \to Aut$, the Koopman representation associated with ζ is given by

$$G \ni g \to U_g \in \mathcal{U}(L^2(\lambda)),$$

where, for $f\in L^2(\lambda)$,

$$U_g(f) = f \circ (\zeta(g))^{-1}.$$

Geography of the proof of the main theorem

Theorem (S.)

 ξ = the Koopman representation associated with an ergodic boolean action of L^0

Then

 $\mu_x \times \mu_y \preceq \mu_{x \oplus y}$, for all $x, y \in A$.

Geography of the proof of the main theorem

Proof of the main theorem

The proposition below gives a connection with the Glasner–Weiss question.

It uses Etedadialiabadi's and del Junco-Lemańczyk's theorems.

Proposition (S.)

Assume, for a generic $T \in Aut$, $\langle T \rangle_c$ is isomorphic to L^0 .

There exists an ergodic boolean action of L^0 , whose Koopman representation is such that

 $\mu_x \times \mu_y \perp \mu_{x \oplus y}$, for all $x, y \in A$.

Geography of the proof of the main theorem

SO, for all ergodic Koopman representations of L^0

 $\mu_x \times \mu_y \preceq \mu_{x \oplus y}$, for all x, y.

BUT, if $\langle T \rangle_c$ is isomorphic to L^0 for a generic $T \in Aut$, then there exists an ergodic Koopman representation of L^0 with

 $\mu_x \times \mu_y \perp \mu_{x \oplus y}$, for all x, y.

CONTRADICTION

Questions

Questions

-Questions

Is there a Polish group G such that $\langle T \rangle_c$ is isomorphic to G, for a generic $T \in Aut$?

Glasner–Weiss: Is the group $\langle T \rangle_c$ a Lévy group for a generic $T \in Aut$?