Measures in Simple Structures

Nicholas Ramsey
University of Notre Dame

VIG
February 13, 2023

Joint with Artem Chernikov, Ehud Hrushovski, Alex Kruckman, Krzysztof Krupinski, Slavko Moconja, and Anand Pillay.

Banach-Tarski Paradox

- Banach-Tarski Paradox: A ball in \mathbb{R}^{3} can be partitioned into finitely many pieces in such a way that, after moving these pieces by translations and rotations, they may be reassembled to form two balls of equal volume as the first.

Figure: From Wikipedia

The Question

- In the Banach-Tarski Paradox, how complicated must the pieces be?

Move 1: From the geometric object to its group of symmetries

- Let G be a group of symmetries of a set X (i.e. a group acting on X) and suppose $E \subseteq X$. E is said to be G-paradoxical if for some m, n there exist g_{1}, \ldots, g_{m} and $h_{1}, \ldots, h_{n} \in G$ and pairwise disjoint A_{1}, \ldots, A_{m} and $B_{1}, \ldots, B_{n} \subseteq E$ such that $E=\bigcup g_{i} A_{i}=\bigcup h_{j} B_{j}$.

G-paradoxical

Move 1: From the geometric object to its group of symmetries

- Let G be a group acting on X and suppose $E \subseteq X$. E is said to be G-paradoxical if for some m, n there exist g_{1}, \ldots, g_{m} and $h_{1}, \ldots, h_{n} \in G$ and pairwise disjoint A_{1}, \ldots, A_{m} and $B_{1}, \ldots, B_{n} \subseteq E$ such that $E=\bigcup g_{i} A_{i}=\bigcup h_{j} B_{j}$.
- Banach-Tarski Paradox: The unit ball in \mathbb{R}^{3} is $\mathrm{SO}(3)$-paradoxical.
- Theorem: A group G is G-paradoxical if and only if there is a free G-paradoxical action on some set X.

Move 2: From decompositions to measures

- A (finitely additive probability) measure on the group G is a function $\mu: \mathcal{P}(G) \rightarrow[0,1]$ such that

1. $\mu(G)=1$.
2. If $X, Y \subseteq G$ are disjoint, then $\mu(X \cup Y)=\mu(X)+\mu(Y)$.

- A measure on G is called G-invariant if, for all $X \subseteq G$ and $g \in G$,

$$
\mu(g X)=\mu(X)
$$

- Tarski's Theorem: A group G is not G-paradoxical if and only if there is some G-invariant measure on G. Groups with such a measure are called amenable so a group G is not G-paradoxical if and only if it is amenable.

The Question v2

- Suppose a group G is not amenable. Must the group be very complicated?

Dividing lines

- From specific to more general: e.g. from algebraically closed fields to differentially closed fields, difference fields,...
- From general to more specific: e.g., from graphs to real-algebraic or p-adic graphs,...
- Goldilocks: Much of model theory is organized around the search for dividing lines: combinatorial properties of theories that divide theories into tame and wild.
- Simplicity: the key dividing line for us, which is characterized by there being a notion of independence (generalizing linear independence in vector spaces, algebraic independence in algebraically closed fields) that is symmetric and transitive, among other useful properties.

The tree property

Definition

The formula $\varphi(x ; y)$ has the tree property if there is a tree of tuples $\left(a_{\eta}\right)_{\eta \in \omega<\omega}$ and a number $k<\omega$ so that

1. Paths are consistent - for all $\eta \in \omega^{\omega},\left\{\varphi\left(x ; a_{\eta \mid \alpha}\right): \alpha<\omega\right\}$ is consistent
2. Children of a common node are k-inconsistent - for any $\eta \in \omega^{<\omega}$, $\left\{\varphi\left(x ; a_{\eta}-\langle\alpha\rangle\right): \alpha<\omega\right\}$ is k-inconsistent.
The theory T has the tree property if some formula $\varphi(x ; y)$ does modulo T.

The tree property

Figure: paths are consistent

The tree property

Figure: children of a common node are k-inconsistent

The tree property

Definition

The formula $\varphi(x ; y)$ has the tree property if there is a tree of tuples $\left(a_{\eta}\right)_{\eta \in \omega<\omega}$ and a number $k<\omega$ so that

1. Paths are consistent - for all $\eta \in \omega^{\omega},\left\{\varphi\left(x ; a_{\eta \mid \alpha}\right): \alpha<\omega\right\}$ is consistent
2. Children of a common node are k-inconsistent - for any $\eta \in \omega^{<\omega}$, $\left\{\varphi\left(x ; a_{\eta} \frown\langle\alpha): \alpha<\omega\right\}\right.$ is k-inconsistent.

- The complete theory T is simple if and only if T does not have the tree property. Examples of simple theories include random graphs, difference closed fields. Non-examples include dense linear orders and triangle-free random graphs.

The map

Figure: From Gabe Conant's forkinganddividing.com

Forking and dividing

Definition

Suppose A is a set of parameters.

1. $\varphi(x ; a)$ divides over A if there is an A-indiscernible sequence $\left\langle a_{i}: i<\omega\right\rangle$ with $a_{0}=a$ such that $\left\{\varphi\left(x ; a_{i}\right): i<\omega\right\}$ is inconsistent.
2. $\varphi(x ; a)$ forks over A if

$$
\varphi(x ; a) \vdash \bigvee_{i<k} \psi_{i}\left(x ; c_{i}\right),
$$

where each $\psi_{i}\left(x ; c_{i}\right)$ divides over A.
3. We say a (partial) type p forks or divides over A if it implies a formula that does.
4. We write $a \downarrow_{C}^{f} b$ to indicate that $\operatorname{tp}(a / b C)$ does not fork over C.

Forking and Dividing

Forking and Dividing

Forking and Dividing

From forking we get three things:

1. Notion of independence: We say a is independent from b over A, denoted $a \downarrow_{A} b$ if a is contained in no $A b$-definable set that forks over A.
2. Notion of generic point: If $A \subseteq B$ and $a \downarrow_{A} B$, then $\operatorname{tp}(a / B)$ is a generic extension of $\operatorname{tp}(a / A)$.
3. Notion of dimension: Have the foundation rank on extensions that fork.

Stability

Theorem
(Harnik-Harrington) The theory T is stable if and only if there is an Aut(\mathbb{M})-invariant ternary relation \downarrow on small subsets of \mathbb{M} satisfying:

1. Extension: If $a \downarrow_{c} b$, then for all c, there is $a^{\prime} \equiv_{c b}$ such that $a^{\prime} \downarrow_{c} b c$.
2. Symmetry: $a \downarrow_{C} b \Longleftrightarrow b \downarrow_{C} a$.
3. Finite character: $a \bigsqcup_{C} b$ if and only if $a^{\prime} \bigsqcup_{C} b^{\prime}$ for all finite subtuples $a^{\prime} \subseteq a, b^{\prime} \subseteq b$.
4. Transitivity: If $B \subseteq C \subseteq D, a \downarrow_{B} C$, and $a \downarrow_{C} D$ then $a \downarrow_{B} D$.
5. Base monotonicity: If $B \subseteq C$ then $a \downarrow_{B} C d$ implies a $\downarrow_{C} d$.
6. Local character: For any a and C, there is $B \subseteq C$ with $|B| \leq|T|$ such that $a \downarrow_{B} C$.
7. Stationarity: If $C=\operatorname{acl}^{\text {leq }}(C)$, then if $a \equiv c a^{\prime}, a \downarrow_{C} b$ and $a^{\prime} \downarrow_{C} b$, then $a \equiv C b a^{\prime}$.
If there is such a relation, it agrees with \downarrow^{f}.

Simplicity

Definition

T is simple if \downarrow^{f} satisfies local character: for any a and C, there is $B \subseteq C$ with $|B| \leq|T|$ such that a $\downarrow_{B}^{f} C$.

Theorem
(Kim-Pillay) The theory T is simple if and only if there is an Aut (\mathbb{M})-invariant ternary relation \downarrow on small subsets of \mathbb{M} satisfying:

1. Extension, Symmetry, Finite character, Transitivity, Base monotonicity, Local character
2. The Independence Theorem: If $M \models T$, then if $a \equiv_{M} a^{\prime}, a \downarrow_{M} b$, $a^{\prime} \downarrow_{M} c$ and $b \downarrow_{M} c$, then there is a_{*} such that $a_{*} \equiv_{M b} a$, $a_{*} \equiv \sum_{M c} a^{\prime}$, and $a_{*} \downarrow_{M} b c$.
If there is such a relation, it agrees with \downarrow^{f}.

Keisler measures

Definition

A Keisler measure over A is a finitely additive probability measure on $\operatorname{Def}_{x}(A)$, where $\operatorname{Def}_{x}(A)$ denotes the Boolean algebra of definable sets in the free variables x and parameters coming from A. We will often omit the x.

Example
In $(\mathbb{Q},<)$, for each formula defined with parameters in \mathbb{Q}, we can define

$$
\mu(\varphi(x ; a))=\left\{\begin{array}{lc}
1 & \text { if } \varphi(\pi ; \text { a) is satisfied in } \mathbb{R} \\
0 & \text { otherwise }
\end{array}\right.
$$

Examples of Keisler measures

Example

- Lebesgue measure on $[0,1]^{n}$: we may define a Keisler measure over \mathbb{R}, viewed as a field, by stipulating that for any $X \in \operatorname{Def}(\mathbb{R})$,

$$
\mu(X)=\lambda\left(X \cap[0,1]^{n}\right) .
$$

- Nonstandard counting measure: If μ is a $\{0,1\}$-valued finitely additive probability measure on \mathbb{N} and $\left(M_{i}\right)_{i \in \mathbb{N}}$ is a sequence of finite structures, we may form the ultraproduct $M=\prod M_{i} / \mu$, identifying elements of the product that disagree on a set of measure zero. We may define a Keisler measure $\mu_{\text {count }}$ by defining, for $X \in \operatorname{Def}(M)$,

$$
\mu_{\text {count }}(X)=\lim _{\mu} \frac{\left|X\left(M_{i}\right)\right|}{\left|M_{i}\right|} .
$$

Measures and forking

Definition

Suppose μ is a global Keisler measure. We say μ is A-invariant if $\mu(X)=\mu(\sigma(X))$ for all definable sets X (with parameters) and $\sigma \in \operatorname{Aut}(\mathbb{M} / A)$. Equivalently, μ is A-invariant if, given any $\varphi(x ; y)$ and $b \equiv{ }_{A} b^{\prime}$,

$$
\mu(\varphi(\mathbb{M} ; b))=\mu\left(\varphi\left(\mathbb{M} ; b^{\prime}\right)\right)
$$

Definition

We say a definable set X is universally of measure zero over A if $\mu(X)=0$ for all global A-invariant measures μ. We refer to the collection of sets universally of measure zero as the universal measure zero ideal.

Measures and forking

Observation

A formula that forks over A defines a set that is universally of measure zero over A.

Proof.

As a finite union of sets universally of measure zero is universally of measure zero, it suffices to show that if $\varphi(x ; a)$ divides over A, then $\mu(\varphi(\mathbb{M} ; a))=0$. Let $\left\langle a_{i}: i<\omega\right\rangle$ be an A-indiscernible sequence such that $a_{0}=a$ and $\left\{\varphi\left(x ; a_{i}\right): i<\omega\right\}$ is inconsistent. If $\mu(\varphi(\mathbb{M} ; a))>0$ for some A-invariant μ, then there is some maximal k such that $\mu\left(\bigwedge_{i<k} \varphi\left(x ; a_{i}\right)\right)>0$. Then for all $j<\omega$, the sets defined by $\bigwedge_{i<k} \varphi\left(x ; a_{k \cdot j+i}\right)$ have pairwise intersection of measure zero and (by A-indiscernibility) constant positive measure. This contradicts the fact that μ is a probability measure.

Measures and groups

Definition

Suppose G is a definable group.

1. We say a measure μ on $\operatorname{Def}(G)$ is G-invariant if $\mu(X)=\mu(g \cdot X)$ for all definable subsets $X \subseteq G$.
2. We say G is definably amenable if there is an invariant Keisler measure on definable subsets of G.

Measures and groups

Example

1. Amenable groups are definably amenable-this includes all solvable groups.
2. All stable groups: $\mathrm{SL}_{2}(\mathbb{C})$, non-abelian free groups (!).
3. Pseudo-finite groups: If $\left(G_{i}\right)_{i \in \mathbb{N}}$ is a sequence of finite groups, μ is a $\{0,1\}$-valued finitely additive probability measure on \mathbb{N} and $\tilde{G}=\prod_{i \in \mathbb{N}} G_{i} / \mu$, then for any definable subset $X \subseteq G(F)$, and $g=\left(g_{i}\right) / \mu \in \tilde{G}$, we have:

$$
\mu_{\mathrm{count}}(X)=\lim _{\mu} \frac{\left|X\left(K_{i}\right)\right|}{\left|G\left(K_{i}\right)\right|}=\lim _{\mu} \frac{\left|g_{i} X\left(K_{i}\right)\right|}{\left|G\left(K_{i}\right)\right|}=\mu_{\mathrm{count}}(g X)
$$

The Question v3

- The simple theories include the stable theories (algebraically and separably closed fields, differentially closed fields, free groups), and many of the most intensively studied examples are pseudo-finite (hence definably amenable).
- This led to the following question: is every group definable in a simple theory definably amenable?
- Related question: Do the universal measure zero ideal and forking ideal always agree?

First construction

1. The language L : two sorts O and P, a binary relation $R \subseteq O \times P$, and 10 unary functions from P to $P, f_{1}^{ \pm}, f_{2}^{ \pm}, f_{3}^{ \pm}, g_{1}^{ \pm}$, and $g_{2}^{ \pm}$.
2. For all h in the free group on the 5 generators $\left\{f_{1}, f_{2}, f_{3}, g_{1}, g_{2}\right\}$ determines a term $t_{h}(x)$ that defines a function from $P \rightarrow P$ by composing the functions in the obvious way.
3. The L-theory T will consist of the following axioms:
3.1 We have an axiom asserting that, for each i, f_{i} and f_{i}^{-1} are inverses of each other and similarly for g_{i} and g_{i}^{-1}.
3.2 We have an axiom schema asserting that the action of F_{5} is free. More precisely, for each non-identity element h in the free group on 5 generators, we have

$$
(\forall x \in P)\left[t_{h}(x) \neq x\right] .
$$

3.3 We finally have an axiom asserting that for all $a \in P$, the sets $R\left(f_{1}(a)\right), R\left(f_{2}(a)\right)$, and $R\left(f_{3}(a)\right)$ are pairwise disjoint and contained in $R\left(g_{1}(a)\right) \cup R\left(g_{2}(a)\right)$.

Models of T

The goal

We want to do the following:

1. Show that the universal theory T has a model companion T^{*}.
2. Show T^{*} is simple with trivial forking.
3. Show the formula $R(x ; a)$ for any $a \in P$ is universally of measure zero but does not fork.

Implications

Note $y=f_{1}(x)$ so it

$$
\begin{aligned}
& a \in R(y)=R\left(f_{1}(x)\right) \text {, } \\
& \text { them } \\
& a \in R\left(g_{1}(x)\right) \cup R\left(g_{2}(x)\right), \\
& \text { i. } R \text {. } \\
& a \in R\left(g_{1} f_{1}^{-1}(x)\right) \text { or } \\
& a \in R\left(g_{2} f_{1}^{-1}(x)\right) \text {. }
\end{aligned}
$$

Axiomatizing T^{*}

1. Let $G=F_{5}=\left\langle f_{1}, f_{2}, f_{3}, g_{1}, g_{2}\right\rangle$. Suppose $G \curvearrowright X$ is a free action. We may regard X as a disjoint union of Cayley graphs of G.
2. For $u, v \in X$, we write $d(u, v)$ for the graph distance from u to v and $B_{n}(v)$ for the ball of radius n centered at v :

$$
B_{n}(v)=\{u \in X \mid d(v, u) \leq n\} .
$$

Given $V \subseteq X$, we also define

$$
B_{n}(V)=\bigcup_{v \in V} B_{n}(v)
$$

Good colorings

Recall we have $G \curvearrowright X$ freely.

Definition

Given $D \subseteq X$, a good coloring of D is a function $c: D \rightarrow\{+,-\}$ such that for all $v \in D$:

1. If $c(v)=+$, then for all $i \in[3]$ there exists $j \in[2]$ such that if $g_{j} f_{i}^{-1} v \in D$, then $c\left(g_{j} f_{i}^{-1} v\right)=+$. (Containments)
2. If $c(v)=+$, then for all $i \neq j \in[3]$, if $f_{j} f_{i}^{-1} v \in D$, then $f_{j} f_{i}^{-1} v=-$. (Disjointness)
If $D=X$, then we say c is total.

Containments

Disjointness

Good colorings

Recall we have $G \curvearrowright X$ freely.

Definition

Given $D \subseteq X$, a good coloring of D is a function $c: D \rightarrow\{+,-\}$ such that for all $v \in D$:

1. If $c(v)=+$, then for all $i \in[3]$ there exists $j \in[2]$ such that if $g_{j} f_{i}^{-1} v \in D$, then $c\left(g_{j} f_{i}^{-1} v\right)=+$. (Containments)
2. If $c(v)=+$, then for all $i \neq j \in[3]$, if $f_{j} f_{i}^{-1} v \in D$, then $f_{j} f_{i}^{-1} v=-$. (Disjointness)
If $D=X$, then we say c is total.

A combinatorial lemma

Recall we have a free action $G \curvearrowright X$.

Lemma

Let V and W be disjoint subsets of X with $|V|=|W|=n$, and let $c: V \cup W \rightarrow\{+,-\}$ be the function sending each element of V to + and each element of W to - . Then there is a good coloring of X extending c if and only if there is a good coloring of $B_{N}(V)$ extending the restriction of c to $B_{N}(V)$, where $N=n(n+1)-2$.

Properties of T^{*}

1. This bounding lets us axiomatize a model companion $T^{*}-T^{*}$ eliminates quantifiers.
2. There are only 1 -types over \emptyset, which are axiomatized by $x \in O$ and $x \in P$, respectively.
3. Definable closure in T^{*} is just closure under the action. Hence if A is a set, we have

$$
\operatorname{dcl}(A)=O(A) \cup G \cdot P(A) .
$$

Forking in T^{*}

Proposition

We have a $\mathbb{X}_{A} b$ if and only if $a \cap(\operatorname{dcl}(A b) \backslash \operatorname{dcl}(A)) \neq \emptyset$.
Corollary
T^{*} is supersimple of SU-rank 1.
Corollary
If $a \in P$, then $R(x, a)$ does not fork over the empty set.

universal measure zero \neq forking

1. Suppose $a \in P$. We have seen $R(x, a)$ does not fork over \emptyset.
2. Because there is a unique 1 -type in P over \emptyset, we have

$$
f_{1}(a) \equiv f_{2}(a) \equiv f_{3}(a) \equiv g_{1}(a) \equiv g_{2}(a) .
$$

3. Suppose μ is an invariant Keisler measure with $\mu(R(a))=\epsilon$. Then we have, by invariance and disjointness,

$$
\mu\left(R\left(f_{1}(a)\right) \cup R\left(f_{2}(a)\right) \cup R\left(f_{3}(a)\right)\right)=3 \epsilon
$$

By containment and invariance, we have

$$
3 \epsilon=\mu\left(R\left(f_{1}(a)\right) \cup R\left(f_{2}(a)\right) \cup R\left(f_{3}(a)\right)\right) \leq \mu\left(R\left(g_{1}(a)\right) \cup R\left(g_{2}(a)\right)\right) \leq 2 \epsilon .
$$

Hence $\epsilon=0$.

Back to the group question: the strategy

1. Take a definable group whose definable sets are well-understood and not complicated.
2. Enrich the definable sets by adding in new symbols to the language to identify a paradoxical decomposition.
3. Argue that the resulting structure is still not complicated.

A group example

The language L will consist of the language of rings, together with 4 quaternary relations $C_{1}, C_{2}, C_{3}, C_{4}$. We will write SL_{2} to denote the definable group of 2×2 matrices of determinant 1 . It is known that the matrices

$$
a=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \quad b=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

generate a free group in $\mathrm{SL}_{2}(\mathbb{Z})$. Hence so do the matrices

$$
a^{-k} b a^{k}=\left(\begin{array}{cc}
1-4 k & -8 k^{2} \\
2 & 4 k+1
\end{array}\right),
$$

for $k=0, \ldots, 11$. We renumber these 12 matrices in some way as $a(i, j)$ $i \in[4], j \in[3]$. We will refer to the group generated by these matrices as G, and we will treat the $a(i, j)$ as though they were individual constants in SL_{2} (note that, because they are integer matrices, their entries are already named in the language).

A group example

The theory T will extend the theory of $(\mathbb{C},+,-, \times, 0,1)$ with a sentence asserting that $C_{1}, C_{2}, C_{3}, C_{4}$ form a partition of SL_{2}, together with the following axiom:

$$
\left(\forall x \in \mathrm{SL}_{2}\right)\left[\bigwedge_{i \in[4]} \bigvee_{j \in[3]} C_{i}(a(i, j) \cdot x)\right] .
$$

Gloss: For every group element x and for every index $i \in[4]$, there is some index $j \in[3]$ such that the translation of x by $a(i, j)$ lands inside the set C_{i}.

Coloring axiom

A group example

The theory T will extend the theory of $(\mathbb{C},+,-, \times, 0,1)$ with a sentence asserting that $C_{1}, C_{2}, C_{3}, C_{4}$ form a partition of SL_{2}, together with the following axiom:

$$
\left(\forall x \in \mathrm{SL}_{2}\right)\left[\bigwedge_{i \in[4]} \bigvee_{j \in[3]} C_{i}(a(i, j) \cdot x)\right] .
$$

Gloss: For every group element x and for every index $i \in[4]$, there is some index $j \in[3]$ such that the translation of x by $a(i, j)$ lands inside the set C_{i}.
We show that the generic structure satisfying these conditions is simple.

SL_{2} is not definably amenable in T^{*}

Towards contradiction that μ is a Keisler measure on SL_{2}, invariant under translation. By the coloring axiom, we know that for each $i \in[4]$, we have

$$
\mathrm{SL}_{2} \subseteq a(i, 1)^{-1} C_{i} \cup a(i, 2)^{-1} C_{i} \cup a(i, 3)^{-1} C_{i},
$$

and, hence, by translation invariance, we have

$$
1 \leq 3 \mu\left(C_{i}\right)
$$

which shows $\mu\left(C_{i}\right) \geq \frac{1}{3}$. On the other hand, because C_{1}, C_{2}, C_{3}, and C_{4} partition SL_{2}, we have

$$
1=\mu\left(\mathrm{SL}_{2}\right)=\sum_{i=1}^{4} \mu\left(C_{i}\right) \geq \frac{4}{3},
$$

a contradiction.

Thanks!

