Measures in Simple Structures

Nicholas Ramsey University of Notre Dame

> VIG February 13, 2023

Joint with Artem Chernikov, Ehud Hrushovski, Alex Kruckman, Krzysztof Krupinski, Slavko Moconja, and Anand Pillay.

Banach-Tarski Paradox

► Banach-Tarski Paradox: A ball in R³ can be partitioned into finitely many pieces in such a way that, after moving these pieces by translations and rotations, they may be reassembled to form two balls of equal volume as the first.

Figure: From Wikipedia

The Question

▶ In the Banach-Tarski Paradox, how complicated must the pieces be?

Move 1: From the geometric object to its group of symmetries

▶ Let *G* be a group of symmetries of a set *X* (i.e. a group acting on *X*) and suppose $E \subseteq X$. *E* is said to be *G*-paradoxical if for some *m*, *n* there exist g_1, \ldots, g_m and $h_1, \ldots, h_n \in G$ and pairwise disjoint A_1, \ldots, A_m and $B_1, \ldots, B_n \subseteq E$ such that $E = \bigcup g_i A_i = \bigcup h_i B_i$.

G-paradoxical

Move 1: From the geometric object to its group of symmetries

- ▶ Let G be a group acting on X and suppose $E \subseteq X$. E is said to be G-paradoxical if for some m, n there exist g_1, \ldots, g_m and $h_1, \ldots, h_n \in G$ and pairwise disjoint A_1, \ldots, A_m and $B_1, \ldots, B_n \subseteq E$ such that $E = \bigcup g_i A_i = \bigcup h_i B_i$.
- **Banach-Tarski Paradox**: The unit ball in \mathbb{R}^3 is SO(3)-paradoxical.
- **Theorem**: A group G is G-paradoxical if and only if there is a free G-paradoxical action on some set X.

Move 2: From decompositions to measures

▶ A (finitely additive probability) measure on the group G is a function $\mu : \mathcal{P}(G) \rightarrow [0, 1]$ such that

1. $\mu(G) = 1$. 2. If $X, Y \subseteq G$ are disjoint, then $\mu(X \cup Y) = \mu(X) + \mu(Y)$.

▶ A measure on G is called G-invariant if, for all $X \subseteq G$ and $g \in G$,

$$\mu(gX)=\mu(X).$$

Tarski's Theorem: A group G is not G-paradoxical if and only if there is some G-invariant measure on G. Groups with such a measure are called *amenable* so a group G is not G-paradoxical if and only if it is amenable.

The Question v2

Suppose a group G is not amenable. Must the group be very complicated?

Dividing lines

- From specific to more general: e.g. from algebraically closed fields to differentially closed fields, difference fields,...
- From general to more specific: e.g., from graphs to real-algebraic or p-adic graphs,...
- Goldilocks: Much of model theory is organized around the search for dividing lines: combinatorial properties of theories that divide theories into tame and wild.
- Simplicity: the key dividing line for us, which is characterized by there being a notion of independence (generalizing linear independence in vector spaces, algebraic independence in algebraically closed fields) that is symmetric and transitive, among other useful properties.

Definition

The formula $\varphi(x; y)$ has the *tree property* if there is a tree of tuples $(a_\eta)_{\eta \in \omega^{<\omega}}$ and a number $k < \omega$ so that

- 1. Paths are consistent for all $\eta \in \omega^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent
- 2. Children of a common node are k-inconsistent for any $\eta \in \omega^{<\omega}$, $\{\varphi(x; a_{\eta \frown \langle \alpha \rangle}) : \alpha < \omega\}$ is k-inconsistent.

The theory T has the tree property if some formula $\varphi(x; y)$ does modulo T.

Figure: paths are consistent

Figure: children of a common node are k-inconsistent

Definition

The formula $\varphi(x; y)$ has the *tree property* if there is a tree of tuples $(a_\eta)_{\eta \in \omega^{<\omega}}$ and a number $k < \omega$ so that

- 1. Paths are consistent for all $\eta \in \omega^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent
- 2. Children of a common node are k-inconsistent for any $\eta \in \omega^{<\omega}$, $\{\varphi(x; a_{\eta \frown \langle \alpha \rangle}) : \alpha < \omega\}$ is k-inconsistent.
- The complete theory T is simple if and only if T does not have the tree property. Examples of simple theories include random graphs, difference closed fields. Non-examples include dense linear orders and triangle-free random graphs.

The map

Figure: From Gabe Conant's forkinganddividing.com

Forking and dividing

Definition

Suppose A is a set of parameters.

- 1. $\varphi(x; a)$ divides over A if there is an A-indiscernible sequence $\langle a_i : i < \omega \rangle$ with $a_0 = a$ such that $\{\varphi(x; a_i) : i < \omega\}$ is inconsistent.
- 2. $\varphi(x; a)$ forks over A if

$$\varphi(\mathbf{x}; \mathbf{a}) \vdash \bigvee_{i < k} \psi_i(\mathbf{x}; c_i),$$

where each $\psi_i(x; c_i)$ divides over A.

- 3. We say a (partial) type *p* forks or divides over *A* if it implies a formula that does.
- 4. We write $a \bigcup_{c}^{f} b$ to indicate that tp(a/bC) does not fork over C.

Forking and Dividing

Forking and Dividing

From forking we get three things:

- 1. Notion of *independence*: We say a is *independent* from b over A, denoted $a
 igcup_A b$ if a is contained in no Ab-definable set that forks over A.
- 2. Notion of generic point: If $A \subseteq B$ and $a \bigcup_A B$, then tp(a/B) is a generic extension of tp(a/A).
- 3. Notion of *dimension*: Have the foundation rank on extensions that fork.

Stability

Theorem

(Harnik-Harrington) The theory T is stable if and only if there is an $Aut(\mathbb{M})$ -invariant ternary relation \bigcup on small subsets of \mathbb{M} satisfying:

- 1. Extension: If a $\bigcup_{c} b$, then for all c, there is a' \equiv_{Cb} such that a' $\bigcup_{c} bc$.
- 2. Symmetry: $a \perp_C b \iff b \perp_C a$.
- 3. Finite character: $a \bigcup_{c} b$ if and only if $a' \bigcup_{c} b'$ for all finite subtuples $a' \subseteq a$, $b' \subseteq b$.
- 4. Transitivity: If $B \subseteq C \subseteq D$, $a \bigcup_B C$, and $a \bigcup_C D$ then $a \bigcup_B D$.
- 5. Base monotonicity: If $B \subseteq C$ then a $\bigcup_B Cd$ implies a $\bigcup_C d$.
- 6. Local character: For any a and C, there is $B \subseteq C$ with $|B| \leq |T|$ such that a $\bigcup_{B} C$.
- 7. Stationarity: If $C = \operatorname{acl}^{eq}(C)$, then if $a \equiv_C a'$, $a \downarrow_C b$ and $a' \downarrow_C b$, then $a \equiv_{Cb} a'$.

If there is such a relation, it agrees with \bigcup^{f} .

Simplicity

Definition

T is simple if \bigcup^{f} satisfies local character: for any *a* and *C*, there is $B \subseteq C$ with $|B| \leq |T|$ such that $a \bigcup_{B}^{f} C$.

Theorem

(Kim-Pillay) The theory T is simple if and only if there is an $Aut(\mathbb{M})$ -invariant ternary relation \bigcup on small subsets of \mathbb{M} satisfying:

- 1. Extension, Symmetry, Finite character, Transitivity, Base monotonicity, Local character
- 2. The Independence Theorem: If $M \models T$, then if $a \equiv_M a'$, $a \downarrow_M b$, $a' \downarrow_M c$ and $b \downarrow_M c$, then there is a_* such that $a_* \equiv_{Mb} a$, $a_* \equiv_{Mc} a'$, and $a_* \downarrow_M bc$.

If there is such a relation, it agrees with \bigcup^{f} .

Keisler measures

Definition

A Keisler measure over A is a finitely additive probability measure on $Def_x(A)$, where $Def_x(A)$ denotes the Boolean algebra of definable sets in the free variables x and parameters coming from A. We will often omit the x.

Example

In ($\mathbb{Q},<),$ for each formula defined with parameters in $\mathbb{Q},$ we can define

$$\mu(\varphi(x; a)) = \begin{cases} 1 & \text{if } \varphi(\pi; a) \text{ is satisfied in } \mathbb{R} \\ 0 & \text{otherwise.} \end{cases}$$

Examples of Keisler measures

Example

Lebesgue measure on [0,1]ⁿ: we may define a Keisler measure over ℝ, viewed as a field, by stipulating that for any X ∈ Def(ℝ),

$$\mu(X) = \lambda(X \cap [0,1]^n).$$

▶ Nonstandard counting measure: If μ is a $\{0,1\}$ -valued finitely additive probability measure on \mathbb{N} and $(M_i)_{i \in \mathbb{N}}$ is a sequence of finite structures, we may form the *ultraproduct* $M = \prod M_i/\mu$, identifying elements of the product that disagree on a set of measure zero. We may define a Keisler measure μ_{count} by defining, for $X \in \text{Def}(M)$,

$$\mu_{\text{count}}(X) = \lim_{\mu} \frac{|X(M_i)|}{|M_i|}.$$

Measures and forking

Definition

Suppose μ is a global Keisler measure. We say μ is *A*-invariant if $\mu(X) = \mu(\sigma(X))$ for all definable sets X (with parameters) and $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$. Equivalently, μ is *A*-invariant if, given any $\varphi(x; y)$ and $b \equiv_A b'$,

$$\mu(\varphi(\mathbb{M}; b)) = \mu(\varphi(\mathbb{M}; b')).$$

Definition

We say a definable set X is *universally of measure zero* over A if $\mu(X) = 0$ for all global A-invariant measures μ . We refer to the collection of sets universally of measure zero as the *universal measure zero ideal*.

Measures and forking

Observation

A formula that forks over A defines a set that is universally of measure zero over A.

Proof.

As a finite union of sets universally of measure zero is universally of measure zero, it suffices to show that if $\varphi(x; a)$ divides over A, then $\mu(\varphi(\mathbb{M}; a)) = 0$. Let $\langle a_i : i < \omega \rangle$ be an A-indiscernible sequence such that $a_0 = a$ and $\{\varphi(x; a_i) : i < \omega\}$ is inconsistent. If $\mu(\varphi(\mathbb{M}; a)) > 0$ for some A-invariant μ , then there is some maximal k such that $\mu(\bigwedge_{i < k} \varphi(x; a_i)) > 0$. Then for all $j < \omega$, the sets defined by $\bigwedge_{i < k} \varphi(x; a_{k \cdot j + i})$ have pairwise intersection of measure zero and (by A-indiscernibility) constant positive measure. This contradicts the fact that μ is a probability measure.

Measures and groups

Definition

Suppose G is a definable group.

- 1. We say a measure μ on Def(G) is *G*-invariant if $\mu(X) = \mu(g \cdot X)$ for all definable subsets $X \subseteq G$.
- 2. We say G is *definably amenable* if there is an invariant Keisler measure on definable subsets of G.

Measures and groups

Example

- 1. Amenable groups are definably amenable—this includes all solvable groups.
- 2. All stable groups: $\mathrm{SL}_2(\mathbb{C})$, non-abelian free groups (!).
- 3. Pseudo-finite groups: If $(G_i)_{i \in \mathbb{N}}$ is a sequence of finite groups, μ is a $\{0, 1\}$ -valued finitely additive probability measure on \mathbb{N} and $\tilde{G} = \prod_{i \in \mathbb{N}} G_i / \mu$, then for any definable subset $X \subseteq G(F)$, and $g = (g_i) / \mu \in \tilde{G}$, we have:

$$\mu_{\text{count}}(X) = \lim_{\mu} \frac{|X(K_i)|}{|G(K_i)|} = \lim_{\mu} \frac{|g_i X(K_i)|}{|G(K_i)|} = \mu_{\text{count}}(gX).$$

The Question v3

- The simple theories include the stable theories (algebraically and separably closed fields, differentially closed fields, free groups), and many of the most intensively studied examples are pseudo-finite (hence definably amenable).
- This led to the following question: is *every* group definable in a simple theory definably amenable?
- Related question: Do the universal measure zero ideal and forking ideal always agree?

First construction

- 1. The language *L*: two sorts *O* and *P*, a binary relation $R \subseteq O \times P$, and 10 unary functions from *P* to *P*, f_1^{\pm} , f_2^{\pm} , f_3^{\pm} , g_1^{\pm} , and g_2^{\pm} .
- 2. For all h in the free group on the 5 generators $\{f_1, f_2, f_3, g_1, g_2\}$ determines a term $t_h(x)$ that defines a function from $P \rightarrow P$ by composing the functions in the obvious way.
- 3. The *L*-theory T will consist of the following axioms:
 - 3.1 We have an axiom asserting that, for each i, f_i and f_i^{-1} are inverses of each other and similarly for g_i and g_i^{-1} .
 - 3.2 We have an axiom schema asserting that the action of F_5 is free. More precisely, for each non-identity element h in the free group on 5 generators, we have

$$(\forall x \in P)[t_h(x) \neq x].$$

3.3 We finally have an axiom asserting that for all $a \in P$, the sets $R(f_1(a))$, $R(f_2(a))$, and $R(f_3(a))$ are pairwise disjoint and contained in $R(g_1(a)) \cup R(g_2(a))$.

Models of T

The goal

We want to do the following:

- 1. Show that the universal theory T has a model companion T^* .
- 2. Show T^* is simple with trivial forking.
- Show the formula R(x; a) for any a ∈ P is universally of measure zero but does not fork.

Implications

Axiomatizing T^*

- 1. Let $G = F_5 = \langle f_1, f_2, f_3, g_1, g_2 \rangle$. Suppose $G \curvearrowright X$ is a free action. We may regard X as a disjoint union of Cayley graphs of G.
- 2. For $u, v \in X$, we write d(u, v) for the graph distance from u to v and $B_n(v)$ for the ball of radius n centered at v:

$$B_n(v) = \{u \in X \mid d(v, u) \leq n\}.$$

Given $V \subseteq X$, we also define

$$B_n(V) = \bigcup_{v \in V} B_n(v).$$

Good colorings

Recall we have $G \curvearrowright X$ freely.

Definition

Given $D \subseteq X$, a good coloring of D is a function $c: D \to \{+, -\}$ such that for all $v \in D$:

1. If c(v) = +, then for all $i \in [3]$ there exists $j \in [2]$ such that if $g_j f_i^{-1} v \in D$, then $c(g_j f_i^{-1} v) = +$. (Containments)

2. If
$$c(v) = +$$
, then for all $i \neq j \in [3]$, if $f_j f_i^{-1} v \in D$, then $f_j f_i^{-1} v = -$. (Disjointness)

If D = X, then we say c is *total*.

Containments

Disjointness

Good colorings

Recall we have $G \curvearrowright X$ freely.

Definition

Given $D \subseteq X$, a good coloring of D is a function $c: D \to \{+, -\}$ such that for all $v \in D$:

1. If c(v) = +, then for all $i \in [3]$ there exists $j \in [2]$ such that if $g_j f_i^{-1} v \in D$, then $c(g_j f_i^{-1} v) = +$. (Containments)

2. If
$$c(v) = +$$
, then for all $i \neq j \in [3]$, if $f_j f_i^{-1} v \in D$, then $f_j f_i^{-1} v = -$. (Disjointness)

If D = X, then we say c is *total*.

Recall we have a free action $G \curvearrowright X$.

Lemma

Let V and W be disjoint subsets of X with |V| = |W| = n, and let $c: V \cup W \rightarrow \{+, -\}$ be the function sending each element of V to + and each element of W to -. Then there is a good coloring of X extending c if and only if there is a good coloring of $B_N(V)$ extending the restriction of c to $B_N(V)$, where N = n(n + 1) - 2.

Properties of T^*

- 1. This bounding lets us axiomatize a model companion $T^* T^*$ eliminates quantifiers.
- 2. There are only 1-types over \emptyset , which are axiomatized by $x \in O$ and $x \in P$, respectively.
- 3. Definable closure in T* is just closure under the action. Hence if A is a set, we have

$$\operatorname{dcl}(A) = O(A) \cup G \cdot P(A).$$

Forking in T^*

Proposition We have a $\mathcal{J}_A b$ if and only if $a \cap (\operatorname{dcl}(Ab) \setminus \operatorname{dcl}(A)) \neq \emptyset$.

Corollary T* is supersimple of SU-rank 1.

Corollary

If $a \in P$, then R(x, a) does not fork over the empty set.

universal measure zero \neq forking

- 1. Suppose $a \in P$. We have seen R(x, a) does not fork over \emptyset .
- 2. Because there is a unique 1-type in P over \emptyset , we have

$$f_1(a) \equiv f_2(a) \equiv f_3(a) \equiv g_1(a) \equiv g_2(a).$$

3. Suppose μ is an invariant Keisler measure with $\mu(R(a)) = \epsilon$. Then we have, by invariance and disjointness,

 $\mu(R(f_1(a)) \cup R(f_2(a)) \cup R(f_3(a))) = 3\epsilon.$

By containment and invariance, we have

 $3\epsilon = \mu(R(f_1(a)) \cup R(f_2(a)) \cup R(f_3(a))) \leq \mu(R(g_1(a)) \cup R(g_2(a))) \leq 2\epsilon.$

Hence $\epsilon = 0$.

Back to the group question: the strategy

- 1. Take a definable group whose definable sets are well-understood and not complicated.
- 2. Enrich the definable sets by adding in new symbols to the language to identify a paradoxical decomposition.
- 3. Argue that the resulting structure is still not complicated.

A group example

The language *L* will consist of the language of rings, together with 4 quaternary relations C_1 , C_2 , C_3 , C_4 . We will write SL_2 to denote the definable group of 2×2 matrices of determinant 1. It is known that the matrices

$$\mathsf{a} = egin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix}, \quad \mathsf{b} = egin{pmatrix} 1 & 0 \ 2 & 1 \end{pmatrix}$$

generate a free group in $SL_2(\mathbb{Z})$. Hence so do the matrices

$$a^{-k}ba^k = \begin{pmatrix} 1-4k & -8k^2\\ 2 & 4k+1 \end{pmatrix},$$

for k = 0, ..., 11. We renumber these 12 matrices in some way as a(i, j) $i \in [4], j \in [3]$. We will refer to the group generated by these matrices as G, and we will treat the a(i, j) as though they were individual constants in SL_2 (note that, because they are integer matrices, their entries are already named in the language).

A group example

The theory T will extend the theory of $(\mathbb{C}, +, -, \times, 0, 1)$ with a sentence asserting that C_1, C_2, C_3, C_4 form a partition of SL₂, together with the following axiom:

$$(\forall x \in \mathrm{SL}_2) \left[\bigwedge_{i \in [4]} \bigvee_{j \in [3]} C_i(a(i,j) \cdot x) \right]$$

Gloss: For every group element x and for every index $i \in [4]$, there is some index $j \in [3]$ such that the translation of x by a(i,j) lands inside the set C_i .

Coloring axiom

A group example

The theory T will extend the theory of $(\mathbb{C}, +, -, \times, 0, 1)$ with a sentence asserting that C_1, C_2, C_3, C_4 form a partition of SL₂, together with the following axiom:

$$(\forall x \in \mathrm{SL}_2) \left[\bigwedge_{i \in [4]} \bigvee_{j \in [3]} C_i(a(i,j) \cdot x) \right]$$

Gloss: For every group element x and for every index $i \in [4]$, there is some index $j \in [3]$ such that the translation of x by a(i,j) lands inside the set C_i .

We show that the *generic* structure satisfying these conditions is simple.

SL_2 is not definably amenable in T^*

Towards contradiction that μ is a Keisler measure on SL₂, invariant under translation. By the coloring axiom, we know that for each $i \in [4]$, we have

$$SL_2 \subseteq a(i,1)^{-1}C_i \cup a(i,2)^{-1}C_i \cup a(i,3)^{-1}C_i,$$

and, hence, by translation invariance, we have

$$1\leq 3\mu(C_i),$$

which shows $\mu(C_i) \geq \frac{1}{3}$. On the other hand, because C_1, C_2, C_3 , and C_4 partition SL₂, we have

$$1 = \mu(SL_2) = \sum_{i=1}^4 \mu(C_i) \ge \frac{4}{3},$$

a contradiction.

Thanks!