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Banach-Tarski Paradox

▶ Banach-Tarski Paradox: A ball in R3 can be partitioned into
finitely many pieces in such a way that, after moving these pieces by
translations and rotations, they may be reassembled to form two
balls of equal volume as the first.

Figure: From Wikipedia



The Question

▶ In the Banach-Tarski Paradox, how complicated must the pieces be?



Move 1: From the geometric object to its group of
symmetries

▶ Let G be a group of symmetries of a set X (i.e. a group acting on
X ) and suppose E ⊆ X . E is said to be G -paradoxical if for some
m, n there exist g1, . . . , gm and h1, . . . , hn ∈ G and pairwise disjoint
A1, . . . ,Am and B1, . . . ,Bn ⊆ E such that E =

⋃
giAi =

⋃
hjBj .



G -paradoxical



Move 1: From the geometric object to its group of
symmetries

▶ Let G be a group acting on X and suppose E ⊆ X . E is said to be
G -paradoxical if for some m, n there exist g1, . . . , gm and
h1, . . . , hn ∈ G and pairwise disjoint A1, . . . ,Am and B1, . . . ,Bn ⊆ E
such that E =

⋃
giAi =

⋃
hjBj .

▶ Banach-Tarski Paradox: The unit ball in R3 is SO(3)-paradoxical.

▶ Theorem: A group G is G -paradoxical if and only if there is a free
G -paradoxical action on some set X .



Move 2: From decompositions to measures

▶ A (finitely additive probability) measure on the group G is a
function µ : P(G ) → [0, 1] such that

1. µ(G ) = 1.
2. If X ,Y ⊆ G are disjoint, then µ(X ∪ Y ) = µ(X ) + µ(Y ).

▶ A measure on G is called G -invariant if, for all X ⊆ G and g ∈ G ,

µ(gX ) = µ(X ).

▶ Tarski’s Theorem: A group G is not G -paradoxical if and only if
there is some G -invariant measure on G . Groups with such a
measure are called amenable so a group G is not G -paradoxical if
and only if it is amenable.



The Question v2

▶ Suppose a group G is not amenable. Must the group be very
complicated?



Dividing lines

▶ From specific to more general: e.g. from algebraically closed fields
to differentially closed fields, difference fields,...

▶ From general to more specific: e.g., from graphs to real-algebraic or
p-adic graphs,...

▶ Goldilocks: Much of model theory is organized around the search for
dividing lines: combinatorial properties of theories that divide
theories into tame and wild.

▶ Simplicity: the key dividing line for us, which is characterized by
there being a notion of independence (generalizing linear
independence in vector spaces, algebraic independence in
algebraically closed fields) that is symmetric and transitive, among
other useful properties.



The tree property

Definition
The formula φ(x ; y) has the tree property if there is a tree of tuples
(aη)η∈ω<ω and a number k < ω so that

1. Paths are consistent – for all η ∈ ωω, {φ(x ; aη|α) : α < ω} is
consistent

2. Children of a common node are k-inconsistent – for any η ∈ ω<ω,
{φ(x ; aη⌢⟨α⟩) : α < ω} is k-inconsistent.

The theory T has the tree property if some formula φ(x ; y) does modulo
T .



The tree property

Figure: paths are consistent



The tree property

Figure: children of a common node are k-inconsistent



The tree property

Definition
The formula φ(x ; y) has the tree property if there is a tree of tuples
(aη)η∈ω<ω and a number k < ω so that

1. Paths are consistent – for all η ∈ ωω, {φ(x ; aη|α) : α < ω} is
consistent

2. Children of a common node are k-inconsistent – for any η ∈ ω<ω,
{φ(x ; aη⌢⟨α⟩) : α < ω} is k-inconsistent.

▶ The complete theory T is simple if and only if T does not have the
tree property. Examples of simple theories include random graphs,
difference closed fields. Non-examples include dense linear orders
and triangle-free random graphs.



The map

Figure: From Gabe Conant’s forkinganddividing.com



Forking and dividing

Definition
Suppose A is a set of parameters.

1. φ(x ; a) divides over A if there is an A-indiscernible sequence
⟨ai : i < ω⟩ with a0 = a such that {φ(x ; ai ) : i < ω} is inconsistent.

2. φ(x ; a) forks over A if

φ(x ; a) ⊢
∨
i<k

ψi (x ; ci ),

where each ψi (x ; ci ) divides over A.

3. We say a (partial) type p forks or divides over A if it implies a
formula that does.

4. We write a |⌣
f

C
b to indicate that tp(a/bC ) does not fork over C .



Forking and Dividing



Forking and Dividing



Forking and Dividing

From forking we get three things:

1. Notion of independence: We say a is independent from b over A,
denoted a |⌣A

b if a is contained in no Ab-definable set that forks
over A.

2. Notion of generic point: If A ⊆ B and a |⌣A
B, then tp(a/B) is a

generic extension of tp(a/A).

3. Notion of dimension: Have the foundation rank on extensions that
fork.



Stability

Theorem
(Harnik-Harrington) The theory T is stable if and only if there is an
Aut(M)-invariant ternary relation |⌣ on small subsets of M satisfying:

1. Extension: If a |⌣C
b, then for all c , there is a′ ≡Cb such that

a′ |⌣C
bc.

2. Symmetry: a |⌣C
b ⇐⇒ b |⌣C

a.

3. Finite character: a |⌣C
b if and only if a′ |⌣C

b′ for all finite

subtuples a′ ⊆ a, b′ ⊆ b.

4. Transitivity: If B ⊆ C ⊆ D, a |⌣B
C , and a |⌣C

D then a |⌣B
D.

5. Base monotonicity: If B ⊆ C then a |⌣B
Cd implies a |⌣C

d .

6. Local character: For any a and C , there is B ⊆ C with |B| ≤ |T |
such that a |⌣B

C .

7. Stationarity: If C = acleq(C ), then if a ≡C a′, a |⌣C
b and a′ |⌣C

b,

then a ≡Cb a′.

If there is such a relation, it agrees with |⌣
f .



Simplicity

Definition
T is simple if |⌣

f satisfies local character: for any a and C , there is

B ⊆ C with |B| ≤ |T | such that a |⌣
f

B
C .

Theorem
(Kim-Pillay) The theory T is simple if and only if there is an
Aut(M)-invariant ternary relation |⌣ on small subsets of M satisfying:

1. Extension, Symmetry, Finite character, Transitivity, Base
monotonicity, Local character

2. The Independence Theorem: If M |= T , then if a ≡M a′, a |⌣M
b,

a′ |⌣M
c and b |⌣M

c , then there is a∗ such that a∗ ≡Mb a,

a∗ ≡Mc a′, and a∗ |⌣M
bc.

If there is such a relation, it agrees with |⌣
f .



Keisler measures

Definition
A Keisler measure over A is a finitely additive probability measure on
Defx(A), where Defx(A) denotes the Boolean algebra of definable sets in
the free variables x and parameters coming from A. We will often omit
the x .

Example
In (Q, <), for each formula defined with parameters in Q, we can define

µ(φ(x ; a)) =

{
1 if φ(π; a) is satisfied in R
0 otherwise.



Examples of Keisler measures

Example

▶ Lebesgue measure on [0, 1]n: we may define a Keisler measure over
R, viewed as a field, by stipulating that for any X ∈ Def(R),

µ(X ) = λ(X ∩ [0, 1]n).

▶ Nonstandard counting measure: If µ is a {0, 1}-valued finitely
additive probability measure on N and (Mi )i∈N is a sequence of finite
structures, we may form the ultraproduct M =

∏
Mi/µ, identifying

elements of the product that disagree on a set of measure zero. We
may define a Keisler measure µcount by defining, for X ∈ Def(M),

µcount(X ) = lim
µ

|X (Mi )|
|Mi |

.



Measures and forking

Definition
Suppose µ is a global Keisler measure. We say µ is A-invariant if
µ(X ) = µ(σ(X )) for all definable sets X (with parameters) and
σ ∈ Aut(M/A). Equivalently, µ is A-invariant if, given any φ(x ; y) and
b ≡A b′,

µ(φ(M; b)) = µ(φ(M; b′)).

Definition
We say a definable set X is universally of measure zero over A if
µ(X ) = 0 for all global A-invariant measures µ. We refer to the collection
of sets universally of measure zero as the universal measure zero ideal.



Measures and forking

Observation
A formula that forks over A defines a set that is universally of measure
zero over A.

Proof.
As a finite union of sets universally of measure zero is universally of
measure zero, it suffices to show that if φ(x ; a) divides over A, then
µ(φ(M; a)) = 0. Let ⟨ai : i < ω⟩ be an A-indiscernible sequence such
that a0 = a and {φ(x ; ai ) : i < ω} is inconsistent. If µ(φ(M; a)) > 0 for
some A-invariant µ, then there is some maximal k such that
µ
(∧

i<k φ(x ; ai )
)
> 0. Then for all j < ω, the sets defined by∧

i<k φ(x ; ak·j+i ) have pairwise intersection of measure zero and (by
A-indiscernibility) constant positive measure. This contradicts the fact
that µ is a probability measure.



Measures and groups

Definition
Suppose G is a definable group.

1. We say a measure µ on Def(G ) is G -invariant if µ(X ) = µ(g · X )
for all definable subsets X ⊆ G .

2. We say G is definably amenable if there is an invariant Keisler
measure on definable subsets of G .



Measures and groups

Example

1. Amenable groups are definably amenable—this includes all solvable
groups.

2. All stable groups: SL2(C), non-abelian free groups (!).

3. Pseudo-finite groups: If (Gi )i∈N is a sequence of finite groups, µ is a
{0, 1}-valued finitely additive probability measure on N and
G̃ =

∏
i∈N Gi/µ, then for any definable subset X ⊆ G (F ), and

g = (gi )/µ ∈ G̃ , we have:

µcount(X ) = lim
µ

|X (Ki )|
|G (Ki )|

= lim
µ

|giX (Ki )|
|G (Ki )|

= µcount(gX ).



The Question v3

▶ The simple theories include the stable theories (algebraically and
separably closed fields, differentially closed fields, free groups), and
many of the most intensively studied examples are pseudo-finite
(hence definably amenable).

▶ This led to the following question: is every group definable in a
simple theory definably amenable?

▶ Related question: Do the universal measure zero ideal and forking
ideal always agree?



First construction

1. The language L: two sorts O and P, a binary relation R ⊆ O × P,
and 10 unary functions from P to P, f ±1 , f ±2 , f ±3 , g±

1 , and g±
2 .

2. For all h in the free group on the 5 generators {f1, f2, f3, g1, g2}
determines a term th(x) that defines a function from P → P by
composing the functions in the obvious way.

3. The L-theory T will consist of the following axioms:

3.1 We have an axiom asserting that, for each i, fi and f −1
i are

inverses of each other and similarly for gi and g−1
i .

3.2 We have an axiom schema asserting that the action of F5 is
free. More precisely, for each non-identity element h in the free
group on 5 generators, we have

(∀x ∈ P)[th(x) ̸= x ].

3.3 We finally have an axiom asserting that for all a ∈ P, the sets
R(f1(a)), R(f2(a)), and R(f3(a)) are pairwise disjoint and
contained in R(g1(a)) ∪ R(g2(a)).



Models of T



The goal

We want to do the following:

1. Show that the universal theory T has a model companion T ∗.

2. Show T ∗ is simple with trivial forking.

3. Show the formula R(x ; a) for any a ∈ P is universally of measure
zero but does not fork.



Implications



Axiomatizing T ∗

1. Let G = F5 = ⟨f1, f2, f3, g1, g2⟩. Suppose G ↷ X is a free action.
We may regard X as a disjoint union of Cayley graphs of G .

2. For u, v ∈ X , we write d(u, v) for the graph distance from u to v
and Bn(v) for the ball of radius n centered at v :

Bn(v) = {u ∈ X | d(v , u) ≤ n}.

Given V ⊆ X , we also define

Bn(V ) =
⋃
v∈V

Bn(v).



Good colorings

Recall we have G ↷ X freely.

Definition
Given D ⊆ X , a good coloring of D is a function c : D → {+,−} such
that for all v ∈ D:

1. If c(v) = +, then for all i ∈ [3] there exists j ∈ [2] such that if
gj f

−1
i v ∈ D, then c(gj f

−1
i v) = +. (Containments)

2. If c(v) = +, then for all i ̸= j ∈ [3], if fj f
−1
i v ∈ D, then

fj f
−1
i v = −. (Disjointness)

If D = X , then we say c is total.



Containments



Disjointness



Good colorings

Recall we have G ↷ X freely.

Definition
Given D ⊆ X , a good coloring of D is a function c : D → {+,−} such
that for all v ∈ D:

1. If c(v) = +, then for all i ∈ [3] there exists j ∈ [2] such that if
gj f

−1
i v ∈ D, then c(gj f

−1
i v) = +. (Containments)

2. If c(v) = +, then for all i ̸= j ∈ [3], if fj f
−1
i v ∈ D, then

fj f
−1
i v = −. (Disjointness)

If D = X , then we say c is total.



A combinatorial lemma

Recall we have a free action G ↷ X .

Lemma
Let V and W be disjoint subsets of X with |V | = |W | = n, and let
c : V ∪W → {+,−} be the function sending each element of V to +
and each element of W to −. Then there is a good coloring of X
extending c if and only if there is a good coloring of BN(V ) extending
the restriction of c to BN(V ), where N = n(n + 1)− 2.



Properties of T ∗

1. This bounding lets us axiomatize a model companion T ∗ —T ∗

eliminates quantifiers.

2. There are only 1-types over ∅, which are axiomatized by x ∈ O and
x ∈ P, respectively.

3. Definable closure in T ∗ is just closure under the action. Hence if A
is a set, we have

dcl(A) = O(A) ∪ G · P(A).



Forking in T ∗

Proposition
We have a ̸ |⌣A

b if and only if a ∩ (dcl(Ab) \ dcl(A)) ̸= ∅.

Corollary
T ∗ is supersimple of SU-rank 1.

Corollary
If a ∈ P, then R(x , a) does not fork over the empty set.



universal measure zero ̸= forking

1. Suppose a ∈ P. We have seen R(x , a) does not fork over ∅.

2. Because there is a unique 1-type in P over ∅, we have

f1(a) ≡ f2(a) ≡ f3(a) ≡ g1(a) ≡ g2(a).

3. Suppose µ is an invariant Keisler measure with µ(R(a)) = ϵ. Then
we have, by invariance and disjointness,

µ(R(f1(a)) ∪ R(f2(a)) ∪ R(f3(a))) = 3ϵ.

By containment and invariance, we have

3ϵ = µ(R(f1(a))∪R(f2(a))∪R(f3(a))) ≤ µ(R(g1(a))∪R(g2(a))) ≤ 2ϵ.

Hence ϵ = 0.



Back to the group question: the strategy

1. Take a definable group whose definable sets are well-understood and
not complicated.

2. Enrich the definable sets by adding in new symbols to the language
to identify a paradoxical decomposition.

3. Argue that the resulting structure is still not complicated.



A group example

The language L will consist of the language of rings, together with 4
quaternary relations C1,C2,C3,C4. We will write SL2 to denote the
definable group of 2× 2 matrices of determinant 1. It is known that the
matrices

a =

(
1 2
0 1

)
, b =

(
1 0
2 1

)
generate a free group in SL2(Z). Hence so do the matrices

a−kbak =

(
1− 4k −8k2

2 4k + 1

)
,

for k = 0, . . . , 11. We renumber these 12 matrices in some way as a(i , j)
i ∈ [4], j ∈ [3]. We will refer to the group generated by these matrices as
G , and we will treat the a(i , j) as though they were individual constants
in SL2 (note that, because they are integer matrices, their entries are
already named in the language).



A group example

The theory T will extend the theory of (C,+,−,×, 0, 1) with a sentence
asserting that C1,C2,C3,C4 form a partition of SL2, together with the
following axiom:

(∀x ∈ SL2)

∧
i∈[4]

∨
j∈[3]

Ci (a(i , j) · x)

 .
Gloss: For every group element x and for every index i ∈ [4], there is
some index j ∈ [3] such that the translation of x by a(i , j) lands inside
the set Ci .



Coloring axiom



A group example

The theory T will extend the theory of (C,+,−,×, 0, 1) with a sentence
asserting that C1,C2,C3,C4 form a partition of SL2, together with the
following axiom:

(∀x ∈ SL2)

∧
i∈[4]

∨
j∈[3]

Ci (a(i , j) · x)

 .
Gloss: For every group element x and for every index i ∈ [4], there is
some index j ∈ [3] such that the translation of x by a(i , j) lands inside
the set Ci .
We show that the generic structure satisfying these conditions is simple.



SL2 is not definably amenable in T ∗

Towards contradiction that µ is a Keisler measure on SL2, invariant
under translation. By the coloring axiom, we know that for each i ∈ [4],
we have

SL2 ⊆ a(i , 1)−1Ci ∪ a(i , 2)−1Ci ∪ a(i , 3)−1Ci ,

and, hence, by translation invariance, we have

1 ≤ 3µ(Ci ),

which shows µ(Ci ) ≥ 1
3 . On the other hand, because C1,C2,C3, and C4

partition SL2, we have

1 = µ(SL2) =
4∑

i=1

µ(Ci ) ≥
4

3
,

a contradiction.



Thanks!


