MAD families under AD

Steve Jackson

Joint with William Chan and Nam Trang

February 10, 2023 VIG 2023 In celebration of Tony Martin UCLA

(日)

3

Recall the classical definition of an almost disjoint family on ω :

Definition

 $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is almost disjoint if each $|A| = \omega$ for every $A \in \mathcal{A}$ and for $A \neq B \in \mathcal{A}$, $|A \cap B| < \omega$. We say \mathcal{A} is a maximal almost disjoint family if it is maximal subject to being an almost disjoint family.

With AC, mad families exist in all contexts. We consider the AD context.

< 回 > < 三 > < 三 >

Theorem (Neeman, Norwood) Assuming AD^+ , there are no mad families on ω . Answering a question of Mathias, Schrittesser and Törnquist showed the following.

Theorem (Schrittesser, Törnquist)

There are no mad families on ω assuming $DC_{\mathbb{R}}$, all sets Ramsey, and Ramsey almost everywhere uniformization.

A (10) × A (10) × A (10) ×

We consider mad families on $\kappa > \omega$. There are two natural definitions of an almost disjoint family.

- Let $\mathcal{B}(\kappa)$ be the ideal of bounded subsets of κ .
- Let $\mathcal{P}_{\kappa}(\kappa)$ be the ideal of subsets of κ of size $< \kappa$.

These ideals coincide if κ is regular.

S. Müller asked whether there are mad families on ω_1 under AD. More generally we ask:

Question

- For which κ does AD (or AD⁺ or AD_R) imply there are no mad families with respect to B(κ)?
- For which κ does AD (or AD⁺ or AD_R) imply there are no mad families with respect to P_κ(κ)?

(人間) トイヨト イヨト

э

• What about other ideals on κ ?

We first note the existence of the trivial mad families.

Fact

If $\lambda < cof(\kappa)$, then there are mad families of size λ for both ideals $\mathcal{B}(\kappa)$, $\mathcal{P}_{\kappa}(\kappa)$.

Proof.

Split κ into λ many pairwise disjoint sets. Each of these sets must have size κ .

Remark

It is not immediately clear if the elements on a mad family must be wellorderable. We discuss this further below.

A (10) × A (10) × A (10) ×

Theorem

Assume AD⁺. If $\kappa < \Theta$ then there are no mad families on κ for $\mathcal{B}(\kappa)$.

Theorem

Assume AD⁺. If $\kappa < \Theta$ and $cof(\kappa) > \omega$, then there are no mad families on κ for $\mathcal{P}_{\kappa}(\kappa)$.

A (10) × A (10) × A (10) ×

Theorem

Assume AD. If $\kappa < \Theta$ and $cof(\kappa) = \omega$, then there are no wellorderable mad families on κ .

Corollary (AD⁺)

If $\kappa < \Theta$ is regular, then there are no mad families for either $\mathcal{B}(\kappa)$ or $\mathcal{P}_{\kappa}(\kappa)$.

A simple observation.

Fact (ZF)

For any κ , there are no (wellorderable) mad families of size cof(κ) for either $\mathcal{B}(\kappa)$ of $\mathcal{P}_{\kappa}(\kappa)$.

Proof.

Consider the case $\mathcal{P}_{\kappa}(\kappa)$ (other case similar). Suppose $\{A_{\alpha}\}_{\alpha < cof(\kappa)}$ is $\mathcal{P}_{\kappa}(\kappa)$ almost disjoint.

Let $\rho : \operatorname{cof}(\kappa) \to \kappa$ be cofinal.

For $\beta < cof(\kappa)$, let E_{β} least $\rho(\beta)$ many ordinals in $A_{\beta} \setminus \bigcup_{\alpha < \beta} A_{\alpha}$ (which has size κ).

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Let $A = \bigcup_{\beta < \operatorname{cof}(\kappa)} E_{\beta}$.

We first show that there are no (non-trivial) wellorderable mad families.

We say the **boldface GCH** holds at a cardinal δ if every wellordered sequence of subsets of δ has size $< \delta^+$.

Theorem (Steel)

Assusme $AD + V = L(\mathbb{R})$. Then the boldface GCH holds below Θ .

イロト イポト イヨト イヨト

э

Theorem (Woodin)

Assume AD⁺. Then the boldface GCH holds below Θ .

Lemma

Suppose the boldface GCH holds at $cof(\kappa)$. Then there are no wellorderable mad families at κ for either $\mathcal{B}(\kappa)$ or $\mathcal{P}_{\kappa}(\kappa)$.

Corollary

Assume AD⁺. Then for any $\kappa < \Theta$, there are no wellorderable mad families at κ for either $\mathcal{B}(\kappa)$ or $\mathcal{P}_{\kappa}(\kappa)$.

Proof.

We consider the case $\mathcal{P}_{\kappa}(\kappa)$, the case $\mathcal{B}(\kappa)$ being similar.

Let $\{A_{\alpha}\}_{\alpha<\lambda}$ be an almost disjoint family of size λ , where we may assume λ is a cardinal with $\lambda > cof(\kappa)$. By boldface GCH we may assume $\lambda \leq \kappa$.

(人間) トイヨト イヨト

Let $\rho : \operatorname{cof}(\kappa) \to \kappa$ be cofinal.

We consider $\{A_{\alpha}\}_{\alpha < \operatorname{cof}(\kappa)}$ and $\{B_{\beta}\}_{\beta < \lambda}$ where $B_{\beta} = A_{\operatorname{cof}(\kappa)+\beta}$. For each $\beta < \lambda$, let $f_{\beta} : \operatorname{cof}(\kappa) \to \operatorname{cof}(\kappa)$ be defined by:

$$f_{\beta}(\alpha) = \text{ least } \gamma < \text{cof}(\kappa) [\text{o.t.}(A_{\alpha} \cap B_{\beta}) < \rho(\gamma)]$$

By the boldface GCH at $cof(\kappa)$ we may enumerate the $\{f_{\beta}\}_{\beta < \lambda}$ as $\{g_{\alpha}\}_{\alpha < cof(\kappa)}$.

We define a set $C \subseteq \kappa$ which is almost disjoint from all the A_{α} and B_{β} , a contradiction.

(人間) トイヨト イヨト

Consider first the case $\lambda = \kappa$. Let $g(\alpha) = \sup_{\gamma < \alpha} g_{\gamma}(\alpha)$, for $\alpha < cof(\kappa)$. For $\alpha < cof(\kappa)$, let

$$E_{\alpha} = \cup \{A_{\alpha} \cap B_{\beta} \colon \beta < \rho(\alpha) \land \text{o.t.} (A_{\alpha} \cap B_{\beta}) < \rho(g(\alpha)) \}$$
$$\cup \cup \{A_{\alpha} \cap A_{\gamma} \colon \gamma < \alpha\}$$

イロト イロト イヨト イヨト

2

Then $|E_{\alpha}| < \kappa$.

Let F_{α} be the least $\rho(\alpha)$ many elements of $A_{\alpha} \setminus E_{\alpha}$.

Let $C = \bigcup_{\alpha < cof(\kappa)} F_{\alpha}$. Then $C \subseteq \kappa$ with $|C| = \kappa$.

- For α < cof(κ), |C ∩ A_α| < κ from the second line in the definition of E_α.
- For β < λ = κ, |C ∩ B_β| < κ from the first line in the definition of E_α.

(人間) とくま とくま とう

э

The case $\lambda < \kappa$ is similar.

Now we consider general (not wellorderable) mad families.

Lemma

Assume $AD + DC_{\mathbb{R}}$. If $\kappa < \Theta$ and $cof(\kappa) > \omega$, then every $\mathcal{B}(\kappa)$ or $\mathcal{P}_{\kappa}(\kappa)$ almost disjoint family is wellorderable.

Since $cof(\kappa) > \omega$, the filter \mathcal{F} of $A \subseteq \kappa$ with $|\kappa \setminus A| < \kappa$ is countably complete.

Since $\kappa < \Theta$, by AD there is, by an argument of Kunen, an ultrafilter (measure) μ on κ which extends \mathcal{F} .

(人間) トイヨト イヨト

Using the coding lemma, $\text{DC}_{\mathbb{R}}$ is enough to show that ${}^{\kappa}\kappa/\mu$ is wellordered.

Let \mathcal{A} be an almost disjoint family (for either of the two ideals). Consider first the case $\mathcal{P}_{\kappa}(\kappa)$.

For each $A \in \mathcal{A}$, let $f_A : \kappa \to A$ be the increasing enumeration of A.

If $A \neq B \in \mathcal{A}$, then $[f_A]_{\mu} \neq [f_B]_{\mu}$, so $A \mapsto [f_A]_{\mu}$ is an injection of \mathcal{A} into On.

イロト 不得 トイヨト イヨト

Consider now $\mathcal{B}(\kappa)$.

Let $f_A(\alpha)$ be the least element of A greater than α .

Again we have $A \mapsto [f_A]_{\mu}$ is an injection of \mathcal{R} into On.

Combining these lemmas we have shown:

Theorem

Assume AD⁺. If $\kappa < \Theta$ and $cof(\kappa) \neq \omega$, then there are no mad families on κ for either $\mathcal{B}(\kappa)$ of $\mathcal{P}_{\kappa}(\kappa)$.

イロト イポト イヨト イヨト

We now turn to the case $cof(\kappa) = \omega$. Here we can only get the result for $\mathcal{B}(\kappa)$.

Here we adapt the argument of Schrittesser and Törnquist.

Definition

We say Ramsey uniformization holds at κ if for all relations $R \subseteq \omega^{\omega} \times \mathcal{P}(\kappa)$ there is an infinite $A \subseteq \omega$ and a function $\Phi : [A]^{\omega} \cap \operatorname{dom}(R) \to \mathcal{P}(\kappa)$ so that for all $f \in [A]^{\omega}$, $R(f, \Phi(f))$.

Lemma

Assume AD⁺. Then for every $\kappa < \Theta$ we have that Ramsey uniformization holds at κ .

(人間) トイヨト イヨト

We also need the following ordinal continuity result.

Lemma

Assume AD^+ . Let $\kappa \in On$ and $\Phi : [\omega]^{\omega} \to \mathcal{P}(\kappa) \equiv {}^{\kappa}2$. There there is an infinite $B \subseteq \omega$ such that $\Phi \upharpoonright [B]^{\omega}$ is continuous: for all $f \in [B]^{\omega}$, for all $\alpha < \kappa$, there is an $n \in \omega$ such that for all $g \in [B]^{\omega}$ with $f \upharpoonright n = g \upharpoonright n$ we have $\Phi(f)(\alpha) = \Phi(g)(\alpha)$.

We assume these lemmas for now, and complete the $cof(\kappa) = \omega$ case for $\mathcal{B}(\kappa)$.

A (10) × A (10) × A (10) ×

The argument is similar to that of Schrittesser and Törnquist for the $\kappa = \omega$ case. We give a sketch.

Fix $\rho: \omega \to \kappa$ increasing and cofinal. Let \mathcal{A} be a mad family for $\mathcal{B}(\kappa)$.

We consider $\{A_n\}_{n \in \omega}$, an ω -sequence of elements of \mathcal{A} .

For $i < j < \omega$, let $\eta_{i,j}$ be the least $\eta \in A_i$ with $\eta > \rho(j)$ and $\eta \notin \bigcup_{m < i} A_m$. For $f \in \omega^{\omega}$, let $B_f = \{\eta_{f(n), f(n+1)}\}$.

Let R(f, A) iff $A \in \mathcal{A}$ and $|A \cap B_f|$ is unbounded in κ . By Ramsey uniformization, let $\Phi \colon [C_0]^{\omega} \to \mathcal{A}$ be such that for all for $f \in [C_0]^{\omega}$ we have $R(f, \Phi(f))$.

By the ordinal continuity result, let $C_1 \subseteq C_0$ be such that $\Phi \upharpoonright [C_1]^{\omega}$ is continuous in the sense of the lemma.

イロト 不得 トイヨト イヨト

It is not hard to check that Φ is not constant on $[C_1]^{\omega}$. Let $f, g \in [C_1]^{\omega}$ with $\Phi(f) \neq \Phi(g)$. Fix α so that $\Phi(f)(\alpha) \neq \Phi(g)(\alpha)$. Fix $s_0 \subseteq f, t_0 \subseteq g$ which "force" this.

Suppose s_n , t_n have been defined. Define $P: [C_1]^2 \rightarrow 2$ by:

►
$$P(i,j) = 1$$
 iff $\exists f \in [C_1]^{\omega}$ with $\min(f) > \sup(s_n)$ so that $\eta_{i,j} \in \Phi(s_n f)$.

Easily, *P* cannot be homogeneous for the 0 side, so fix $D \subseteq C_1$ homogeneous for the 1 side.

イロト 不得 トイヨト イヨト

э.

Fix $g \in [D]^{\omega}$ with min $(g) > \sup(t_n)$.

Since $B_{t_n g} \cap \Phi(t_n g)$ is unbounded, there is an $n > \text{dom}(t_n)$ so that $\eta_{g(n),g(n+1)} \in \Phi(t_n g)$.

By the homogeneity of *D* (with i = g(n), j = g(n + 1)), there is an $f \in [C_1]^{\omega}$ such that $\min(f) > \sup(s(n) \text{ and } \eta_{g(n),g(n+1)} \in \Phi(s_n^{-}f)$.

By the continuity property of C_1 there are s_{n+1} , t_{n+1} extending s_n , t_n which force that $\eta_{g(n),g(n+1)} \in \Phi(s_n f) \cap \Phi(t_n g)$.

If we let $f = \bigcup_n s_n$, $g = \bigcup_n t_n$, then $\Phi(f) \neq \Phi(g)$, $\Phi(f)$, $\Phi(g) \in \mathcal{A}$, and $\Phi(f) \cap \Phi(g)$ is unbounded in κ , a contradiction.

イロト イポト イヨト イヨト

3

The $cof(\kappa) = \omega$ case for $\mathcal{P}_{\kappa}(\kappa)$ is still open.

Question

Assume AD⁺. Can there exist a mad family on κ , where $cof(\kappa) = \omega$, for the ideal $\mathcal{P}_{\kappa}(\kappa)$?

This is open even for $\kappa = \omega_{\omega}$.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Ramsey uniformization at κ

Let $\kappa < \Theta$ and $R \subseteq [\omega]^{\omega} \times \mathcal{P}(\kappa)$. By the coding lemma, let $\pi \colon \mathbb{R} \to \mathcal{P}(\kappa)$. Let R'(f, x) iff $R(f, \pi(x))$. It is enough to get $A \in [\omega]^{\omega}$ and $F \colon [A]^{\omega} \to \mathbb{R}$ uniformizing R'. But Ramsey uniformization for \mathbb{R} follows from AD⁺ (Using a result of Woodin giving Σ_1 -reflection to the Suslin, co-Suslin sets).

イロト イポト イヨト イヨト

Ramsey continuity at κ

Let $\kappa < \Theta$.

We use the facts from AD⁺ that $\omega \to (\omega)^2$ and the Ramsey null ideal is fully additive.

First show continuity for $\Psi : \omega^{\omega} \to \kappa$.

► Partition
$$\mathcal{P}$$
: set $P(f) = 0$ iff $\exists n$ so that
 $\forall g \in [\operatorname{ran}(f) \setminus \sup(f \upharpoonright n)]^{\omega}$ we have $\Phi(f) = \Phi(f \upharpoonright n^{g})$.

On the homogeneous side this must hold (use fact that a wellordered union of Ramsey null sets is Ramsey null).

By a standard ω sequence construction guessing initial sequences we construct a set $H \in [\omega]^{\omega}$ witnessing continuity.

(本間) とくき とくき と

If continuity fails, then for all $h \in [\omega]^{\omega}$ there is an $\alpha < \kappa$ and an $f \in [h[\omega]]^{\omega}$ such that for all *n* there is a $g \in [h[\omega]^{\omega}]$ with $g \upharpoonright n = f \upharpoonright n$ and $\Phi(f)(\alpha) \neq \Phi(g)(\alpha)$.

Let $\Psi : [\omega]^{\omega} \to \kappa$ be such that $\Psi(h)$ is the least such α for h (so there is some such $f \in [h[\omega]^{\omega})$.

A (1) < A (2) < A (2) </p>

э.

Let $C \in [\omega]^{\omega}$ such that $\Phi \upharpoonright [C]^{\omega}$ is continuous.

Fix $h^* \in [C]^{\omega}$, let *m* be given by continuity of Ψ . Let $\alpha^* = \Psi(h^*)$. Let $F = \{h^*(0), \dots, h^*(m-1)\}$. For each $t \in F^{<\omega}$ successively thin out $C \setminus F$ to be homogeneous for $\Phi(t^{-}g)(\alpha^*)$.

This produces $D \subseteq C \setminus F$. Let $h'[\omega] = F \cup D$.

Then $\Psi(h') = \Psi(h^*) = \alpha^*$ But for any $f \in [h'[\omega]]^{\omega}$, $f = t^{-p}$ and if we let n = |t|, then for any $g \in [h'[\omega]]^{\omega}$ with $g \upharpoonright n = f \upharpoonright n$ we have $\Phi(f)(\alpha^*) = \Phi(g)(\alpha^*)$, a contradiction.

э.