Ramsey Cardinals and the HNN Embedding Theorem

Simon Thomas

Rutgers The Soprano State University "Jersey Roots, Global Reach"

9th October 2010

うく(? * @ * * 三 *

Simon Thomas (Rutgers)

UCLA AMS Meeting 2010

9th October 2010

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G is embeddable in a 2-generator group K_G .

Remark

In the standard proofs, the construction of the group K_G involves an enumeration of a set $\{g_n \mid n \in \mathbb{N}\}$ of generators of the group G; and it is clear that the isomorphism type of K_G depends upon both the generating set and the particular enumeration that is used.

Question

Does there exist a more uniform construction with the property that the isomorphism type of K_G only depends upon the isomorphism type of G?

Simon Thomas (Rutgers)

UCLA AMS Meeting 2010

প ৭ ৫ ৰ ⊉ ৮ ৰ ছ ⊧ 9th October 2010

The answer ...

Notation

- $\bullet \ {\cal G}$ denotes the Polish space of countably infinite groups.
- G_{fg} denotes the Polish space of finitely generated groups.

Main Theorem (*LC*)

- Suppose that G → K_G is any Borel map from G to G_{fg} such that G → K_G for all G ∈ G.
- Then there exists an uncountable Borel family *F* ⊆ *G* of pairwise isomorphic groups such that the groups { *K_G* | *G* ∈ *F* } are pairwise incomparable with respect to relative constructibility; i.e., if G ≠ H ∈ *F*, then *K_G* ∉ *L*[*K_H*] and *K_H* ∉ *L*[*K_G*].

Remark

(*LC*): There exists a Ramsey cardinal κ .

Simon Thomas (Rutgers)

UCLA AMS Meeting 2010

9th October 2010

Futher Remarks

- (Philip Welch) Enough to assume that $\omega_1^{L[r]} < \omega_1$ for all $r \in 2^{\mathbb{N}}$.
- In ZFC, we can find an uncountable Borel family *F* such that the groups { K_G | G ∈ F } are pairwise incomparable with respect to embeddability ... or any other countable Borel quasi-order.
- For example, { Word(K_G) | G ∈ F } are pairwise incomparable with respect to Turing reducibility.
- (Philip Welch) Or even { Word(K_G) | G ∈ F } are pairwise incomparable with respect to hyperarithmetic reducibility.

Definition

- $Inj(\mathbb{N}, 2^{\mathbb{N}})$ is the Polish space of all injective maps $z : \mathbb{N} \to 2^{\mathbb{N}}$.
- E_{cntble} is the Borel equivalence relation on $Inj(\mathbb{N}, 2^{\mathbb{N}})$ defined by

$$z \in \mathcal{E}_{cntble} z' \iff \{ z(n) \mid n \in \mathbb{N} \} = \{ z'(n) \mid n \in \mathbb{N} \}.$$

Theorem

If E is any countable Borel equivalence relation, then $E \leq_B E_{cntble}$.

Proof.

An easy consequence of the Feldman-Moore Theorem.

Main Lemma

Suppose that X is a Polish space and that θ : $Inj(\mathbb{N}, 2^{\mathbb{N}}) \to X$ is any Borel map. Then at least one of the following must hold:

- (a) There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.
- (b) For each countable Borel quasi-order \preccurlyeq on X, there exists a perfect subset $P \subseteq Inj(\mathbb{N}, 2^{\mathbb{N}})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y), \theta(z)$ are incomparable with respect to \preccurlyeq for all $y \neq z \in P$.

Moreover, if (LC) holds, then the conclusion also holds with respect to the quasi-order \leq_c of relative constructibility.

The Proof of the Main Theorem

- Suppose that φ : G → G_{fg} is a Borel map such that G → φ(G) for all G ∈ G.
- Let $\{ H_r \mid r \in 2^{\mathbb{N}} \} \subseteq \mathcal{G}$ be a Borel family of pairwise nonisomorphic 2-generator groups.
- Let $\psi : Inj(\mathbb{N}, \mathbf{2}^{\mathbb{N}}) \to \mathcal{G}$ be the injective Borel map defined by

$$\psi(z) = H_{z(0)} \times H_{z(1)} \times \cdots \times H_{z(n)} \times \cdots$$

and consider $\theta = \varphi \circ \psi : \operatorname{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to \mathcal{G}_{fg}$.

- First suppose that there exists a group $G \in \mathcal{G}_{fg}$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ such that $r \in \text{range}(z)$ and $\theta(z) = G$.
- Then *H_r* embeds into *G* for all *r* ∈ 2^N, which is impossible since *G* has only countably many 2-generator subgroups!

- Let ≤ be either a countable Borel quasi-order or the relative constructibility relation on *G_{fq}*.
- Then there exists a perfect subset P ⊆ Inj(N, 2^N) such that
 (i) y E_{cntble} z for all y, z ∈ P; and
 (ii) θ(y), θ(z) are incomparable with respect to ≼ for all y ≠ z ∈ P.
- Hence *F* = ψ(*P*) ⊆ *G* is an uncountable Borel family of pairwise isomorphic groups such that the groups { φ(*G*) | *G* ∈ *F* } are pairwise incomparable with respect to *≤*.

Notation

From now on, we work within a fixed set-theoretic universe V.

Definition

Suppose that R is a projective relation and \mathbb{P} is a forcing notion.

- *R^{V^ℙ*} denotes the relation obtained by applying the definition of *R* within the generic extension *V^ℙ*.
- *R* is absolute for $V^{\mathbb{P}}$ iff $R^{V^{\mathbb{P}}} \cap V = R$.

The Main Ingredients

- The Shoenfield and Martin-Solovay Absoluteness Theorems.
- Kanovei's notion of a virtual equivalence class.

Theorem (Shoenfield)

If $R \in V$ is a Σ_2^1 relation, then R is absolute for every generic extension $V^{\mathbb{P}}$.

An Application

If \leq is a countable Borel quasi-order on the Polish space *X*, then $\leq^{V^{\mathbb{P}}}$ is a countable Borel quasi-order on $X^{V^{\mathbb{P}}}$.

Theorem (Martin-Solovay)

Suppose that κ is a Ramsey cardinal. If $R \in V$ is a Σ_3^1 relation and $|\mathbb{P}| < \kappa$, then R is absolute for $V^{\mathbb{P}}$.

An Application (LC)

 \leq_c is a countable Σ_2^1 quasi-order on $2^{\mathbb{N}}$.

Simon Thomas (Rutgers)

Definition (Kanovei après Hjorth)

Let *E* be a Borel equivalence relation on *X* and let \mathbb{P} be a forcing notion. Then a \mathbb{P} -name τ is a virtual *E*-class if:

•
$$\Vdash_{\mathbb{P}} \ au \in X^{V^{\mathbb{P}}}$$

• $\Vdash_{\mathbb{P} imes \mathbb{P}} \ au_{\textit{left}} \ \mathsf{E}^{V^{\mathbb{P} imes \mathbb{P}}} \ au_{\textit{right}}$

Here τ_{left} , τ_{right} are the $(\mathbb{P} \times \mathbb{P})$ -names such that if $G \times H$ is $(\mathbb{P} \times \mathbb{P})$ -generic, then $\tau_{left}[G \times H] = \tau[G]$ and $\tau_{right}[G \times H] = \tau[H]$.

UCLA AMS Meeting 2010

Simon Thomas (Rutgers)

Example

- Let *E* = *E_{cntble}* and let ℙ consist of all finite injective partial functions *p* : ℕ → 2^ℕ.
- If *G* is \mathbb{P} -generic, then $g = \bigcup G$ is a bijection between \mathbb{N} and $2^{\mathbb{N}} \cap V$.
- Hence if τ is the canonical \mathbb{P} -name such that $\tau[G] = g$, then τ is a virtual E_{cntble} -class.

Main Lemma

Suppose that X is a Polish space and that θ : $Inj(\mathbb{N}, 2^{\mathbb{N}}) \to X$ is any Borel map. Then at least one of the following must hold:

- (a) There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.
- (b) For each countable Borel quasi-order \preccurlyeq on X, there exists a perfect subset $P \subseteq Inj(\mathbb{N}, 2^{\mathbb{N}})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y), \theta(z)$ are incomparable with respect to \preccurlyeq for all $y \neq z \in P$.

Moreover, if (LC) holds, then the conclusion also holds with respect to the quasi-order \leq_c of relative constructibility.

Towards a proof of the Main Lemma ...

- Let θ : $\text{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to X$ be any Borel map.
- Let ≤ be either a countable Borel quasi-order on X or else the relative constructibility relation ≤_c.

Notation

- $x \perp y \iff x, y$ are \leq -incomparable.
- $x \parallel y \iff x, y$ are \leq -comparable.
- Let P consist of all finite injective partial functions p : N → 2^N and let τ be the corresponding virtual E_{cntble}-class.

The Fundamental Dichotomy

Are $\theta(\tau_{left}), \theta(\tau_{right})$ comparable with respect to $\leq^{V^{\mathbb{P}\times\mathbb{P}}}$?

^ へ (→ 🗗 → → 目 →

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

Claim

There exists
$$p_1 \leq p_0$$
 such that $\langle p_1, p_1 \rangle \Vdash \theta(\tau_{\text{left}}) = \theta(\tau_{\text{right}})$.

Proof.

- Suppose not and let \mathbb{Q} collapse $\mathcal{P}(\mathbb{P} \times \mathbb{P})$ to a countable set.
- Working in V^Q, there exists a perfect subset P ⊆ Inj(N, 2^N) such that θ(P) is an uncountable Borel set of pairwise ∠-comparable elements.
- Let $Z \subseteq \theta(P)$ be a perfect subset.
- By Kuratowski-Ulam, both $A = \{ (x, y) \in Z \times Z \mid x \leq y \}$ and $B = \{ (x, y) \in Z \times Z \mid y \leq x \}$ are meager subsets of $Z \times Z$.
- Since $Z \times Z = A \cup B$, this contradicts the Baire Category Theorem.

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{ left}}) || \theta(\tau_{\text{ right}}).$

Working in *V* and assuming that X = [0, 1], we can inductively define conditions

$$p_1 \ge p_2 \ge p_3 \ge \cdots \ge p_n \ge \cdots$$

and closed intervals $I_n \subseteq [0, 1]$ with rational endpoints

 $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$

such that the following conditions hold:

•
$$|I_n| = 2^{-(n-1)}$$

• $p_n \Vdash \theta(\tau) \in I_n$.

Still working in V, let

$$\bigcap_{n\geq 1}I_n=\{x\}.$$

Simon Thomas (Rutgers)

UCLA AMS Meeting 2010

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

Claim

$$p_1 \Vdash \theta(\tau) = x.$$

Proof.

- Otherwise, there exists $q \le p_1$ and $n \ge 1$ such that $q \Vdash \theta(\tau) \notin I_n$.
- But then $\langle q, p_n \rangle \leq \langle p_1, p_1 \rangle$ satisfies

$$\langle q, p_n \rangle \Vdash \theta(\tau_{\text{left}}) \notin I_n \text{ and } \theta(\tau_{\text{right}}) \in I_n,$$

which is a contradiction.

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

- Let $G \subseteq \mathbb{P}$ be *V*-generic with $p_1 \in G$.
- Then $V[G] \vDash \theta(\tau[G]) = x$.
- Hence for each $r \in 2^{\mathbb{N}} \cap V$,

 $V[G] \vDash (\exists z \in \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}})) (\exists n \in \mathbb{N}) [z(n) = r \text{ and } \theta(z) = x].$

- By Shoenfield Absoluteness, this Σ_1^1 property of the reals $r, x \in 2^{\mathbb{N}} \cap V$ must also hold in V.
- Thus, in *V*, for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.

Case 2: $(\forall p \in \mathbb{P}) \langle p, p \rangle \not\vDash \theta(\tau_{\mathsf{left}}) || \theta(\tau_{\mathsf{right}}).$

- Once again, let \mathbb{Q} collapse $\mathcal{P}(\mathbb{P} \times \mathbb{P})$ to a countable set.
- Then $V^{\mathbb{Q}}$ satisfies the following statement:

$$(\exists P \in \mathsf{Perf}(\mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}))) (\forall x) (\forall y) [(x, y \in P \land x \neq y) \Longrightarrow (x E_{cntble} y \land \theta(x) \perp \theta(y))].$$

- Applying either Shoenfield or Martin-Solovay Absoluteness, this statement also holds in *V*.
- This completes the proof of the Main Lemma.

The word problem for finitely generated groups

Theorem (Folklore)

For each subset $A \subseteq \mathbb{N}$, there exists a finitely generated group G_A such that Word(G_A) $\equiv_T A$.

Theorem

- Suppose that A → G_A is a Borel map from 2^N to G_{fg} such that Word(G_A) ≡ T A for all A ∈ 2^N.
- Then there exists a Turing degree d₀ such that for all d ≥ T d₀, there exists an infinite subset { A_n | n ∈ N } ⊆ d such that the groups { G_{A_n} | n ∈ N } are pairwise incomparable with respect to embeddability.

Sketch Proof. A very easy consequence of Borel Determinacy. Simon Thomas (Rutgers) UCLA AMS Meeting 2010 9th October 2010

Theorem

There does not exist a **Borel** choice of generators for each f.g. group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.

Problem

Formulate and prove a corresponding "gregification".

Theorem (Folklore)

Every finitely generated group G has a just infinite quotient Q_G .

Conjecture

There does not exist a Borel choice such that the isomorphism type of Q_G only depends on the isomorphism type of G.

•) < (* < ⊡ > < ≣

Simon Thomas (Rutgers)

UCLA AMS Meeting 2010

9th October 2010

Theorem

There does not exist a **Borel** choice of generators for each f.g. group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.

Problem

Formulate and prove a corresponding "gregification".

Theorem (Folklore)

Every finitely generated group G has a just infinite quotient Q_G .

Remark

It is enough to show that the isomorphism relation on simple finitely generated groups isn't smooth.

୬ < ୯ < 🗗 > ଏ 🖹

Simon Thomas (Rutgers)

UCLA AMS Meeting 2010

9th October 2010