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The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)
Every countable group G is embeddable in a 2-generator group KG.

Remark
In the standard proofs, the construction of the group KG involves an
enumeration of a set {gn | n ∈ N} of generators of the group G;
and it is clear that the isomorphism type of KG depends upon both
the generating set and the particular enumeration that is used.

Question
Does there exist a more uniform construction with the property
that the isomorphism type of KG only depends upon the
isomorphism type of G?
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The answer ...

Notation
G denotes the Polish space of countably infinite groups.
Gfg denotes the Polish space of finitely generated groups.

Main Theorem (LC)
Suppose that G 7→ KG is any Borel map from G to Gfg such that
G ↪→ KG for all G ∈ G.
Then there exists an uncountable Borel family F ⊆ G of pairwise
isomorphic groups such that the groups {KG | G ∈ F } are
pairwise incomparable with respect to relative constructibility;
i.e., if G 6= H ∈ F , then KG /∈ L[ KH ] and KH /∈ L[ KG ].

Remark
(LC): There exists a Ramsey cardinal κ.
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The answer ...

Futher Remarks

(Philip Welch) Enough to assume that ωL[r ]
1 < ω1 for all r ∈ 2N.

In ZFC, we can find an uncountable Borel family F such that
the groups {KG | G ∈ F } are pairwise incomparable with respect
to embeddability ... or any other countable Borel quasi-order.
For example, {Word(KG) | G ∈ F } are pairwise incomparable
with respect to Turing reducibility.
(Philip Welch) Or even {Word(KG) | G ∈ F } are pairwise
incomparable with respect to hyperarithmetic reducibility.

Simon Thomas (Rutgers) UCLA AMS Meeting 2010 9th October 2010



Towards a proof of the Main Theorem ...

Definition
Inj(N,2N) is the Polish space of all injective maps z : N → 2N.
Ecntble is the Borel equivalence relation on Inj(N,2N) defined by

z Ecntble z ′ ⇐⇒ { z(n) | n ∈ N } = { z ′(n) | n ∈ N }.

Theorem
If E is any countable Borel equivalence relation, then E ≤B Ecntble.

Proof.
An easy consequence of the Feldman-Moore Theorem.
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The Main Lemma

Main Lemma
Suppose that X is a Polish space and that θ : Inj(N,2N) → X is any
Borel map. Then at least one of the following must hold:
(a) There exists x ∈ X such that for all r ∈ 2N, there exists

z ∈ Inj(N,2N) with r ∈ range(z) such that θ(z) = x.
(b) For each countable Borel quasi-order 4 on X, there exists a

perfect subset P ⊆ Inj(N,2N) such that
(i) y Ecntble z for all y, z ∈ P; and
(ii) θ(y), θ(z) are incomparable with respect to 4 for all y 6= z ∈ P.

Moreover, if (LC) holds, then the conclusion also holds with respect
to the quasi-order ≤c of relative constructibility.
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The Proof of the Main Theorem

Suppose that ϕ : G → Gfg is a Borel map such that G ↪→ ϕ(G)
for all G ∈ G.
Let {Hr | r ∈ 2N } ⊆ G be a Borel family of pairwise nonisomorphic
2-generator groups.
Let ψ : Inj(N,2N) → G be the injective Borel map defined by

ψ(z) = Hz(0) × Hz(1) × · · · × Hz(n) × · · ·

and consider θ = ϕ ◦ ψ : Inj(N,2N) → Gfg .
First suppose that there exists a group G ∈ Gfg such that for all
r ∈ 2N, there exists z ∈ Inj(N,2N) such that r ∈ range(z) and
θ(z) = G.
Then Hr embeds into G for all r ∈ 2N, which is impossible since G
has only countably many 2-generator subgroups!
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The Proof of the Main Theorem

Let � be either a countable Borel quasi-order or the relative
constructibility relation on Gfg .

Then there exists a perfect subset P ⊆ Inj(N,2N) such that
(i) y Ecntble z for all y , z ∈ P; and
(ii) θ(y), θ(z) are incomparable with respect to 4 for all y 6= z ∈ P.

Hence F = ψ(P) ⊆ G is an uncountable Borel family of pairwise
isomorphic groups such that the groups {ϕ(G) | G ∈ F } are
pairwise incomparable with respect to �.
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Towards a proof of the Main Lemma ...

Notation
From now on, we work within a fixed set-theoretic universe V .

Definition
Suppose that R is a projective relation and P is a forcing notion.

RV P
denotes the relation obtained by applying the definition of R

within the generic extension V P.
R is absolute for V P iff RV P ∩ V = R.

The Main Ingredients
The Shoenfield and Martin-Solovay Absoluteness Theorems.
Kanovei’s notion of a virtual equivalence class.
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Absoluteness

Theorem (Shoenfield)

If R ∈ V is a Σ1
2 relation, then R is absolute for every generic

extension V P.

An Application
If � is a countable Borel quasi-order on the Polish space X ,
then �V P

is a countable Borel quasi-order on X V P
.

Theorem (Martin-Solovay)

Suppose that κ is a Ramsey cardinal. If R ∈ V is a Σ1
3 relation

and |P| < κ, then R is absolute for V P.

An Application (LC)

≤c is a countable Σ1
2 quasi-order on 2N.
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Virtual equivalence classes

Definition (Kanovei après Hjorth)
Let E be a Borel equivalence relation on X and let P be a forcing
notion. Then a P-name τ is a virtual E-class if:

P τ ∈ X V P

P×P τ left EV P×P
τ right

Here τ left, τ right are the (P× P)-names such that if G × H is
(P× P)-generic, then τ left[G × H] = τ [G] and τ right[G × H] = τ [H].
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Virtual equivalence classes

Example
Let E = Ecntble and let P consist of all finite injective partial
functions p : N → 2N.
If G is P-generic, then g =

⋃
G is a bijection between N and

2N ∩ V .
Hence if τ is the canonical P-name such that τ [G] = g, then
τ is a virtual Ecntble-class.
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A reminder ...

Main Lemma
Suppose that X is a Polish space and that θ : Inj(N,2N) → X is any
Borel map. Then at least one of the following must hold:
(a) There exists x ∈ X such that for all r ∈ 2N, there exists

z ∈ Inj(N,2N) with r ∈ range(z) such that θ(z) = x.
(b) For each countable Borel quasi-order 4 on X, there exists a

perfect subset P ⊆ Inj(N,2N) such that
(i) y Ecntble z for all y, z ∈ P; and
(ii) θ(y), θ(z) are incomparable with respect to 4 for all y 6= z ∈ P.

Moreover, if (LC) holds, then the conclusion also holds with respect
to the quasi-order ≤c of relative constructibility.
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Towards a proof of the Main Lemma ...

Let θ : Inj(N,2N) → X be any Borel map.
Let � be either a countable Borel quasi-order on X or else
the relative constructibility relation ≤c .

Notation
x ⊥ y ⇐⇒ x , y are �-incomparable.
x || y ⇐⇒ x , y are �-comparable.

Let P consist of all finite injective partial functions p : N → 2N

and let τ be the corresponding virtual Ecntble-class.

The Fundamental Dichotomy

Are θ(τ left), θ(τ right) comparable with respect to �V P×P
?
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Case 1: (∃p0 ∈ P ) 〈p0, p0 〉  θ(τ left) || θ(τ right).

Claim
There exists p1 ≤ p0 such that 〈p1,p1 〉  θ(τ left) = θ(τ right).

Proof.
Suppose not and let Q collapse P(P× P) to a countable set.
Working in V Q, there exists a perfect subset P ⊆ Inj(N,2N)
such that θ(P) is an uncountable Borel set of pairwise
�-comparable elements.
Let Z ⊆ θ(P) be a perfect subset.
By Kuratowski-Ulam, both A = { (x , y) ∈ Z × Z | x � y } and
B = { (x , y) ∈ Z × Z | y � x } are meager subsets of Z × Z .
Since Z ×Z = A∪B, this contradicts the Baire Category Theorem.
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Case 1: (∃p0 ∈ P ) 〈p0, p0 〉  θ(τ left) || θ(τ right).

Working in V and assuming that X = [0,1], we can inductively
define conditions

p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn ≥ · · ·

and closed intervals In ⊆ [0,1] with rational endpoints

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·

such that the following conditions hold:
|In| = 2−(n−1)

pn  θ(τ ) ∈ In.

Still working in V , let ⋂
n≥1

In = {x}.
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Case 1: (∃p0 ∈ P ) 〈p0, p0 〉  θ(τ left) || θ(τ right).

Claim
p1  θ(τ ) = x.

Proof.
Otherwise, there exists q ≤ p1 and n ≥ 1 such that q  θ(τ ) /∈ In.
But then 〈q,pn〉 ≤ 〈p1,p1〉 satisfies

〈q,pn〉  θ(τ left) /∈ In and θ(τ right) ∈ In,

which is a contradiction.
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Case 1: (∃p0 ∈ P ) 〈p0, p0 〉  θ(τ left) || θ(τ right).

Let G ⊆ P be V -generic with p1 ∈ G.

Then V [G] � θ( τ [G] ) = x .

Hence for each r ∈ 2N ∩ V ,

V [G] � (∃z ∈ Inj(N,2N) ) (∃n ∈ N ) [ z(n) = r and θ(z) = x ].

By Shoenfield Absoluteness, this Σ1
1 property of the reals

r , x ∈ 2N ∩ V must also hold in V .

Thus, in V , for all r ∈ 2N, there exists z ∈ Inj(N,2N) with
r ∈ range(z) such that θ(z) = x .
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Case 2: (∀p ∈ P ) 〈p, p 〉 6 θ(τ left) || θ(τ right).

Once again, let Q collapse P(P× P) to a countable set.

Then V Q satisfies the following statement:

(∃P ∈ Perf(Inj(N,2N)) ) (∀x ) (∀y )

[ ( x , y ∈ P ∧ x 6= y ) =⇒ ( x Ecntble y ∧ θ(x) ⊥ θ(y) ) ].

Applying either Shoenfield or Martin-Solovay Absoluteness,
this statement also holds in V .

This completes the proof of the Main Lemma.

Simon Thomas (Rutgers) UCLA AMS Meeting 2010 9th October 2010



The word problem for finitely generated groups

Theorem (Folklore)
For each subset A ⊆ N, there exists a finitely generated group
GA such that Word(GA) ≡T A.

Theorem
Suppose that A 7→ GA is a Borel map from 2N to Gfg such that
Word(GA) ≡T A for all A ∈ 2N.
Then there exists a Turing degree d0 such that for all d ≥T d0,
there exists an infinite subset {An | n ∈ N } ⊆ d such that the
groups {GAn | n ∈ N } are pairwise incomparable with respect
to embeddability.

Sketch Proof.
A very easy consequence of Borel Determinacy.
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Some Open Questions

Theorem
There does not exist a Borel choice of generators for each f.g. group
which has the property that isomorphic groups are assigned
isomorphic Cayley graphs.

Problem
Formulate and prove a corresponding “gregification”.

Theorem (Folklore)
Every finitely generated group G has a just infinite quotient QG.

Conjecture
There does not exist a Borel choice such that the isomorphism type
of QG only depends on the isomorphism type of G.
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Some Open Questions

Theorem
There does not exist a Borel choice of generators for each f.g. group
which has the property that isomorphic groups are assigned
isomorphic Cayley graphs.

Problem
Formulate and prove a corresponding “gregification”.

Theorem (Folklore)
Every finitely generated group G has a just infinite quotient QG.

Remark
It is enough to show that the isomorphism relation on simple
finitely generated groups isn’t smooth.
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