The Tree property for small cardinals

Dima Sinapova UCI

October 9, 2010

Dima Sinapova UCI The Tree property for small cardinals

< ≣⇒

æ

The tree property at κ⁺ states that every κ⁺-tree has an unbounded branch.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

- The tree property at κ⁺ states that every κ⁺-tree has an unbounded branch.
- (Magidor Shelah, 1996) Suppose there is a model with a huge cardinal and ω many supercompact cardinals above it. Then there is a model with the tree property at ℵ_{ω+1}.

向下 イヨト イヨト

- The tree property at κ⁺ states that every κ⁺-tree has an unbounded branch.
- (Magidor Shelah, 1996) Suppose there is a model with a huge cardinal and ω many supercompact cardinals above it. Then there is a model with the tree property at ℵ_{ω+1}.
- We reduce the large cardinal hypothesis to ω many supercompact cardinals.
- Our construction is motivated by the Prikry type forcing in Gitik-Sharon (2008) and arguments in Neeman (2009).

(日本) (日本) (日本)

(S) Suppose that in V, $\langle \kappa_n | n < \omega \rangle$ is an increasing sequence of supercompact cardinals and GCH holds. Then there is a generic extension in which:

- 1. $\kappa_0 = \aleph_{\omega}$,
- 2. the tree property holds at $\aleph_{\omega+1}$.

Furthermore, there is a bad scale at κ_0 .

▶ In V, $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa_0 = \kappa$ indestructably supercompact.

個 と く ヨ と く ヨ と …

- In V, (κ_n | n < ω) are increasing supercompact cardinals, κ₀ = κ indestructably supercompact.
- Force with C to make each κ_n be the n-th successor of κ. Let H be C-generic over V.

回 と く ヨ と く ヨ と

- ▶ In V, $\langle \kappa_n \mid n < \omega \rangle$ are increasing supercompact cardinals, $\kappa_0 = \kappa$ indestructably supercompact.
- Force with C to make each κ_n be the n-th successor of κ. Let H be C-generic over V.
- ▶ In V[H], we have:
 - $\langle U_n \mid n < \omega \rangle$ are supercompactness measures on $\mathcal{P}_{\kappa}(\kappa^{+n})$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- In V, (κ_n | n < ω) are increasing supercompact cardinals, κ₀ = κ indestructably supercompact.
- Force with C to make each κ_n be the n-th successor of κ. Let H be C-generic over V.
- ► In V[H], we have:
 - ▶ $\langle U_n \mid n < \omega \rangle$ are supercompactness measures on $\mathcal{P}_\kappa(\kappa^{+n})$
 - $\langle K_n | n < \omega \rangle$, such that K_0 is Ult_{U_0} -generic for $Col(\kappa^{+\omega+2}, < j_{U_0}(\kappa))$ and for n > 0, K_n is Ult_{U_n} -generic for $Col(\kappa^{+n+2}, < j_{U_n}(\kappa))$.

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

(ロ) (同) (E) (E) (E)

1. For
$$0 \le n < l$$
, $p_n = \langle x_n, c_n \rangle$ such that:
• $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$ and for $i < n, x_i \prec x_n$,
• $c_0 \in Col(\kappa_{x_0}^{+\omega+2}, < \kappa_{x_1})$ if $1 < l$, and if $l = 1$,
 $c_0 \in Col(\kappa_{x_0}^{+\omega+2}, < \kappa)$.
• if $1 < l$, for $0 < n < l - 1$, $c_n \in Col(\kappa_{x_n}^{+n+2}, < \kappa_{x_{n+1}})$, and
 $c_{l-1} \in Col(\kappa_{x_{l-1}}^{+l+1}, < \kappa)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

1. For
$$0 \le n < l$$
, $p_n = \langle x_n, c_n \rangle$ such that:
• $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$ and for $i < n, x_i \prec x_n$,
• $c_0 \in Col(\kappa_{x_0}^{+\omega+2}, <\kappa_{x_1})$ if $1 < l$, and if $l = 1$,
 $c_0 \in Col(\kappa_{x_0}^{+\omega+2}, <\kappa)$.
• if $1 < l$, for $0 < n < l - 1$, $c_n \in Col(\kappa_{x_n}^{+n+2}, <\kappa_{x_{n+1}})$, and
 $c_{l-1} \in Col(\kappa_{x_{l-1}}^{+l+1}, <\kappa)$.

2. For $n \ge l$, $p_n = \langle A_n, C_n \rangle$ such that:

• $A_n \in U_n$, $A_n \subset X_n$, and $x_{l-1} \prec y$ for all $y \in A_n$.

$$[C_n]_{U_n} \in K_n.$$

1. For
$$0 \le n < l$$
, $p_n = \langle x_n, c_n \rangle$ such that:
• $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$ and for $i < n, x_i \prec x_n$,
• $c_0 \in Col(\kappa_{x_0}^{+\omega+2}, <\kappa_{x_1})$ if $1 < l$, and if $l = 1$,
 $c_0 \in Col(\kappa_{x_0}^{+\omega+2}, <\kappa)$.
• if $1 < l$, for $0 < n < l - 1$, $c_n \in Col(\kappa_{x_n}^{+n+2}, <\kappa_{x_{n+1}})$, and
 $c_{l-1} \in Col(\kappa_{x_{l-1}}^{+l+1}, <\kappa)$.
2. For $n \ge l$, $p_n = \langle A_n, C_n \rangle$ such that:
• $A_n \in U_n, A_n \subset X_n$, and $x_{l-1} \prec y$ for all $y \in A_n$.
• $[C_n]_{U_n} \in K_n$.

3. if l > 0, then $d \in Col(\omega, \kappa_{\chi_0}^{+\omega})$, otherwise $d \in Col(\omega, \kappa)$.

・ 回 と ・ ヨ と ・ ヨ と

2

1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^{+\omega})^{V[H]}$.

白 と く ヨ と く ヨ と …

- 1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^{+\omega})^{V[H]}$.
- 2. The cofinality of each $\kappa_n = (\kappa^{+n})^{V[H]}$ in V[H][G] is ω .

伺 と く き と く き と

- 1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^{+\omega})^{V[H]}$.
- 2. The cofinality of each $\kappa_n = (\kappa^{+n})^{V[H]}$ in V[H][G] is ω .
- 3. \mathbb{P} has the $\mu = \kappa^{+\omega+1}$ chain condition, so, cardinals greater than or equal to $\kappa^{+\omega+1}$ are preserved.

回 と く ヨ と く ヨ と

- 1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^{+\omega})^{V[H]}$.
- 2. The cofinality of each $\kappa_n = (\kappa^{+n})^{V[H]}$ in V[H][G] is ω .
- 3. \mathbb{P} has the $\mu = \kappa^{+\omega+1}$ chain condition, so, cardinals greater than or equal to $\kappa^{+\omega+1}$ are preserved.
- 4. \mathbb{P} has the Prikry property.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^{+\omega})^{V[H]}$.
- 2. The cofinality of each $\kappa_n = (\kappa^{+n})^{V[H]}$ in V[H][G] is ω .
- 3. \mathbb{P} has the $\mu = \kappa^{+\omega+1}$ chain condition, so, cardinals greater than or equal to $\kappa^{+\omega+1}$ are preserved.
- 4. \mathbb{P} has the Prikry property.

In particular, in V[H][G], μ is the successor of κ , and $\mu = \aleph_{\omega+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

motivated by the Preservation Theorem in Magidor-Shelah.

個 と く ヨ と く ヨ と …

æ

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

 $S = \langle I, \mathcal{R} \rangle$ is a **narrow system** of height ν^+ and levels of size $\kappa < \nu$ if:

伺 とう きょう とう とう

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems
- $S = \langle I, \mathcal{R} \rangle$ is a **narrow system** of height ν^+ and levels of size $\kappa < \nu$ if:
 - *I* ⊂ ν⁺ is unbounded; for α ∈ *I*, *S*_α = {α} × κ is the α-level of *S*,

伺 とう ヨン うちょう

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems
- $S = \langle I, \mathcal{R} \rangle$ is a **narrow system** of height ν^+ and levels of size $\kappa < \nu$ if:
 - ► $I \subset \nu^+$ is unbounded; for $\alpha \in I$, $S_\alpha = \{\alpha\} \times \kappa$ is the α -level of S,
 - ▶ \mathcal{R} is a set of transitive binary relations on S, $|\mathcal{R}| < \nu$,

伺 とう ヨン うちょう

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems
- $S = \langle I, \mathcal{R} \rangle$ is a **narrow system** of height ν^+ and levels of size $\kappa < \nu$ if:
 - ▶ $I \subset \nu^+$ is unbounded; for $\alpha \in I$, $S_\alpha = \{\alpha\} \times \kappa$ is the α -level of S,
 - ▶ \mathcal{R} is a set of transitive binary relations on S, $|\mathcal{R}| < \nu$,
 - ▶ for $\alpha < \beta$ in *I*, there are $u \in S_{\alpha}$, $v \in S_{\beta}$, $R \in \mathcal{R}$, s.t. $\langle u, v \rangle \in R$,

伺い イヨト イヨト

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems
- $S = \langle I, \mathcal{R} \rangle$ is a **narrow system** of height ν^+ and levels of size $\kappa < \nu$ if:
 - ▶ $I \subset \nu^+$ is unbounded; for $\alpha \in I$, $S_\alpha = \{\alpha\} \times \kappa$ is the α -level of S,
 - ▶ \mathcal{R} is a set of transitive binary relations on S, $|\mathcal{R}| < \nu$,
 - ▶ for $\alpha < \beta$ in *I*, there are $u \in S_{\alpha}$, $v \in S_{\beta}$, $R \in \mathcal{R}$, s.t. $\langle u, v \rangle \in R$,
 - for $R \in \mathcal{R}$, if u_1, u_2 are distinct, $\langle u_1, v \rangle \in R$, $\langle u_2, v \rangle \in R$, then $\langle u_1, u_2 \rangle \in R$ or $\langle u_2, u_1 \rangle \in R$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems
- ${\cal S}=\langle {\cal I},{\cal R}\rangle$ is a narrow system of height ν^+ and levels of size $\kappa<\nu$ if:
 - ▶ $I \subset \nu^+$ is unbounded; for $\alpha \in I$, $S_\alpha = \{\alpha\} \times \kappa$ is the α -level of S,
 - \mathcal{R} is a set of transitive binary relations on S, $|\mathcal{R}| < \nu$,
 - ▶ for $\alpha < \beta$ in *I*, there are $u \in S_{\alpha}$, $v \in S_{\beta}$, $R \in \mathcal{R}$, s.t. $\langle u, v \rangle \in R$,
 - ▶ for $R \in \mathcal{R}$, if u_1, u_2 are distinct, $\langle u_1, v \rangle \in R$, $\langle u_2, v \rangle \in R$, then $\langle u_1, u_2 \rangle \in R$ or $\langle u_2, u_1 \rangle \in R$.

A **branch** of *S* is a set $b \subset \bigcup_{\alpha \in I} S_{\alpha}$ s. t. for every α , $|b \cap S_{\alpha}| \leq 1$, and for some $R \in \mathcal{R}$, for all $u, v \in b$, $\langle u, v \rangle \in R$ or $\langle v, u \rangle \in R$; *b* is unbounded if for unboundedly many $\alpha \in I$, $b \cap S_{\alpha} \neq \emptyset$.

(S) Suppose that $cof(\nu) = \omega$ and $S = \langle I, \mathcal{R} \rangle$ is a narrow system in V of height ν^+ , levels of size κ , $|\mathcal{R}| = \tau$, where $\kappa, \tau < \nu$. Suppose also that \mathbb{R} is a $<\chi$ closed notion of forcing where $\chi > max(\kappa, \tau)^+$, and let F be \mathbb{R} -generic over V. Suppose that in V[F] there are (not necessarily all unbounded) branches $\langle b_{R,\delta} | R \in \mathcal{R}, \delta < \kappa \rangle$, such that:

伺 と く き と く き と

(S) Suppose that $cof(\nu) = \omega$ and $S = \langle I, \mathcal{R} \rangle$ is a narrow system in V of height ν^+ , levels of size κ , $|\mathcal{R}| = \tau$, where $\kappa, \tau < \nu$. Suppose also that \mathbb{R} is a $<\chi$ closed notion of forcing where $\chi > max(\kappa, \tau)^+$, and let F be \mathbb{R} -generic over V. Suppose that in V[F] there are (not necessarily all unbounded) branches $\langle b_{R,\delta} | R \in \mathcal{R}, \delta < \kappa \rangle$, such that:

1. every $b_{R,\delta}$ is a branch through R,

2. for all $\alpha \in I$, there is $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, such that $S_{\alpha} \cap b_{R,\delta} \neq \emptyset$.

伺 と く き と く き と

(S) Suppose that $cof(\nu) = \omega$ and $S = \langle I, \mathcal{R} \rangle$ is a narrow system in V of height ν^+ , levels of size κ , $|\mathcal{R}| = \tau$, where $\kappa, \tau < \nu$. Suppose also that \mathbb{R} is a $<\chi$ closed notion of forcing where $\chi > \max(\kappa, \tau)^+$, and let F be \mathbb{R} -generic over V. Suppose that in V[F] there are (not necessarily all unbounded) branches $\langle b_{R,\delta} | R \in \mathcal{R}, \delta < \kappa \rangle$, such that:

1. every $b_{R,\delta}$ is a branch through R,

2. for all $\alpha \in I$, there is $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, such that $S_{\alpha} \cap b_{R,\delta} \neq \emptyset$. Finally suppose that for some $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, $b_{R,\delta}$ is unbounded.

・ 同 ト ・ ヨ ト ・ ヨ ト …

(S) Suppose that $cof(\nu) = \omega$ and $S = \langle I, \mathcal{R} \rangle$ is a narrow system in V of height ν^+ , levels of size κ , $|\mathcal{R}| = \tau$, where $\kappa, \tau < \nu$. Suppose also that \mathbb{R} is a $<\chi$ closed notion of forcing where $\chi > \max(\kappa, \tau)^+$, and let F be \mathbb{R} -generic over V. Suppose that in V[F] there are (not necessarily all unbounded) branches $\langle b_{R,\delta} | R \in \mathcal{R}, \delta < \kappa \rangle$, such that:

1. every $b_{R,\delta}$ is a branch through R,

2. for all $\alpha \in I$, there is $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, such that $S_{\alpha} \cap b_{R,\delta} \neq \emptyset$. Finally suppose that for some $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, $b_{R,\delta}$ is unbounded. Then S has an unbounded branch in V.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In V[H][G], the tree property holds at $\aleph_{\omega+1}$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

æ

In V[H][G], the tree property holds at $\aleph_{\omega+1}$.

- The proof is motivated by Neeman
- ► The main difference is that we have to deal with the poset C and rely on the Preservation Theorem.

伺 とう きょう とう とう

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{cf(\kappa)} < \kappa$, then $\kappa^{cf(\kappa)} = \kappa^+$.

御 と く き と く き と

æ

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{cf(\kappa)} < \kappa$, then $\kappa^{cf(\kappa)} = \kappa^+$.

Theorem

(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_{ω} is strong limit and $2^{\aleph_{\omega}} = \aleph_{\omega+2}$.

伺 とう ヨン うちょう

Definition

The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{cf(\kappa)} < \kappa$, then $\kappa^{cf(\kappa)} = \kappa^+$.

Theorem

(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_{ω} is strong limit and $2^{\aleph_{\omega}} = \aleph_{\omega+2}$.

Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ^{++} . This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.

・ 同 ト ・ ヨ ト ・ ヨ ト

伺 とう きょう とう とう

Theorem

(Neeman, 2009) The tree property at κ^+ is consistent with the failure of SCH at κ .

高 とう モン・ く ヨ と

Theorem

(Neeman, 2009) The tree property at κ^+ is consistent with the failure of SCH at κ .

Question

Can Neeman's result be obtained for $\kappa = \aleph_{\omega}$, or even \aleph_{ω^2} ?

通 とう ほう うちょう

Theorem

(Neeman, 2009) The tree property at κ^+ is consistent with the failure of SCH at κ .

Question

Can Neeman's result be obtained for $\kappa = \aleph_{\omega}$, or even \aleph_{ω^2} ?

The strategy in the proof our theorem suggests some hope of answering the above question in the positive.

伺 とう ヨン うちょう