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Introduction

I The tree property at κ+ states that every κ+-tree has an
unbounded branch.

I (Magidor - Shelah, 1996) Suppose there is a model with a
huge cardinal and ω many supercompact cardinals above it.
Then there is a model with the tree property at ℵω+1.

I We reduce the large cardinal hypothesis to ω many
supercompact cardinals.

I Our construction is motivated by the Prikry type forcing in
Gitik-Sharon (2008) and arguments in Neeman (2009).
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The Main Theorem

Theorem
(S) Suppose that in V , 〈κn | n < ω〉 is an increasing sequence of
supercompact cardinals and GCH holds. Then there is a generic
extension in which:

1. κ0 = ℵω,

2. the tree property holds at ℵω+1.

Furthermore, there is a bad scale at κ0.
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The Preparation

I In V , 〈κn | n < ω〉 are increasing supercompact cardinals,
κ0 = κ indestructably supercompact.

I Force with C to make each κn be the n-th successor of κ.
Let H be C-generic over V .

I In V [H], we have:
I 〈Un | n < ω〉 are supercompactness measures on Pκ(κ+n)

I 〈Kn | n < ω〉, such that K0 is UltU0 -generic for
Col(κ+ω+2, < jU0(κ)) and for n > 0, Kn is UltUn -generic for
Col(κ+n+2, < jUn (κ)).
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The Main Forcing

Conditions in P are of the form p = 〈d , 〈pn | n < ω〉〉, where
setting l = lh(p), we have:

1. For 0 ≤ n < l , pn = 〈xn, cn〉 such that:
I xn ∈ Pκ(κ+n) and for i < n, xi ≺ xn,
I c0 ∈ Col(κ+ω+2

x0
, < κx1) if 1 < l , and if l = 1,

c0 ∈ Col(κ+ω+2
x0

, < κ).
I if 1 < l , for 0 < n < l − 1, cn ∈ Col(κ+n+2

xn
, < κxn+1), and

cl−1 ∈ Col(κ+l+1
xl−1

, < κ).

2. For n ≥ l , pn = 〈An,Cn〉 such that:
I An ∈ Un, An ⊂ Xn, and xl−1 ≺ y for all y ∈ An.
I [Cn]Un ∈ Kn.

3. if l > 0, then d ∈ Col(ω, κ+ω
x0

), otherwise d ∈ Col(ω, κ).
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Properties of the forcing

Let G be P-generic over V [H]

1. G determines a generic sequence 〈xn | n < ω〉, such that⋃
n xn = (κ+ω)V [H].

2. The cofinality of each κn = (κ+n)V [H] in V [H][G ] is ω.

3. P has the µ = κ+ω+1 chain condition, so, cardinals greater
than or equal to κ+ω+1 are preserved.

4. P has the Prikry property.

In particular, in V [H][G ], µ is the successor of κ, and µ = ℵω+1.
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The preservation theorem

I motivated by the Preservation Theorem in Magidor-Shelah.

I instead of trees, here we work with narrow systems

S = 〈I ,R〉 is a narrow system of height ν+ and levels of size
κ < ν if:

I I ⊂ ν+ is unbounded; for α ∈ I , Sα = {α} × κ is the α-level
of S ,

I R is a set of transitive binary relations on S , |R| < ν,

I for α < β in I , there are u ∈ Sα, v ∈ Sβ, R ∈ R, s.t.
〈u, v〉 ∈ R,

I for R ∈ R, if u1, u2 are distinct, 〈u1, v〉 ∈ R, 〈u2, v〉 ∈ R, then
〈u1, u2〉 ∈ R or 〈u2, u1〉 ∈ R.

A branch of S is a set b ⊂
⋃
α∈I Sα s. t. for every α, |b ∩ Sα| ≤ 1,

and for some R ∈ R, for all u, v ∈ b, 〈u, v〉 ∈ R or 〈v , u〉 ∈ R;
b is unbounded if for unboundedly many α ∈ I , b ∩ Sα 6= ∅.
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The preservation theorem

Theorem
(S) Suppose that cof (ν) = ω and S = 〈I ,R〉 is a narrow system in
V of height ν+, levels of size κ, |R| = τ , where κ, τ < ν. Suppose
also that R is a <χ closed notion of forcing where
χ > max(κ, τ)+, and let F be R-generic over V . Suppose that in
V [F ] there are (not necessarily all unbounded) branches
〈bR,δ | R ∈ R, δ < κ〉, such that:

1. every bR,δ is a branch through R,

2. for all α ∈ I , there is 〈R, δ〉 ∈ R× κ, such that Sα ∩ bR,δ 6= ∅.
Finally suppose that for some 〈R, δ〉 ∈ R × κ, bR,δ is unbounded.
Then S has an unbounded branch in V .
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The tree property

In V [H][G ], the tree property holds at ℵω+1.

I The proof is motivated by Neeman

I The main difference is that we have to deal with the poset C
and rely on the Preservation Theorem.
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Connection with the SCH

Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular
and 2cf(κ) < κ, then κcf(κ) = κ+.

Theorem
(Magidor) If there exists a supercompact cardinal, then there is a
forcing extension in which ℵω is strong limit and 2ℵω = ℵω+2.

Gitik and Woodin significantly reduced the large cardinal
hypothesis to a measurable cardinal κ of Mitchell order κ++. This
hypothesis was shown to be optimal by Gitik and Mitchell using
core model theory.
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Connection with the SCH

Question (Woodin and others): Does not SCH at a cardinal κ of
cofinality ω imply the failure of the tree property?

Theorem
(Neeman, 2009) The tree property at κ+ is consistent with the
failure of SCH at κ.

Question
Can Neeman’s result be obtained for κ = ℵω, or even ℵω2?

The strategy in the proof our theorem suggests some hope of
answering the above question in the positive.
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