On the strength of (failure of) square

Grigor Sargsyan

UCLA

October 10th, 2010 UCLA

Grigor Sargsyan On the strength of (failure of) square

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The main theorem

Theorem (S.)

Suppose that for some singular strong limit cardinal κ , \Box_{κ} fails. Then there is a nontame mouse. In particular, there is an inner model with a Woodin cardinal δ and a strong cardinal $\lambda < \delta$.

Grigor Sargsyan On the strength of (failure of) square

The main theorem

Theorem (S.)

Suppose that for some singular strong limit cardinal κ , \Box_{κ} fails. Then there is a nontame mouse. In particular, there is an inner model with a Woodin cardinal δ and a strong cardinal $\lambda < \delta$.

A stronger lower bound

Remark

- **1** One can show that in fact " $AD_{\mathbb{R}} + \Theta$ is regular" is a lower bound but that is a different story for some other time.
- **2** The proof is via core model induction and builds on Steel's proof that " $\neg \Box_{\kappa} \implies AD^{L(\mathbb{R})}$ ".(Recall that $AD^{L(\mathbb{R})}$ is equiconsistent with ω Woodins.)

A stronger lower bound

Remark

- **1** One can show that in fact " $AD_{\mathbb{R}} + \Theta$ is regular" is a lower bound but that is a different story for some other time.
- **2** The proof is via core model induction and builds on Steel's proof that " $\neg \Box_{\kappa} \implies AD^{L(\mathbb{R})}$ ".(Recall that $AD^{L(\mathbb{R})}$ is equiconsistent with ω Woodins.)

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

э

A stronger lower bound

Remark

- **1** One can show that in fact " $AD_{\mathbb{R}} + \Theta$ is regular" is a lower bound but that is a different story for some other time.
- **2** The proof is via core model induction and builds on Steel's proof that " $\neg \Box_{\kappa} \implies AD^{L(\mathbb{R})}$ ".(Recall that $AD^{L(\mathbb{R})}$ is equiconsistent with ω Woodins.)

The goal of the talk

1 Brief sketch of how things are set up.

2 A brief outline of the proof.

Grigor Sargsyan On the strength of (failure of) square

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The goal of the talk

- **1** Brief sketch of how things are set up.
- 2 A brief outline of the proof.

Grigor Sargsyan On the strength of (failure of) square

(日)

What is the core model induction?

It is a technique for calibrating lower bounds of consistency strengths of set theoretic statements.

Grigor Sargsyan On the strength of (failure of) square

(日)

Typical applications of the core model induction

1 Forcing axioms: *PFA* and etc.

- 2 Combinatorial statements: $\neg \Box_{\kappa}$ where κ is a singular strong limit cardinal and etc.
- 3 Generic embeddings: generic embeddings given by precipitous ideals, dense ideals and etc.

Grigor Sargsyan On the strength of (failure of) square

Typical applications of the core model induction

- **1** Forcing axioms: *PFA* and etc.
- 2 Combinatorial statements: $\neg \Box_{\kappa}$ where κ is a singular strong limit cardinal and etc.
- 3 Generic embeddings: generic embeddings given by precipitous ideals, dense ideals and etc.

Typical applications of the core model induction

- **1** Forcing axioms: *PFA* and etc.
- 2 Combinatorial statements: $\neg \Box_{\kappa}$ where κ is a singular strong limit cardinal and etc.
- Generic embeddings: generic embeddings given by precipitous ideals, dense ideals and etc.

How does the core model induction work?

- 1 It can be viewed as a way of constructing models of determinacy while working in extensions of *ZFC*.
- 2 There is a collection of companion theorems that link the determinacy theories with large cardinal theories.
- 3 Both together give large cardinal lower bounds.

Grigor Sargsyan On the strength of (failure of) square

< 日 > < 回 > < 回 > < 回 > < 回 > <

How does the core model induction work?

- 1 It can be viewed as a way of constructing models of determinacy while working in extensions of *ZFC*.
- 2 There is a collection of companion theorems that link the determinacy theories with large cardinal theories.
- 3 Both together give large cardinal lower bounds.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

How does the core model induction work?

- 1 It can be viewed as a way of constructing models of determinacy while working in extensions of *ZFC*.
- 2 There is a collection of companion theorems that link the determinacy theories with large cardinal theories.
- **3** Both together give large cardinal lower bounds.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

What are these determinacy theories?

2 A way of getting a hierarchy of axioms extending AD⁺ is to consider Solovay sequence.

Grigor Sargsyan On the strength of (failure of) square

What are these determinacy theories?

A way of getting a hierarchy of axioms extending AD⁺ is to consider Solovay sequence.

Grigor Sargsyan On the strength of (failure of) square

(日)

Solovay sequence

First, recall that assuming AD,

 $\Theta = \sup\{\alpha : \text{there is a surjection } f : \mathbb{R} \to \alpha\}.$

Then, assuming AD, the Solovay sequence is a closed sequence of ordinals $\langle \theta_{\alpha} : \alpha \leq \Omega \rangle$ defined by:

- 1 $\theta_0 = \sup\{\alpha : \text{there is an ordinal definable surjection} f : \mathbb{R} \to \alpha\},$
- 2 If θ_α < Θ then fixing A ⊆ ℝ of Wadge rank θ_α, θ_{α+1} = sup{α : there is a surjection f : ℝ → α such that f is ordinal definable from A},
- 3 $\theta_{\lambda} = \sup_{\alpha < \lambda} \theta_{\alpha}.$

Solovay sequence

First, recall that assuming AD,

 $\Theta = \sup\{\alpha : \text{there is a surjection } f : \mathbb{R} \to \alpha\}.$

Then, assuming AD, the Solovay sequence is a closed sequence of ordinals $\langle \theta_{\alpha} : \alpha \leq \Omega \rangle$ defined by:

- 1 $\theta_0 = \sup\{\alpha : \text{there is an ordinal definable surjection} f : \mathbb{R} \to \alpha\},$
- 2 If θ_α < Θ then fixing A ⊆ ℝ of Wadge rank θ_α, θ_{α+1} = sup{α : there is a surjection f : ℝ → α such that f is ordinal definable from A},
- 3 $\theta_{\lambda} = \sup_{\alpha < \lambda} \theta_{\alpha}.$

Solovay sequence

First, recall that assuming AD,

 $\Theta = \sup\{\alpha : \text{there is a surjection } f : \mathbb{R} \to \alpha\}.$

Then, assuming AD, the Solovay sequence is a closed sequence of ordinals $\langle \theta_{\alpha} : \alpha \leq \Omega \rangle$ defined by:

- 1 $\theta_0 = \sup\{\alpha : \text{there is an ordinal definable surjection} f : \mathbb{R} \to \alpha\},$
- 2 If θ_α < Θ then fixing A ⊆ ℝ of Wadge rank θ_α, θ_{α+1} = sup{α : there is a surjection f : ℝ → α such that f is ordinal definable from A},

 $\sigma_{\lambda} = \sup_{\alpha < \lambda} \sigma_{\alpha}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへつ

Solovay sequence

First, recall that assuming AD,

 $\Theta = \sup\{\alpha : \text{there is a surjection } f : \mathbb{R} \to \alpha\}.$

Then, assuming AD, the Solovay sequence is a closed sequence of ordinals $\langle \theta_{\alpha} : \alpha \leq \Omega \rangle$ defined by:

- 1 $\theta_0 = \sup\{\alpha : \text{there is an ordinal definable surjection} f : \mathbb{R} \to \alpha\},$
- 2 If θ_α < Θ then fixing A ⊆ ℝ of Wadge rank θ_α, θ_{α+1} = sup{α : there is a surjection f : ℝ → α such that f is ordinal definable from A},

3
$$\theta_{\lambda} = \sup_{\alpha < \lambda} \theta_{\alpha}.$$

The hierarchy: Solovay hierarchy

$\begin{array}{l} AD^{+} + \Theta = \theta_{0} <_{con} AD^{+} + \Theta = \theta_{1} <_{con} ...AD^{+} + \Theta = \theta_{\omega} <_{con} \\ ...AD^{+} + \Theta = \theta_{\omega_{1}} <_{con} AD^{+} + \Theta = \theta_{\omega_{1}+1} <_{con} ...\end{array}$

 $AD_{\mathbb{R}}$ + " Θ is regular" is a natural limit point of the hierarchy and is quite strong.

The hierarchy: Solovay hierarchy

$$\begin{array}{l} AD^{+} + \Theta = \theta_{0} <_{con} AD^{+} + \Theta = \theta_{1} <_{con} ...AD^{+} + \Theta = \theta_{\omega} <_{con} \\ ...AD^{+} + \Theta = \theta_{\omega_{1}} <_{con} AD^{+} + \Theta = \theta_{\omega_{1}+1} <_{con} ... \end{array}$$

 $\textit{AD}_{\mathbb{R}}$ + " Θ is regular" is a natural limit point of the hierarchy and is quite strong.

(日)

Connections to large cardinals

1 (Woodin, AD^+) $AD_{\mathbb{R}} \Leftrightarrow AD^+ + "\Theta = \theta_{\alpha}$ for some limit α ".

- 2 (Steel) $AD_{\mathbb{R}} \rightarrow$ there is a proper class model *M* of ZFC such that in *M* there is λ which is a limit of Woodin cardinals and $< \lambda$ -strong cardinals.
- 3 (Woodin) If λ is a limit of Woodin cardinals and < λ-strong cardinals then the derived model at λ satisfies AD_R.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Connections to large cardinals

- 1 (Woodin, AD^+) $AD_{\mathbb{R}} \Leftrightarrow AD^+ + "\Theta = \theta_{\alpha}$ for some limit α ".
- 2 (Steel) AD_ℝ → there is a proper class model *M* of ZFC such that in *M* there is λ which is a limit of Woodin cardinals and < λ-strong cardinals.</p>
- (Woodin) If λ is a limit of Woodin cardinals and < λ-strong cardinals then the derived model at λ satisfies AD_R.

Grigor Sargsyan On the strength of (failure of) square

Connections to large cardinals

- 1 (Woodin, AD^+) $AD_{\mathbb{R}} \Leftrightarrow AD^+ + "\Theta = \theta_{\alpha}$ for some limit α ".
- 2 (Steel) AD_ℝ → there is a proper class model *M* of ZFC such that in *M* there is λ which is a limit of Woodin cardinals and < λ-strong cardinals.</p>
- (Woodin) If λ is a limit of Woodin cardinals and < λ-strong cardinals then the derived model at λ satisfies AD_R.

Theorem (Woodin)

 $AD^+ + \Theta = \theta_1$ implies the existence of a nontame mouse. In particular, there is an inner model with a Woodin cardinal δ and a strong cardinal $\lambda < \delta$.

Remark

Hence, to prove the theorem it is enough to construct a model of $AD^+ + \Theta = \theta_1$ from $\neg \Box_{\kappa}$ where κ is a singular strong limit cardinal.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem (Woodin)

 $AD^+ + \Theta = \theta_1$ implies the existence of a nontame mouse. In particular, there is an inner model with a Woodin cardinal δ and a strong cardinal $\lambda < \delta$.

Remark

Hence, to prove the theorem it is enough to construct a model of $AD^+ + \Theta = \theta_1$ from $\neg \Box_{\kappa}$ where κ is a singular strong limit cardinal.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

э

How do we construct models for these axioms?

- **1** Recall that the goal of CMI is to construct models for the axioms from the Solovay hierarchy. In our case, we want a model of $AD^+ + \Theta = \theta_1$.
- 2 With an apology to the experts, the model is essentially $L(\Gamma_{max}, \mathbb{R})$ where

$$\Gamma_{max} = \{ A \subseteq \mathbb{R} : L(A, \mathbb{R}) \vDash AD^+ \}.$$

How do we construct models for these axioms?

- **1** Recall that the goal of CMI is to construct models for the axioms from the Solovay hierarchy. In our case, we want a model of $AD^+ + \Theta = \theta_1$.
- 2 With an apology to the experts, the model is essentially $L(\Gamma_{max}, \mathbb{R})$ where

$$\Gamma_{max} = \{ A \subseteq \mathbb{R} : L(A, \mathbb{R}) \vDash AD^+ \}.$$

1 Core model induction is used to show that Γ_{max} has various closure properties.

- Here we will concentrate on the following closure property.
- **3** Given a theory *S* from the Solovay hierarchy, is there $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash S$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$
- 4 In our case, $S = AD^+ + \Theta = \theta_1$.

ヘロト ヘ部ト ヘヨト ヘヨト ニヨ

- 1 Core model induction is used to show that Γ_{max} has various closure properties.
- 2 Here we will concentrate on the following closure property.
- **3** Given a theory *S* from the Solovay hierarchy, is there $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash S$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$
- 4 In our case, $S = AD^+ + \Theta = \theta_1$.

(日)

- 1 Core model induction is used to show that Γ_{max} has various closure properties.
- 2 Here we will concentrate on the following closure property.
- **3** Given a theory *S* from the Solovay hierarchy, is there $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash S$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$.
- 4 In our case, $S = AD^+ + \Theta = \theta_1$.

- 1 Core model induction is used to show that Γ_{max} has various closure properties.
- 2 Here we will concentrate on the following closure property.
- **3** Given a theory *S* from the Solovay hierarchy, is there $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash S$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$.
- 4 In our case, $S = AD^+ + \Theta = \theta_1$.

- Let κ be a singular strong limit cardinal such that ¬□_κ and let μ > cf(κ) be a regular cardinal such that μ^ω = μ.
- 2 Fix λ >> κ and let X be a submodel of V_λ such that letting N be the transitive collapse of X

1
$$\mu + 1 \subseteq \mathcal{N},$$

2 $\mathcal{N}^{\omega} \subseteq \mathcal{N},$
3 $|\mathcal{N}| = \mu.$

- 3 Let $\pi : \mathcal{N} \to V_{\lambda}$.
- 4 We start working in V[g] (backed up by V) where g ⊆ Coll(ω, μ).
- 5 We can extend π to $\pi : \mathcal{N}[g] \to V_{\lambda}[g]$.

ヘロア 人間 アメヨア

э

- Let κ be a singular strong limit cardinal such that ¬□_κ and let μ > cf(κ) be a regular cardinal such that μ^ω = μ.
- 2 Fix λ >> κ and let X be a submodel of V_λ such that letting N be the transitive collapse of X

1
$$\mu + 1 \subseteq \mathcal{N}$$

2 $\mathcal{N}^{\omega} \subseteq \mathcal{N}$,
3 $|\mathcal{N}| = \mu$.

- 3 Let $\pi : \mathcal{N} \to V_{\lambda}$.
- 4 We start working in V[g] (backed up by V) where g ⊆ Coll(ω, μ).
- 5 We can extend π to $\pi : \mathcal{N}[g] \to V_{\lambda}[g]$.

(日)

- Let κ be a singular strong limit cardinal such that ¬□_κ and let μ > cf(κ) be a regular cardinal such that μ^ω = μ.
- 2 Fix λ >> κ and let X be a submodel of V_λ such that letting N be the transitive collapse of X

1
$$\mu + 1 \subseteq \mathcal{N},$$

2 $\mathcal{N}^{\omega} \subseteq \mathcal{N},$
3 $|\mathcal{N}| = \mu.$

3 Let
$$\pi : \mathcal{N} \to V_{\lambda}$$
.

- 4 We start working in V[g] (backed up by V) where g ⊆ Coll(ω, μ).
- 5 We can extend π to $\pi : \mathcal{N}[g] \to V_{\lambda}[g]$.

- Let κ be a singular strong limit cardinal such that ¬□_κ and let μ > cf(κ) be a regular cardinal such that μ^ω = μ.
- 2 Fix λ >> κ and let X be a submodel of V_λ such that letting N be the transitive collapse of X

1
$$\mu + 1 \subseteq \mathcal{N},$$

2 $\mathcal{N}^{\omega} \subseteq \mathcal{N},$
3 $|\mathcal{N}| = \mu.$

3 Let
$$\pi : \mathcal{N} \to V_{\lambda}$$
.

- 4 We start working in V[g] (backed up by V) where g ⊆ Coll(ω, μ).
- 5 We can extend π to $\pi : \mathcal{N}[g] \to V_{\lambda}[g]$.

- Let κ be a singular strong limit cardinal such that ¬□_κ and let μ > cf(κ) be a regular cardinal such that μ^ω = μ.
- 2 Fix λ >> κ and let X be a submodel of V_λ such that letting N be the transitive collapse of X

1
$$\mu + 1 \subseteq \mathcal{N},$$

2 $\mathcal{N}^{\omega} \subseteq \mathcal{N},$
3 $|\mathcal{N}| = \mu.$

3 Let
$$\pi : \mathcal{N} \to V_{\lambda}$$
.

- 4 We start working in V[g] (backed up by V) where g ⊆ Coll(ω, μ).
- **5** We can extend π to $\pi : \mathcal{N}[g] \to V_{\lambda}[g]$.

1 Assume that, in V[g], there is no $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash AD^+ + \Theta = \theta_1$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$.

- 2 In an earlier work, Steel has shown that $L(\Gamma_{max}, \mathbb{R}) \models AD^+$. Therefore, $L(\Gamma_{max}, \mathbb{R}) \models AD^+ + \Theta = \theta_0$.
- **3** To get a contradiction, we try to construct $A \subseteq \mathbb{R}$ such that $A \notin \Gamma_{max}$ yet $L(A, \mathbb{R}) \models AD^+$.

・ロト ・四ト ・ヨト ・ヨト

э

- **1** Assume that, in V[g], there is no $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash AD^+ + \Theta = \theta_1$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$.
- 2 In an earlier work, Steel has shown that $L(\Gamma_{max}, \mathbb{R}) \models AD^+$. Therefore, $L(\Gamma_{max}, \mathbb{R}) \models AD^+ + \Theta = \theta_0$.
- **3** To get a contradiction, we try to construct $A \subseteq \mathbb{R}$ such that $A \notin \Gamma_{max}$ yet $L(A, \mathbb{R}) \models AD^+$.

- **1** Assume that, in V[g], there is no $\Gamma \subseteq \Gamma_{max}$ such that $L(\Gamma, \mathbb{R}) \vDash AD^+ + \Theta = \theta_1$ and $\Gamma = \mathcal{P}(\mathbb{R}) \cap L(\Gamma, \mathbb{R})$.
- 2 In an earlier work, Steel has shown that $L(\Gamma_{max}, \mathbb{R}) \models AD^+$. Therefore, $L(\Gamma_{max}, \mathbb{R}) \models AD^+ + \Theta = \theta_0$.
- **3** To get a contradiction, we try to construct $A \subseteq \mathbb{R}$ such that $A \notin \Gamma_{max}$ yet $L(A, \mathbb{R}) \models AD^+$.

The nature of A

- The general idea is to produce a countable mouse *M* such that *M* has a "nice" iteration strategy Σ such that Code(Σ) ∉ Γ_{max}.
- **2** Then use *CMI* to show that $L(Code(\Sigma), \mathbb{R}) \models AD^+$.
- 3 So A is really a code set of an iteration strategy for some countable mouse \mathcal{M} .

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

The nature of A

- The general idea is to produce a countable mouse *M* such that *M* has a "nice" iteration strategy Σ such that Code(Σ) ∉ Γ_{max}.
- **2** Then use *CMI* to show that $L(Code(\Sigma), \mathbb{R}) \vDash AD^+$.
- 3 So *A* is really a code set of an iteration strategy for some countable mouse *M*.

・ロト ・四ト ・ヨト ・ヨト

The nature of A

- The general idea is to produce a countable mouse *M* such that *M* has a "nice" iteration strategy Σ such that Code(Σ) ∉ Γ_{max}.
- **2** Then use *CMI* to show that $L(Code(\Sigma), \mathbb{R}) \vDash AD^+$.
- 3 So *A* is really a code set of an iteration strategy for some countable mouse *M*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The nature of $\ensuremath{\mathcal{M}}$

1 Let
$$\mathcal{H}^* = (V_{\Theta})^{\text{HOD}^{\mathcal{L}(\Gamma_{max},\mathbb{R})}}$$
 and let $\mathcal{P}^* = \pi^{-1}(\mathcal{H}^*)$. Let $\mathcal{H} = Lp_{\omega}(\mathcal{H}^*)$ and $\mathcal{P} = Lp_{\omega}(\mathcal{P}^*)$.

- 2 Under $AD^+ + MSC$, \mathcal{H} is a mouse.
- 3 Hence, \mathcal{P} is a mouse.
- 4 We then try to construct a strategy for P. Let Σ be this strategy.
- **5** To show that $Code(Σ) ∉ Γ_{max}$, it is enough to show that \mathcal{H} is a Σ-iterate of \mathcal{P} .

The nature of $\ensuremath{\mathcal{M}}$

- 1 Let $\mathcal{H}^* = (V_{\Theta})^{\text{HOD}^{\mathcal{L}(\Gamma_{max},\mathbb{R})}}$ and let $\mathcal{P}^* = \pi^{-1}(\mathcal{H}^*)$. Let $\mathcal{H} = \mathcal{L}p_{\omega}(\mathcal{H}^*)$ and $\mathcal{P} = \mathcal{L}p_{\omega}(\mathcal{P}^*)$.
- **2** Under $AD^+ + MSC$, \mathcal{H} is a mouse.
- 3 Hence, \mathcal{P} is a mouse.
- 4 We then try to construct a strategy for \mathcal{P} . Let Σ be this strategy.
- **5** To show that $Code(Σ) ∉ Γ_{max}$, it is enough to show that \mathcal{H} is a Σ-iterate of \mathcal{P} .

The nature of $\ensuremath{\mathcal{M}}$

- 1 Let $\mathcal{H}^* = (V_{\Theta})^{\text{HOD}^{\mathcal{L}(\Gamma_{max},\mathbb{R})}}$ and let $\mathcal{P}^* = \pi^{-1}(\mathcal{H}^*)$. Let $\mathcal{H} = Lp_{\omega}(\mathcal{H}^*)$ and $\mathcal{P} = Lp_{\omega}(\mathcal{P}^*)$.
- **2** Under $AD^+ + MSC$, \mathcal{H} is a mouse.
- **3** Hence, \mathcal{P} is a mouse.
- 4 We then try to construct a strategy for \mathcal{P} . Let Σ be this strategy.
- **5** To show that $Code(\Sigma) \notin \Gamma_{max}$, it is enough to show that \mathcal{H} is a Σ -iterate of \mathcal{P} .

Grigor Sargsyan On the strength of (failure of) square

The nature of $\ensuremath{\mathcal{M}}$

- 1 Let $\mathcal{H}^* = (V_{\Theta})^{\text{HOD}^{\mathcal{L}(\Gamma_{max},\mathbb{R})}}$ and let $\mathcal{P}^* = \pi^{-1}(\mathcal{H}^*)$. Let $\mathcal{H} = Lp_{\omega}(\mathcal{H}^*)$ and $\mathcal{P} = Lp_{\omega}(\mathcal{P}^*)$.
- **2** Under $AD^+ + MSC$, \mathcal{H} is a mouse.
- **3** Hence, \mathcal{P} is a mouse.
- We then try to construct a strategy for *P*. Let Σ be this strategy.
- **5** To show that $Code(\Sigma) \notin \Gamma_{max}$, it is enough to show that \mathcal{H} is a Σ-iterate of \mathcal{P} .

Grigor Sargsyan On the strength of (failure of) square

The nature of $\ensuremath{\mathcal{M}}$

- 1 Let $\mathcal{H}^* = (V_{\Theta})^{\text{HOD}^{\mathcal{L}(\Gamma_{max},\mathbb{R})}}$ and let $\mathcal{P}^* = \pi^{-1}(\mathcal{H}^*)$. Let $\mathcal{H} = Lp_{\omega}(\mathcal{H}^*)$ and $\mathcal{P} = Lp_{\omega}(\mathcal{P}^*)$.
- **2** Under $AD^+ + MSC$, \mathcal{H} is a mouse.
- **3** Hence, \mathcal{P} is a mouse.
- We then try to construct a strategy for *P*. Let Σ be this strategy.
- **5** To show that $Code(\Sigma) \notin \Gamma_{max}$, it is enough to show that \mathcal{H} is a Σ -iterate of \mathcal{P} .

The final plan.

Construct a strategy Σ for $\mathcal P$ such that

- **1** HOD is a Σ -iterate of \mathcal{P} .
- 2 $L(Code(\Sigma), \mathbb{R}) \vDash AD^+$.

The construction of Σ

Diagram on the board.

Grigor Sargsyan On the strength of (failure of) square

Showing that $L(Code(\Sigma), \mathbb{R}) \vDash AD^+$

1 To show that $L(Code(\Sigma), \mathbb{R}) \models AD^+$ one needs to show that Σ has *branch condensation*.

Grigor Sargsyan On the strength of (failure of) square

Definition (Branch condensation)

An iteration strategy Σ has branch condensation if for any two stacks $\vec{\mathcal{I}}$ and $\vec{\mathcal{U}}$ on M_{Σ} and branch c of $\vec{\mathcal{U}}$ if

1 $\vec{\mathcal{T}}$ and $\vec{\mathcal{U}}$ are according to Σ , $lh(\vec{\mathcal{U}}) = \gamma + 1$ and $lh(\mathcal{U}_{\gamma})$ is limit.

2 if
$$b = \Sigma(\vec{\mathcal{I}})$$
 then $i_b^{\vec{\mathcal{I}}}$ exists,

3
$$\vec{i}_c^{\vec{\mathcal{U}}}$$
-exists and for some $\pi : \mathcal{M}_c^{\vec{\mathcal{U}}} \to_{\Sigma_1} \mathcal{M}_b^{\vec{T}}$,
 $\vec{i}^{\vec{\mathcal{T}}} = \pi \circ \vec{i}_c^{\vec{\mathcal{U}}}$

then $c = \Sigma(\mathcal{U})$.

・ロト ・四ト ・ヨト ・ヨト

- The proof that our strategy Σ has branch condensation is rather technical.
- 2 Once it is done, however, *CMI* can be used to show that $L(Code(\Sigma), \mathbb{R}) \vDash AD^+$.

- The proof that our strategy Σ has branch condensation is rather technical.
- 2 Once it is done, however, *CMI* can be used to show that $L(Code(\Sigma), \mathbb{R}) \models AD^+$.

What is needed to get more?

1 The proof of *Mouse Set Conjecture*.

2 The analysis of HOD, i.e., that HOD of AD⁺ model is a "mouse", it is a hod mouse.

Grigor Sargsyan On the strength of (failure of) square

What is needed to get more?

- 1 The proof of *Mouse Set Conjecture*.
- 2 The analysis of HOD, i.e., that HOD of AD⁺ model is a "mouse", it is a *hod mouse*.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・四ト ・ヨト ・ヨト

э

Mouse Capturing

Definition The Mouse Capturing is the statement that for any two reals xand y, x is OD(y) iff there is a mouse \mathcal{M} over y such that $x \in \mathcal{M}$.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・四ト ・ヨト ・ヨト

The Mouse Set Conjecture

Conjecture (Steel and Woodin)

Assume AD⁺ and that there is no inner model with a superstrong cardinal. Then Mouse Capturing holds.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・四ト ・ヨト ・ヨト

э

Instances of the Mouse Capturing

Theorem

- 1 (Kleene) $x \in \Delta_1^1(y) \leftrightarrow x \in L_{\omega_1^{ck}(y)}[y].$
- 2 (Shoenfield) x is $\Delta_2^1(y)$ in a countable ordinal iff $x \in L[y]$.
- 3 etc.

Grigor Sargsyan On the strength of (failure of) square

Instances of the Mouse Capturing

Theorem

- 1 (Kleene) $x \in \Delta_1^1(y) \leftrightarrow x \in L_{\omega_1^{ck}(y)}[y].$
- 2 (Shoenfield) x is $\Delta_2^1(y)$ in a countable ordinal iff $x \in L[y]$.

Instances of the Mouse Capturing

Theorem

- 1 (Kleene) $x \in \Delta_1^1(y) \leftrightarrow x \in L_{\omega_1^{ck}(y)}[y].$
- **2** (Shoenfield) x is $\Delta_2^1(y)$ in a countable ordinal iff $x \in L[y]$.
- 3 etc.

A partial result

Theorem (S.)

Assume AD^+ and there is no inner model containing the reals and satisfying $AD_{\mathbb{R}} + "\Theta$ is regular". Then Mouse Capturing holds.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

How are hods computed?

Assume Mouse Capturing and work under AD^+ . As a first step, notice that if $x \in HOD$ then x is in a mouse. So \mathbb{R}^{HOD} is a set of reals of a mouse. We just generalize this but it is much harder. HOD is shown to be a hod premouse.

Grigor Sargsyan On the strength of (failure of) square

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

How are hods computed?

Assume Mouse Capturing and work under AD^+ . As a first step, notice that if $x \in \text{HOD}$ then x is in a mouse. So \mathbb{R}^{HOD} is a set of reals of a mouse. We just generalize this but it is much harder. HOD is shown to be a hod premouse.

The hod theorems

Theorem (S.)

HOD of the minimal model of $AD_{\mathbb{R}}$ + " Θ is regular" is a hod premouse.

Grigor Sargsyan On the strength of (failure of) square

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This much is enough to carry out the general outline and get " $AD_{\mathbb{R}} + \Theta$ is regular" as a lower bound for $\neg \Box_{\kappa}$.

Grigor Sargsyan On the strength of (failure of) square

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The definition of a hod mouse is motivated by the following theorem of Woodin.

Theorem (Woodin)

Assume AD⁺. For every α , if $\theta_{\alpha+1}$ exists then it is a Woodin cardinal in HOD.

・ロト ・四ト ・ヨト ・ヨト