Special Session on Large Cardinals and the Continuum AMS meeting, Los Angeles, October 2010

Cardinal invariants of monotone and porous sets

Michael Hrušák IMUNAM-Morelia Universidad Nacional Autónoma de México michael@matmor.unam.mx (joint work with Ondřej Zindulka)

October 2010, Los Angeles

Content

- Monotone sets
- Cardinal invariants
- Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity
- Open problems

Definition (Ondřej Zindulka)

Let (X, d) be a metric space.

- (X, d) is called *monotone* if there is c > 0 and a linear order < on X such that $d(x, y) \le c d(x, z)$ for all x < y < z in X.
- (X, d) is called σ -monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets of large Hausdorff dimension, and

Definition (Ondřej Zindulka)

Let (X, d) be a metric space.

- (X, d) is called *monotone* if there is c > 0 and a linear order < on X such that $d(x, y) \le c d(x, z)$ for all x < y < z in X.
- (X, d) is called σ -monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets of large Hausdorff dimension, and

Definition (Ondřej Zindulka)

Let (X, d) be a metric space.

- (X, d) is called *monotone* if there is c > 0 and a linear order < on X such that $d(x, y) \le c d(x, z)$ for all x < y < z in X.
- (X, d) is called σ -monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets of large Hausdorff dimension, and

Definition (Ondřej Zindulka)

Let (X, d) be a metric space.

- (X, d) is called *monotone* if there is c > 0 and a linear order < on X such that $d(x, y) \le c d(x, z)$ for all x < y < z in X.
- (X, d) is called σ -monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets of large Hausdorff dimension, and

Definition (Ondřej Zindulka)

Let (X, d) be a metric space.

- (X, d) is called *monotone* if there is c > 0 and a linear order < on X such that $d(x, y) \le c d(x, z)$ for all x < y < z in X.
- (X, d) is called σ -monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets of large Hausdorff dimension, and

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

- Any monotone space is suborderable, i.p. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.
- The closure of any monotone subspace of a metric space is monotone.
- (Nekvinda-Zindulka) Every discrete metric space is σ -monotone.
- The graph $\sin(1/x)$ is not monotone but it is σ -monotone. (Hint: Many "bad" triangles.)

• (Zindulka) Every continuous function $f:[0,1] \to [0,1]$ with a σ -monotone graph has a dense set of points of differentiability,

on the other hand.

- (Mátrai-Vlasák) There is a continuous function $f:[0,1] \to [0,1]$ with a σ -monotone graph such that the set of points of differentiability has Lebesgue measure zero.
- There is an absolutely continuous function $f:[0,1] \to [0,1]$ which does not have a σ -monotone graph.

• (Zindulka) Every continuous function $f:[0,1] \to [0,1]$ with a σ -monotone graph has a dense set of points of differentiability,

on the other hand,

- (Mátrai-Vlasák) There is a continuous function $f:[0,1] \to [0,1]$ with a σ -monotone graph such that the set of points of differentiability has Lebesgue measure zero.
- There is an absolutely continuous function $f:[0,1] \to [0,1]$ which does not have a σ -monotone graph.

• (Zindulka) Every continuous function $f: [0,1] \rightarrow [0,1]$ with a σ -monotone graph has a dense set of points of differentiability,

on the other hand,

- (Mátrai-Vlasák) There is a continuous function $f:[0,1] \to [0,1]$ with a σ -monotone graph such that the set of points of differentiability has Lebesgue measure zero.
- There is an absolutely continuous function $f:[0,1] \to [0,1]$ which does not have a σ -monotone graph.

• (Zindulka) Every continuous function $f:[0,1] \to [0,1]$ with a σ -monotone graph has a dense set of points of differentiability,

on the other hand,

- (Mátrai-Vlasák) There is a continuous function $f:[0,1]\to [0,1]$ with a σ -monotone graph such that the set of points of differentiability has Lebesgue measure zero.
- There is an absolutely continuous function $f:[0,1] \to [0,1]$ which does not have a σ -monotone graph.

Small non- σ -monotone spaces

Question

(Zindulka) Is there a (separable) metric space of size \aleph_1 which is not σ -monotone?

Proposition

 $(MA_{\sigma\text{-linked}})$ Every separable metric space of size \aleph_1 is σ -monotone.

Small non- σ -monotone spaces

Question

(Zindulka) Is there a (separable) metric space of size \aleph_1 which is not σ -monotone?

Proposition

($\mathrm{MA}_{\sigma\text{-linked}}$) Every separable metric space of size \aleph_1 is $\sigma\text{-monotone}$.

Content

- Monotone sets
- 2 Cardinal invariants
- Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity
- Open problems

Cardinal invariants of σ -ideals

Definition

Given an ideal \mathcal{I} on a set X, the following are the usual cardinal invariants of \mathcal{I} :

$$\begin{split} \operatorname{\mathsf{add}}(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \bigcup \mathcal{A} \notin \mathcal{I}\}, \\ \operatorname{\mathsf{cov}}(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge \bigcup \mathcal{A} = X\}, \\ \operatorname{\mathsf{cof}}(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \wedge (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(I \subseteq A)\}, \\ \operatorname{\mathsf{non}}(\mathcal{I}) &= \min\{|Y| : Y \subseteq X \wedge Y \notin \mathcal{I}\}. \end{split}$$

Cichoń's diagram

Content

- Monotone sets
- Cardinal invariants
- Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity
- 4 Open problems

Additivity and cofinality of Mon

Definition

The ideal of all σ -monotone sets in the plane is denoted **Mon**.

Theorem

- (i) add(Mon) = ω_1 ,
- (ii) cof(Mon) = c

Lemma

Let $\mathscr L$ be a family of lines in $\mathbb R^2$. Then $\bigcup \mathscr L$ is σ -monotone if and only if $\mathscr L$ is countable.

Additivity and cofinality of Mon

Definition

The ideal of all σ -monotone sets in the plane is denoted **Mon**.

Theorem

- (i) $add(Mon) = \omega_1$,
- (ii) cof(Mon) = c.

Lemma

Let \mathscr{L} be a family of lines in \mathbb{R}^2 . Then $\bigcup \mathscr{L}$ is σ -monotone if and only if \mathscr{L} is countable.

Additivity and cofinality of Mon

Definition

The ideal of all σ -monotone sets in the plane is denoted **Mon**.

Theorem

- (i) $add(Mon) = \omega_1$,
- (ii) cof(Mon) = c.

Lemma

Let $\mathscr L$ be a family of lines in $\mathbb R^2$. Then $\bigcup \mathscr L$ is σ -monotone if and only if $\mathscr L$ is countable.

Definition

Let (X, d) be a metric space. A set $A \subseteq X$ is

- porous at a point $x \in X$ if there is p > 0 and $r_0 > 0$ such that for any $r \leqslant r_0$ there is $y \in X$ such that $B(y, pr) \subseteq B(x, r) \setminus A$,
- porous if it is porous at each point $x \in A$, and
- σ -porous if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ -porous sets in X is denoted SP(X).

Proposition

Definition

Let (X, d) be a metric space. A set $A \subseteq X$ is

- porous at a point $x \in X$ if there is p > 0 and $r_0 > 0$ such that for any $r \leqslant r_0$ there is $y \in X$ such that $B(y, pr) \subseteq B(x, r) \setminus A$,
- porous if it is porous at each point $x \in A$, and
- σ -porous if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ -porous sets in X is denoted SP(X).

Proposition

Definition

Let (X, d) be a metric space. A set $A \subseteq X$ is

- porous at a point $x \in X$ if there is p > 0 and $r_0 > 0$ such that for any $r \leqslant r_0$ there is $y \in X$ such that $B(y, pr) \subseteq B(x, r) \setminus A$,
- porous if it is porous at each point $x \in A$, and
- σ -porous if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ -porous sets in X is denoted $\mathbf{SP}(X)$.

Proposition

Definition

Let (X, d) be a metric space. A set $A \subseteq X$ is

- porous at a point $x \in X$ if there is p > 0 and $r_0 > 0$ such that for any $r \leqslant r_0$ there is $y \in X$ such that $B(y, pr) \subseteq B(x, r) \setminus A$,
- porous if it is porous at each point $x \in A$, and
- σ -porous if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ -porous sets in X is denoted SP(X).

Proposition

Definition

Let (X, d) be a metric space. A set $A \subseteq X$ is

- porous at a point $x \in X$ if there is p > 0 and $r_0 > 0$ such that for any $r \leqslant r_0$ there is $y \in X$ such that $B(y, pr) \subseteq B(x, r) \setminus A$,
- porous if it is porous at each point $x \in A$, and
- σ -porous if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ -porous sets in X is denoted SP(X).

Proposition

Monotone vs. porous

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is porous. Consequently $\mathsf{Mon} \subseteq \mathsf{SP}(\mathbb{R}^2)$.

Proposition

If $A, B \subseteq \mathbb{R}$ are porous, then $A \times B \subseteq \mathbb{R}^2$ is monotone.

Corollary

cov(Mon) = cov(SP) and non(Mon) = non(SP) (from now on SP denotes $SP(2^{\omega})$).

Monotone vs. porous

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is porous. Consequently $\mathsf{Mon} \subseteq \mathsf{SP}(\mathbb{R}^2)$.

Proposition

If $A, B \subseteq \mathbb{R}$ are porous, then $A \times B \subseteq \mathbb{R}^2$ is monotone.

Corollary

cov(Mon) = cov(SP) and non(Mon) = non(SP) (from now on SP denotes $SP(2^{\omega})$).

Monotone vs. porous

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is porous. Consequently $\mathsf{Mon} \subseteq \mathsf{SP}(\mathbb{R}^2)$.

Proposition

If $A, B \subseteq \mathbb{R}$ are porous, then $A \times B \subseteq \mathbb{R}^2$ is monotone.

Corollary

cov(Mon) = cov(SP) and non(Mon) = non(SP) (from now on SP denotes $SP(2^{\omega})$).

Bounds on cov and non

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is contained in a closed set of measure zero.

Corollary

$$\mathsf{non}(\mathsf{Mon}) = \mathsf{non}(\mathsf{SP}) \leqslant \mathsf{min}\{\mathsf{non}(\mathcal{N}), \mathsf{non}(\mathcal{M})\}$$
 and $\mathsf{max}\{\mathsf{cov}(\mathcal{N}), \mathsf{cov}(\mathcal{M})\} \leqslant \mathsf{cov}(\mathsf{Mon}) = \mathsf{cov}(\mathsf{SP}).$

Bounds on cov and non

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is contained in a closed set of measure zero.

Corollary

$$\mathsf{non}(\mathbf{Mon}) = \mathsf{non}(\mathbf{SP}) \leqslant \mathsf{min}\{\mathsf{non}(\mathcal{N}), \mathsf{non}(\mathcal{M})\}$$
 and $\mathsf{max}\{\mathsf{cov}(\mathcal{N}), \mathsf{cov}(\mathcal{M})\} \leqslant \mathsf{cov}(\mathbf{Mon}) = \mathsf{cov}(\mathbf{SP}).$

Uniformity

Theorem 1

$$\mathfrak{m}_{\sigma ext{-linked}}\leqslant \mathsf{non}(\mathsf{SP})=\mathsf{non}(\mathsf{Mon}).$$

Theorem

It is relatively consistent with ZFC that $add(\mathcal{N}) = \mathfrak{m}_{\sigma\text{-centered}} = \mathfrak{c} > non(\mathbf{SP}) = non(\mathbf{Mon}) = \omega_1.$

Uniformity

Theorem

$$\mathfrak{m}_{\sigma ext{-linked}}\leqslant \mathsf{non}(\mathsf{SP})=\mathsf{non}(\mathsf{Mon}).$$

Theorem

It is relatively consistent with ZFC that $add(\mathcal{N}) = \mathfrak{m}_{\sigma\text{-centered}} = \mathfrak{c} > \text{non}(\mathbf{SP}) = \text{non}(\mathbf{Mon}) = \omega_1.$

Covering

Theorem

It is relatively consistent with ZFC that cov(Mon) = cov(SP) < c.

Theorem

It is relatively consistent with ZFC that $cof(\mathcal{N}) = \omega_1$ and $cov(SP) = \omega_2$.

Covering

Theorem

It is relatively consistent with ZFC that cov(Mon) = cov(SP) < c.

Theorem

It is relatively consistent with ZFC that $cof(\mathcal{N}) = \omega_1$ and $cov(SP) = \omega_2$.

Hyper-perfect tree forcing

Definition

A tree $T \subseteq 2^{<\omega}$ is hyper-perfect if

 $\forall s \in T \ \forall n \ \exists t \supseteq s \ \forall r \in 2^n \ t \hat{\ } r \in T.$

Definition

 $\mathbb{HP} = \{ T \subseteq 2^{<\omega} : T \text{ is hyper-perfect} \}$

Hyper-perfect tree forcing

Definition

A tree $T \subseteq 2^{<\omega}$ is hyper-perfect if

 $\forall s \in T \ \forall n \ \exists t \supseteq s \ \forall r \in 2^n \ t \hat{\ } r \in T.$

Definition

 $\mathbb{HP} = \{ T \subseteq 2^{<\omega} : T \text{ is hyper-perfect} \}$

Content

- Monotone sets
- Cardinal invariants
- Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity
- Open problems

Open problems

Question

Is it true that

- (i) $add(SP) = \omega_1$,
- (ii) cof(SP) = c,

Question

What can one say about the cardinal invariants of $\mathbf{Mon}(X)$ when X is

- (i) the non- σ -monotone graph of an absolutely continuous function $f:[0,1] \to [0,1]$,
- (ii) the Hilbert cube,
- (iii) the Urysohn space?

Question

Is there a metric space of cardinality \aleph_1 that is not σ -monotone?

Open problems

Question

Is it true that

- (i) $add(SP) = \omega_1$,
- (ii) cof(SP) = c,

Question

What can one say about the cardinal invariants of Mon(X) when X is

- (i) the non- σ -monotone graph of an absolutely continuous function $f:[0,1] \to [0,1]$,
- (ii) the Hilbert cube,
- (iii) the Urysohn space?

Question

Is there a metric space of cardinality \aleph_1 that is not σ -monotone?

Open problems

Question

Is it true that

- (i) $add(SP) = \omega_1$,
- (ii) cof(SP) = c,

Question

What can one say about the cardinal invariants of Mon(X) when X is

- (i) the non- σ -monotone graph of an absolutely continuous function $f:[0,1] \to [0,1]$,
- (ii) the Hilbert cube,
- (iii) the Urysohn space?

Question

Is there a metric space of cardinality \aleph_1 that is not σ -monotone?