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Monotone sets

Definition (Onďrej Zindulka)

Let (X , d) be a metric space.
• (X , d) is called monotone if there is c > 0 and a linear order < on X
such that d(x , y) 6 c d(x , z) for all x < y < z in X .
• (X , d) is called σ-monotone if it is a countable union of monotone
subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets
of large Hausdorff dimension, and
• that a Borel set in Rn of Hausdorff dimension greater than m maps
onto the m-dimensional cube by a Lipschitz map.
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Basic properties of monotone sets

• Any monotone space is suborderable, i.p. any monotone set in the
plane is homeomorphic to a subset of the line and any monotone
connected set in the plane is homeomorphic to an interval.

• The closure of any monotone subspace of a metric space is monotone.

• (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

• The graph sin(1/x) is not monotone but it is σ-monotone. (Hint:
Many ”bad” triangles.)
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Functions with σ-monotone graphs

• (Zindulka) Every continuous function f : [0, 1]→ [0, 1] with a
σ-monotone graph has a dense set of points of differentiability,

on the other hand,

• (Mátrai-Vlasák) There is a continuous function f : [0, 1]→ [0, 1] with a
σ-monotone graph such that the set of points of differentiability has
Lebesgue measure zero.

• There is an absolutely continuous function f : [0, 1]→ [0, 1] which does
not have a σ-monotone graph.
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Small non-σ-monotone spaces

Question

(Zindulka) Is there a (separable) metric space of size ℵ1 which is not
σ-monotone?

Proposition

(MAσ-linked) Every separable metric space of size ℵ1 is σ-monotone.
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Cardinal invariants of σ-ideals

Definition

Given an ideal I on a set X , the following are the usual cardinal
invariants of I:

add(I) = min{|A| : A ⊆ I ∧
⋃
A /∈ I},

cov(I) = min{|A| : A ⊆ I ∧
⋃
A = X},

cof(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊆ A)},
non(I) = min{|Y | : Y ⊆ X ∧ Y /∈ I}.
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Cichoń’s diagram

cov(N ) // non(M) // cof(M) // cof(N )

b

OO

// d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

mσ-linked

OO

// mσ-centered

OO
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Additivity and cofinality of Mon

Definition

The ideal of all σ-monotone sets in the plane is denoted Mon.

Theorem

(i) add(Mon) = ω1,

(ii) cof(Mon) = c.

Lemma

Let L be a family of lines in R2. Then
⋃

L is σ-monotone if and only if
L is countable.
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Strongly porous sets

Definition

Let (X , d) be a metric space. A set A ⊆ X is

• porous at a point x ∈ X if there is p > 0 and r0 > 0 such that for
any r 6 r0 there is y ∈ X such that B(y , pr) ⊆ B(x , r) \ A,

• porous if it is porous at each point x ∈ A, and

• σ-porous if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ-porous sets in X is denoted
SP(X ).

Proposition

cov(SP(R)) = cov(SP(R2)) = cov(SP(2ω)) and likewise for non.
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Monotone vs. porous

Proposition

Every monotone set X ⊆ R2 is porous. Consequently Mon ⊆ SP(R2).

Proposition

If A,B ⊆ R are porous, then A× B ⊆ R2 is monotone.

Corollary

cov(Mon) = cov(SP) and non(Mon) = non(SP) (from now on SP
denotes SP(2ω)).
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Bounds on cov and non

Proposition

Every monotone set X ⊆ R2 is contained in a closed set of measure zero.

Corollary

non(Mon) = non(SP) 6 min{non(N ), non(M))} and
max{cov(N ), cov(M)} 6 cov(Mon) = cov(SP).
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Uniformity

Theorem

mσ-linked 6 non(SP) = non(Mon).

Theorem

It is relatively consistent with ZFC that
add(N ) = mσ-centered = c > non(SP) = non(Mon) = ω1.
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Covering

Theorem

It is relatively consistent with ZFC that cov(Mon) = cov(SP) < c.

Theorem

It is relatively consistent with ZFC that cof(N ) = ω1 and cov(SP) = ω2.

Michael Hrušák (joint work with Onďrej Zindulka) Cardinal invariants of monotone and porous sets



Monotone sets
Cardinal invariants

Mon and its cardinal invariants
Open problems

Additivity and cofinality
Porous sets
Covering and uniformity

Covering

Theorem

It is relatively consistent with ZFC that cov(Mon) = cov(SP) < c.

Theorem

It is relatively consistent with ZFC that cof(N ) = ω1 and cov(SP) = ω2.
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Hyper-perfect tree forcing

Definition

A tree T ⊆ 2<ω is hyper-perfect if

∀s ∈ T ∀n ∃t ⊇ s ∀r ∈ 2n tar ∈ T .

Definition

HP = {T ⊆ 2<ω : T is hyper-perfect}

Michael Hrušák (joint work with Onďrej Zindulka) Cardinal invariants of monotone and porous sets



Monotone sets
Cardinal invariants

Mon and its cardinal invariants
Open problems

Additivity and cofinality
Porous sets
Covering and uniformity

Hyper-perfect tree forcing

Definition

A tree T ⊆ 2<ω is hyper-perfect if

∀s ∈ T ∀n ∃t ⊇ s ∀r ∈ 2n tar ∈ T .

Definition

HP = {T ⊆ 2<ω : T is hyper-perfect}
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Open problems

Question

Is it true that

(i) add(SP) = ω1,

(ii) cof(SP) = c,

Question

What can one say about the cardinal invariants of Mon(X) when X is

(i) the non-σ-monotone graph of an absolutely continuous function
f : [0, 1]→ [0, 1],

(ii) the Hilbert cube,

(iii) the Urysohn space?

Question

Is there a metric space of cardinality ℵ1 that is not σ-monotone?
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