The Structure of Tukey Types of Ultrafilters

Natasha Dobrinen

University of Denver

joint work with

Stevo Todorcevic

CNRS, Université Paris VII

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω . (\mathcal{U}, \supseteq) is a directed partial ordering.

Def. $\mathcal{V} \leq_T \mathcal{U}$ iff there is a *Tukey* map $g : \mathcal{V} \to \mathcal{U}$ taking unbounded subsets of \mathcal{V} to unbounded subsets of \mathcal{U} .

Equivalently, $\mathcal{U} \geq_T \mathcal{V}$ iff there is a *cofinal* map $f : \mathcal{U} \to \mathcal{V}$ taking cofinal subsets of \mathcal{U} to cofinal subsets of \mathcal{V} .

Fact. $\mathcal{U} \geq_T \mathcal{V} \Rightarrow$ there is a *monotone* cofinal map witnessing this; i.e. $X \supseteq Y \Rightarrow f(X) \supseteq f(Y)$.

Fact. $\mathcal{U} \geq_T \mathcal{V} \Rightarrow cof(\mathcal{U}) \geq cof(\mathcal{V})$ and $add(\mathcal{U}) \leq add(\mathcal{V})$.

 $\mathcal{U} \equiv_T \mathcal{V} \text{ iff } \mathcal{U} \leq_T \mathcal{V} \text{ and } \mathcal{V} \leq_T \mathcal{U}.$

Fact. \equiv_T is an equivalence relation. \leq_T is a partial ordering on the equivalence classes.

Fact. $\mathcal{U} \equiv_T \mathcal{V}$ iff \mathcal{U} and \mathcal{V} are cofinally equivalent.

The collection of all ultrafilters cofinally equivalent to \mathcal{U} is called the *Tukey type* or *cofinal type* of \mathcal{U} .

Motivations

1. A special class of directed systems of size \mathfrak{c} . (In contrast to non-classification theorems of Todorcevic for directed posets of size \mathfrak{c})

2. $\mathcal{U} \geq_{RK} \mathcal{V}$ implies $\mathcal{U} \geq_T \mathcal{V}$.

 $\mathcal{U} \geq_{RK} \mathcal{V}$ iff there is a function $h : \omega \to \omega$ such that $\mathcal{V} = h(\mathcal{U}) := \{X \subseteq \omega : h^{-1}(X) \in \mathcal{U}\}.$

3. Isbell's Problem.

Fact. There is an ultrafilter $(\mathcal{U}_{top}, \supseteq) \equiv_T ([\mathfrak{c}]^{<\omega}, \subseteq).$

Note: $\mathcal{V} \equiv_T [\mathfrak{c}]^{<\omega}$ iff $\exists S \in [\mathcal{V}]^{\mathfrak{c}} \ \forall T \in [S]^{\omega} \ (\cap T \notin \mathcal{V}).$

Fact. U_{top} has Tukey type of size 2^{c} .

Isbell's Problem. [Isbell 65] Is there always (in ZFC) an ultrafilter \mathcal{U} such that $\mathcal{U} <_T \mathcal{U}_{top}$?

Isbell's Problem

 \mathcal{U}_{top}

???

1

Def. (follows from [Solecki/Todorcevic 04]) An ultrafilter \mathcal{V} is *basic* if each convergent sequence has a bounded subsequence.

Fact. If \mathcal{U} is basic, then $\mathcal{U} <_T [\mathfrak{c}]^{<\omega}$.

Thm. (follows from [Solecki/Todorcevic 04]) If \mathcal{U} is basic, then whenever $\mathcal{U} \geq_T \mathcal{V}$, this is witnessed by a definable map. Thus, the Tukey type of \mathcal{U} has size \mathfrak{c} .

Thm. An ultrafilter is basic iff it is a p-point. Hence, every p-point is not Tukey top.

Def. \mathcal{U} is a *p*-*point* if for each sequence $X_0 \supseteq X_1 \supseteq \ldots$ in \mathcal{U} , there is a $Y \in \mathcal{U}$ such that for each $n < \omega$, $Y \subseteq^* X_n$ (i.e. $|Y \setminus X_n| < \omega$).

Note. p-points exist under CH, MA, or just $\vartheta = \mathfrak{u} = \mathfrak{c}$. It is consistent with ZFC that there are no p-points [Shelah].

Note. Fubini products of p-points and more generally, *basically generated* ultrafilters are strictly below the top.

Continuous Cofinal Maps

Thm. Suppose \mathcal{U} is a p-point and $f : \mathcal{U} \to \mathcal{V}$ is a monotone cofinal map. Then there is an $\tilde{X} \in \mathcal{U}$ such that $f \upharpoonright (\mathcal{U} \upharpoonright \tilde{X})$ is continuous.

Moreover, $f \upharpoonright (\mathcal{U} \upharpoonright \tilde{X})$ can be extended to a continuous monotone map $\tilde{f} : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\tilde{f} : \mathcal{P}(k) \to \mathcal{P}(k)$ for each $k < \omega$.

(This is useful in forcing constructions where the forcing is σ -closed, and in the next theorems.)

Thm. [Raghavan/Todorcevic] If \mathcal{V} is selective and $\mathcal{U} \geq_T \mathcal{V}$ is witnessed by a continuous cofinal map, then $\mathcal{U} \geq_{RK} \mathcal{V}$.

Thm. [Todorcevic] If \mathcal{V} is selective and $\mathcal{W} \leq_T \mathcal{V}$, then $\mathcal{W} \equiv_{RK} \mathcal{V}^{\alpha}$ for some $\alpha < \omega_1$.

Questions.

- 1. Are there ultrafilters besides p-points which carry continuous cofinal maps?
- 2. Does the existence of continuous cofinal maps get inherited downwards in the Tukey ordering?

Extending continuous maps on cofinal subsets of \mathcal{U} to all of $\mathcal{P}(\omega)$

Thm 1. Suppose $f : U \to V$ is a monotone cofinal map, and there is a cofinal subset $X \subseteq U$ such that

1. $f \upharpoonright \mathcal{X}$ is continuous;

2. $f \upharpoonright \mathcal{X}$ is given by a map \widehat{f} (defined on a subset of $2^{<\omega}$ which is level and initial segment preserving).

Then there is a continuous, monotone $\tilde{f} : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $\tilde{f} \upharpoonright \mathcal{X} = f \upharpoonright \mathcal{X}, \ \tilde{f} \upharpoonright \mathcal{U} : \mathcal{U} \to \mathcal{V}$ is a cofinal map, and \tilde{f} is given by a monotone, level and initial segment preserving map.

Rk. Every p-point satisfies these conditions.

A guarantee of Tukey-downward preservation of existence of continuous cofinal maps

Thm 2. Let \mathcal{U} be an ultrafilter such that whenever $f : \mathcal{U} \to \mathcal{V}$ is a monotone cofinal function, then there exists an $\mathcal{X} \subseteq \mathcal{U}$ such that

- 1. \mathcal{X} is cofinal in \mathcal{U} ;
- 2. for each $Z \in \overline{\mathcal{X}}$, there is a decreasing sequence $X_0 \supseteq X_1 \supseteq$... $\supseteq Z$ such that each $X_n \in \mathcal{X}$ and $\bigcap_{n < \omega} X_n = Z$;
- 3. $f \upharpoonright \mathcal{X}$ is continuous and given by a level and initial segment preserving monotone map \hat{f} .

Then for each $\mathcal{W} \leq_T \mathcal{U}$, if $h : \mathcal{W} \to \mathcal{V}$ is a monotone cofinal map, then there is a cofinal $\mathcal{Y} \subseteq \mathcal{W}$ such that $h \upharpoonright \mathcal{Y}$ is continuous and given by a monotone, level and initial segment preserving map.

Rk. This is the only property known to be inherited under Tukey reducibility.

Ultrafilters on FIN

 $\mathsf{FIN} = [\omega]^{<\omega} \setminus \{\emptyset\}.$

Def. An (idempotent) ultrafilter \mathcal{U} on FIN is *ordered union* if it is generated by sets of the form [X] where X is an infinite block-sequence. ([X] is the collection of all finite unions of members of X.)

Thm. [Blass 87] If \mathcal{U} is an ordered union ultrafilter on FIN, then both \mathcal{U}_{min} and \mathcal{U}_{max} are selective.

Fact. If \mathcal{U} is a ordered union ultrafilter on FIN, then $\mathcal{U}_{min,max}$ is rapid but neither a p-point nor a q-point.

Def. An ordered union ultrafilter \mathcal{U} is *block-basic* if whenever we are given a sequence (X_n) of infinite block sequences in FIN such that each $[X_n] \in \mathcal{U}$ and (X_n) converges to some infinite block sequence X such that $[X] \in \mathcal{U}$, then there is an infinite subsequence (X_{n_k}) such that $\bigcap_{k < \omega} [X_{n_k}] \in \mathcal{U}$.

Thm. [Blass 87 and D/T] The following are equivalent for an ordered union ultrafilter \mathcal{U} on FIN.

- 1. \mathcal{U} is block-basic.
- 2. \mathcal{U} is stable ordered-union. (For every sequence (X_n) of infinite block sequences of FIN such that $[X_n] \in \mathcal{U}$ and $X_{n+1} \leq^* X_n$ for each n, there is an infinite block sequence X such that $[X] \in \mathcal{U}$ and $X \leq^* X_n$ for each n.)
- 3. ${\cal U}$ has the 2-dimensional Ramsey property.
- 4. $\ensuremath{\mathcal{U}}$ has the Ramsey property.

Lots of Continuous Cofinal Maps

Main Theorem Suppose \mathcal{W} is Tukey below some countable iteration of Fubini products of p-points and/or block-basic ultra-filters, or any ultrafilter with enough p-point-like structure.

Then whenever $\mathcal{V} \leq_T \mathcal{W}$, this is witnessed by a continuous monotone cofinal map $f : \mathcal{W} \to \mathcal{V}$.

Def. The Fubini product of \mathcal{U} and \mathcal{V} is $\mathcal{U} \cdot \mathcal{V} = \{A \subseteq \omega \times \omega : \mathcal{U}n \ \mathcal{V}j \ ((n, j) \in A)\}.$

 $\lim_{n \to \mathcal{U}} \mathcal{V}_n = \{ A \subseteq \omega \times \omega : \mathcal{U}_n \ \mathcal{V}_n j \ ((n, j) \in A) \}.$

Some Structure Theorems

(some using continuous cofinal maps)

Antichains

Thm. 1. If $cov(\mathcal{M}) = \mathfrak{c}$, and $2^{<\kappa} = \mathfrak{c}$, then there are 2^{κ} pairwise incomparable selective ultrafilters.

2. If $\vartheta = \mathfrak{u} = \mathfrak{c}$ and $2^{<\kappa} = \mathfrak{c}$, then there are 2^{κ} pairwise incomparable p-points.

Thm. Every family of p-points of cardinality $> c^+$ contains a subfamily of equal size of pairwise Tukey incomparable p-points.

Chains

Thm. Every \leq_T chain of p-points has cardinality $\leq \mathfrak{c}^+$.

Thm. (also independently by Raghavan) CH implies for each p-point \mathcal{U} there is a Tukey strictly increasing chain of p-points of length ω_1 .

Incomparable Predecessors

Thm. (MA) There is a p-point with 2 Tukey incomparable predecessors, each of which is also a p-point.

Thm. Assuming CH, there is a block-basic ultrafilter \mathcal{U} on FIN such that $\mathcal{U}_{\min,\max} <_T \mathcal{U}$ and \mathcal{U}_{\min} and \mathcal{U}_{\max} are Tukey incomparable.

Comparing with ω^{ω} .

Thm. The following are equivalent for a p-point \mathcal{U}

- 1. $\mathcal{U} \geq_T \omega^{\omega}$;
- 2. $\mathcal{U} \equiv_T \mathcal{U} \cdot \mathcal{U};$

3. $\mathcal{U} \equiv_T \mathcal{U}^{\omega}$.

Cor. If \mathcal{U} is a p-point of cofinality $< \mathfrak{d}$, then $\mathcal{U} \geq_T \omega^{\omega}$ and therefore $\mathcal{U} \cdot \mathcal{U} >_T \mathcal{U}$.

Thm. Assuming $\mathfrak{p} = \mathfrak{c}$, there is a p-point \mathcal{U} such that $\mathcal{U} \geq_T \omega^{\omega}$ and therefore $\mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} <_T \mathcal{U}_{top}$.

Conditions for $\mathcal{U} <_T \mathcal{U}_{top}$.

Prop. [Milovich 09] There is an ultrafilter \mathcal{U} such that $(\mathcal{U}, \supseteq) <_T \mathcal{U}_{top}$ iff there is an ultrafilter \mathcal{V} such that $(\mathcal{V}, \supseteq^*) <_T \mathcal{U}_{top}$.

Assume $\neg CH$. Then $\Diamond^{-}_{[[\omega]^{\omega}]^{\omega}}$ holds.

Def. [Todorcevic] $\Diamond_{[[\omega]^{\omega}]^{\omega}}^{-}$: There exist ordered pairs $(\mathcal{U}_A, \mathcal{X}_A)$, where $A \in [[\omega]^{\omega}]^{\omega}$ and $\mathcal{X}_A \subseteq \mathcal{U}_A \subseteq A$, such that for each pair $(\mathcal{U}, \mathcal{X})$ with $\mathcal{X} \subseteq \mathcal{U}$ and $\mathcal{X}, \mathcal{U} \in [[\omega]^{\omega}]^{\mathfrak{c}}$, $\{A \in [[\omega]^{\omega}]^{\omega} : \mathcal{U}_A = \mathcal{U} \cap A, \mathcal{X}_A = \mathcal{X} \cap A\}$ is stationary in $[[\omega]^{\omega}]^{\omega}$.

Let
$$P_A = \{W \in [\omega]^{\omega} : \exists X \in \mathcal{U}_A(W \cap X = \emptyset)\},\$$

 $Q_A = \{W \in [\omega]^{\omega} : \exists (B_n)_{n < \omega} \subseteq \mathcal{X}_A(\forall n < \omega, W \subseteq^* B_n)\},\$ and
 $D_A = P_A \cup Q_A.$
Then for each $A \in [\omega]^{\omega}, D_A$ is dense open in $[\omega]^{\omega}.$

Fact. For any ultrafilter \mathcal{U} , $\{A \in [[\omega]^{\omega}]^{\omega} : \mathcal{U} \cap D_A \neq \emptyset\}$ is stationary.

Thm. If $\mathcal{U} \cap D_A \neq \emptyset$ for club many $A \in [\omega]^{\omega}$, then $\mathcal{U} <_T \mathcal{U}_{top}$.

Thm. If \mathcal{U} is a p-point, then $\mathcal{U} \cap D_A \neq \emptyset$ for all $A \in [[\omega]^{\omega}]^{\omega}$.

Let $P'_A = \{W \in [\omega]^{\omega} : \forall X \in \mathcal{X}_A (W \subseteq^* X)\}$. Let $D'_A = P'_A \cup Q_A$. D'_A is dense open in $[\omega]^{\omega}$.

Fact. If $\mathcal{U} \cap D'_A \neq \emptyset$ for club many A, then \mathcal{U} is a p-point.

Problem. If $\mathcal{U} <_T \mathcal{U}_{top}$, does it follow that the Tukey type of \mathcal{U} has size \mathfrak{c} ?

Conjecture. Suppose there is a supercompact cardinal. If \mathcal{U} is selective, then there are exactly 2 Tukey types of ultrafilters in $L(\mathbb{R})[\mathcal{U}]$.

References

Blass, Ultrafilters related to Hindman's finite-unions theorem and its extensions, Contemporary Mathematics, 1987.

Dobrinen/Todorcevic, *Tukey types of ultrafilters*, submitted.

Dobrinen/Todorcevic, *Continuous cofinal maps on ultrafilters*, submitted.

Isbell, *The category of cofinal types. II*, Transactions of the American Mathematical Society, 1965.

Milovich, *Tukey classes of ultrafilters on* ω , Topology Proceedings, 2008.

Raghavan/Todorcevic, *Cofinal types of ultrafilters*, preprint.

Solecki/Todorcevic, *Cofinal types of topological directed orders*, Annales de L'Institut Fourier, 2004.