(A topic distantly related to) Natural ideals under PFA

Sean Cox Institut für Mathematische Logik und Grundlagenforschung Universität Münster wwwmath.uni-muenster.de/logik/Personen/Cox

> 2010 Fall Western Sectional Meeting UCLA October 10, 2010

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

(Viale/Weiß): In ZFC there is a naturally-defined ideal on $\wp_{\omega_2}(\theta)$ that:

- is trivial in many models of ZFC;
- when not trivial, has powerful consequences;
- ▶ is not trivial when the Proper Forcing Axiom holds.

There are similar ideals which are non-trivial when Martin's Maximum holds and have powerful consequences (Foreman).

Outline

- Forcing Axioms
- Ideals
- Stationary set reflection
 - characterization in terms of ideals whose completeness is ω_2

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Some consistency results
- Open questions

Forcing Axioms

Let Γ be a class of posets.

Definition

 $MA(\Gamma)$ means: for every $\mathbb{Q} \in \Gamma$: for every ω_1 -sized collection \mathcal{D} of dense subsets of \mathbb{Q} , there is a filter $F \subset \mathbb{Q}$ which meets every element of \mathcal{D} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- MA_{ω_1} is MA(ccc)
- PFA is MA(proper)
- ► *MM* is *MA*(stationary set preserving posets).

Ideals

EXAMPLE 1:

 κ regular uncountable. $NS_{\kappa} = \{A \subset \kappa | A \text{ is nonstationary} \}.$

- dual is the *club filter* (on κ).
- < κ complete and normal

EXAMPLE 2 (the one we'll use): $\wp_{\omega_2}(H_{\theta}) := \{ M \subset H_{\theta} | |M| < \omega_2 \text{ and } M \cap \omega_2 \in \omega_2 \}.$

- ▶ If $\mathcal{A} = (H_{\theta}, \in, ...)$ is structure in countable language, $C_{\mathcal{A}} := \{M | M \prec \mathcal{A}\}.$
- ▶ $B \subset \wp_{\omega_2}(H_\theta)$ is called (weakly) *nonstationary* iff there is a structure $\mathcal{A} = (H_\theta, \in, f_0, f_1, ...)$ such that $B \cap C_{\mathcal{A}} = \emptyset$.
- NS ↾ S is the collection of nonstationary subsets of S (dual is the club filter).
 - It is $< \omega_2$ -complete and normal

Generic ultrapowers

Let I be an ideal over S (so $I \subset \wp(S)$).

 \mathbb{P}_I denotes the boolean algebra $\wp(S)/I$ without the 0 element.

```
(NOTATION: \Vdash_I means \Vdash_{\mathbb{P}_I})
```

Let G be generic for \mathbb{P}_I .

- ► G is essentially a V-ultrafilter which extends the dual of I.
- ▶ Inside V[G] you can define $j: V \rightarrow_G ult(V, G)$
- Genericity ensures that G inherits nice properties of I
 - normality
 - completeness (e.g. if I = NS ↾ ℘_{ω₂}(H_θ) then j has critical point ω₂)

A few strong properties that ideals may possess

- precipitous (ult(V, G) is wellfounded)
- saturated (that P(S)/I has small chain-condition; implies precipitousness)
- decisive (a portion of j_G is independent of G, and more)

Stationary set reflection

If $S \subset \kappa$ is stationary, we say "S reflects" iff there is some $\gamma < \kappa$ such that $S \cap \gamma$ is stationary in γ .

EXAMPLES:

If κ is measurable then:

- every stationary $S \subset \kappa$ reflects
- V^{Col(μ,<κ)} ⊨ "every stationary subset of μ⁺ ∩ cof(ω) reflects." (at a point of cofinality μ)

Reflection at small cofinalities

Arguments from above yield reflection at the *largest possible cofinality*. Contrast with:

Theorem

(Minor variation of an argument of Foreman): Assume MM and let $\kappa \geq \omega_2$ be regular. There are stationarily many $M \prec H_{\kappa^+}$ such that:

- $cf(\kappa_M) = \omega_1$, where $\kappa_M := sup(M \cap \kappa)$
- For every R ∈ M ∩ {stationary subsets of ω₃ ∩ cof(ω)}: R reflects at κ_M.

Definition

Ref(3,0,1): Every stationary subset of S_0^3 reflects at a point of cofinality ω_1 .

Reflection at small cofinality

Let $Unif(\wp_{\omega_2}(\omega_3)) :=$ the collection of $M \in \wp_{\omega_2}(\omega_3)$ such that $M \cap \omega_2$ and $sup(M \cap \omega_3)$ both have uncountable cofinality.

Lemma TFAE:

- 1. *Ref*(3, 0, 1)
- 2. For every stationary $R \subset S_0^3$ there is a normal ideal I_R over $Unif(\wp_{\omega_2}(\omega_3))$ such that \Vdash_{I_R} " \check{R} remains stationary in $ult(V, \dot{G})$ "
- For every stationary R ⊂ S₀³ there is a stationary S_R ⊂ Unif(℘_{ω2}(ω₃)) such that S_R ⊩_{NS} "Ř remains stationary in ult(V, Ġ)".

Ways to strengthen the properties of the ideals in that characterization: require

- that R remains stationary in V[G], rather than just in ult(V, G).
- ▶ that there is a single ideal which works for all *R*
- that the ideals be precipitous

At least one of these properties holds in all known models of Ref(3,0,1)

Consistency strength: lower bounds

Theorem

- ► CON(ZFC + Ref(3,0,1)) ⇒ CON(ZFC + "almost" a measurable κ of Mitchell order κ⁺)
- CON(ZFC + "simultaneous version of Ref(3,0,1)") ⇒ CON(ZFC + there is a κ of Mitchell order κ⁺)

However, if in addition there is a precipitous ideal on ω_2 then there is an inner model with a Woodin cardinal (due to theorem of Schindler).

(日) (同) (三) (三) (三) (○) (○)

Consistency strength: upper bounds

Known models of Ref(3, 0, 1):

- Any model of $MA^+({Col(\omega_1, \omega_3)})$.
- Any model of MM gives highly simultaneous version
- $V^{Col(\omega_1, <\kappa)}$ where κ is a quasicompact cardinal
 - ▶ Gives simultaneous versions of *Ref*(3,0,1)
 - ► The forcings associated with the ideals *I_R* are *proper*
 - so you also get precipitousness and preservation of stationary sets in V[G] rather than just in ult(V, G).

What is the consistency strength of:

- 1. *Ref*(3,0,1)?
- 2. Ref(3,0,1) + "there is a precipitous ideal on ω_2 "?
- 3. Ref(3,0,1) + "there is an ideal on ω_2 whose forcing is proper"?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <