Logic Qualifying Exam

Winter 2004

Please answer all eight questions. Good luck!

Question 1. Let T be the theory of the model $(\mathbb{N}; +, \cdot)$. Show that T has uncountably many non-isomorphic countable models.

Question 2. Let $\langle \phi_e | e < \omega \rangle$ be a standard enumeration of the recursive partial functions. Show that $\{e | \phi_e \text{ is bounded}\}$ is Σ_2 complete. (A partial recursive function is **bounded** if its range is bounded in ω .)

Question 3. Let φ be Goldblach's conjecture: Any even number ≥ 4 is the sum of two primes. Let T be some system of axioms stronger than ZFC, and suppose that $\mathsf{T} \vdash \varphi$. Prove that $\operatorname{CON}(\mathsf{T}) \to \varphi$.

Question 4. Work with the language of arithmetic and the standard Gödel numbering of sentences. For each sentence σ let $\text{ConSeq}(\sigma)$ be the set of consequences of σ , namely $\{\tau \mid \sigma \vdash \tau\}$. Let $A = \{\ulcorner \sigma \urcorner | \text{ConSeq}(\sigma) \text{ is decideable}\}$. Is A recursive? (Prove your answer.)

Question 5. Let \mathcal{L} be the language consisting of the logical symbols and a binary relation symbol R. We view models of \mathcal{L} as graphs, with the universe of the model determining the nodes, and the interpretation of R determining the edges. Is there a theory T in \mathcal{L} such that (for every model \mathfrak{A} of \mathcal{L}) $\mathfrak{A} \models T$ iff \mathfrak{A} is *connected* as a graph? (Prove your answer.)

Question 6. Assume the CH (but not the GCH). Prove that $\omega_n^{\ \omega} = \omega_n$ for every natural number $n \ge 1$.

Question 7. Prove that there is a Π_2 sentence φ which is true in L_{ω_1} but false in L.

Question 8. Let \mathcal{L} be the language of arithmetic, and let \mathfrak{N} be the standard model of arithmetic. Let $\langle \theta_n \mid n < \omega \rangle$ be some standard enumeration of the sentences of \mathcal{L} .

(a) Recall that the fixed point lemma states that for every formula $\varphi(v)$ of \mathcal{L} there exists a number n so that $\mathfrak{N} \models (\theta_n \leftrightarrow \varphi(\mathbf{n}))$. Sketch a proof of this lemma.

(b) Prove that truth is not definable in \mathfrak{N} . More precisely prove that there is no formula $\tau(v)$ in \mathcal{L} with the property that $\mathfrak{N} \models \theta_n$ iff $\mathfrak{N} \models \tau(\mathbf{n})$.