Additional exercises for Math 220C.

Ex. A. (Principle of induction on a wellfounded relation.) Let r be a wellfounded relation in a set a. For each $x \in a$ let pre(x) denote the set of predecessors of x in r, namely $\{z \in a \mid \langle z, x \rangle \in r\}$. Let p be a subset of a with the property

(*) $(\forall x \in a)(\operatorname{pre}(x) \subset p \to x \in p).$

Prove that p = a.

Ex. B. (Schema of definition by recursion on a wellfounded relation.) Let $F: V \to V$ be a class function. Prove that for each set a and each wellfounded relation r in a there exists a unique set function g so that

(1) $\operatorname{dom}(g) = a$; and

(2) $(\forall x \in a) g(x) = F(g \upharpoonright \operatorname{pre}(x)).$

(r is not assumed to be transitive, and your proof should take account of this.)

Ex. C. Let r be a relation in a set a. A rank function for r is a (set) function $f: a \to ON$ so that

(1) $(\forall u \in a)(\forall w \in a)(\langle u, w \rangle \in r \to f(u) < f(w)).$

Prove that if there is a rank function for r then r is wellfounded.

Ex. D. A rank function is **tight** if for every $w \in a$,

(2) f(w) is the *least* ordinal greater than all ordinals in $f''\{u \in a \mid \langle u, w \rangle \in r\}$. Prove that if r is wellfounded then there is a tight rank function for r.

Ex. E. Prove that the range of a tight rank function f is an ordinal.

Ex. F. Let r and s be relations in sets x and y respectively. We say that (x, r) is **isomorphic** to (y, s) if there is a function $f: x \to y$ so that

- f is one-to-one and onto; and
- $(\forall u \in x)(\forall w \in x)(\langle u, w \rangle \in r \leftrightarrow \langle f(u), f(w) \rangle \in s).$

We say that (x, r) is isomorphic to an ordinal α iff (x, r) is isomorphic to $(\alpha, < \upharpoonright (\alpha \times \alpha))$.

Suppose that r is a wellordering of x. Prove that (x, r) is isomorphic to a unique ordinal. (Hint: for existence use D and E.)

Ex. G. Show, without using choice, that $(\forall x)(x \text{ can be wellow dered})$ implies the axiom of choice.

Ex. H. For a set x, let $\mathcal{P}_{wo}(x) = \{z \subset x \mid z \text{ can be wellordered}\}$. (Assuming the axiom of choice, $\mathcal{P}_{wo}(x) = \mathcal{P}(x)$. But without AC the two can be different.) Prove, without using the axiom of choice, that $\mathcal{P}_{wo}(x) \not\preceq x$.

Ex. I. (Uses choice.) For cardinals $\lambda \leq \kappa$ let $\mathcal{P}_{\lambda}(\kappa) = \{x \in \mathcal{P}(\kappa) \mid \operatorname{card}(x) = \lambda\}$. For κ infinite, show that $\mathcal{P}_{\lambda}(\kappa) \approx {}^{\lambda}\kappa$.

Ex. J. (Uses Choice.) Let $\langle a_n \mid n < \omega \rangle$ be a sequence of sets. Suppose that for each $n < \omega$, $a_n \subset a_{n+1}$ and $a_{n+1} \not\leq a_n$ (so that the sets are increasing in size). Let $a = \bigcup_{n < \omega} a_n$. Prove that ${}^{\omega}a \not\leq a$. (Hint: It is more convenient to show that there is no surjection $g: a \to {}^{\omega}a$.)

Ex. K. Prove that "x is an ordinal" is absolute for any transitive $M \subset WF$.

Ex. L. Let $M \subset WF$ be a transitive class. Suppose that (the necessary finite part of) ZF – Powerset is true in M. Prove that "r is a wellordering of x" reflects from M to V.

Hint: Look at Exercise F. Note that only (a finite part of) ZF – Powerset is used there. Conclude that the statement of Exercise F holds in M and use this in solving L.

Ex. M. Let $M \subset WF$ be a transitive class. Prove that the statement "r is an illfounded relation in x" reflects from M to V. (You may assume that being a relation is absolute.)

Ex. N. Let *H* be a set, contained in WF, but not necessarily transitive. $\in \uparrow H \times H$ is then a wellfounded relation. By recursion on this relation (see Exercise B) define a function *g* with the properties:

(1)
$$\operatorname{dom}(g) = H$$
; and

(2) $(\forall x \in H) g(x) = \{g(u) \mid u \in x \cap H\}.$

Let $M = \operatorname{ran}(g)$. (This M is called the **Mostowski collapse** of H. g is called the **collapse embedding**.) Prove that M is transitive. Assuming that the axiom of extensionality is true in H, prove that g is one-one. Conclude that g is then an isomorphism between $(H, \in \upharpoonright H \times H)$ and the transitive $(M, \in \upharpoonright M \times M)$.

Ex. O. Suppose that $M \subset WF$ is transitive and layered, and that $\omega \in M$. Suppose Comprehension is true in M. Prove that all axioms of ZF are true in M.

Ex. P. Prove that the class function $z \mapsto FOD(z)$ is absolute for transitive $M \subset WF$ which satisfy ZF-Powerset.

Ex. Q. The *cofinality* of a limit ordinal δ is the least τ so that there is a function $f: \tau \to \delta$ with ran(f) unbounded in δ . A limit ordinal δ is *regular* if $cof(\delta) = \delta$. Prove the following:

- (1) For each δ , $cof(\delta)$ is regular.
- (2) For limit λ , $\operatorname{cof}(\aleph_{\lambda}) = \operatorname{cof}(\lambda)$.
- (3) (Uses Choice.) For successor α , \aleph_{α} is regular.

Ex. R. (Uses Choice.) Let κ be an infinite cardinal. Prove that $\kappa^{\operatorname{cof}(\kappa)} > \kappa$.

Hint: When $cof(\kappa) = \omega$ this is a consequence of Exercise J.

Ex. S. $C \subset \kappa$ is *club* in κ if it is unbounded in κ , and every limit point $\alpha < \kappa$ of C belongs to C.

- (1) Suppose $cof(\kappa) > \omega$. Prove that the intersection of two clubs in κ is club in κ .
- (2) Suppose κ is regular and uncountable. Let $f: \kappa \to \kappa$. Prove that the set $\{\alpha < \kappa \mid f'' \alpha \subset \alpha\}$ is club in κ .

Ex. U. Let κ be a regular uncountable cardinal. Prove that all axioms of $\mathsf{ZF}-\mathsf{Powerset}$ hold in L_{κ} .