Additional question for Math 220A, Fall 2011

A complete type $\Phi(v_1, \ldots, v_n)$ in a theory T is determined by $\Gamma(v_1, \ldots, v_n)$ if $\Gamma \subseteq \Phi$ and Φ is the only complete type of T that contains Γ . Equivalently, for every formula $\chi(v_1, \ldots, v_n)$, either $T \cup \Gamma(c_1, \ldots, c_n) \vdash \chi(c_1, \ldots, c_n)$, or $T \cup \Gamma(c_1, \ldots, c_n) \vdash \neg \chi(c_1, \ldots, c_n)$.

 Φ is determined by its literal part if it is determined by $\Gamma = \{\varphi \mid \varphi \in \Phi \text{ and } \varphi \text{ is a literal (i.e., atomic or negation of atomic)}\}.$

Prove that a complete theory T in a countable language admits quantifier elimination iff every complete type of T is determined by its literal part.