Math 116 Spring 2022 Homework 7 Due Friday, May 20th

Sage instructions

You can use E = EllipticCurve(GF(p), [1, 1]) to set E to be the elliptic curve $Y^2 = X^3 + X + 1$ over \mathbb{F}_p . When the underlying ring is not a field, you can use E = EllipticCurve(Zmod(N), [1, 1])to set E to be the elliptic curve $Y^2 = X^3 + X + 1$ over $\mathbb{Z}/N\mathbb{Z}$. The code P = E(0,1) sets P to be the point of E with coordinates (0,1). You can use usual addition P+Q to add two points P and Q on E, and use the usual multiplication 2*P to compute 2P.

You can use a while loop:

while some_condition:
loop body

to repeatedly run the loop body until the some_condition is true.

Problem 1. (by hand) Write n = 19 as a sum of positive and negative powers of 2 with at most $\frac{1}{2} \lfloor \log_2 n \rfloor + \frac{3}{2}$ nonzero terms.

Problem 2. (6.14, with Sage) Alice and Bob agree to use elliptic Diffie–Hellman key exchange with the prime, elliptic curve, and point

$$p = 2671, \quad E: Y^2 = X^3 + 171X + 853, \quad P = (1980, 431) \in E(F_{2671}).$$

- (a) Alice sends Bob the point $Q_A = (2110, 543)$. Bob decides to use the secret multiplier $n_B = 1943$. What point should Bob send to Alice?
- (b) What is their secret shared value?
- (c) Find n_A by exhaustive search. (Start with $QA_guess = P$ and $nA_guess = 1$, then repeatedly add P to QA_guess in a while loop until you hit a match.)
- (d) Alice and Bob decide to exchange a new piece of secret information using the same prime, curve, and point. This time Alice sends Bob only the x-coordinate $x_A = 2$ of her point Q_A . Bob decides to use the secret multiplier $n_B = 875$. What single number modulo p should Bob send to Alice, and what is their secret shared value?

Problem 3. (6.21(a), with Sage) Use the elliptic curve factorization algorithm to factor each of the numbers N = 589 using the given elliptic curve $E: Y^2 = X^3 + 4X + 9$ and point P = (2, 5).

Problem 4. (Not graded) Read section 6.5 on "The Evolution of Public Key Cryptography."