Math 116 Spring 2022
 Homework 7

Due Friday, May 20th

Sage instructions

 over \mathbb{F}_{p}. When the underlying ring is not a field, you can use $E=\operatorname{EllipticCurve}(\operatorname{Zmod}(N)$, [1, 1]) to set E to be the elliptic curve $Y^{2}=X^{3}+X+1$ over $\mathbb{Z} / N \mathbb{Z}$. The code $\mathrm{P}=\mathrm{E}(0,1)$ sets P to be the point of E with coordinates $(0,1)$. You can use usual addition $\mathrm{P}+\mathrm{Q}$ to add two points P and Q on E , and use the usual multiplication $2 * \mathrm{P}$ to compute 2 P .

You can use a while loop:

```
while some_condition:
    # loop body
```

to repeatedly run the loop body until the some_condition is true.
Problem 1. (by hand) Write $\mathrm{n}=19$ as a sum of positive and negative powers of 2 with at most $\frac{1}{2}\left\lfloor\log _{2} n\right\rfloor+\frac{3}{2}$ nonzero terms.

Problem 2. (6.14, with Sage) Alice and Bob agree to use elliptic Diffie-Hellman key exchange with the prime, elliptic curve, and point

$$
p=2671, \quad E: Y^{2}=X^{3}+171 X+853, \quad P=(1980,431) \in E\left(F_{2671}\right)
$$

(a) Alice sends Bob the point $Q_{A}=(2110,543)$. Bob decides to use the secret multiplier $n_{B}=$ 1943. What point should Bob send to Alice?
(b) What is their secret shared value?
(c) Find n_{A} by exhaustive search. (Start with QA_guess $=P$ and $n A _g u e s s=1$, then repeatedly add P to QA_guess in a while loop until you hit a match.)
(d) Alice and Bob decide to exchange a new piece of secret information using the same prime, curve, and point. This time Alice sends Bob only the x-coordinate $x_{A}=2$ of her point Q_{A}. Bob decides to use the secret multiplier $n_{B}=875$. What single number modulo p should Bob send to Alice, and what is their secret shared value?

Problem 3. (6.21(a), with Sage) Use the elliptic curve factorization algorithm to factor each of the numbers $N=589$ using the given elliptic curve $E: Y^{2}=X^{3}+4 X+9$ and point $P=(2,5)$.

Problem 4. (Not graded) Read section 6.5 on "The Evolution of Public Key Cryptography."

