Math 116 Spring 2022 Homework 6 Due Friday, May 20th

See https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/ elliptic_curves/ell_finite_field.html for instructions on Elliptic curves over finite fields in Sage.

Problem 1. (by hand) Let $E: Y^2 = X^3 + X + 2$.

- (a) Find list of points of $E(\mathbb{F}_5)$.
- (b) Compute the addition table for $E(\mathbb{F}_5)$.

Problem 2. (with Sage) Let $E: Y^2 = X^3 + 2X + 5$.

- (a) Find list of points of $E(\mathbb{F}_1 1)$.
- (b) Compute the addition table for $E(\mathbb{F}_{11})$.

Problem 3. (6.8, with Sage) Let E be the elliptic curve $E: Y^2 = x^3 + x + 1$. Let P = (4, 2) and Q = (0, 1) be points on $E(\mathbb{F}_5)$. Find a positive integer n such that Q = nP.

Problem 4. (6.9) Let E be an elliptic curve over \mathbb{F}_p and let P and Q be points in $E(\mathbb{F}_p)$. Assume that Q is a multiple of P and let $n_0 > 0$ be the smallest solution to Q = nP. Also let s > 0 be the smallest solution to $SP = \mathcal{O}$. Prove that every solution fo Q = nP is of the form $n_0 + is$ for some $i \in \mathbb{Z}$.