Math 116 Spring 2022
 Homework 6

Due Friday, May 20th

See https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/ elliptic_curves/ell_finite_field.html for instructions on Elliptic curves over finite fields in Sage.
Problem 1. (by hand) Let $E: Y^{2}=X^{3}+X+2$.
(a) Find list of points of $E\left(\mathbb{F}_{5}\right)$.
(b) Compute the addition table for $E\left(\mathbb{F}_{5}\right)$.

Problem 2. (with Sage) Let $E: Y^{2}=X^{3}+2 X+5$.
(a) Find list of points of $E\left(\mathbb{F}_{1} 1\right)$.
(b) Compute the addition table for $E\left(\mathbb{F}_{11}\right)$.

Problem 3. (6.8, with Sage) Let E be the elliptic curve $E: Y^{2}=x^{3}+x+1$. Let $P=(4,2)$ and $Q=(0,1)$ be points on $E\left(\mathbb{F}_{5}\right)$. Find a positive integer n such that $Q=n P$.

Problem 4. (6.9) Let E be an elliptic curve over \mathbb{F}_{p} and let P and Q be points in $E\left(\mathbb{F}_{p}\right)$. Assume that Q is a multiple of P and let $n_{0}>0$ be the smallest solution to $Q=n P$. Also let $s>0$ be the smallest solution to $S P=\mathcal{O}$. Prove that every solution fo $Q=n P$ is of the form $n_{0}+i s$ for some $i \in \mathbb{Z}$.

