Math 116 Spring 2022
 Homework 5-2

Due Friday, May 13th

Problem 1. (3.22) Use Pollard's $p-1$ method to factor each of the following numbers.
(a) $n=1739$
(b) $n=220459$

Show your work and indicate which prime factor p of n has the property that $p-1$ is a product of small primes.

Problem 2. (3.27) Compute the following values of $\Psi(X, B)$, the number of B-smooth numbers between 2 and X (see page 150).
(a) $\Psi(25,3)$
(b) $\Psi(35,5)$
(c) $\Psi(50,7)$

Problem 3. (3.26(b)) Our goal is to factor $N=52907$. Use the data provided to find values of a and b satisfying $a^{2} \equiv b^{2}(\bmod N)$ by hand. Then use Sage to compute $\operatorname{gcd}(N, a-b)$ in order to find a nontrivial factor of N

$$
\begin{array}{lllrl}
399^{2} \equiv 480 & (\bmod 52907) & \text { and } & 480 & =2^{5} \cdot 3 \cdot 5 \\
763^{2} \equiv 192 & (\bmod 52907) & \text { and } & 192=2^{6} \cdot 3 \\
773^{2} \equiv 15552 & (\bmod 52907) & \text { and } & 15552=2^{6} \cdot 3^{5} \\
976^{2} \equiv 250 & (\bmod 52907) & \text { and } & 15552=2 \cdot 5^{3}
\end{array}
$$

Problem 4. (3.37) Let p be an odd prime and let a be an integer not divisible by p.
(a) Prove that $a^{(p-1) / 2}$ is congruent to either 1 or -1 modulo p .
(b) Prove that $a^{(p-1) / 2}$ is congruent to 1 modulo p if and only if a is a quadratic residue modulo p. (Hint. Let g be a primitive root for p and use the fact, proven during the course of proving Proposition 3.61, that g^{m} is a quadratic residue if and only if m is even.)

Problem 5. Decide whether 35 is a quadratic residue modulo the prime 101 by computing the Legendre symbol by hand.

Problem 6. (3.42(a)(c), with Sage) Perform the following encryptions and decryptions using the Goldwasser- Micali public key cryptosystem (Table 3.9).
(a) Bob's public key is the pair $N=1842338473$ and $a=1532411781$. Alice encrypts 3 bits and sends Bob the ciphertext blocks

$$
1794677960, \quad 525734818, \quad \text { and } 420526487 .
$$

Decrypt Alice's message using the factorization

$$
N=p q=32411 \cdot 56843
$$

(b) Bob's public key is $N=781044643$ and $a=568980706$. Encrypt the 3 bits 1, 1, 0 using, respectively, the three "random" values

$$
r=705130839, \quad r=631364468, \quad r=67651321 .
$$

Note that in Sage, kronecker (a, p) returns the Legendre symbol $\left(\frac{a}{p}\right)$.
Problem 7. (4.1, with Sage) Samantha uses the RSA signature scheme with primes $p=541$ and $q=1223$ and public verification exponent $e=159853$.
(a) What is Samantha's public modulus? What is her private signing key?
(b) Samantha signs the digital document $D=630579$. What is the signature?

Problem 8. (4.2, with Sage) 4.2. Samantha uses the RSA signature scheme with public modulus $\mathrm{N}=1562501$ and public verification exponent $\mathrm{e}=87953$. Adam claims that Samantha has signed each of the documents

$$
D=119812, \quad D^{\prime}=161153, \quad D^{\prime \prime}=586036
$$

and that the associated signatures are

$$
S=876453, \quad S^{\prime}=870099, \quad S^{\prime \prime}=602754
$$

Which of these are valid signatures?

