# Math 116 Spring 2022 <br> Homework 4 

Due Friday, April 29nd

Problem 1. (2.26) Let $\mathbb{F}_{p}$ be a finite field and let $N \mid p-1$. Prove that $\mathbb{F}_{p}^{\times}$has an element of order $N$. This is true in particular for any prime power that divides $p-1$. (Hint. Use the fact that $\mathbb{F}_{p}$ has a primitive root.)

Problem 2. (2.28(a)-(c), with Sage) Use the Pohlig-Hellman algorithm (Theorem 2.31) to solve the discrete logarithm problem $g^{x}=a$ in $\mathbb{F}_{p}$ in each of the following cases
(a) $p=433, g=7, a=166$.
(b) $p=746497, g=10, a=243278$.
(c) $p=41022299, g=2, a=39183497$. (Hint. $p=2 \cdot 29^{5}+1$.)

Problem 3. (3.2) This exercise investigates what happens if we drop the assumption that $\operatorname{gcd}(e, p-$ $1)=1$ in Proposition 3.2. So let $p$ be a prime, let $c \not \equiv 0(\bmod p)$, let $e \geq 1$.
(a) Prove that if $x^{e} \equiv c(\bmod p)$ has one solution, then it has exactly $\operatorname{gcd}(e, p-1)$ distinct solutions. (Hint. Use the primitive root theorem combined with the extended Euclidean algorithm.)
(b) For how many non-zero values of $c(\bmod p)$ does $x^{e} \equiv c(\bmod p)$ have a solution?

Problem 4. (3.7, with Sage) Alice publishes her RSA public key: modulus $N=2038667$ and exponent $e=103$.
(a) Bob wants to send Alice the message $m=892383$. What ciphertext does Bob send to Alice?
(b) Alice knows that her modulus factors into a product of two primes, one of which is $p=1301$. Find a decryption exponent $d$ for Alice.
(c) Alice receives the ciphertext $c=317730$ from Bob. Decrypt the message.

Problem 5. (3.15, with Sage) Use the Miller-Rabin test on each of the following numbers. In each case, either provide a Miller-Rabin witness for the compositeness of $n$, or conclude that $n$ is probably prime by providing 10 numbers that are not Miller-Rabin witnesses for $n$.
(a) $n=294409$
(b) $n=294439$
(c) $n=118901509$
(d) $n=118901521$

Problem 6. (3.16) Suppose for a given RSA public key $N=p q$ Eve knows a pair $e$ and $d$ such that $2 \leq e, d<N-1$ and $\left(x^{e}\right)^{d} \equiv x(\bmod N)$ for all $x \in(\mathbb{Z} / N \mathbb{Z})^{\times}$.
(a) Describe an analogue of the Miller-Rabin algorithm that can be used to search for nontrivial solutions to $t^{2} \equiv 1(\bmod N)$ in $(\mathbb{Z} / N \mathbb{Z})^{\times}$(the "trivial" solutions are $\left.t= \pm 1\right)$.
(b) Suppose $a$ is a nontrivial solution to $t^{2} \equiv 1(\bmod N)$. Show that $\operatorname{gcd}(a-1, N)$ is one of the prime factors of $N$.

