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Abstract

Let M be a closed, oriented n-manifold. We first prove that the generic harmonic ¢-form for
1 =1 and 2 enjoy the standard transversality properties with respect to the various strata of
AY(R™)* under the action of SO(n). We then go on to study two examples: the generic self-
dual (SD) or anti-self-dual (ASD) harmonic 2-forms and the generic non-SD/ASD harmonic
2-forms, both on a 4-manifold.

In the SD case, we prove a generalization of Moser’s theorem for harmonic forms which
are symplectic away from a disjoint union of circles. When M* = N3 x S!, and g is a product
metric, we are able to say more about w = *3u+ df A u, with p a generic harmonic 1-form on
N. Using Calabi’s characterization of intrinsically harmonic 1-forms, we prove a result on
deforming a closed 1-form into a harmonic 1-form and hence a lower bound on the critical
points for a Morse harmonic 1-form.

In the non-SD/ASD case, we prove that all closed 2-forms close to a generic harmonic
2-form w are intrinsically harmonic, subject to a condition on the codimension 1 submanifold
on which w has rank 2.

Dissertation written under the direction of Phillip A. Griffiths



Introduction

This work is a first step in the study of generic harmonic forms on compact manifolds,
where by ‘generic’ we mean generic in the space of metrics. Our goal is ambitious: to lay
the foundations of what it means for a harmonic form to be generic, and to use generic
harmonic forms in the study of singular symplectic geometry. The considerations here were
largely motivated by the ‘Holy Grail’ in symplectic geometry: Characterize when a closed,
2n-dimensional manifold has a symplectic structure; if it is not possible for a symplectic
form to exist, could you still make the closed 2-form symplectic away from a small subset?
It turns out that, in dimension 4, the x-operator makes life intriguing by sifting harmonic
2-forms into two different classes with very different behavior. If the harmonic 2-form is
self-dual (SD) or anti-self-dual (ASD), then generically it is symplectic away from a union
of circles, where the form vanishes. On the other hand, if the harmonic 2-form is neither
SD nor ASD, then generically it does not vanish, but has a codimension 1 submanifold on
which it has rank 2.

The thesis is organized into four chapters. In the first, we prove the genericity results
for harmonic 1-forms and harmonic 2-forms on closed manifolds. In the second chapter, we
study the harmonic SD/ASD 2-forms, and prove a Moser-type result. The third chapter
is, in some sense, an outgrowth of the second, because harmonic 1-forms on a 3-manifold
N and harmonic SD 2-forms on a 4-manifold N x S! are inseparable. We will discuss
Calabi’s intrinsic characterization of harmonic 1-forms, and use it to prove a Morse-theoretic
conjecture about harmonic 1-forms. Here, a closed form is intrinsically harmonic if there
exists a metric with respect to which the closed form is harmonic. We will also describe
the intrinsic characterization of harmonic (n — 1)-forms on an n-dimensional manifold, i.e.
the dual situation to Calabi’s theorem, which is surprisingly different from the 1-form case.
Finally, in the last chapter, we delve into a local characterization of non-SD/ASD harmonic
2-forms, primarily because an intrinsic characterization seems much more difficult. We will
show that whether a small exact perturbation of a harmonic form is intrinsically harmonic
depends on the singularities of the harmonic form; there is also a relationship with the
cohomology of a singular differential ideal.



Chapter 1

Harmonic forms for generic metrics

1.1 Introduction

Let us begin our investigations by asking the following question:

Question: Suppose we have a family of Laplacians which are dependent on the metric.
Then for a generic metric, would the solution of Laplace’s equation have sufficiently generic
behavior? In particular, could one force the zeros of the harmonic functions/forms to be
regular, i.e. to be submanifolds?

More precisely, we have the two situations:

(A) The Dirichlet problem. Let A, be the Laplacian corresponding to the metric g on
a domain in R" - for simplicity let this domain be the closed ball D"™. Consider the solutions
to the equation Aju = 0, with u|sp» = f fixed. Then for generic metric perturbations of the
Dirichlet problem, are the zeros of u regular?

(B) Harmonic forms. Let A, be the Laplacian (Laplace-Beltrami operator) on a closed,
oriented n-manifold for the metric g. For generic harmonic forms w, can we conclude that
the zeros of w are regular? Even better, for a generic harmonic i-form, are the zeros of w?
regular as well?

It is the goal of this chapter to prove affirmative results for (A) and certain interesting cases
in (B). In Section 1.2 we will study generic harmonic forms on compact manifolds, and in
Section 1.3 we will treat the Dirichlet Problem.



1.2 Harmonic Forms on Compact Manifolds

In what follows, M will always be a closed, oriented n-manifold and Met*(M) the space
of C*-metrics on M, for sufficiently large k¥ € R (i.e. our metrics are C*-Hélder metrics).
View ([w], g) in @ = H'(M;R) x Met"(M) as a harmonic form w, in the class [w] € H(M;R)
for the metric g € Met*(M). @, when viewed as a collection (w, g) with A,(w) = 0, is a
Banach manifold. (The reader is referred to Section 4.2.2 for some justification of this.) We
would like to prove that there is a dense Gj-set in () for which the harmonic form w, in
HY(M;R) x Met*(M) has regular zeros.

We will prove genericity for 1-forms on any manifold and 2-forms for even dimensional
manifolds (and dually for (n—1)-forms on any manifold and (n—2)-forms for even-dimensional
ones). As we shall see, 4-manifolds exhibit unusual behavior: Both the self-dual (or anti-
self-dual) 2-forms and the non-SD (and non-ASD) 2-forms are very intriguing. It appears at
the moment that a proof for ¢-forms for 2 < 7 < n — 2 requires substantially more work.

Let us describe the general setup. We start with the following evaluation map:

ev:Qx M — \(T*M)

[(w, 9), 2] = w(z).
We want to show that ev is regular, that is, it is transverse to the zero section of A\"(T*M).
This means that, for [(w, g), z] fixed,

(ev)s : T(uw,g)Q X TuM — N (T*M),
is surjective whenever w(z) = 0. In view of the following proposition, this would be sufficient.

Proposition 1 Let X be a Banach manifold, M, N finite-dimensional manifolds, and f :
X x M — N be a C*-map for k sufficiently large. Suppose f is transverse to a submanifold
Z of N. Then for a dense G5 in X, f, : M — N is transverse to Z. (fy(m) = f(x,m).)

In our present situation, it suffices to show that

(€v)s : Tiwg)@ = N(T*M),

is surjective whenever w(z) = 0, that is, we don’t have to let = vary in M. In fact,
(ev)s(T(w,g)@) is exactly the same as (ev),(T(w,g)@ X TxM). If © € T, M, then extend ¥
to a vector field V on M. If ¢, is the 1-parameter family of diffeomorphisms generated by
V', then

(€0)(2,9,2)(0,8) = Lywo(x) = Sgiw@)

t=0
where Ly is the Lie derivative in the direction of V. Finally we can observe that ¢jw is
harmonic for the metric ¢jg.



Since the elements of () satisfy Ajw = 0, by differentiating the family w; of solutions to
A, with respect to ¢, we see that (v, h) € T{,, )@ if and only if

d
Agv + %(Aﬁm) w = 0. (1.1)
t=0

For (v, h) € T\, 0@, (ev)s : (v, h) = v(z).

1.2.1 Green’s Functions

In order to write the above differential equation in integral form, we make use of the Green’s
function G(z,y).

Let us first collect some facts about the Green’s function that we need. Let L : I'(E) —
['(E) be a self-adjoint elliptic operator, where E — M is a vector bundle. Also let 7; be the
projections of M x M onto M, and let A C M x M be the diagonal.

Proposition 2 There exists a section G(x,y) of 75 (E) @75 (E), called the Green’s function,
with the following properties:

1. If L has C*-coefficients, with k large, then G is C* on M x M — A.
2. G(z,y) = G(y, z).

3. [{G(z,y), Ls(y))dy = s(x), if s € C* is L?-orthogonal to ker(L). Here {,) is the fiber
metric on E.

4o JulG (2, ), u(y))dy = 0, if u € ker(L).

Then we get from Equation 1.1 that, as long as v is orthogonal to ’Hg, the space of
harmonic i-forms for the metric g,

d

(2) = [ (6@ ) g (Bge)|  wWhoduy

where dv, is the volume form with respect to the metric g, and (,), is the fiberwise inner
product induced from g.

Let us now compute v(z):

v(z) = /%(Gg(:c,y),ﬁgﬂhw(y))gd”g

- /%{(ng(m,y),dw(y»g-l-(d;HhGg(a:,y),d;thhw(y))g}dUg
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d
= / %(*ﬁthd *grth Gg(Z,Y), *grtnd *gytn W(Y)) gdvg
= /(*gd %9 Go(,Y), *gd Fgrinw(y))gdvg

= 4+ /(*d xdx Gg(x,y), *g1nw(Y)) gdvy,

keeping in mind that dw = 0, dyw = 0.
Thus,

v(z) = i/(dd*Gg(x,y), sk g 1pw (1)) gdVg.

Although we do not have a good grasp of G,(z,y) in general, we can still take advantage
of the asymptotics of G4(z,y) near the diagonal A. This is because the perturbations of
the metric ¢ we need are the ones supported arbitrarily close to z. Pick local geodesic
coordinates (U, ¢) around x where ¢ : z — 0 € R".

For g a flat metric,

i< i mdﬂﬂil---d%k ® dy;,...dy;, if n>2
Yii<..<i, Jogle — yldx;, ...dx;, @ dy;,...dy;, ifn=2.

Gy(z,y) = {

Here the dy; terms get paired with respect to (, )4, and the dz; terms are left untouched.
Of course, when n = 2, the only interesting case is k = 1.
Write F'(y) = G4(0,y) for g flat. Then we have the following:



Proposition 3 G,(0,y) is asymptotic to F(y) as y — 0. That is, as y — 0, the ratio
[G4(0,y) — F(y) : F(y)] = 0. Moreover, the same is true for 0" F(y) and 8"%G4(0,y).

1.2.2 Computation of dd*F(y) for g flat

Assume n > 2. Let us first compute d*d* |n Tz Yy, ...dy;, . Fix iy, ..., 4,, which is a permutation
of 1,.

1 1
|y|" T3 Wiy Ay, = 8gn(ir.dglgyr- )| r= 5 @Yiy -+ AYi,
1 L 1
d * Wdyil...dyik = sgn(iy...in)(2 — | |n z:y,]alyzjdyszrl dy;.,
1 o . .. Lo~
* d * Wdyil...dyik = SgN(%1...0kTk+1--0n)SGN(450k 11 Fn b1 ... 05 0k)
1 & —
X (2-n)— > Yi,; AYi, ---dyi; ... dys,
— (_1)(n7k)(k D+ — 1)(2_n ‘ Zyz]dyh dyzj...dyik
1 (n—k)(k=1) 9 -
d*d * Wdyil---dyik = (-1)"~ ;dyzl Ay, ...dyg,
+ (_1)(nfk)(k 1)+(J+k)(2 —n)(-n) -
1 —
W Zk yijyi,dyn---dyz'j---dyz'kdyil-
j=1,...
I>k OF =5
Hence, ne = () we obtain: 1
P T SV da,...duy, ® dd? (ﬁdyil...dyik>
i1<en i Y|
11 <... <t
k n 9 9

n —

¢ ¥ (-

Remark: Consider the following action of SO(n) on F(y): View A € SO(n) as a diffeo-
morphism D™ = D" where D™ is a disk centered about the origin. Define A by:
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A: \N(T*D™) @ NY(T*D") — \(T*D™) @ \'(T*D"),
n(r) @ wly) — A™n(r) ® A"w(y).

That is, A acts on both the z’s and y’s simultaneously by pullback. Note that this is the
natural way for the Green’s function F(y) to transform under rotation. F(y) is invariant
under A, and hence so is dd*F(y) (where d, d* act only on the y variables), since A* commutes
with d and .

Case n>2, k=2: Specializing to k = 2,

dd*F(y) = " |n+22dxzdfcg {( (U7 + -+ yn) — n(y] + y7))dyidy;

—n Y (viyedyedy; + ykyjdyidyk)} -
ki

In view of the above remark, without loss of generality we can pick y = (y1,0,0, ...) so that

dd*F(y,,0,0,...) = > &(4, j)dzidz; ® dy;dy;,

[yl \””

where
. 1—2% ifoneofzorj=1
— 2
£(0,7) { 1 otherwise.

Now let R, : R" — R" be given by the following linear transformation which is almost
a reflection along the hyperplane (z,y) = 0 (and is one for n = 4):

. el — (1 — ﬂ)61
Ry:(yl,O,O,...) ' { e; — €4, i 1> 1.

If we extend R, to A*(R")*, then one sees that

Proposition 4 R, = C(y)-(dd*F(y),), as operators A\*(R")*= A*(R")*, where C : R" —
R and C(y) # 0 unless y = 0.

In particular, dd*F(y) : AZ — Ai is an isomorphism.

Case n>2, k>2: In general, for y = (y1,0, ...,0),

dd*F(yl,O,..., | Z 67,1,..., dac“ dmzk®dyzldyzk,

21 <...<tg



where

@iy, ..y ig) = { 1_ ;

Thus, R, = Cly|™{dd*F(y), -) as operators AF(R")* = AF(R"™)*, where

Ry:{ Lo (1-2) &

v, forv L y.

otherwise.

Case n=2, k=1: We can compute likewise that

. 12 2
dd*logly|dy;, = (W - Wyfl) dy;, — Wyhyizdyiz'

Hence, we obtain:

dd*F Z dz; ® dd*(logly|dy;)
1 2
= C. de, < 5~ ) Z 4yzy9dyj
‘ ‘ ‘y‘ ];éz| |

Once again, pick y = (y1,0), and we have

o
|Z/1|4

C
= —(—dl'l ® dy1 + dl‘Q X dyg)

|y1[?
Proposition 5 R, = C(y) - (dd*F(y), -), where C(y) # 0 when y # 0.

dd* F(y1,0) (_|Z/1\2d$1 ® dy1 + \y1|2dm2 ® dys)

1.2.3 An Alternative Approach

Instead of letting our family of harmonic forms w(t) = w-+tv simply satisfy Ay, (w+tv) = 0,
we can require that v = dn), i.e. that v be eract. This would mean letting Q = [w] x Met* (M)
instead, and all the results we can prove this way have the advantage that they would be
valid for a fized cohomology class [w] € H!(M;R). (This was pointed out to me by Taubes
[5].)

Let v = dn. Using the Hodge decomposition, we can additionally assume that d*n = 0.
Now, since our family w; satisfies Ay;w; = 0, we have dw; = 0 and d *; w; = 0.



Differentiating d *; w;, we get

d ) )
d_t(d kpwi)i=o = d(ke|i=ow) + d * W|i=g
= d(k)w+d=*dn=0.

Together with d xn = 0, we obtain
An = £ * d(+w).

Inverting using Green’s functions
)

n@) = =+ [(Glay), sdioly))de,
— 4 / (dy Gz, y), 0 (y))dv,.

Hence,
v(z) ==+ /(dzdyG(x, Y), xxw(y))dv,.

Notice that we are writing d, to distinguish it from d,, which is d with respect to the
z-variables, while holding the y-variables constant. At this point our d,d,G(z,y) does not
seem to closely resemble dd*G(z,y), which appeared in our previous expression for v(z).
However, it is quite surprising to find that, upon computing d,d,G(z,y) and evaluating it
at x = 0, these two expressions are identical near the diagonal, as far as the lowest order
term is concerned.

Let us compute d,d,G(z,y) near the diagonal. We may assume without loss of generality
that ¢ is flat and

1
lz —y|n 2

Glz,y)= Y

11 <. <llp_1

dl‘il ...dl‘ik71 X dyil ...dyik71 .

Then we have,

1
dyG(z,y) = £(2-n) 7d$i1---d$ik_1 ® (i — yi)dyidys, -..dyi,_,,

1< i1 48 z =y

1

dodyGz,y) = £{@2-n)(-n)
i1<...<ik71
%)

d.’L‘jd.’Eil ...d.’Eik_l & dyzdyn "'dyik—l

+(2—n) Z 1

11 <. <8k—1,0 |I o y‘n

(zj — ;) (@i — i)

d.’L‘id.’Eil...d.’Eik_l X dyldylk—l} .

10



Setting = = 0,

1
d,d,G(0,y) = =+ (Q_n)(_n)W > yiyideida, ..dr, | @ dydy;,...dy;,

i< <ig_1
i,

+(2- n)L Z dr;dz;,...dz;_, ® dyidyil...dyik_l}

|y|n Byi1 <oen<ig_1

21 <...<1p

k n
® { (W _ |y|T+2(y§1 + .+ y?,)) dYiy .- dYs,
7 - T
+ Z <_ ‘y‘n+2yijyi(_1)]+k> dyhdyhdyzkdyz} )
j:l,..,k);i

Thus we see that d,d,G(0,y) = £dd*G(0,y). This means that our previous setup give
us (essentially for free) stronger genericity results where we fix the cohomology class [w] €
Hi(M;R).

11



1.2.4 Computation of sk, ;,w(y)

Consider the family of metrics g + th. If we let {e;(t)} be an orthonormal basis for 7y M
with respect to g+th, then we write w = w;, 4, (t)ei, (t)...e;, (t). We will compute *#g4pw(y),

which is the term on the right-hand side of equation (8).
Let’s first prove a useful lemma. Set e; = ¢;(0).

Lemma 1 Let (e;,€;)g+1n = 0ij + thij. Then there exists a basis {e;(t) =
orthonormal with respect to g + th up to first order in t.

Proof: Suppose e;(t) = e; +1t3_; a;je;. Then
0ij = (ei(t), ej(t»t
= <6i +1 Z k€L, ej -+ tz ajlel>t
i ]
(ei, €; t+t{ > aiker, €5)t + ez,Zaﬂez }

= 0y + thy + t(a,] + aji).

Thus, h;; = —(aij + aj;). Letting a;; = —%hij, we obtain the desired result.

From now on, we use ¢;(t) as in the lemma.

Proposition 6 If w =7, w;(t)e;(t) is a I-form, then

1
*>i<g+thw =C- {Z hijwjei - Etr(h)w} .
1]

—

Proof: Since xw = 3 ;(—1) w;(t)er ()...€;()...e,(t), we have
d

>i<tU) = (*tU)) — %W

dt
_ Y (1) ljt{ ()1 (8)(0)-n(t)} = 50

i

= Z(—l)z_ wzelaen + Z (—1)i_1wiel...éj...eAi...en

i 1,571

= —*szeﬂrZ

1,j 71
{h’jjel“-ei-..en + (—1)iij71hji61...é\j...6n} ,

12

ei — 3t Xj hije;}



using é;(t) = —% >_j-1 hijej from the previous lemma. Then,
: n—1 1
*kw = (=1) 2 > wihije;
ij

+> (—1)%%' {(=D)" hyzes + (=1)" " hjie; |

1,71
_ 1 1
= (_1)n L Z 5 (wihjiej — wihjjei) + (—1)” 15 Zwihijej
WED) 0,

= (_1)”*1 {Z hijwje,- — %Z(trh)wiei} 0

i
Similarly we compute:

Proposition 7 If w =Y, ;. wi,. i (t)ei (t)...e;, (), then

. 1
*oky = C{ Z (hiljwjiz___ik + ...+ hikjwil---ik—lj) €ip---Cip — it’/'h . w} .

1 yeensbis]

In particular,

Corollary 1 If w = Y, wij(t)ei(t)e;(t), then

. 1
*kpW = C {Z (hikwkj + wikhkj) €€ — §t’f'h . w} .
.5,k

If w =3, jwijeie;, then the corresponding skew-symmetric matrix is A = %(wij — Wj;)-

The variation in the metric, h;;, is a symmetric matrix H = (h;;). Then, by Corollary 1,
*%;w corresponds to

(H, A} — %trH A,

where {H, A} is the anticommutator HA + AH.
Since we will need this later, we will compute the image of the map

iw: S — AFR™,
Zw(h) = **g-}-thwa

where w is a k-form and S is the set of symmetric n X n matrices, for certain values of k£ and
n.

13



k=1: If w = 0, then Im 4,, = 0. If w # 0, then Im 7, = A'R" = R".

k=2: When dealing with 2-forms, the computations become easier in matrix form. i, then
becomes
ig:S— .A,

1
ia(H) = {H A} = StrH - A,

where A is the set of skew-symmetric n X n matrices.

We can make a further simplification when n # 4: Taking H = I, we obtain A € Im 4,
and hence Im iy = Im{-, A}. The situation for n = 4 is quite different (n = 4 is the only
anomaly), and this is the first indication of the differences between n =4 and n > 4.

Observe that if B = C7'AC, then ig(H) = C tisa(CHC ')C. Moreover, if we let
C € O(n), then C~! = Ct, and CHC™! will become symmetric. In view of this, it suffices
to compute 74 for each orbit of A2R" under the action of O(n).

Fact: A skew-symmetric matrix A can always be put into the form

0 -\

A0
0 =X
Aa 0

via an orthonormal change of basis. We call this the normal form of A. If we assume that
A € O(n) instead of SO(n), then we may assume that all \; > 0.

Definition: Let A be a 2n x 2n skew-symmetric matrix. Put A in normal form as above,
and let \; be the ‘eigenvalues’. If A; # 0 and \; # +); for ¢ # j, then A is said to be of

generic type.

k=2, n=4: For a 4 x 4 matrix A, we have the following possibilities:

o O
o O

14



A0
FAN O
0 -\
A 0
4) Ay=| ™ 0 | M FEER
Ao 0

We can easily compute Im 74 for each of the four cases.

(1) Im 7;A1 =0.

oo {( 3 2)

Hence, dim Im i4, = 5. If ey, ..., €4 is an orthonormal basis, then (Im 4c,.,)" = R{eses} =
R{xejes}, where the metric on A?T*M is the one induced from T M.

B = 2 x 2 matrix

A = 2 x 2 skew-symmetric matrix,}

0 —a b c
. a 0 —c b .
(3) Im 44, = b e 0 a,b,c € R}, if A3 corresponds to w = ejeq + e3ey,
—c —b —a 0

that is, w is self-dual. Note that Im 7,4, is the space of anti-self-dual 2-forms.
. AMA B A = 2x2 skew-symmetric matrix . . .
(4) Im ZA4—{< _RBT _)\2A) ‘ B — 9%2 matrix . As with (2), dim Im i, =
5 and Im 4, = (xw)’. Observe that 4, is not surjective even if w is of generic type - this is
in sharp contrast with the cases n > 6.

Aside: The fact that Im i4, = {anti-self-dual (ASD) 2-forms} can be rephrased as follows:

Proposition 8 Let A;, Ay be the self-dual and anti-self-dual subbundles of AN’T*M, respec-
tively. Then the conformal classes near [g] are in 1 — 1 correspondence with an open set of
Hom(Af,A;) containing 0 : AT — A~

To each conformal class [g + th] near g we can assign A;_-i-tha the self-dual subspace of A2,
with respect to g+ th. We can then view A, ,, as the graph of an element of Hom(A], A}),
and what we are asserting is that to any ¢ € Hom(A™, A™) near 0 € Hom(A™*, A7), there is
a unique conformal class [g + th] with A}, = Graph(¢).

k=2, n=6: The following are the possible types of orbits (assume without loss of generality
that \; > 0 via an O(2n) action):

15



(1) A=0. Im iy = 0.
0 -1
10 x ok %
(2) A = 0 .Imiy = * , where the % means that the
0
2 x 2 block can be arbitrary (as long as the skew-symmetricity is satisfied) and a blank entry
means the 2 x 2 block is composed of all zeros.
0 —1
1 0

0 _1 . * t X %
(3) A= _— dmig = —X' % % , where X means
00 * 0

*

00
that the 2 x 2 block can be an arbitrary matrix of the form ( cci _cd ) , with ¢,d € R.

0 -\
)\1 0
0 —) %k k
(4) A = N 02 .ImiA—{(* * *)} Here, A\; # Ay and
2 00 * x 0
00
A1, Ag # 0.
-1
L 0 —1 * X
(5) A= Lo with A £ 1. Imig=14 | X' % * |5
0 — x % %
A0
0 -\
A O
0 —)\2 . - .
(6) A= A 0 , where all the ); are distinct. Im i4 = A.
0 —)\3
)\3 0

In determining the above, we used the following rule:
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Rule: Suppose A is of the form

0 -\
A O
0 =\
Aj 0
Then Im 74 will contain
/\i* *

if \i # £A;. The «’s are placed in the (¢,%)-th, (¢, )-th, (j,¢)-th, and (4, j)-th 2 x 2 blocks.
On the other hand, if A\; = A;, then Im 7,4 will contain

Using this rule, it is easy to prove the following:

Theorem 1 If a 2n X 2n skew-symmetric matriz A is of generic type, then Im{-, A} surjects
onto Ay,.

Remark: It should be noted that the situation for n > 6 is similar to that of n = 6; hence
there is a dichotomy n =4 and n > 6.
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1.2.5 Harmonic 1-forms

Let us gather together the relevant data. v(0), the perturbation of w(0), has the form

—+ /M(dd*F(y) +dd" f (y), *xg 118w (y))ydvy,

where h(y) is in C* for large & (in particular for k > 2), G,4(0,y) ~ F(y) asymptotically, as
y — 0, and f(y) is the difference G,(0,y) — F(y).

Recall we are using geodesic normal coordinates around 0. Identify all the 7}, M’s with
TyM.

We showed that

(1) (dd*F(y),-) = m |nR for g flat,
(2) #%gnw(y) : Ay — A§ is surjective, whenever w(y) # 0.

Given n € A}, let yo be a point near 0 and hg be a variation of the metric at yo such that
*’i‘g(yo)+th0w(yo) = 7. By taking a sequence of h’s with small support approaching hg - §(vo),
we get that,

tev.(h) = [ (dd"F(y) +dd" £(3), whgrno(y) gdvy — (dd" F(yo) + dd" £ (3o), m)-

Next, suppose we can pick a sequence of pairs {(y;, hi)} With *%geyyen,w(ys) = 1 and
y; — 0 such that é—z‘ — « for some fixed unit vector . Then we get

ev, (hid(y;)) = (dd"F (y;) + dd” f (y:),m)-

However, as y; — 0, the ratios of dd*F(y;) to dd* f(y;) become large, and

(dd"F(y;) +dd"f(ys),m) ~,  {dd"F(y),m)
(dd*F (y:) + dd* f(yi), )] [(dd*F (y:), )|
_ <dd*0F(yz) 7’)
[(dd* F(y:),m)|

_ Ra(n)

[Ra(n)|’

where d*° is the adjoint of d with respect to the flat metric go which agrees with g at 0. Thus
we have the following proposition:

Proposition 9 Suppose there exists a sequence y; — 0 with % — « such that n € A}

is in Im iy(y,). Then there exists a sequence of elements in Im ev, approaching R, (n); in
particular, we can conclude that R,(n) € Im ev,.

18



The last statement of the proposition requires some justification:
Lemma 2 Suppose {v;}3°, is a sequence in Im ev, converging to v. Then v € Im euv,.

Proof: Let V; = R{v,...,v;}. Then V; C V5 C ..., and this sequence must stabilize after
some V,, because Im ev, is finite dimensional. Either v € V,,, in which case we are done, or
v &V, but v; € V, for all 7, which is a contradiction. O

In view of the above proposition, the fact that R, is an isomorphism, and that Im 4,
is surjective whenever w(y) # 0, all we need now is that there exists a dense subset near 0
on which w is nonzero. This is afforded by the following:

Theorem 2 (‘Weak’ Unique Continuation Theorem) Let L be a second order elliptic
operator with C* coefficients, for sufficiently large k. Suppose Lu = 0 on a domain D, and
u =0 on a nonempty open subset of D. Then u =0 on all of D.

Hence,

Theorem 3 There exists a dense Gs-set Q' in Q = [w] x Met*(M) for which the harmonic
form (w,g) € Q' C H'(M;R) x Met"(M) has reqular zeros. This implies that the generic
harmonic 1-form w in a fized cohomology class [w] has a collection of isolated points as its
Zeros.

The theorem is of course also true for Q = H'(M;R) x Met"(M).

Remark: The number of isolated zeros of w, counted up to sign, is minus the Euler charac-
teristic of T'M.

1.2.6 Harmonic 2-forms on a 4-manifold

We will first prove the following theorem:

Theorem 4 Let M be a closed, oriented 4-manifold. Given a metric g, view ’H%r, the set of
self-dual harmonic 2-forms, as a subset of H*(M;R). If dim H% > 0, (dim H3 = b3 (M) is
the same for all g € Met"(M)), consider Q C H?(M;R) x Met"(M), where Q = {(w, g) :
Agw =0, %,w = w}. Then there exists a dense Gs-set Q' C Q such that the harmonic forms
(w,g) € Q' have regular zeros. This means that the zeros of w consist of disjoint circles for
generic g.
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Observe that in this theorem, we could have substituted anti-self-dual 2-forms for self-
dual 2-forms with the same result.

Recall: (1) (dd"F(y), ) = Ry
(2) For w self-dual, Im i, consists of anti-self-dual 2-forms.

(3) R, swaps self-dual forms and anti-self-dual forms, i.e. R, : A 5 AT,
Proof of Theorem 4: We use a slightly different evaluation map

ev:QxM— AT,
(w’g’ x) H w(x)’

where AT — Met*(M) x M is the universal vector bundle with fiber A/ (z) at the point
(9,7) € MetF(M) x M.
In this case, we want to show that ev is transverse to the zero section of AT, i.e.

ev, : T @ — Nj (z)

is surjective, whenever w(z) = 0.
We have two necessary and sufficient conditions for (v, k) € T{,, 4 @:

(1) Ag(v) + L(Agitn)|1=ow = 0,
(2) *gpen(w +tv) = w + to.

Expanding (2) out, we obtain that v = #gv + & %5y w. When w(z) = 0, this gives
v = *40. Hence, in order to determine all the possible perturbations of w(z) when w(z) = 0,
it suffices to compute the v(x)’s as before, and project onto A™, if that is necessary (as we
shall see it is not).

The proof proceeds in the same fashion as for harmonic 1-forms. If w is self-dual and
w(0) = 0, then there exists an open dense subset near 0 on which w # 0 by the unique con-
tinuation theorem. Since at any point y where w(y) # 0, Im 4,4, = A~, by the proposition
in the previous section, Im ev, D R,(A~) = A". Thus ev, is surjective when w(z) =0. O

Remark: A self-dual form w is nondegenerate if w # 0. This is because w? = w A *w > 0,
if w # 0. Hence if b5 (M) > 0, we can construct a self-dual harmonic form which is nearly

symplectic, that is, is nondegenerate away from a collection of disjoint circles.

Let (&o, §o), (@1, g1) be regular points in @, and form

P = {(w, 1) € Q x M|(wo, go) = (@0, Go); (w1, g1) = (@1,91)}-
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Consider
ev:PxMx[0,1] - A\*

(wta gt, T, t) = wt(x)'

It is evident that ev, is surjective on U = {(wt, g:) € Plwy #Z 0 on [0,1]}, since at any
(Wt Gto» Tos to) at which wy(zg) = 0, ev.(wiy, g1, To) is surjective because wy, # 0.

Theorem 5 Given two regular points (@y, go) and (1, §1) in Q, there ezists a dense Gs-set
of paths inside U = {(wy, g;) € Plw, Z 0 on [0,1]} for which the zeros of (w, g:) gives a
cobordism inside M x [0, 1] between the zeros of (Do, §o) and the zeros of (&1, g1)-

Now if the 4-manifold M had a positive definite (or negative definite) intersection matrix,
then all the harmonic forms are automatically self-dual (or anti-self-dual), and their generic
zeros are circles. Hence by (M) = 0 or by (M) = 0 must be excluded from the following
theorem:

Theorem 6 Assume additionally that by (M) > 0. Then there exists a dense Gs-set Q' in
Q = H*(M;R) x Met*(M) for which the harmonic form (w, g) € Q' has regular zeros. Thus,
the generic harmonic 2-form has no zeros.

In fact, we can do even better. But first we need to discuss the stratification of A’R*
under the action of SO(4). Stratify A’R* by rank: Let V; = {w € A’R*tkw = i}. In
particular, V5 = {0}. V} has two substrata, namely the SD 2-forms and the ASD 2-forms,
which we denote V, ; and V, _, respectively. For convenience, we assemble the relevant data
in a chart:

Stratum Typical element | Dim orbit | Dim stratum
Vo 0 0 0
‘/2 )\6162 4 5
V;L,:I: )\(6162 + 6364) 2 3
Aieiey + Aoesey,
Vi— (Va+ UVa-) A # £ 4 6

Here, {e1, ey, €3, €4} is an orthonormal basis for R”.
We shall obtain Theorem 6 by showing that there exists a dense open set ¢ € @) for
which
ev:UxM—>/\2T*M

is a regular section, i.e. locally, taking U’ containing (w,g) € Y and U C M containing
x = 0, and showing that
ev:U xU — \°R*
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is transverse to V.
Assume for the moment that we can prove the following:

Theorem 7 There exists a dense open U C Q) on which ev, is surjective for all points in
U x M. More precisely, U D Q' = (Q — D) H*(M;R) x Met™® (M), where Met™ (M) is the
C*>®-metrics of M and D = {(w,g) € Q| * w = tw}.

Then ev : U' x U — A\?R? is transverse to V. Remove ev="(V;) from &’ x U. Then
ev:U xU—ev ' (V) > N°R* - 1}
is transverse to V5. Proceeding further,
ev:UxU—ev (Vo UVe) = N°R* = Vo — V3

is transverse to V, , and so on. Hence, by removing lower strata, ev can be made transverse
to any given stratum. Then we obtain

Theorem 8 Suppose by > 0. Then there exists a dense Gs-set Q" in Q@ = H*(M;R) x
Met*(M) for which (w,g) € Q" has no zeros, has full rank (and hence is nondegenerate)
away from a submanifold of codimension 1, and is SD/ASD on a union of disjoint circles.

Remark: Theorem 7 implies an analog of Theorem 5 for non-SD or ASD forms. Provided
the 1-parameter family (w, g;) is in @', we have surjectivity of ev..

Proof of Theorem 7: Assume (w,g) € @ — D. Then w can be written as w = w; + w_
with w, self-dual and w_ anti-self-dual, and wy # 0. The points = where w is SD are the
zeros of w_, which is harmonic as well, so, by unique continuation, w is SD (or ASD) only
away from a dense open subset of M. Of course, the locus {z|w(x) # 0} also is a dense open
subset of M. In what follows, take geodesic normal coordinates y on a suitably small ball
D™ about y = 0.

Case 1: Suppose w(0) € V43—V, .. Then we may assume that forally € D", w(y) € Va—Vi 4,
and Im i,q) = (xw(y))", a 5-dimensional subspace of A*TyM. Now, as y — 0 (more
precisely, fixing yo # 0 and sending ¢ — 0 with y = ty,),

<dd*G(y)7Im Z'w(y)>g - <Rya*0w(y)J—0>go
= (*o(Ry, w(y))go) ™",

with *q, go, Lo for the inner product at y = 0. But since w(y) — w(0) as y — 0, the
subspaces (R, (xow(y))*°)4, do not approach the same 5-dimensional space from the various
directions on S2 = {|y| = €}. Hence ev,(w, g, ) must be surjective.
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Case 2: Suppose w(0) € Vj ;. Since rank is upper semicontinuous, we may assume that for
all y € D", w(y) € Vi; w(y) € Vi — Vi1 on a dense open subset of D™. The considerations
of Case 1 then apply here as well.

Case 3: Assume w(0) € V. Once again, for all y € D™, w(y) € Vo U Vi, Im i) = (xw(y))*,
which is still 5-dimensional, and sending y — 0,

<dd*G(y)’ Im iw(y))g - (*0<Ry’ w(y»go)J—O’

so ev,(w, g, x) must be surjective.

Case 4: Here it becomes important to assume that the metric g is C*°, and the corresponding
harmonic form w is also C*°. Assume w(0) € V. If ev,(0) is not surjective, then

(dd*G(y), Tm i) = (dd*G(y), (xew(y))™)

must be a 5-dimensional subspace of A>T M, independent of y. Since w is C*, we are able
to write

w(y) = wy(y) + h.o.

where w,(y) = >, ; P (y)dy;dy; with p¥(y) a homogeneous polynomial of degree r, and ‘h.o.’
consisting of terms of degree > r in y. Note that there must exist some r < oo for which
wr(y) # 0; this follows from the ‘strong’ unique continuation theorem. Similarly, we can
write g = go+h.o., * = xg+h.o., L=14 +h.o., and d*° the (formal) adjoint of d with respect
to x¢. Hence

(|y°dd* G (y), Im i)y = |y[*(dd™ F(y), (xowr)™)g, + hoo.
<|Z/|2Rya (*OwT)J_())gO + h.o.

Observe that the coefficients of |y|2R, are polynomials of degree 2. Then,
|y|2<Rya *0Wr) gy = Z fﬁm(y)dyidyj’
,J
with f,ﬁQ a homogeneous polynomial of degree r +2 in y. Since the degree r term dominates
as y — 0, we see that, if ev,(0) is not surjective, then |y|*(R,, *ow,)g, must satisfy

|y|2<Ryv *0wr>go = frio (y)&)o,

with f,12(y) homogeneous in y, and @, constant. Hence



and w, = frialy|*(dd*F(y), %0o)g,- Finally dv = 0 and d * w = 0 imply dw, = 0 and
d %o w, = 0. Then,

dwr =0 = d(fr+2|y|4) A <dd*0F(y)’ *0(:)())90 =0
d(vowr) =0 = d(fryalyl*) A (xodd* F(y), *0@0)go = 0,

using the fact that (dd* + d*°d)F(y) = Ay F(y) =0 on D" —{0}. Now, if £ € TfM, w # 0
is in A?Ty M, and £ A w = 0, then w must be decomposable and £ must lie on the 2-plane
given by w. If £ A xw = 0 as well, then £ also lies on the 2-plane orthogonal to w, and & = 0.
Thus d(fr42|y[*) = 0 and f,1o = 0, contradicting the assumption. O

1.2.7 Harmonic 2-forms on a 2n-manifold

We will prove the following theorem, which is a slightly weaker version of Theorem 8, for
higher dimensions. Let M be a 2n-manifold, with 2n > 4.

Theorem 9 There exists a dense open U C Q = [w] x Met*(M) C H*(M;R) x Met*(M)
on which ev, is surjective for all points in U x M.

Proof: We need to prove that, starting from any (w,g,z) with w # 0, we can find an
arbitrarily small perturbation w + v (in stages) such that (w + v)(z) has generic type. Once
we prove this, we can invoke the following lemma:

Lemma 3 The set S = {(w, 9) € Q|w(z) is of generic type on a dense open in M} is dense
mn Q.

Proof of Lemma 3: We will exhibit an (w, g) € S arbitrarily close to (wg, g0) € Q. Pick
a countable dense subset of M, say {z;}. Let Uy > (wo,go) be an open set in Q). We pick
U; C U;_1 and V; 3 x; inductively, as follows: Given x;, there exists a point (w;, g;) € Ui_1
such that w;(x;) is of generic type. Then there exists an open set U; X V; o (w;, gi, %),
U; C U; 1, on which (w, g, ) is of generic type, since the generic type condition is an open
condition.

Now let (w,g) € N2, U;, which is nonempty because of completeness. By our construc-
tion, w(x) is of generic type on an open dense set in M. O

Since there exist points of generic type arbitrarily near any point z € M, for (w,g) € S,
evy(w, g, ) is surjective for all z € M and (w,g) € S. Now the surjectivity of ev, is an
open condition in () X M. Combining this with the compactness of M, we obtain that the
condition ‘ev,(w, g, z) is surjective for all z € M’ is an open condition in (). But S is dense,
so hence there is an open dense set U C @ on which ev,(w, g, z) is surjective for all x € M.
This would complete the proof of the theorem.
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Let us now proceed to show that w can be perturbed at x so that (w + v)(z) has generic
type. If w(z) = 0, pick a point y arbitrarily close to z such that w(y) # 0. It exists by unique
continuation. If w(z) # 0, pick a point y arbitrarily near x such that rk w(y) > rk w(z). This
is possible because the rank is upper semicontinuous. Upon picking suitable orthonormal
coordinates around z,

0 —-X\
A0

0 =X
A 0

0

where the A; > 0 are not necessarily distinct. Then by the Rule in Section 1.2.4, Tm i,
contains an element v of higher rank than w(y), if w(y) does not have maximal rank already.

For example, Im i, contains any element of the form

*

*
*

*
0 O
0 O
Form w(x) 4+ tRyv. Recall that, as in the section on 1-forms, R,v € Im ev,, so there exists a
perturbation of the metric giving rise to w'(z) = w(x) + tRyv (at least up to 1st order in ¢).
Since Ry,v preserves the rank of v, rk R,v > rk w(x). For small enough ¢, rk w'(z) > rk w(z).
This follows from observing that, since rk R,v > rk w(z), R,v is not zero on w(z)* = {w €
T,M|w(z)(w,-) = 0}, and, for small enough ¢, w' = w + tRyv is still nondegenerate on
(w(z)1)*t (the second L with respect to a Riemannian metric). Continue this process until
we get a w(x) whose ‘eigenvalues’ \; are all nonzero.

The next step is to perturb until the \; become distinct, while keeping them nonzero.
Denote by Jj the matrix

of rank 2k.
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By an orthonormal change of basis, we may write
/\IJkl
)\QJ k2
Ardk,

where \; > 0, \; # \;, and k; > ... > k,. Of course, >.7_, k; = n.
Let
A,
o A # Aj, A > 0, B € O(2n),

={BAB'|A =
/\kl,...,kh« ’ kl Z “ee Z kr,kl + .ee + kT =N

/\r Jkr
Aki,...k, 15 the stratum consisting of orbits of skew-symmetric matrices of the form

A1<]]C1

)\erT
Lemma 4 dim Ay, x = dim O(2n) — 235 _, k2 + 7.

)‘1 Jkl
Proof: We first compute the dimension of the orbit of A = . .dim O(2n)-
Ardk,

A = dim O(2n) —dim Stabilizer = dim O(2n) — dim ker ad(A), where ad(A)(B) = [A4, B] =
AB — BA. Writing B = (B;;), where B;; is a 2k; x 2k; block, [A, B] = 0 gives
)\iJkiBij = )\jBiijj-
Ifi= j, then B“ € Gl(kz, C) If 4 75 j, then Bij =0. Thus,

ker (ad(4)) =~ [Gl(k,C)@---@ Gl(k,,C)]|[)O(2n)
Uk) & ...e U(k,),

and
dim ker = k? + ... + k2.

Finally, O

dim A,k = dim O(2n)- A+ T = dim O(2n) — Zk2 +r.

Lemma 5 dim Im iy = dim O(2n) — Y0_, k? +
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* % *
x  x % A,
x X X X
X x X X
with A; = , where * means the block is an arbitrary matrix of the correct
X X X
X X X «
size and X consists of 2 x 2 blocks of the form 2 _cd 2
Thus, dimImiy = dim O(2n) — ZZ: %
= dim O(2n) = >_k} +n. O

We now have that dim Im 74 > dim Ay, . i, where A € Ay, .-

Claim: There exists a perturbation v such that &(z) +tv € Ay,
as long as not all k; = 1, i.e. @(x) is not already generic.

with Y0, 12 < YT k2,

8

Proof: Pick y arbitrarily close to x such that @(y) € Ap,,.m, with > m? < > k?. Then
dim Im i5q) = dim Ry(Im ig)) > dim A,k Now for small ¢, @(x) + tRyv, with v €
Im ig(y), is still nondegenerate. Hence this means that there exists a v such that &(z) +tRyv
exits Ag,,.., (as well as avoids other Ay with 3 kz’-2 > 3" k?) by dimension count. O

Thus we can perturb in stages until we finally obtain an (@, g) close to (w, g) with &(z)
of generic type. This concludes the proof of the theorem. O

A consequence of the theorem is the general principle that a harmonic 2-form, as regards
generic transversality issues, behaves just like an ordinary closed 2-form, which, in turn,
behaves like an ordinary 2-form with no differential condition. (Cf. Martinet for a study
of generic closed forms, which, in the end, turns out to closely resemble our situation of
harmonic 2-forms.)

Corollary 2 There exists a dense Gs-set of Q@ = [w] x Met*(M) c H*(M;R) x Met*(M)
on which the harmonic 2-form (w, g) has no zeros.

Corollary 3 Let M be a 6-manifold. There exists a dense Gs-set of Q = [w] x Met*(M) C
H?(M;R) x Met*(M), on which the harmonic 2-form has no zeros, has isolated points where
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it has rank 2, and, away from the rank 2 points, has rank 4 on a submanifold of codimension
1.

Question: Is is possible to use results of this kind to construct symplectic forms on M?"?
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1.3 The Dirichlet Problem

Using a setup similar to that for harmonic forms on a compact manifold, one can prove an
analogous theorem for solutions to the Dirichlet problem.

Let 2 C R" be a bounded domain with a C'*°-boundary 0€2. For such domains 2, we
have the following:

Fact: There exists a unique solution v to the Dirichlet problem Aju = 0, u|sq = f, where A,
is the Laplacian with respect to the C*¥-metric g (with & large), and f is a fixed C*-function
on the boundary.

(Since our goal is not to prove our genericity results in the greatest possible generality,
we shall make some simplifications which may turn out to be unnecessary.)

Consider Met*(9), the space of C*-metrics on §, i.e. defined and C* on some open set
containing 2. This is a Banach manifold, which we also view as {(u, g)|Ayu = 0,ulpn = [}
We shall prove the following theorem:

Theorem 10 There is a dense Gs-set in Q = Met*(Q) for which the solution to the Dirichlet
problem Agu =0, ulsq = f, has regular zeros inside 2, provided f # 0.

Remark: Note that no claims are being made about the behavior of zeros as we approach
o00.

As before, we start with the following evaluation map:

ev: QR x2—R
(v, 9),2) = u(z),

and we show ev is regular, that is, ev,(u, g, z) is surjective (i.e. nonzero), whenever u(z) = 0.
Computing ev, (u, g, ) is equivalent to differentiating the conditions Ag,u; = 0, ut|oq = f,
where g; = g + th and u; = u + tv. Differentiating, we get

d d
%(Agtut) = Agv + E(Ag—l—th) u=0,

t=0 t=0

and v|gn = 0.
At this point, we convert the above differential equation into an integral involving the
Green’s function.

Fact: If € is a bounded domain with C°*°-boundary 0f2, then the Green’s function G :
O x Q — R exists, where G(-,00Q) = G(99,-) = 0.
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Hence, we can write

W@) = = [[G) GBn)|  ul)i
= :I:/QG(ac,y) %(*td*t) ) du(y)duv,

= =+ /Q G(z,y)(*d * + * d¥)du(y)dv,
= & | Gla,y)(xdi)du(y)dv,

using d *x du = 0.
Pick local geodesic coordinates on an open set U around x = 0. Since we shall only use
perturbations of g which are supported arbitrarily close to x, we have

= i/UG(O,y)(*déc)du(y)dvg.

If we let L ¢
s ifn>2
F(y) =] wrz H7h
) { log |y| ifn=2,

then,

Fact: G(0,y) is asymptotic to F(y) as y — 0. That is, as y — 0, the ratio [G(0,y) — F(y) :
F(y)] = 0. The same is true for 9“-4G(0,y) and 84 F(y).

This means that G(0,y) ~ F(y) as well as ;2 75,0 (0,) ~ \z%‘

Now set w(y) = du(y), and write w = Y, wz( ) i(t). We can choose an orthonormal basis
e;(t) = e; — 2t Y hiie; on f g—+th, where ez is an orthonormal frame with respect
to(g). 2 Z]v(ﬁ) = 7I 8(0 ) * d(’*du? { } P

Then,

+ [ GO, y)d(idu(y))
:i:{/Ud(G(O y)kdu(y) / dG(0,y) A *du(y )}

= + g G(0,y)*du(y) j:/ (dG(0,y), *xkdu(y)),dv,.
U U

Since h is supported near z, the first term on the right-hand side vanishes, and we are left
with
=& [ (dG(0,), xidu(y))ydv,.
U
If du is identically 0 near y, then u is constant near y, and v must be constant on all of
Q2 by unique continuation. For u constant, Theorem 10 is trivially true. So assume u is not
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constant. Then there exist points y arbitrarily near 0 such that du(y) # 0. When du(y) # 0,
idu(y) 1S surjective, and, just as in the case of harmonic 1-forms, we see that ev.(u,g,z) is
surjective. This concludes the proof of Theorem 10.
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Chapter 2

Moser argument for self-dual
harmonic 2-forms on a 4-manifold

2.1 Self-dual harmonic 2-forms and almost complex
structures

Let M* be a compact, closed, oriented 4-manifold. Assume b5 > 0. Then, according to
Theorem 4, for a pair (w, g) consisting of a generic metric g and a self-dual harmonic 2-form
w with respect to g, (w, g) represents a section of /\; — M, which is transverse to the zero
section. Here /\; is the subbundle of A>TM — M whose fiber over a point p € M is
A§ (p) = {w| *g w = w}. In particular, the zeros of w are disjoint embedded circles.

Since w Aw = w A *w, w is nondegenerate at p if and only if w(p) # 0. That is, w is closed
and symplectic away from the union of circles C, and is identically 0 on C.

This is what enables us to define an almost complex structure J on M — C.
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Proposition 10 If w is a self-dual harmonic 2-form which is nondegenerate on a connected
set M — C', then there exists a unique almost complex structure J compatible with w and g
on M — C, where g is conformally equivalent to g.

Proof: Any 2-form w can be written, with respect to the metric g, as
w = Ajejex + Agesey,

with eq, ..., e4 orthonormal and positively oriented at a point p € M — C.
For w to be self-dual, A\ = \,. Hence,

w = Aejey + ezeq).

This A is well-defined up to sign: Simply consider %w Aw = Neq...eq = Ndv,, with dv, the
volume form for g. Since A\? is only dependent on w and g, we can determine \ up to sign.
However, taking advantage of M — C' being connected, we may fix A on all of M — S so that
A> 0.

We then set J : e; — ey,e9 — —eq,e3 — e4,e4 — —e3. This definition is equivalent to
the following: Let § = Ag, and define J such that §(z,y) = w(Jz,y). Hence we see that if
there is a J compatible with w and g, it must be unique. Thus J is compatible with w and
g=Agon M —C. O

Observe that w is defined on all of M and is zero on C, g can be defined on all of M and
is zero on C, but is not smooth on C, while J is defined only on M — C.

We also need a relative version of the previous discussion. Recall Theorem 5, which we
present here in slightly different form.
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Theorem 5A Let (wp, go) and (w1,91) be generic harmonic forms. If there erists a path
(we, g1) of harmonic forms wy with respect to g, such that wy # 0 for all t € [0,1], then there
exists a Gg-set of perturbations {(@y, §:)} of this path, fizing endpoints, such that {(&y, G;)}
has regular zeros in M x [0, 1].

Note: The conditions for the theorem are minimal. The space {(w, g)|g € Met*(M), xw = w,
Agw = 0} is diffeomorphic to R x Met* (M), where Met*(M) is the space of C*-metrics on
M, and, as long as b3 > 1, we can always connect (wo, go) to (w1, g1) via a cobordism such
that wy; # 0 for all £ € [0,1]. In the case by = 1, as long as (wg, go) and (w1, g1) lie on the
same side of the real line, there exists a cobordism.

Let {(wy, g¢)} be a regular cobordism. As in the previous proposition, we can define )\
uniformly over Uyepo (M x {t} — C;) and get a family {(w;, gs, J;)}, which is compatible
where defined.

2.2 Moser argument for self-dual harmonic 2-forms
Consider M* as above. Let {w;} be a generic family of self-dual harmonic 2-forms such that
(i) [w¢] € H*(M;R) is constant.

(ii) The sets C; = {z € M|wi(z) = 0} are all S'’s; hence via a diffeomorphism, we may
assume that C' = C, is a fixed S'.

(iii) Let © be an oriented surface with 02 = C. (We are assuming here that C is
contractible.) Then [, w; does not vary with ¢.

Then we have the following:

Theorem 11 There exists a 1-parameter family of C'-diffeomorphisms of M, which is
smooth away from C, and takes (M — C,wp) (M — C,wy) symplectically.

This generalizes the classical

Theorem 12 (Moser) Let {w;} be a family of symplectic forms on a closed manifold M.
Provided [w;] € H*(M;R) is fized, there is a 1-parameter family of diffeomorphisms ¢; such
that ¢;jw; = wy.

Proof: (Moser) Let 7, be a 1-parameter family of 1-forms such that %t = dn,. Thus, if
we define X; such that ix,w; = n, then Lx,w; = (ix, od+doix,)w = dn, which, integrated,
gives a 1-parameter family ¢; such that ¢;w, = wp. O
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Proof: (Theorem 11) The point here is to find a suitable 7, such that % = dn; and
nlc = 0. Fix some 7; such that d“’t = dn;. We shall find a function f; on M such that
M = dfy “up to first order” near C.

Condition (iii) implies that there exists an f; on C such that i*7;, = df;, where i : C — M
is the inclusion, i.e. #*7); is exact. This is because

ok ~ dwt
/H?F/zm / N = —=0.
c 9]

In order to extend f; to a neighborhood N(C) of C, first observe that there is only one ori-
entable rank 3 bundle over S* (7 (BSO(3)) = 0 implies S' — BSO(3) is homotopically triv-
ial) and hence N(C) ~ C x D3. Choose coordinates (0, z1, z2, z3) such that df, dz, dxs, dzs
at (6,0) are orthonormal.

Setting
O

g

(0,0)z;x;

fi(0, 21,22, 3) = £,(0,0) +Z77z 0,0)z; + - Z

on N(C), where 7, = 3, ;dz; + 7pdf, we have

0
dfi(0, x1, 29, 23) = ajg(e 0d0+z

+ ZmHdez—i- Z

up to first order in the x;’s. Now observing that

1) 20,00 = (0,0,

(2) dm(6,0) =0,

Y (9. 0),d6

877z

0 0)(wsdx; + xjdx;)

and that (2) gives

Oy on;

o, (0 0) = 50 (0 0),
on; 677]

2 0.0) = L0.0),

we obtain

df,(0,z) = (n(, +Z o, °6,0)z >d¢9

+Z( 90+Za’7’ )dmi

7

= 1y(0, ) d9—|—277i 0, x)dx;
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up to first order in z.

Damping f; out to 0 outside N(C), we arrive at n, = 7, — df;. Finally, we obtain the
vector field X; such that ix,w; = m. X will then give rise to a 1-parameter family of
symplectomorphisms, away from C', once we establish that X; — 0 rapidly enough as p — C

(pe M).
On N(C),
wy = L1 (9, l‘) (d.’l?gd.’L'g + dxldG)
+ L2(0, .T) (dxgdxl + d$2d0)
+ L3(9, l‘) (dﬂ?ld.’EQ + dl‘gd@)
+ @,
where L;(0,z) = 3; Lij(0)r; and @ consists of forms in dz;, df, whose coefficients are

quadratic or higher in the z;. In terms of matrices, w; corresponds to

0 L, L, Ls
“L, 0 L; —L, .
L, L, 0 L |79
“Ls L, -L, 0

where Q has quadratic or higher terms in the z; and the matrix is with respect to basis
{dz1,dzy,dx3,d0}. ix,w; = m; then becomes

(a1 az az ag)A = (n1 M2 13 M)

with X; = Y, a;dx; + agdf. Thus,

(a1 ag a3 ag) = (n M2 M3 me)A™"
0 —L1 —LQ _L3
(nmnsme) | L 0 —Ls Ly
LP+L3+L3| Lo Ly 0 —I
Ly —1L, L, 0

up to first order in z. This means that |X;| < k|z| near C; hence, as x — 0, |¢1(0,z) —
¢o(0, )| — 0, where ¢, is the flow such that %t = X,. This concludes our proof. O
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Chapter 3

Intrinsic Characterization of
Harmonic Forms

3.1 Harmonic 1-forms

Let M be a closed, oriented n-manifold. Calabi, in [C], gave an intrinsic characterization for
a closed 1-form to be harmonic, which we will describe presently.

Call a closed 1-form w generic, if w, as a section of T* M, is transverse to the zero section.
This is equivalent to the critical points of f being Morse, where f is any local function with
df = w. Using a Sard argument, it can be shown that the ‘generic’ closed 1-form is transverse
to the zero section. We also showed in Chapter 1 that it is true even for harmonic 1-forms.
We may then talk about the indez of each zero of w - this is the Morse index of any local
function f satisfying df = w.

Theorem 13 (Calabi) Let w be a generic closed 1-form. Then the following are equivalent:

(A) There exists a metric g with respect to which w is harmonic.

(B) (i) w does not have any zeros of index 0 or n, and (ii) given any two points p, g € M
which are not zeros of w, there exists a path v : [0,1] — M with v(0) = p and v(1) = g,
such that w(y(t))(¥(t)) > 0 for all t € [0, 1].

(C) (i) w does not have any zeros of index 0 or n, and (ii’) through every point p € M
which is not a zero of w, there erists a closed curve v : S* — M with v(0) = p, such
that w(v(9))(¥(9)) > 0 for all 6 € S*.

We shall call such a closed 1-form an intrinsically harmonic 1-form and a positive path
as in (ii) an w-positive path.
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Let us first consider the local picture near a zero p € M of a generic closed 1-form w.
Taking a local coordinate chart U with p mapping to 0, w(z) = df(x), with z = 0 a Morse
critical point of f. Using the Morse lemma, we may assume f(z) = 3{(n — k) - (z1 + ... +
22) — k- (22, + ... +22)} and w(z) = (n — k) ©F | zidz; — k Y5y zidz;. Hence, setting
g =Y dx; ®dz;, we obtain xw = (n — k) >k Tidx gy — k Yok Tid (), and d x4 w = 0.

Observe that if w is harmonic with respect to g, and w = df locally, then f is harmonic
with respect to g, and, by the maximum principle, w cannot have any zeros of index 0 or n.
We summarize the above local considerations in the following proposition:

Proposition 11 Ifw is a generic closed 1-form without any zeros of index 0 or n, then near
every zero there exists a metric g for which *,w is closed.

Proof (Theorem): (A)=(B). Assume a generic closed 1-form w is harmonic. Then (i) is
satisfied because of the maximum principle. In order to prove (ii), define the ‘upland’ U,
(resp. ‘lowland’ L,) as follows: U, (resp. L,) = {q € M| There exists an w-positive path
from p to ¢ (resp. from ¢ to p)}. Also note that w gives rise to a codimension 1 foliation on
M away from the zeros, consisting of integral submanifolds of w. In this section, if we refer
to a leaf of w, we mean a leaf of w|y (p,)s_, where {p1,...,ps} is the set of zeros of w. The
upland U, is a union of leaves of w: If there is an w-positive path from p to ¢, then given
¢ € L, (the leaf through ¢), we can adjoin the w-positive path from p to ¢ and the path
within L, from ¢ to ¢/, and perturb it to make it w-positive from p to ¢’. The boundary of
U, must also be a union of leaves of w, which necessarily are closed in M — {p;}{_,. We now
obtain a contradiction if OU, # () because [y, *w # 0, whereas [0U,] = 0 € H,_1(M;Z).
Thus, U, = L, = M — {p;}5_;.

(B)=(C). Assume a closed 1-form w is generic, and it satisfies (i) and (ii). (ii) immediately
implies (ii’): Given p € M — {p;};_,, take any ¢ € M — {p;}{_,. Then there exists w-positive
paths from p to ¢ and from ¢ to p. Now, simply adjoin them and smooth the endpoints. We
may also assume that the closed transversal has no self-intersections.

(C)=(A). Let w be a generic closed 1-form satisfying (i) and (ii’), and let {p1,...,ps}
be the set of zeros of w. On very small, non-overlapping disks D(p;) about p;, there exist
metrics g; such that #4w is closed on D(p;). Since *,w = d§; locally, we can damp &; quickly
outside D(p;). Set £ = X &. Then d€|p(p,) = *4,w on D(p;) and wAd€ > 0 on U; D(p;), with
strict inequality away from the p;.

Next, through each point g # p;, there exists an embedded v, : S — M transverse to
the foliation. 7, can be extended to a foliated embedding ', : S* x D"~' — M, where the
foliation of S' x D"~! is given by 7} (df), with m; the projection onto the i-th factor and
df the standard 1-form on S'. Here, we assume I’y misses {p;}_ ;. Now define a Poincaré
dual to 7v,(S'): Let u be a nonnegative (n — 1)-form on D" which is positive at 0 € D"
and has support on the interior of D"~!, and take n, = (T';).(75p). n, has the property that
wAn, >0 on (S and wAn, > 0on M. By compactness, we need only finitely many ¢’s
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(say qi,...,qm) such that
WA (dE+ g + ... +1g,) >0

on M —{pi}i_;.

Set w = d& + Y;m4- In a neighborhood of each critical point p; there exists a g; such
that @ = *,,w. We now extend g|p(,) = g; to g defined on all of M such that & = *4w.
By linear algebra, if w(p) # 0, then w(p) A @(p) > 0 implies that there is a g(p) such that
W(p) = *gpmw(p). Note that, since w A&(p) > 0 forallp € M = M —UD(p;), w gives
rise to a nonzero section (line field) of A’ T*M, and & gives rise to an (n — 1)-plane field
of A'T*M transverse to the line field. If we want & = *q,w, we must require the line field
to be orthogonal to the (n — 1)-plane field, i.e. there must be a splitting with respect to
the metric. Since g has this property on U D(p;), extend g|3[U D(pyy PO all of M, using the
standard partition of unity argument for constructing metrics, but making sure the splitting
is preserved. O
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3.2 Morse theory of harmonic 1-forms

In this section we prove the general form of the theorem conjectured by Farber, Katz, and
Levine in [FKL] regarding allowable Morse singularities of harmonic 1-forms. Let M be a
closed, oriented n-manifold.

We prove the following theorem:

Theorem 14 Let wy be a generic closed 1-form with no zeros of index 0 or n. Then there
exists a family of generic closed 1-forms wy, t € [0,1], with [w;] € H'(M;R) fized, such that
wy 18 tntrinsically harmonic and each w; has the same number of zeros of each index.

This theorem tells us that, in studying the Morse theory of closed 1-forms as in [N],
the assumption of harmonicity does not give rise to additional constraints regarding critical
point structure.

Observe that if w is harmonic with respect to g, given any local function f with df = w,
f is harmonic and, by the maximum principle, w cannot have any zeros of index 0 or n.

Proof: First note that the closed form w = wy gives rise to an (n — 1)-dimensional foliation
consisting of integral submanifolds of w, away from the zeros of w. For a closed 1-form w
with zeros, define a leaf L, through p € M by L, = {z € M| There exists a smooth path
v :10,1] = M from p to = with w(v(t))(¥(¢)) = 0 for all t}. If a leaf does not pass through
a zero of w, it is called a nonsingular leaf, otherwise, it’s a singular leaf. If L is a singular
leaf, then let the components of L be the closures in L of the connected components of L
restricted to M — {z|w(x) = 0}.
The proof then breaks up into the following components:

(1) The compact leaf case. Here we assume all the leaves of w are compact, and reduce the
problem to a problem in graph theory.

(2) Decompose M into two components M, and M, consisting of (roughly speaking) the
compact leaves and the noncompact leaves, respectively.

(3) The general case. The noncompact leaf case is treated in [FKL]. Using this, and the
same methods from (1), we obtain the general result.

(1) Compact leaf case:

Let us first assume that all the leaves of w are compact. If we introduce the equivalence
relation ~, where p ~ ¢ if and only if L, = L,, then I' = M/~ is a graph. Critical points
of index 7, 1 < ¢ < n — 1 do not give rise to true vertices of the graph I', since the surgeries
corresponding to passing such critical points do not change the connectivity of the leaves.
Near a critical point of index 1 we have the situation as in Figure 1, whereas near a critical
point of index n — 1, we have the situation as in Figure 2, provided (i) n > 3, (ii) w does not
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/N

Figure 1 Figure 2

have more than 1 critical point on each leaf, and (iii) the leaves which locally come together
or split off weren’t parts of the same global leaf. When n = 2, at a point of index 1, both
Figure 1 and Figure 2 are possible. The arrows represent the direction of increase for the
local Morse function (f such that df = w).

Perturb w slightly in its cohomology class, so that each leaf contains at most one zero
of w, while keeping all the leaves of w still compact. Then, I' = M/~ can be viewed as
a trivalent (= each vertex has exactly 3 edges), directed graph, and we can assign weights
to each edge: If v is an edge from p to ¢, then its weight is the w-length of any path from
71(p) to m~1(q) sitting inside 7=*(v), where 7 : M — I' = M/~. These weights represent
maw on I' = M/~ ie. they give a cohomology class [m,w] on . Thus T is a collection
(V(T), E(T), W) of vertices, directed edges, and weights W : E(T') — R™.

Note also that the vertices have either (i) two incoming edges and one outgoing, or (ii)
one incoming and two outgoing, from our previous discussion, i.e. no vertices as in Figure 3.

Figure 3
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Figure 4
We introduce the two kinds of operations we shall be using:

(Ay). Graph modification to increase connectivity. Whenever we have a subgraph of the
type pictured on the left-hand side of Figure 4, we may replace it with one on the right-hand
side, provided that € < d.

This modification corresponding to the self-indexing procedure for Morse functions, clearly
does not alter the homotopy type of the graph. In order to preserve the cohomology class,
we need:

()a+c=d+e+¢
@)b+d=V+€e+d
iii)a—e+d=ad +€+d
(i)
(iv)b+e+c=b+¢€+
vid—e—c=d —c¢

( d dl /
(vi)b+e—a=V—4d

Upon a moment’s consideration, these six equations are linear combinations of three of them,

say (i), (iv), (v).
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a0 b+e-0

Figure 5

A possible solution is given in Figure 5, provided ¢ is small, i.e. < d. Here § can be any
positive number < min(a, b+ €). Of course, the key point in solving for a' ~ d’, ¢ was that
they were positive numbers.

In terms of Morse theory, if f is a local function with w = df on this subgraph, and ¢,
and ¢y are the two critical points of index n — 1 and 1 respectively, then we may reduce
f(c2) so that f(c2) — f(e1) < a, so long as d > e. We can then raise f(c;) using the same
self-indexing procedure and obtain f(cs) < f(c¢;). See Figure 6.

[

Figure 6
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Figure 7

(As). Graph modification as in Figure 7. Morse theoretically, this corresponds to reversing
the heights of the two critical points of index 1. d > ¢ is sufficient for the modification to be
valid. See Figure 8 for a Morse-theoretic interpretation.

<> <>

Figure 8

(B). We may alter the weights of the edges, provided the weights remain positive, and the
total weight around each closed path remains the same (hence preserving the cohomology
class). This corresponds to shortening a Morse function f : f~1([a,b]) — [a,b] by excising
I~ Y([r,r'"]) € f~*([a,b]) and regluing, as long as there are no critical values in [r, 7’| (or its
reverse process).

Observe that all the above operations can be performed through a 1-parameter family of
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Figure9

closed 1-forms in the same cohomology class.

We shall modify the graph I" using the above operations and inductively increasing the
‘connectivity’. Pick a vertex p on I' = M/ ~. Let U, be the ‘upland’ of p, that is, the
subgraph consisting of all the vertices and edges that can be reached from p by traveling in
the positive direction. Define the ‘lowland’ L, in a similar fashion. We stipulate that p & U,
unless there is a positive path from p back to itself. (Same for p in L,.)

It is sufficient to show that there exists a ¢ such that U, = L, = I". We find it most
convenient to use a ¢ such that ¢ € U, (and hence ¢ € L,). Indeed, start with p and keep
traveling in some positive direction until we return to a vertex on the path. Simply take ¢
to be this point.

Operation (B) may not appear practical, until we couple it with the following observation:

Key Observation: If U, # I, then there exist disjoint subgraphs U, and U, with V/(U,) UV (U;) =
V(T) and E(U,) U E(U;) U{edges between U, and U;} = E(T'), such that all the edges be-
tween U, and U, are directed from U to U,.

Let 7i,..., 7s be the edges from U, to U;. Then, modifying each of the W (v;) by the
same constant (that is, modifying W (v;) — W(y;) + C for some C) will not change the
cohomology class represented by w; this is due to the fact that each closed loop in I' must
traverse the same number of times from U, to U, as from U, to Uj.

Hence, we may now apply (B) and assume without loss of generality that W(vy;) = €
where € can be made as small as we want.

There are two possibilities for I near v, - see Figure 10.
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(i)

Figure 10

(i) Since € can be made arbitrarily small, we simply make ¢ < ¢, apply (A;), and increase
the number of vertices in U, as in Figure 11.

(ii) Apply (Ag) with e < c. See Figure 12.

Figure 12

Since the number of vertices in U, increases after each modification (whereas the total
number of vertices of I remains the same), by induction, we can find a modified I' with
U, =T. Next, apply the same procedure for L, - here we simply note that neither (A;) nor
(A2) decreases the circulation, and modifying I' to make L, larger will not affect U, =T.
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Figure 11

(2) Compact and noncompact leaves:

Here we closely follow the discussion in [FKL].

Let w now be a generic closed 1-form. We describe how M is split into M., which is
roughly the union of compact leaves, and M, roughly the union of noncompact leaves.

First, if L is a compact leaf, then there exists an open neighborhood of L consisting solely
of compact leaves. This is because we can integrate w to give f with df = w near L. Hence,
the union of compact leaves in M is open.

Next, the union of all compact leaves (nonsingular or singular), as well as compact com-
ponents of noncompact singular leaves, is closed in M. This is because all the above leaves
and leaf components are closed leaves when restricted to M — {z|w(z) = 0}. We use a
result of Haefliger’s (c.f. [Ha]): Given a codimension 1 foliation on a (not necessarily closed)
manifold N with dim H'(M;R) finite, the union of closed leaves is closed.

These tell us that M = M,.|J M, where

M, = U Loy Moo = U Lo
Lo compact £, nonsingular
noncompact

are both n-dimensional submanifolds with (non-smooth) boundary, and OM, = OM,, =
M.N My is a union of compact components of noncompact leaves.

Lemma 6 There exists a small perturbation of w in its cohomology class so that each leaf
contains at most one zero of w.

Proof: It suffices to modify w by Y, df;, where f; is a compactly supported function near
a zero p;. Consider [w : Hi(M;Z) — R, and let S = Im(fw). Since S is a countable set
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in R, there exist f;, new zeros p;, and paths 7;; from p; to p; such that w(y;;) € S. This
prevents p; and p; from lying on the same leaf of w + Y=, df;. O

Lemma 7 If all the zeros of w lie on distinct leaves, then OM, = OMy, is the union of all
compact components of singular noncompact leaves.

Proof: Consider w = df near the singular point of a singular noncompact leaf with a compact
component. Without loss of generality assume f hasindex 1 and f(z1, ..., 7,) = —22+3" , 27
near the zero of w. If we integrate (in the negative direction) a gradient flow emanating from
the compact component, we see that all the neighboring leaves of w ‘below’ the compact
component are compact nonsingular leaves. On the other hand, all the leaves ‘above’ the
singular noncompact leaf will be noncompact and all the leaves ‘below’ the noncompact
component of the noncompact leaf are also noncompact. O

compact

noncompact
=

Figure 13
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(3) General result:

We start with a lemma

Lemma 8 (FKL) If L is a nonsingular noncompact leaf of w, then there is an w-positive
path between any two points of L.

Proof: We invoke the standard argument used to find a closed transversal to a non-closed leaf
L. Let p € M be alimit point of L. Then there exists a (distinguished) neighborhood U C M
of p, with respect to which LN U consists of hyperplanes converging to the hyperplane
containing p. Which also means that there exist ¢; and ¢, in L and an w-positive path from
q1 to ¢o. Now take a path on L from any r; to ¢, the w-positive path from ¢; to ¢o, and some
path on L from g5 to 7o, and perturb so that the composite path is w-positive and smooth.
O

Let w be a closed 1-form. We may assume that all the zeros of w lie on distinct leaves.
Since the interior of each connected component of M, is w-transitive (can get from any point
to any other via an w-positive path), we can graph-theoretically represent each connected
component of M, by a single vertex, and take I' = M/ ~, where ~ is the equivalence
relation: (i) p ~ ¢ if p,q € L, L compact, and (ii) p ~ ¢ if p, ¢ belong to the same connected
component of M,,. Note that the resulting graph is no longer trivalent, and the subgraphs
below become possible (where a black dot denotes a component of M,,):

Figure 14

Let us start with p € M on a nonsingular noncompact leaf L. The same graph-theoretic
maneuvers carry over to this case with a few differences. Whenever one of the critical points
sits in a noncompact singular leaf (say the higher critical point), we have the following
situations:
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Figure 15

In these cases, as long as € can be made small, moving a critical point of higher index
above one of lower index is easily done. This is because one only needs to modify the Morse
function in an arbitrarily small neighborhood of the trajectories (for a gradient-like flow into
and out of a critical point) in order to change the height of the critical point.

The analogs of (A1) are depicted in Figure 16. We have two possibilities, depending
on whether the lower critical point sits in (i) a compact singular leaf, or (ii) a noncompact
singular leaf.
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(i) e < ) \/ \

(i)

Figure 16

The analog of (A,) is as in Figure 17.

Figure 17

The above modifications decrease the total number of vertices in I" by 1, while keeping
the number of vertices in U, at least the same. This completes the proof of Theorem 14. O
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3.3 Harmonic (n — 1)-forms

Next, let w be a closed (n — 1)-form on an n-dimensional manifold M. Assuming w has
‘generic’ zeros, we give an intrinsic characterization for w to be harmonic. This is the dual
situation to Calabi’s result - note that however Calabi’s result does not imply the dual
(n — 1)-form result.

Call a closed (n — 1)-form generic if w, as a section of \"~'T*M, is transverse to the
zero section.

Let us begin by analyzing a generic closed w near a zero p. Taking local coordinates
centered around z = 0,

w(z) = ajz;dzg) + ho.,
0]

where ‘h.o.” refers to terms quadratic or higher in the z;’s. Here, we write dz(;) = (=1)"*1dz,...dz;...dz,.

Lemma 9 Ifthe matriz A = (a;;) is diagonalizable, w can be written as w(x) = Yj_; Aixidry)+
h.o., with >>; \; = 0.

Proof: It suffices to consider just the first order part of w, i.e. let
W = Zawa:]dx(,)
t,J

If we make coordinate changes z; = bijx;-, then,

_ i+1 / P raT !
w = Z (—1) aijbjkxk [blll"'bili"'b’fﬂndxll"'dxli"'da:ln]
iﬂj7kal17---7ln
T ol
= Y aibipbazidrg,
0,5,k

where b;; is the (4, j)-th minor of B = (b;;). Let B = (b;;). Hence the coordinate transfor-
mation gives us

A (B)YAB = det B- (B *AB).

If A is diagonalizable, we can choose B such that the right-hand side expression becomes a
diagonal matrix D = diag(Ay, ..., \,). Finally, dw = 0, and hence trD = 0. O

Observe: The \;’s are completely determined up to permutation and scaling. Thus there
is no unique normal form for w with a generic zero at z = 0.

Theorem 15 A generic closed (n — 1)-form w on M is harmonic if and only if (1) the
traceless linear transformation associated to every zero p € M as in the previous lemma is
diagonalizable, and (2) there exists an (n — 1)-dimensional submanifold N, through every
point p € M which is not a zero of w, such that w(T,N,)(x) # 0 for all x € N,,.
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Proof: (=) Assume the generic closed (n — 1)-form w is harmonic.

(1) Choose geodesic normal coordinates z; about the zero p. Then

w = Z a;;rjdz(y + h.o.,
2
where the {dz;} are orthonormal up to first order near z. Now, *w = 3, ; a;;z;dz;+h.o.,
and d *w =0 = A = (a;;) is symmetric, hence diagonalizable.

(2) Observe that a closed form « with [«] # 0 in H*(M; Z) gives rise to a map f : M — St
where a = f~'df. (We use the convention that [¢ df = 1.) Then f~'(c) for generic c is a
compact (n — 1)-dimensional submanifold of M such that PD([f *(c)]) = [d6].

Lemma 10 There exists a closed 1-form & = *w + & such that (1) @ = xw near the zeros of
w, (2) wA@ >0 on M~—D(p;), where {p;} is the set of zeros and D(p;) is a small disk
around p;, and (3) [©] € H'(M;Q).

Proof: If xw is in a rational cohomology class we would be done. If not, take a basis {a;} for
H'(M:Z). Any closed w; representing o gives rise to f; : M — S' such that w; = f;'d#, and
we can hence find a submanifold NV; avoiding {p;} which is Poincaré dual to «;. Now, take a
neighborhood of N; of the form N; x I. Take a compactly supported function g; on I with
J; 9i(x)dz = 1. Then 73(g;(x)dx) € a;. For small enough constants c;, *w + 3, ¢;ms (g:(x)dz)

satisfies

wA |*w+ > ems(gi(x)dz)| >0
on M — U D(p;). We can certainly find suitable ¢; so that @ is rational. O

Now, choose a suitable integral multiple niw of @ so that that [n-&] € H'(M; Z). Representing
n& by a function f : M — S, we see that, away from critical levels of f, there exists
a submanifold N, through each point p € M (a level submanifold) which must satisfy
w(TyNp)(z) # 0 for all x € N,. If p happens to sit on one of the critical levels, simply
perturb a nearby level surface so that it passes through p.

(<) Let w now be a generic closed (n — 1)-form satisfying (1) and (2) in the theorem. We
shall first obtain a local metric g for which *,w is closed. By Lemma 9, w can be written as

w(z) = Z Aix;dx ) + h.o.,

i=1

with 3, \; = 0 near a zero z = 0.

93



Claim: There exists a metric g on a small disk D(p) around the zero p, for which xw =
>, Aixidz; (i.e. there are no higher order terms in ).

Proof: We define the metric g by specifying an orthonormal basis e;(z) = 3°; ¢” (z)dz;, or
dz; = 3, cij(x)ej(x), where ¢;;(0) = I. We compute

*gdxz' = Zcije(j)
J

= > (=1 et cki M day, cody; ..y,
Gkt yomeskin

= > ¢ dug
ik

c.-c”
=2 ( det C )m ey

k

Here, C = (¢;;), and (&%) = % is the adjoint of C~!. Setting & = ¥°; \iz;dx;, we obtain

*g(:) = Z )\sz(*gd.fz) = Z )\,acZSzkdx(k),

where we have assigned S(z) = getcg (). If the symmetric matrix S(z) is near I, it must

be positive definite and must have a symmetric positive square root. It is C> by the
inverse function theorem applied to F : Sym*(R") — Sym?(R"), with F/(4) = A? near I.
Here Sym?(R") is the space of symmetric matrices. Thus, we see that given an S(zx) with
S(0) = I, we can find a unique symmetric positive C(z) with S(z) = getcé( ).

Now write S(z) = I 4+ ¥, 2;57(x), with S7(z) symmetric. Then & = 3°; Nizidzq) +
ik )\ixiijgk(x)dx(k). On the other hand,

w = Z Aixid () + Z /\kafj(x)a:ixjdx(k),
i ik

k

where aj;(z) can be made symmetric in 4, j. Hence, for *,& = w,

XiST 4+ XSk = 2)al.
Permuting 7, j, k and taking linear combinations, we obtain:

1 , .
Sfj = [)\fa;-k + Nal, — )\%afj
%Y

This proves the claim. O
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Thus, there exists a metric on U; D(p;) such that *,w is closed on J D(p;). Let xgw =
d¢, and damp £ out on M — JD(p;). Given p # p;, there exists an (n — 1)-dimensional
submanifold N, transverse to the characteristic vector field X with ixw = 0. As before, we
can construct the Poincaré dual to IV, supported on N, x I C M. First we extend N, C M
by flowing along X, which we may assume is nonzero. Thus we obtain ¢ : N, x [—¢,¢] — M.
Now, take a bump function f on [—¢,¢] with compact support and integral 1, and form
np, = T3 (f(x)dz), where 7y is projection N, x [—¢,¢] = [—¢,€].

np satisfies wAn, > 0 on Ny, wAn, > 0on all of M, and dn, = 0. Again, by compactness,
there exist finitely many ¢y, ..., ¢, such that

WA (dE+ng + ... +ng,) >0

on M — p;. Let W = d§ +ng, + ... + 1. Using the same argument as for 1-forms, by linear
algebra, there exists a g such that & = *,w. This completes the proof of Theorem 15. O

3.4 Self-dual 2-forms on a 4-manifold

In this section we prove the following proposition:

Proposition 12 Let w be a 2-form (not necessarily closed) on M* which is nondegener-
ate away from a union of S'’s, has a metric g defined on a small tubular neighborhood
N(US?) for which xgw = w, and has zeros precisely on |JS' which are generic as sections
of /\i T*M|N(U s1y- Then there ezists a metric g for which x;w = w on all of M.

Proof: Extend g to all of M. We recall here the standard procedure for finding g and J
compatible with w. Locally pick an orthonormal frame for g. Then, with respect to this
frame g(x) corresponds to I and w(z) corresponds to a skew-symmetric matrix A(x). Let
B(z) be the unique symmetric positive square root of —A%(z) (i.e. B%*(z) = —A?(x), and
B(z) is symmetric, with positive eigenvalues). If we make the following correspondences,
then g, w, and J are compatible:

g <
w(z) < Ax)
J(x) < A'(z)B(2)

One can check that this operation can be globalized.
Note that we need to examine the special case of N(UUS'). Here,

w = Li(z)(ees + €1€4)
+  Ly(x)(eser + ezeq)
+ Ls(z)(ereq + eseq),
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where {e;} is an orthonormal frame with respect to ¢g. w would then correspond to

0 L3 —Ly L

—L3 0 L]_ L2
Ly, —L, 0 Ls |’

—-Ly —Ly —L3 0

A=

and —A? = (L{+L3+L3)I. Hence B =/L} + L3 + L3-1. Thus, g is conformally equivalent
to g on N(UUS?). Instead of letting § — 0 on J S, take a nonzero conformal multiple of g
near |JS!. (Note that an almost complex structure J would not exist on N(|JS'), but our
new g would make w self-dual.) O

Remark: The above proposition did not use the closedness of w. Of course, if w is a closed
2-form with the requisite ‘self-dual zeros’ near |JS!, w becomes ‘degenerate symplectic’.

3.5 Symplectic forms on 2n-manifolds

For the sake of completeness we include the following result, which suggests possible future
applications of harmonic forms to symplectic geometry.

Proposition 13 If w is a symplectic form on a 2n-manifold, then w is intrinsically har-
monic.

Proof: Let g, J be compatible with w. Then with respect to an orthonormal frame {e;}
for g, w = 327  egi-1 A ey, and *w = 371 €(2i-1,2)- Also note that wtt = (n - ' w.
Since dw = 0 and d(w"™ ') = 0, d * w = 0 as well. Hence w is harmonic with respect to a g
compatible with w. O
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Chapter 4

Local characterization of harmonic
forms

In the previous chapter we gave an intrinsic characterization of harmonic 1-forms and (n—1)-
forms on an n-manifold M. Here we shall occupy ourselves with the following question:

Question: Let (w, g) be a harmonic i-form on M. For which small perturbations w; = w+1n
with n = d§ is w; harmonic as well? In particular, is the space of harmonic i-forms open in
Q (M) = {w|w € a} C Q(M), where we fix « € H*(M;R)?

In what follows, fix Q¢(M) to be the space of i-forms of class C¥, for large k. Denote by
H: (M) C Q8 (M) the space of intrinsically harmonic i-forms, and let H:, (M) C H! (M) be
the generic (i.e. ev, surjective at every point of M) harmonic i-forms in the class a. Note

that in this chapter, by generic we mean that ev, is surjective at every point of M. If we
mean a different kind of genericity, we will say ‘generic’.

4.1 Harmonic 1-forms
Let w € Q'(M). Denote the C*-norm of w by |w|.

Lemma 11 Let w € HL(M). If n = dh is supported away from the zeros of w, then
w+n € HL(M), provided |nlo is small.

Proof: Let (w, g) be a harmonic 1-form. Then w+n = w and *4(w+n) = *4w on M —Supp(n).
Provided |n|o is small, we have (w 4+ 1) A *,w > 0 on Supp(n). Hence, as in the proof of
Calabi’s theorem, we can extend g[,;_supp(, to g on all of M such that *3(w +n) = *,w. O

If we restrict ourselves to generic harmonic forms, we can do much better:
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Theorem 16 H. C QL is open.

Proof: Let (w,g) € H.. We shall prove that w +n € H. for all |y, small. Let p be a
zero of w. There exists a disk D(p) = {>2? < ¢,} centered at p, on which w = df and
f=(a}+...+a2) — (2, + ... + 22). Write n = dh on D(p), with h(0) = 0. The critical
points of f 4+ h occur when

0 oh
— 421 =
o (f+h) z; + o

Whenever there is a critical point, the Hessian is

H(x)=2<é Bz)*(%)'

If |n|; is small, then |h|y is small, and every critical point p of f + h inside D(p) must be
Morse with index (n—r). Now, if |n|q is small (i.e. |A|; is small), then no critical points cross
0D(p), and Y5cpp) critical pt'(—l)mdex(”) remains invariant. However, since all the critical
points must have the same index, there must still be only one critical point inside D(p), and
it’s necessarily a saddle of index (n — r).

0.

Claim: f + h is harmonic with respect to some metric on D(p).

Proof of claim: Let p be the critical point of f + A in D(p). Then near p, using the Morse
lemma, there exists a coordinate system D(p) C D(p), on which f +h = 3{(n —r)(y? +
o y2) = () (Y2 + ..+ y2)}. As before (c.f. the proof of Calabi’s theorem), there exists a
metric g such that *3(w +mn) is closed on D(p). Next, through each point g of D(p) —{p}, we
can find a transverse v, with endpoints in 0D(p). Using the same procedure as in the proof
of Calabi’s theorem, one then obtains a metric § on D(p) for which w + 7 is harmonic. O

Since #z(w +n) is exact on D(p), we can write *;(w + 1) = d§ on D(p). Damping £ out
away from D(p), we obtain an exact (n—1)-form &, which coincides with ;(w+n) on D(p)
and has small support outside D(p).

Now, let {p1,...,ps} be the set of zeros of w. Then for each p;, there exist D(p,), §;, and
@p,;- Given ¢ € M—U; D(p;), there exists a closed transversal +, which avoids {p, ..., ps}. For
each such transversal, we can extend v, : S' — M to a foliated embedding I'; : S' x D"~! —
M, with the foliation on S' x D"~! given by 77df and the one on M given by w. By
compactness there exist qi,...,¢m € M — U; D(p;) and T'y, : ' x D"™' — M such that the
T, (S" x D?/El) cover M — J; D(p;), with D?/El a smaller concentric disk in D",

Now if |n|o is small, the 'y, (S x {z}) would be transverse to the foliation given by w+7
for all j =1,...,m and z € D"". Therefore we can find 7y, = (Ty,).(75 ), Poincaré duals of
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the ,’s, which are nonzero on T'g, (5" x Dg_l), but are supported on T'g,(S' x D"~"). Here,
 is a nonnegative (n — 1)-form on D"! which is positive on D} ' and has support on a
2

small neighborhood of D% !. Then, taking suitable positive multiples of Mg;
2

on M —{p1,...,Ds}, and 3; &y, + 35, ¢ g, = x5 (w+mn) near p;. Thus w + 7 is intrinsically
harmonic. O

Remark: In the proof of the theorem all we needed to control was the C'-norm of the
perturbation 7.
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4.2 Infinitesimal harmonic perturbations

In what follows, the most convenient norm to use is the C*-Holder norm with k& > 0 which
is not an integer. Let Met*(M) be the space of C*-metrics on an n-dimensional manifold
M, and let T,Met"(M) = T'*(Sym?(T'M)) be its tangent space at g € Met*(M), consisting
of C*-sections. Let C*(Q(M)), C*(Q,(M)) be of class C*, where o € H'(M;R). Define

B, : Meth (M) — C* (0 (M),

which sends the metric g to the i-form w with Agw = 0 and [w] = . The map is well-defined
because of the following proposition:

Proposition 14 If g € Met*(M), then w satisfying Ayw = 0 is in C¥.
Proof: This follows immediately from the basic estimate for the Holder norm (c.f. [GT)):
Wl < C(|Agwli-2 + [wlo),

valid for [ < k. This is because if g € C*, then the coefficients of A, are in C*2. O

The derivative of ®, is the infinitesimal harmonic perturbation map
d®,(g) : TF(Sym?(TM)) — C*(d¥(M)),

which we shall now compute.
Consider a 1-parameter family (wy, g;) of harmonic i-forms on M, with gy = g, [wi] € @,
h = Lgii=0, and n = L= exact. We differentiate

d(.dt = 0, d*wt =0
to obtain

(1) dn=0,
(i1) d*n = £d*(xkgw).

The Hodge decomposition gives
Qi — in,1 D d*Qi—}—l oy %i’

so we find that n = =£m; (xk,w), where m is the projection onto the dQ2*~! factor. Hence,
d®,(g) is the composite map

I*(Sym?(TM)) =8 CF(QH (M) 5 CF(dQ (M)
h = sk g pw > Ty (kg pWw).
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Question: Compute the image of ®,, or, more realistically, the image of d®,(g) for generic
g.

In order to compute the image of d®,(g), we solve the equation
N+ *1 + = Fkg W, (4.1)

where the exact form 7 is the given candidate for an infinitesimal harmonic perturbation,
and we determine 1’ exact, 1 harmonic, and A, the metric perturbation.

4.2.1 Some words on the Hodge decomposition

We explain here the effect of the Hodge decomposition for forms of class C*. For this we
refer to [Fu] and summarize the relevant results.

Denote by L?() the Sobolev L2-sections (k derivatives) of Q!(M) and C*(Q) the C*-
sections of Qf. Let 7 : L?(€2*) — H* be the orthogonal projection onto H' = ker A, where
the metric g is of class C*¥ and k is not integral.

Proposition 15 There ezists a continuous linear operator G : L*(Q') — L*(Q), called the
Green’s operator, satisfying

1. Gl = 0.

2. G is a right inverse for A on (H)*, i.e. AGu = (I —7)u for all u € L*(0%).

3. GAu = (I — m)u for all u in the domain of definition of A (i.e. for all u € L3(Q)).
4. G:C72(Q) — CUSY) is continuous, where | is not integral and | < k.

5. G L? () — L¥(Y) is continuous, where | < k.

6. There exists an orthogonal decomposition C'(Q') = CYHA(QY)) @ H', for | < k. (This
follows from (2) and (4) and observing that AG = GA on the complement of H*).

Now, m; = dd*G = G(dd*), so it is a continuous map from C' to C!, using (4). Here we
assume [ < k. Using (6), we obtain an orthogonal decomposition
CH@) = Cd@)) © O (@) & H:

and hence 7, is surjective. Finally we claim that C'(d(271)) C CY(Y) is closed, hence a
Banach subspace. Assume df; — g in C'. Then, by (4), dd*G(df;) — dd*Gg in C', but since
dd*G(df;) = df;, we have g = dd*Gg, which proves the claim. Let us assemble the above
facts into the following proposition:

Proposition 16 C'(Q') & C!(d(Q1)) is a bounded, surjective map of Banach spaces, for
| <k.
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Combining with the fact that s#w is a continuous map (since it is essentially given by
multiplication against w, which is of class C*¥), we have

Proposition 17 d®,(g) is a bounded linear map.

4.2.2 Differentiability of &,

Here we outline the proof of the following proposition:

Proposition 18 &, : Met*(M) — C*(%, (M) is a C*®-differentiable map of Banach man-
ifolds.

Define I1: Met* (M) x C'2((M)) — C{Q¥(M))
II: (g,w) = my(w),
where 7 : QM) — H, is the g-orthogonal projection onto H,.
Proposition 19 II is a C'°-differentiable map of Banach manifolds, if | < k.

In order to prove Proposition 18, it suffices to prove Proposition 19 and observe that
®, = Il o4, where wy is a fixed element in «, and

i:MetF(M) — Met*(M) x C'"2(QY(M))
g — (g9,wo).

Proof of Proposition 19: Let us begin with the basic estimate for the Holder norm (c.f.
[GT], [Fu, Theorem 4.3] for families): Assume ! < k is not integral and the norms | - |; are
with respect to a fixed metric go. Write Ag(A) = Ay, — A for A a constant. Given w,

wli < Cy(|Ag(AN)wli-2 + [wlo), (4.2)

where C, is dependent only on k, A, and |g|;. Hence, if we fix gy and A¢, then there exist
d > 0 and C > 0 such that |g — go|; < J, |A — Ag| < ¢ is sufficient for a uniform estimate:

wle < C(1Ag(Nwliz + |wlo)- (4.3)
This estimate implies the following lemma ([K, Theorem 7.5], [Fu, Theorem 7.1}):

Lemma 12 Choose (g, Ag) so that Ay (o) has no kernel. Then there exist § > 0 and
C; > 0 such that for all g, A with |g — golx < 9, |A — Ao| < 6, we have

wli < CilAg(A)wli-2.
Here l < k.
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Proof: Assume otherwise, i.e. there exist (w;, g;, A;) with
wili =1, [Ag, (A)wi[—2 — 0.

After taking a subsequence, (w;, gi, \i) = (W, go, Xo) in C!, and Ay, (\)w; = Ay(A)w in C*2
by continuity of A : C* — C'"2. But then Ay (Ag)w = 0, and we conclude that w = 0, which
is a contradiction. O

We also need to invoke some standard results on the spectrum of Aj: The Green’s
operator G, is a compact operator on L?, whose spectrum consists of point spectra, and
there is only one accumulation point, 0. Hence,

Proposition 20 (1) A, has eigenvalues A (g) = 0 < Aa(g) < ... only on the (nonnegative)
real line. (2) Each eigenspace is finite-dimensional. (8) There exists a complete orthonormal
basis of eigenfunctions in L?.

Now pick a point Ay which is not an eigenvalue for go. Then A, () : L? — L? is an
isomorphism, and, applying Lemma 12, |w|; < Cj|Ay(A)w];_2 for all g, A, w with |g—go|r < 6,
A —Xo| <6, and | < k. In particular, A,(\) : CHQ') — C2(), with | < k, is injective
for nearby g, A. It is also surjective: Take n € C'"2(Q). We know that there exists an
w € L*() such that A,(A\)w = 7. Using the Sobolev estimates, we can bootstrap w up to
C°(), provided [ is large. Finally, using the Holder estimates, we can bootstrap w up to
CY?). We also have the following proposition:

Proposition 21 Let W C Met"(M) x R be the set of (g,)\) for which A,()\) is injective
(and hence isomorphic). Then W is open in Met*(M) x R..

Let Gy4(A) : C'72(Q") — CYY'), | < k, be the Green’s operator for Ay(A). Near (go, o),
A4(A) is invertible and G4(A) satisfies |G4(A)n|; < Ci|nji—2, with [ < k. Using this we show:

Proposition 22 G,(\) : C'2(Q%) — CHQY), | < k, is C™-differentiable in g.
Proof: It is straightforward to check that
A(N) : MetF (M) x CHQ) — Metk (M) x C2(QY)

(9,w) = (9, Ag(A)w)
is C*°-differentiable, provided [ < k. If (g, A) is near (go, Ao), then Ay(A) is invertible, since

lw|; < C1|Ag(X)w|i—2. This implies that dA()) is invertible, with a continuous inverse. Using
the inverse function theorem, we obtain the C'*°-differentiability of

G(\) : U x C*72(Q) = U x CHY)
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(9,m) = (9,G4(N)n),

where U is an open set containing go. This, in turn, implies the C'*°-differentiability of

G(\) : U x C2(Q) — CH). 0

Following the proof of [K, Theorem 7.6], given g, € Met*(M), find a small circle C C C
with center 0, so that all the eigenvalues of A, besides 0 lie outside of C. Also, using the
openness condition in Proposition 21, there exists a § > 0 such that |g — go|x < d implies
Ag4(A) is isomorphic for all A € C.

Now, define

m4(C)(n) = —2%. /C Gy(N)ndA.

If n = 3", asei(g), where {e;(g)} is an orthonormal basis of eigenvectors for L?(£2), then
Gy(N)(n) =X PV OESYE (g9), with \;(g) eigenvectors corresponding to e;(g). Hence,

m(C)m) = Y aeilg),

Xi(g9)elnt(c)

i.e. the projection onto the eigenspaces enclosed by C. Since G4()\) : C*2(Q) — CY(Q) is
C°°-differentiable in g, so is 7,(C).

Claim: 7,(C) = 7.

Proof: We know 7, (C) = my,. If there does not exist ¢ > 0 such that |g — go|x < 0 implies
74(C) = my, then there is a sequence g; — go and (g, e4,) With Ay, # 0, |leg |12, = 1, and
eq, L Mg, After taking a subsequence, we may assume that A\j,, — . Bootstrapping using
the elliptic estimates, we obtain C**2-bounds on e,,, and hence there exists a subsequence
eq. — €go In C*2; however, |legl|z2,4, = 1 and ey, L Hy, giving us a contradiction. O

Thus we have proved that II is a C'*°-differentiable map of Banach manifolds, for | < &.
O
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4.3 Non-self-dual (or anti-self-dual) harmonic 2-forms
on a 4-manifold

In contrast to the situation of 1-forms, an intrinsic characterization of harmonic 2-forms
appears to be much more complicated. In this section, we shall carry out an infinitesimal
study of harmonic 2-forms on a 4-manifold and deduce some local facts. Since SD (or ASD)
harmonic 2-forms have been considered in Chapter 2, we will focus on harmonic forms which
are neither SD nor ASD in this section.

Recall the stratification of A2 R* under the action of SO(4), and the corresponding strata
for a generic non-SD/ASD harmonic 2-form w on a 4-manifold:

(i) w has no zeros.
(i) The locus where w is SD/ASD consists of a union of circles C = |J S*.
(iii) The locus where w has rank 2 is a 3-manifold N (possibly disconnected).

Note that C' and N are disjoint.

4.3.1 Infinitesimal computation

Assume in this section that ®, : Met® (M) — C®(Q%(M)). (We shall worry about C*-
differentiability in the next section.) Here we prove the following theorem:

Theorem 17 Let (w,g) be a generic non-SD/ASD harmonic 2-form on M* in the class
a € H*(M;R). If iy (x,w) is not zero on each connected component of N, where i : N — M
is the inclusion, then d®,(g) is surjective, i.e. all the exact 2-forms on M are infinitesimal
harmonic perturbations.

Remark: With our usage of generic, a generic harmonic 2-form must necessarily be non-
SD/ASD, when both b3 > 0 and b, > 0.

The primary difficulty with the generic non-SD/ASD harmonic 2-form on a 4-manifold
is that Im i, is not surjective, even if w is of generic type. Recall that Im i, = (xw)® for w
of generic type.

It is most convenient to rewrite Equation 4.1 as follows: Noting that Im i, C (*w)
whenever w # 0, and Im i, = (*w)* in particular when w is not SD/ASD, we obtain, after
taking *,

1

n+Hn+plw, (4.4)
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where | is the pointwise inner product with respect to g, and p is some harmonic 2-form
which may not be the same i as in Equation 4.1. This can be rephrased as

(' +*n+ p) A *w = 0. (4.5)

We will thus compute the image of d®,(g) in the following fashion: Fix n € dQ'(M),
and solve for ' = d¢ and p harmonic in Equation 4.5, where we additionally require on each
component S' of C that (1" + *n + u)|s1 be ASD whenever w|g: is SD (and vice versa). If
there exist such 1’ and p, then, by linear algebra, we can find an h solving Equation 4.1.
Neighborhoods of C require a little care when solving for A.

Singular differential ideal
We want to compute the image of the following composite map:
QY(M) D P 4 (M)

E ENxw i d(EN *w) = dE N *w.

We shall relate the image of this map to the cohomology H*(M,T) of a singular differential
ideal, and compute it in this section. Let Z = (*w) be the differential ideal generated by *w.
The ideal has the following chain complex:

0 =0>T"=0T2> 1> 5T > 0.

Observe that I = Q% As long as *w has no zeros, there exists a 2-form & such that
£ A*w = Fw A xw for given F. Also noting that Z° = {£ A *w|€ € Q'}, we have

Lemma 13 H*(M,Z) = Q*(M)/Im do A.
Hence, our problem is equivalent to computing H*(M,Z) of a singular differential ideal.
Proposition 23 H*(U,Z) = H*(U,R), if U C {z € M|w?(z) # 0}.

Proof: This follows from observing that if w is symplectic at =, then £ — & A *w gives an
isomorphism A'(R*)* ~ A3(R*Y)*. O

Corollary 4 If w is symplectic, then H*(M,ZT) = R.

Corollary 5 If w(x) is of generic type for all x € M, then d®,(g) is surjective.
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Proof: Note that *n A xw = n Aw, with 7 exact. Hence [*nA*w] = 0 € H*(M;R). That is,
we can let ;1 = 0 and solve for dé A xw = *n A *w, which has a solution d¢ by the proposition.
O

Let us now examine Z = (*w) near the rank 2 submanifold N. Let I x N be a neighbor-
hood of N, with coordinates (t,z). We can write

w=(m +dtA fiz) + t(w + dt A @),

with pq, wy 2-forms, and jip, Wy 1-forms, all without a di-term. Here puq, fis do not depend
on 7.

On I x N, we can solve for a in da = *n A xw. Since o must satisfy a = & A *xw for some
1-form &, we require a|y = 0. Let us then modify a — a — da so that o — da|y = 0. We
write

a = ai(t,x) +dt A as(t,x) (4.6)
= a(0,z) + dt A &2(0,z) + h.o. in . (4.7)

Here, o is a 3-form and @» is a 2-form, both without d¢-terms.

If we let da(t,z) = a1(0,z) + d(taz(0,x)), then (o — dar)|xy = 0; since da is closed, we
still have d(a — da) = #n A xw. It is not difficult to see that a — da|y = 0 is sufficient to
ensure the existence of a £ such that £ A xw = a — da. This follows from the genericity of w
near N. Summarizing,

Proposition 24 H*(I x N,T) = 0.

Having taken care of the local aspects, we can pass from local to global. Let {N;}7_; be
the set of connected components of N. w is said to be semi-contact on N; if w = py +t(w1 +
dt A &), with pi nonsingular and closed on Ny, ie. 4y, (xw) = 0, where iy; : N; — M is
the inclusion. Let N’ be the union of all the semi-contact N;. Then we have the following
theorem:

Theorem 18 dim H*(M,T) = (# of connected components of M — N').

Proof: If [3] = 0 € H*(M;R), then there exists a global o such that da = §3.
Claim 1: If i} [a] = 0 € H?(Nj; R), then we can modify a so that a|y; = 0.
Proof of Claim 1: Recall Equation 4.6 in the proof of Proposition 24. If i} [a] = 0, then
we can write a4 (0, ) = d37; on N;. Extend ~y; to I x N; so that v;(t,z) = ;(0,z), and damp

v;+1t62(0, z) out outside of I x N;. Finally, modify o — a—da, where o = d(y;+1G2(0, z)).
O
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Claim 2: If M — N’ is connected, then we can modify a — a + da with da € H3(M;R) so
that i}y [ +da] = 0 € H*(N;;R) for all N; semi-contact.

Proof of Claim 2: Consider the exact sequence
H3(M) % H¥(N') — H(M,N") — H*(M) — 0. (4.8)

Since M — N' is connected, H*(M, N') ~ Hy(M — N') ~ R.. This implies that 7 is surjective,
and that there exists a da € H*(M;R) such that iy, la+6a] =0 € H3(Nj;R) for all N;
semi-contact. a

Claim 3: If 7} [a] = 0 for all N; semi-contact, then there exists an o = £ A *w such that
da = .

Proof of Claim 3: Let « satisfy do = 3, with the additional condition that iy [a] = 0
for all N; which is semi-contact. By Claim 1, we may also assume that «|y, = 0 for all N;
semi-contact. Now assume /V; is not semi-contact. Then we can write

w= (1 + dt A fig) + t(w1 + dt A ©9),
with fis not identically zero. Then,
*w(0, ) = (*3fl2 + dt A *301)(0, z),

and there exist &;(t,z) = ¢; f;fi2(0,z) on N; such that

/ cjfifia N *x3fio =/ a.
N;j N;j

We then damp &; outside of I x NN;, and solve for { A xw = o — 3 §; A *w, where the sum
runs over all non-semi-contact N;. Here, we may need to modify « using Claim 1, so that
(=3 &jAxw)|n, = 0 for every component N; of N. Finally, we can write @ = (§+ &) Axw.
O

We will now complete the proof of Theorem 18. Refer back to Equation 4.8. Observe that
i [EA*w] =0 € H3(N') if N is the union of the semi-contact components. Hence, given 3
with [3] = 0 € H*(M;R), for 8 = da with a = £ A xw to be satisfied, we need i4:[a] =0 €
H3(N")/i(H3(M)). This condition is also sufficient, since ii.[a] = 0 € H3(N')/i(H3(M))
implies that there exists a representative a with i} [a] = 0 € H?(N;) for all N; semi-
contact, and we can apply Claim 3. Finally, dim H*(N')/i(H*(M)) = dim H*(M, N') —
dim H*(M) = (# of components of M — N') — 1. Thus, dim H*(M,Z) = (# of connected
components of M — N'). O
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Remark 1: I know of no explicit examples of a generic non-SD/ASD harmonic 2-form on
M* and don’t know whether the connectivity of M — N’ is vacuous.

Remark 2: We have two differential ideals, Z = (*w) and J = (w), whose fates seem
interconnected. It would be interesting to find out how they are related.

Remark 3: The computations of the singular differential ideals seem generalizable to higher
dimensions, provided we have sufficient genericity.

Analysis near |JS*

In the previous section we saw that, if M — N’ is connected, then we have a solution to
(7" + *n + p) A *w = 0. Note that we can set u = 0 since *n A *w = 7 A w is exact on M.
Then, by Theorem 18, we find that there exist a 1-form & such that d(& A *w) = *n A *w,
and hence we can set ' = d¢.

We now need to perform a more careful analysis near C = |JS! in order to finish the
proof of Theorem 17. Consider a connected component S* of C and let N(S') = S x D?
have coordinates 0, z1, T3, 23, which are orthonormal at S x {0}. Without loss of generality,
let w be SD on S!. Fix an exact 7, and we will solve for 7' satisfying (7' + *n) A *w = 0 on
St x D3, with the additional constraint that i’ + *n be ASD on S*.

Lemma 14 There exists an exact 1} such that n| + *n is ASD on S'.

Proof: Let n; = —n. Then 7 is exact and —n + *n is ASD. a

Next, consider
QYN(SY) B P(N(SY)) S Q*(N(SY)
E EN*w i d(ENxw) = dE N xw.

Lemma 15 Given Fw A xw € QYN (SY)) with F|s = 0, there exists a £ € QY(N(S?)) with
&|lst =0 and d€|s1 = 0 such that do A(§) = Fw A xw.

Proof: The key is to find a = £ A xw of the form o = a A df with & = 3, a;dx;), such that

0 0
a;(#,0) =0, a—fviaj(H, 0) =0, and %aj(ﬁ, 0) =0,
where 1 < 4,7 < 3, and # € S'. da = da A df = dsa A df, where ds is the differential with
respect to {z;}; on the other hand, FwA*w = fdx,dzedz3df for some f with f|s1 = 0. Thus
solving for da = Fw A xw is equivalent to solving for >, g‘;‘? = f. It is clearly advantageous

to us that this partial differential equation is very underdetermined. Let as = a3 = 0 on
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N(S'). Then ‘g;;i = f can be solved with initial condition (6, 0, z9, x3) = 0. Since f|g1 =0,
we can choose o with gg‘; (60,0) = 55(0,0) = 0.

Thus, a = & A *w has a(f,0) and all of its first partials vanish on S*. Under the linear
map A~!, o will get sent to &, with £(#,0) and all of the first partials of £ equal to zero on

Sl. ThUS, 5\51:0and d§|51:0 O

We find an 7] as in Lemma 14 and an 7} as in Lemma 15 such that (n},+n] +*n) Axw = 0
on N(S'). Let NMx(sty = M + My This proves the following proposition:

Proposition 25 Given any exact 2-form n, there exists an exact nﬁv(sl) on N(S') such that
My(sty + 7 is ASD on S* and (ny g1y +*1) A*w =0 on N(S").

Let n be an exact 2-form on M as before. On M we have ' = d€ such that (7' +*n)Axw =
0, and on N(C) there exists an 7)) such that 7y + *n is SD/ASD on the various St as
appropriate, and satisfies (7y) + *n) A *w = 0 on N(C).

Now write n = d€ and ny(oy = dén(c). Then, d((§—E&n(c)) A*w) = 0, and (§—E&n (o)) A*w
must be ezact on N(C). Write (£ — &n(e)) A *w = dy on N(C), with v defined on N(C).
Extend « to all of M by damping out outside of N(C). Since w is symplectic on Supp(y),
we can write dy = &' A *xw, and modify ' — n' — d¢’ = d(§ — ¢'). Summarizing,

Proposition 26 Assume M — N' is connected. Then given an exact 2-form n on M, there
exists an ' = d€§ on M such that nf + xn is SD/ASD on C and (7' + *n) A xw =0 on M.

It remains to obtain a section h with *%g;,w = 1’ 4+ *n. We use the following proposition
with 8 = 1’ + *n to complete our argument for Theorem 17.

Proposition 27 There exists a solution h to the equation i,(h) = 3, provided B|s1 is ASD
and BAxw =0 on N(S') = S' x D3.

Proof: Decompose w = wy +w_ and § = f; + B_ into the SD and ASD parts. If i,,(h) = 3,
then

iw+(h) = B
w_(h) = B4

We expand wi” = w to a basis {w;", wy, w3 } for the SD forms near S*. Since T,Met(M) ~
Hom(A™, A7), in order to specify h it suffices to specify

wi — B =06
wy By
wy = By
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in a manner consistent with w_ +— 3.

Claim: h : AT®&A™ — A~ DAT satisfies < h(ay),a. >= — < ay,h(a_) >, where
oy € /\i.

The claim is an easy exercise. We then see that the consistency condition is < 3, ,w_ >=
— < wit, By >, or, equivalently, 87 Aw_ = w;" A B.. We check that 3 A *w = 0 implies
By +B)N(wy —w_) =By Awy — B_Aw_ =0, giving us f_ Aw_ = wy A B,.

Let us now show that there exist 35, B3 satisfying the consistency conditions. Write
w_ = Y apwy, and B = 3, bjwy, i = 2,3, where {wi,w;,w; } is a basis for A~ on N(S?),
w; Aw; = a;jdvn(sty, and dvy(sy is the volume form on N(S'). Then

B Nw_ = Z bijw; N xpwy, = Z bijajrTrdvn sy
jk jk
wi ABy = Z ri%;dvy(s1y for some 7,

3

and solving for 8;” in 8; Aw_ = w; A B4 would be tantamount to solving for b;; in 3" bj;a,, =
g But here a;; is invertible since {wy,w; ,ws } is a basis for A™. O

Thus we have proved Theorem 17. In fact, we have a slightly stronger version of the
theorem:

Theorem 19 If (w,g) is a generic non-SD/ASD harmonic 2-form on M* in the class c,
and M — N' is connected, then d®,(g) is surjective.

Analysis near N

Although it is not necessary for our theorem, it is instructive to study the neighborhood
I x N of N. Assume N is connected and the metric g on I X N is the product metric for
simplicity. Take coordinates (¢,z) on I x N. Write

w = (1 + dt A *3p0) + t(w1 + dt A *3ws),

where puq, po do not depend on ¢, wy, wy depend on ¢, and p;, w; are all 2-forms without a
dt-term. Write d, * on N as ds, *3.

It turns out that wy, we are completely determined by u;, ps because of the harmonicity
(dw=0, d*w =0).

Proposition 28 w; and ws are given by
e(d3*3)t + e—(dg*g)t

(t ) _ 1 1 + 1 e(dg*g)t _ e—(dg*s)t
will, T) = ; B K1 7 B K2,
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(t ) 1 e(dg*g)t _ 6_(d3*3)t N 1 e(dg*g)t + e—(d3*3)t .
w r)= — — —
2\?, ; 9 H1 n 5 H2;

provided et (1)) and e*(4*3)t (11y) make sense.
Proof: (A) dw = 0 implies

(1) dsp1 = —tdsw;.

(2) twy + wy = d3 *3 g + tdsz *3 wo.
(B) d *w = 0 implies

(3) dspg = —tdsws.

(4) twy + we = d3 *3 p1 + tdz *3 ws.

Observe that (1), (3) imply that dspu; = dspus = dswi = dzws = 0 because the y; are
t-independent.

Let us first integrate (2) and (4) using (¢f) = tf'(t) + f(t) = h(t) as the model, with
f@) =1 (c + h(s)ds) as its general solution. If we require f(0) to be finite, ¢ = 0, and we
have f(t) =1 [; h(s)ds. Thus,

1 rt
wn(ta) = 5 [ [dyrs (s, 2) + sds 33 wa(s, )] ds

1 rt
= dz*3 po(0,2) + ;/ sds *3 wa(s, x)ds,
0

1 st
wa(t,x) = ds*3ui(0,2)+ n /0 sds *3 w1 (s, x)ds.

Plugging w; into the right-hand side of wy (and vice versa), and iterating, we obtain

t 12
wi(t,z) = (ds*3)pz + §(d3*3)2/$1 + g(d3*3 po + ...

)3
1 e(d3*3)t + e*(d3*3)t 1 €(d3*3)t _ e*(d3*3)t
= 2 —hmty e
1

2
e(dg*g)t o e—(dg*g)t 1 e(dg*g)t + e—(d3*3)t 0
2 — 1)

w2(ta 33) = M1 + - 2

t t
Example: (Contact case) This is the situation where w = p; + t(w; + dt A *3ws), with
x3p1 = &, a contact 1-form, and ds *3 1 = d€ = ;. Then we obtain

w = (e"+e ur+ (e — e ")dt Ax3y
d((e" +e7)¢).
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4.3.2 Local considerations

In this section, ®, : Met™(M) — C*°(Q2(M)). With the help of the Nash-Moser iteration
technique, we are able to pass from the infinitesimal computation to a local statement:

Theorem 20 @, is surjective near (w, g), whenever (w, g) satisfies the conditions of Theo-
rem 19.

__ The importance of Theorem 20 is that it says the space of generic harmonic 2-forms
H2(M) C H2(M) is open in Q2 (M), with the exception of some harmonic forms with ‘non-
generic’ behavior, namely that the harmonic form (w, ¢) has semi-contact rank 2 components
and the union N’ of all the semi-contact components makes M — N’ disconnected. Here we
are assuming that b and b, are both positive, so that there exist non-SD/ASD harmonic
2-forms.

We will prove the following theorem:

Theorem 21 Let gy € Met™(M) be a metric for which wy = D, (go) is generic. Then there
erist constants Cy, > 0 and § > 0 with the following property: Given n € C®(dQ') and
lg — go|1 < 6, there exists an h € T®(Sym?*(TM)) such that d®,(g)(h) = n and |h|_1 <
Crl|nle + nlolgl)-

Theorem 21 implies Theorem 20 by the Nash-Moser iteration process. We will now
quickly review the setup for Nash-Moser a la Hamilton [Ham].
Tame maps

Definition: A graded Fréchet space is a Fréchet space, together with seminorms {| - |}
satisfying [flo < [fl1 < [f]2 <---

Definition: Let F', G be graded Frechet spaces, U C F' an open subset, and L : U — G

a (not necessarily linear) map. L is tame of degree r, if there exist r, N such that £ > N
implies the estimate

\Lflk < Ce(1+ | fletr)
forall f € U.

Model Fréchet space X(B): Let B be a Banach space with norm |- |. Then 3(B) is the
set of rapidly decreasing sequences {f;}2,, with f; € B, such that

{Fibln =D €[ fil < 00
k=1
for all n. The | - |, give the grading for ¥(B).
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Definition: A graded Fréchet space F' is tame if it is a tame direct summand of a model
graded Frechet space 3(B), i.e. there exists a graded Fréchet space F' so that F @ F' ~ 3(B)
as Frechet spaces.

Definition: A tame Fréchet manifold is a Fréchet manifold whose coordinate functions map
to tame Fréchet spaces and whose transition functions are tame.

Example: If M is a compact manifold, then C*(M) is tame with respect to (a) the sup
norms |f|cn, (b) Holder norms |f|gn+a, or (c) Sobolev norms [f[rz. All of the norms are
equivalent, i.e.

(C=(M),| - [on) = (C=(M), |- |onsa)

is a tame map, and so on.

Definition: A smooth tame map L : F' — G of tame Frechet manifolds is a tame map whose
derivatives are all tame.

Let V, W be vector bundles over M, and C*(V), C°°(W) be tame Frechet spaces of
C*-sections over M. Consider D"(V, W), whose sections are differential operators of degree
r from V to W. Locally we can write a differential operator of degree r as

L(¢)(f) = >_ ¢a(Daf).

laf<r

Here « is a multiindex (ay, ..., @) and D, = 0*' ---9*. We can think of ¢ = {¢,} as a
section of D"(V,W). Then we have a map

L:C®(D"(V,W)) x C*(V) = C®(W),
(9, f) = L()(f)-
Proposition 29 L is a smooth tame map.

Now consider an open set U C C*°(D"(V,W)) consisting of ¢ = {d,} such that L(¢) is
elliptic and invertible. Then we have

L0 U x C®(W) = C=(V),
(¢,9) — [L(9)] ' (9)-

Proposition 30 L' is a smooth tame map of degree —r.

Proposition 31 @, : Met™(M) — C*®(Q,(M)) is a smooth tame map of degree 0.
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Proof: By the previous proposition,
LU x O®(Q) — O™ ()
is a smooth tame map of degree —2, where U C C*®(D?(Q), %)) consists of elliptic and

invertible degree 2 operators.
Now, consider the inclusion

Met® (M) x C — C®(D2(QF, Q1))
(9, 0) = Ay + A,

which is a smooth tame map of degree 2. Since the composition of tame maps is tame, we
have

G : ((Met*(M) x C) ﬂU) x C®(Q) — C™=(2)
[(g,A),w] = (Ag + )‘)71“’ = Gy(Mw
is a smooth tame map of degree 0. Next,
IT: Met® (M) x C*®(Q") — C*®(QY)

(g, w) = mo(w)
is a smooth tame map because

7o) = —— [ Gohywin

271
and C C C can be fixed on a small neighborhood of g. Finally, composing with

i : Met™ (M) — Met™® (M) x C°°(£Y")

g — (gaWO)
as before, we find that &, is a smooth tame map of degree 0. a

Nash-Moser iteration scheme

The following is the version of Nash-Moser that we will use:

Theorem 22 (Nash-Moser) Let F, G be tame Fréchet spaces and U C F an open set.
Suppose L : U — G is a smooth tame map, dL(f) is surjective for all f € U, and there
exists a family of right inverses (dL)™' : U x G — F which is a tame map. Then L is locally
surjective.

We already know that @, : Met® (M) — C*°(Q2(M)) is a smooth tame map and that
d®, is surjective near (wg, go). The conditions

|hlk—1 < C(Inlx + [nlolgx) (4.9)

would assure us that (dL)~' is tame. Applying the Nash-Moser iteration process, we see
that Theorem 21 would imply Theorem 20.
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Estimates

We will prove Estimates 4.9 above by carefully retracing the argument in Theorem 19. Keep
in mind that |g — go|1 < ¢ throughout.
The following interpolation lemma is useful in our estimates:

Lemma 16 (Interpolation) If fi, fo are functions on a compact X, then

\fifele < O filolfale + | file] f2]o)-

In the proof of Theorem 18, we first solve for da = *nA*w. Noting that |w|, < C(1+4|g|k)
since ®, is smooth tame of degree 0, we obtain bounds

|dali < C(|nlklglo + 19lkInlo) < C(Inlk + [nlolglk)

by interpolation.

Lemma 17 Given an ezact i-form 3 on M, there exists an o € Q* Y(M) such that do = 3
and |olg+1 < C|Bg-

Proof: We make use of the Green’s function, say at gy, and write o = d*° G, 8. da = 3,
and O

|afpr1 = |d™GgoBli+1 < C|GgoBlira < C[Bk-
Thus, there exists an « such that da = *n A xw and || 1 < C(Inlk + |1lolgk)-

Claim 2 bounds: Next, we bound the o modified as in Claim 2 of Theorem 18. Observe
that, as long as |[g — go|l1 < 0, for 6 small, |w — wp|; is small, and the harmonic form
remains generic (i.e. transverse to the relevant strata). Hence, the rank 2 subsets N remain
submanifolds, and are close together, provided the |g — go|; are kept small.

Take a basis {[dvy,]} for H3*(N'), with dvy, a volume form of unit volume on N;. Let
[vi] € H*(M) satisty i}y, [v;] = [di;dvn;]. Fix representatives ; € [v;]. Then do = — 3 a:;,
with |7;|x41 fixed constants, and a; = [y. o. Hence,

balir < C 3 lefolviles < Clado < C(nlk + nlolglk).
%

Claim 3 bounds: We now have bounds for a, where da = *n A *w and iy [a] = 0

for all N; semi-contact. Take N; not semi-contact, and we first estimate & on I x Nj.

&i(t,x) = ¢;fif2(0, z), with [y & A *3fie = [y, o, where we are using the same f;fi2(0,z) =
J J

fif12(90)(0, z) for all |g — go| < J, and we are simply varying the scaling factor ¢;. Thus,

&ilk1 < Clafolwoles1 < Clafolgolrr1 < Clalo,
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on I x Nj.
We now give bounds for the damping out process. Let ¢(t) be a smooth function on R

such that .

_J1 on [_71, 5
o(t) = { 0 outside [-1,1] ’
and 0 < ¢(t) < 1on [-1,Z]U[3,1].
Then, modify &; — £;¢. We find that
1€ilk1 < C(IElk+1]Blo + |Dlk+11€5l0) < ClEjlkr1,

since ¢ is fixed throughout. With this new ¢;,

ja— ij A *wles1 < C(nlk + [1lolglk)-

Claim 1 bounds: We may now assume that iy [a] = 0 for all N;. We then modify
a— a—da so that (a — da)|y, = 0. If we write a;(0,2) = dsy; on N, then

Yilk+2,v < Clorksr

by Lemma 17. However, we can only bound |y; + t@2(0,)[k+1 < C|a|ks+1 because of the
term tcvo - we lose one derivative here unless we are careful.
Instead, use ¥.(t)as(0, z), where

[t on [—¢,¢]
Pe(t) = { 0 outside [-1,1] ’

and 1. damps out slowly to 0 on [—1, —¢|U[e, 1]. It is not difficult to see that for & small,
there exist 1. with |¢).|o arbitrarily small, and |¢.|; < |[¢;, for ¢ > 1, where

t on [—%,%

Y(t) = { 0 outside [-1,1] ~

and 1 damps out slowly to 0 on [—1, —%] U[%, 1]. ¥e(t)@2(0,z) will clearly do the job of
ta(0,z), with the advantage that we can find an € (dependent on g) with

|:02(0, 2) k12 < Clafps2,

[6cr|ky1 = |d(7j + Ye(t)a2(0,2)) k41 < Clerfpy1-

As before, we do not lose any derivatives by damping out v; + 1. (t)@2(0, z).
Thus,

| = darli1 < C(Inlk + [nlolglk)-

7



Bounds for 7': Finally, a|y, = 0 for all N;, and we solve for £ A *w = o. We do not lose
any derivatives where A is an isomorphism. However, near the N;’s we lose one derivative,
i.e.

€[k < C(Inlk + [nlolglk),

and
7' |k—1 < Cld€|k—1 < C(Inlk + [nlolgls)-

Estimates near S': On N(S'), we have bounds

7'k < [Eler < Cllnlk + nlolgle)-

Let us compute bounds on 7y gy and {nsy. 7 = —n, so 1|k < C|nlk. For bounds on 75
satisfying nh A xw = —(n] + *n) A *w on N(S!) and —(n] + *n) A xw|s1 = Fw A *xw|g = 0,
we look to the proof of Lemma 15. Clearly, [F|; < C(|n|x + [n|o|gx)- Solving for o = & A df
with da = Fw A xw, we have

lafe < CIF e < C(|nlk + nlolglk)

and hence
|En sy e < C(nlk + nlolglk)-

Note that we have lost one derivative - had we worked a bit harder, that would not have
been necessary, unlike the loss of derivative near NN;, which seems inherent to the problem.

Finally, we write dy = (£ — &n(c)) A *w on N(C). By compactifying S* x D? to S' x S3,
for example, we can use Lemma 15 and obtain a 7 satisfying

Vk+1 < Cl(€ = Envey) N *wle < C(Inlk + [mo]glx)-

Damping 7 out, we do not lose any derivatives, and hence

In' — dé|k—1 < C(|Inlx + [7lolglk)-

In order the complete the proof of Theorem 21, we are left to prove:
Lemma 18 There exists an h on M such that |hl,_1 < C(Inlx + [1lolglk)-

Proof: Consider h away from N(S'). Since n + *n' = {h,w} and i, has constant rank
throughout, we are able to bound

|hlk—1 < C(|In+ 0 [k=1|wlo + [7 + *7'[o|w|k=1) < C(|n]k + |nlo|glk)

by interpolation.
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We next find h on N(St). Writing 8 =17'+ *n and 8 = 8, + _,
181 k-1 = [B-[k—1 < [Blr-1 < C(Inlk + [nlolglk)-
B5, B3 come from solving 8 Aw_ = w; A B4, and

1B7 k-1 < C(|nle + [mlolglx)-

Hence |hlx_1 < C(Inlx + [nlo|g|x) on N(S'). We finally interpolate the h that we find on
N(S1) to the h on M — N(S*), while keeping |hlx 1 < C(Inlx + |nloglx)- O
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