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Abstract

Let M be a closed, oriented 4-manifold with b%t > 0. In this paper we show that the
space of transverse intrinsically harmonic 2-forms in a fixed cohomology class is open
in the space of closed 2-forms, subject to a condition which arises from cohomological
considerations of a singular differential ideal.

1 Introduction

In this paper we address the question: When is a closed i-form w on a closed manifold M of
dimension n ntrinsically harmonic, that is, there exists a Riemannian metric g with respect
to which w is harmonic? In the case of 1-forms, an answer was given by Calabi in [2]:

Theorem 1 (Calabi) Let w be a closed 1-form on M. Assume that il is lransverse lo the
zero section of T*M. Then w is intrinsically harmonic if and only if (i) w does not have any
zeros of index 0 or n, and (ii) given any two points p, ¢ € M which are not zeros of w, there
exists a path v : [0,1] = M with ¥(0) = p and v(1) = q, such that w(y(t))(#(t)) > 0 for all
te[0,1].

Let Q'(M) be the space of i-forms, and Q! (M) be the subspace consisting of i-forms
in the cohomology class a € H'(M;R). Denote by H: C (M) the space of intrinsically
harmonic i-forms in the class «, and let 77; C H!, be the harmonic i-forms in a which are
transverse to all the strata of A°(R™)* under the action of SO(n). Call elements in H
transverse. For transversality results for harmonic forms we refer the reader to [8]. Calabi’s
theorem implies the following:

Proposition 1 ' C QL (M) is an open subsel.
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In the case of 2-forms, the situation is quite subtle. There is no known analog of Calabi’s
theorem for 2-forms, and an intrinsic characterization of harmonic 2-forms is rather elusive.
In this paper we prove an openness theorem for transverse harmonic 2-forms on a 4-manifold,
which will illustrate some of the obstructions which may arise in the general case.

Let M be a closed, oriented 4-manifold with b& > 0. Then the generic harmonic 2-form
w in the class a € H*(M;R) (generic in the space of metrics) is neither self-dual (SD) nor
anti-self-dual (ASD) (cf. Section 4.3 of [3]), and is transverse. In particular, recalling the
stratification of A2(R*)* under the action of SO(4),

(i) w has no zeros.
(i1) The locus where w is SD/ASD consists of a union of circles C' = J S".
(iii) The locus where w has rank 2 is a 3-manifold N (possibly disconnected).

Note that €' and N are disjoint. For a proof, we refer to [§].
In order to state the theorem, it would be convenient to introduce the following:

Connectivity Condition: Let {N;}7_; be the set of connected components of N. w is said
to be semi-contact on N; if the pullback to N; of *w is zero. Let N’ be the union of all the
semi-contact N;. Then w satisfies the connectivity condition if M — N’ is connected.

We then have the following

Theorem 2 ’;[Z C Q2% is open on the set of transverse intrinsically harmonic 2-forms w
satisfying the connectivity condition.

On the way to proving this theorem we encounter the cohomology of the singular dif-
ferential ideal Z = (#w), which naturally gives rise to our connectivity condition. We will
compute the infinitesimal harmonic perturbations of a harmonic form w (see Section 2), via
the singular differential ideal, and pass from infinitesimal to local using the Nash-Moser
iteration technique.

We remark that the SD harmonic 2-forms are quite interesting in their own right - for a
discussion see [9].

2 Infinitesimal harmonic perturbations

Let Met(M) be the space of C°*°-metrics on an n-dimensional manifold M, T,Met(M) =
I'(Sym?*(TM)) be its tangent space at g € Met(M), and Q*(M) consist of C*° i-forms. Then
define

®, : Met(M) — Q' (M),
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which sends the metric g to the i-form w with Ayjw =0 and [w] = a.
The derivative of @, is the infinitesimal harmonic perturbation map

dd,(g) : T(Sym*(TM)) — dQ'~ (M),

which we shall now compute.
Consider a 1-parameter family (wy, g;) of harmonic i-forms on M, with gy = ¢, [w] € ¢,
h = %gt|t:07 and n = %wth:o exact. We differentiate

dw; = 0,d*w; =0
to obtain

(¢) dn=0,
(i) d'n = £d*(+#,w).

The Hodge decomposition gives
Qi — dﬂi—l @ d*ﬂi—l—l @ Hi’

so we find that n = 4+ (xk,w), where m is the projection onto the dQ~! factor. Hence,
d®,(g) is the composite map

D(Sym*(TM)) = Qi(M) I dQ'=" (M)

h v kg pw —> T (kg pppw).

Hence, in order to compute the image of d®,(g), we solve the equation
-+’ +p =k w, (1)

where the exact form 7 is the given candidate for an infinitesimal harmonic perturbation,
and we determine ' exact, g harmonic, and A, the metric perturbation.

3 Infinitesimal computation for non-self-dual (or anti-
self-dual) harmonic 2-forms on a 4-manifold

Let us now specialize to the 4-manifold M with b¥ > 0. We then prove the following
microlocal result:

Theorem 3 Let (w,g) be a transverse harmonic 2-form on M* in the class « € H*(M;R).
If w satisfies the connectivity condition, then d®,(g) is surjective, i.e. all the exact 2-forms
on M are infinitesimal harmonic perturbations.
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Observe that a transverse harmonic 2-form must necessarily be non-SD/ASD, when both
b > 0 and b; > 0.
In order to make use of Equation 1, we must first compute the image of the map

iw(x) S = /\2(R4)*,

h — *>|‘<g+thu)([lf),

where § is the set of symmetric n X n matrices, and we assume that the bundle T*M has
been trivialized near z. In [8] we computed

L. Im iy =0, if w(z) = 0.
2. Im iy = {ASD (SD) 2-forms}, if w(z) is SD (ASD).
3. Im iy(m) = (*w(x))*, otherwise.

For a transverse 2-form there are no points = where w(z) = 0. The primary difficulty
with the transverse non-SD/ASD harmonic 2-form on a 4-manifold is that Im lu(e) 18 MEver
surjective.

It is most convenient to rewrite Equation 1 as follows: Noting that Im 7, C (xw(z))*t
whenever w(z) # 0, and Im 7,(;) = (*w(z))* in particular when w(z) is not SD/ASD, we
obtain, after taking =,

n At p L w, (2)

where L is the pointwise inner product with respect to g, and p is some harmonic 2-form
which may not be the same p as in Equation 1. This can be rephrased as

(' 4+ *n+ p) Axw =0, (3)

We will thus compute the image of d®,(g) in the following fashion: Fix n € dQ'(M),
and solve for n’ = d¢ and g harmonic in Equation 3, where we additionally require on each
component S of C' that (' + #n + p)|s1 be ASD whenever w|si is SD (and vice versa).
If there exist such i’ and y, then, by linear algebra, we can find an h solving Equation 1.
Neighborhoods of €' require a little care when solving for A.

3.1 Singular differential ideal

We want to compute the image of the following composite map:
OY(M) A 03 (M) 4 Qf(M)

£ ENxw = d(EN *w) = dE A *w.



We shall relate the image of this map to the cohomology H*(M,Z) of a singular differential
ideal, and compute it in this section. Let Z = (*w) be the differential ideal generated by *w.
The ideal has the following chain complex:

07°=027'"=0>T1* 57> > T > 0.

Observe that Z* = Q% As long as #w has no zeros, there exists a 2-form ¢ such that
£ Axw = Fw A *w for given F. Also noting that Z° = {£ A xw|€ € Q'}, we have

Lemma 1 H*(M,Z) = Q*(M)/Im do A.

Hence, our problem is equivalent to computing H*(M,Z) of a singular differential ideal.
Proposition 2 H*(U,Z) = H*(U,R), if U C {z € M|w*(z) # 0}.
Proof: This follows from observing that if w is symplectic at =, then £ — & A *w gives an
isomorphism A'(R*)* ~ A*(RY)*. m
Corollary 1 Ifw is symplectic, then H*(M,T) = R.
Corollary 2 [fw(z) is of generic type for all x € M, then d®,(g) is surjective.

Proof: Note that #n A *w = n Aw, with n exact. Hence [*nA*w] =0 € H*(M;R). That is,
we can let g = 0 and solve for dé A xw = *n A xw, which has a solution d¢ by the proposition.
O

Let us now examine Z = (*w) near the rank 2 submanifold N. Let [ x N be a neighbor-
hood of N, with coordinates (¢, z). We can write

with pq, wy 2-forms, and fig, &y 1-forms, all without a dt-term. Here py, iz do not depend
on t.

On I x N, we can solve for a in da = *n A *w. Since a must satisfy a = £ A xw for some
I-form &, we require a|y = 0. Let us then modify a — a — da so that a — da|y = 0. We
write

a = o(t,z)+dt Aas(t, x) (4)
= oy(0,2) + dt Aaz(0,2) + h.o. in t. (5)

Here, a4 is a 3-form and a3 is a 2-form, both without d¢-terms.

If we let da(t,z) = a1(0,2) + d(ta2(0,z)), then (o — da)|x = 0; since da is closed, we
still have d(a — da) = *n A *w. It is not difficult to see that (o — da)|y = 0 is sufficient to
ensure the existence of a £ such that £ A xw = a — da. This follows from the transversality
of w near N. Summarizing,



Proposition 3 H*(I x N,Z) = 0.

Having taken care of the local aspects, we can pass from local to global. As before, let
{N;}i_, be the set of connected components of N. w is said to be semi-contact on N; if
w = p1 + t(ws + dt A©z), with p; nonsingular and closed on N;, i.e. z']*vj(*w) = 0, where
in;, + Nj — M is the inclusion. Let N’ be the union of all the semi-contact N;. Then we
have the following theorem:

Theorem 4 dim H*(M,Z) = (# of connected components of M — N').

Proof: If [3] = 0 € H*(M;R), then there exists a global a such that da = §3.
Claim 1: If i3 [a] =0 € H?(N;j;R), then we can modify o so that a|y, = 0.

Proof of Claim 1: Recall Equation 4 in the proof of Proposition 3. If IN, [a] = 0, then we
can write aq(0,2) = dsy; on N;. Extend v; to I x N; so that (¢, z) = ~v,(0, ), and damp
v; +ta2(0, ) out outside of I x N;. Finally, modify o — a—da, where da = d(v; +td,(0, z)).
O

Claim 2: If M — N’ is connected, then we can modify a — o + da with da € H*(M;R) so
that iy [a +da] = 0 € H3(N;R) for all N; semi-contact.

Proof of Claim 2: Consider the exact sequence
H3(M) % H3(N') = H*(M,N') = H*(M) — 0. (6)

Since M — N is connected, H*(M, N') ~ Ho(M — N') ~ R. This implies that i is surjective,
and that there exists a da € H*(M;R) such that iy [a + da] = 0 € H?(N;;R) for all N;

semi-contact. O

Claim 3: If i} [a] = 0 for all IV; semi-contact, then there exists an a = ¢ A *w such that

da = (3.

Proof of Claim 3: Let a satisfy do = 3, with the additional condition that i3 [a] = 0
for all N; which is semi-contact. By Claim 1, we may also assume that «|y, = 0 for all V;
semi-contact. Now assume NN; is not semi-contact. Then we can write

with fi; not identically zero. Then,
#w(0,2) = (*3fiz + dt A *3p1)(0, @),
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and there exist &;(¢,2) = ¢; f;i2(0,2) on N; such that

/ c;jfifia N *3fiz :/ a.
N, N

J

We then damp &; outside of I x N;, and solve for £ A xw = o — Y §; A *w, where the sum
runs over all non-semi-contact N;. Here, we may need to modify o using Claim 1, so that
(a=Y & A+w)|n, = 0 for every component N; of N. Finally, we can write o = (€43 &) A*w.
O

We will now complete the proof of Theorem 4. Refer back to Equation 6. Observe that
€A xw] =0 € H?*(N')if N'is the union of the semi-contact components. Hence, given 3
with [8] = 0 € H*(M;R), for 3 = da with a = £ A *w to be satisfied, we need i, [a] =0 €
H3*(N")/i(H?*(M)). This condition is also sufficient, since i%.,[a] = 0 € H3(N')/i(H*(M))
implies that there exists a representative a with iy [a] = 0 € H?(N;) for all N; semi-contact,
and we can apply Claim 3. Finally, dim H3*(N')/i(H*(M)) = dim H*(M, N')—dim H*(M) =
(# of components of M — N') — 1. Thus, dim H*(M,Z) = (# of connected components of
M~ N =

Remark 1: We have two differential ideals, Z = (*w) and J = (w), whose fates seem
interconnected. It would be interesting to find out how they are related.

Remark 2: The computations of the singular differential ideals seem generalizable to higher
dimensions, provided we have sufficient genericity.

Let us finally close this section with the following:

Conjecture: The connectivity condition is non-vacuous, i.e. there exists a transverse intrin-
sically harmonic form w on a manifold M which does not satisfy the connectivity condition.
Although we know of no explicit examples where the connectivity condition is necessary, the
condition arises in such a natural fashion as a necessary condition for the surjectivity of the
derivative map that we suspect that there indeed exist examples.

3.2 Analysis near US'

In the previous section we saw that, if the connectivity condition is met, then we have a
solution to (n' 4 *n+ ) A*w = 0. Note that we can set g = 0 since *n A *w = n Aw is exact
on M. Under the conditions for Theorem 3, we find that there exist a 1-form & such that
d(& A #w) = *n A *w by Theorem 4, and hence we can set ' = d¢.

We now need to perform a more careful analysis near C' = [JS! in order to finish the
proof of Theorem 3. Consider a connected component S* of ' and let N(S') = S' x D?
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have coordinates 6, xy, x4, 3, which are orthonormal at S x {0}. Without loss of generality,
let w be SD on S'. Fix an exact n, and we will solve for n’ satisfying (n" + *n) A *w = 0 on
S1 x D3, with the additional constraint that ' + *n be ASD on S*.

Lemma 2 There exists an exvact 0} such thal n} + *n is ASD on S*.
Proof: Let n; = —n. Then 7 is exact and —n + *n is ASD. O

Next, consider
QYN(SY)) B Q3(N(SY)) S Q4N (SY)
£ EN*w = d(EN *w) = dE A *w.

Lemma 3 Given Fw A xw € QY(N(SY)) with F|s1 = 0, there exists a £ € QY(N(SY)) with
€ls1 = 0 and dé|s1 = 0 such that d o A(§) = Fw A *w.

Proof: The key is to find a = { A +w of the form o = a A df with a = 37, a;dz(;), such that

0 0
0, a—wiaj((?,()) =0, and %aj(
where 1 < 4,7 <3, and 0 € S'. da = da A df = dza A df, where ds is the differential with
respect to {z;}; on the other hand, FwA*w = fdzidxydz3df for some f with f|s1 = 0. Thus
solving for da = Fw A *w is equivalent to solving for 3, % = f. It is clearly advantageous
to us that this partial differential equation is very underdetermined. Let ay = a3 = 0 on
N(S'). Then % = f can be solved with initial condition a1(8,0, x3, z3) = 0. Since f|s1 = 0,
we can choose o with gjj‘ (0,0) = 352" (0,0) =0.

Thus, a = £ A *w has a(6,0) and all of its first partials vanish on S'. Under the linear
map A™', a will get sent to &, with £(6,0) and all of the first partials of £ equal to zero on

St. Thus, £|s1 = 0 and d€|s1 = 0. O

Ozj(e,()) = (9,0) = 0,

We find an 7] as in Lemma 2 and an 7} as in Lemma 3 such that (9 +n] +#n) A*w =0
on N(S'). Let 771’,\,(51) =17 + n,. This proves the following proposition:

Proposition 4 Given any exact 2-form n, there exists an exacl 771’,\,(51) on N(S') such that
771’,\,(51) +*n is ASD on S and (77§V(51) +#n) A*w =0 on N(S?).

Let n be an exact 2-form on M as before. On M we have ' = d¢ such that (n'+#n)Axw =
0, and on N(C') there exists an njy ) such that gy + *n is SD/ASD on the various St as
appropriate, and satisfies (n?v(c) +*n) A*w =0 on N(C).

Now write n" = d¢ and ny(¢) = dén(c). Then, d((§=Engey) A*w) = 0, and (€ —En(o)) A xw
must be exact on N(C'). Write ({ — &n(e)) A *w = dy on N(C'), with v defined on N(C').
Extend « to all of M by damping out outside of N(C'). Since w is symplectic on Supp(y),
we can write dy = £ A *w, and modify n' — n' — d¢’ = d(§ — €'). Summarizing,
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Proposition 5 Assume w satisfies the connectivity condition. Then given an exact 2-form n
on M, there exists an g’ = d€ on M such that n'+x*n is SD/ASD on C and (9’ ++n) A*w =0
on M.

It remains to obtain a section A with %k, = '+ *n. We use the following proposition
with 8 = n’ 4+ *n to complete our argument for Theorem 3.

Proposition 6 There exists a smooth solution h to the equation i,(h) = 3, provided (3|5 is
ASD and B A xw =0 on N(S') = St x D?.

Proof: Decompose w = wy +w_ and 8 = #4 + 3 into the SD and ASD parts. If i, (h) = 3,
then

Z.W+(h) = p-
iv (h) = B

We expand wi = wy to a basis {wi,wj, w3 } for the SD forms near S*. Since T,Met(M) ~
Hom(A*, A7), in order to specify h it suffices to specify

wf = By =0

wy = B3
wi — 03

in a manner consistent with w_ — 3.
Claim: h: AT@A™ — A~ © AT satisfies (h(ay),a_) = —{as, h(a_)), where ay € AT,

[ 7w—> =
—(wi, By), or, equivalently, 37 A w_ = w} A B;. We check that 8 A *w = 0 implies (85 +
BN (wy —w_) =0y Awy — - Aw_ =0, giving us - Aw_ = wy A (4.
Let us now show that there exist 3, B5 satisfying the consistency conditions. Write
wo =Y xwy and B =Y, bwr, i = 2,3, where {wi ,wy ,ws } is a basis for A7 on N(S57),
wi Awj = ajjdoy(sty, and dvy(st) is the volume form on N(S'). Then

The claim is an easy exercise. We then see that the consistency condition is (3;”

,62'_ Nw_ = Zb”w]_ A a:;wl_ = Zbija]‘[fljldUN(Sl)
it Jl
wf NGBy = meldvmsl) for some ry;,
]
and solving for 8 in B Aw_ = w; A B4 would be tantamount to solving for b;; in 3, b;;a;; =
ri. But here a;; is invertible since {w;,w; , w5 } is a basis for A™. O

This completes the proof of Theorem 3.



3.3 Analysis near N

Although it is not necessary for our theorem, it is instructive to study the neighborhood
I x N of N. Assume N is connected and the metric g on I x N is the product metric for
simplicity. Take coordinates (¢,z) on I x N. Write

w = (1 + dt A *sa) + t{wr + dt A *sws),

where p, po do not depend on ¢, wy, wy depend on ¢, and p;, w; are all 2-forms without a
dt-term. Write d, * on N as ds, *3.
It turns out that wy, wy are completely determined by py, 2 because of the harmonicity

(dv =0, d*w =0).

Proposition 7 w, and w, are given by

1 e(dg*g,)t _I_ e—(dg*g)t 1 e(d3*3)l‘ _ e—(dg*g)t
wl(tvx):_< -1 /’Ll—l_; 2 M2,

t 2
1 e(dg*g,)t _ e—(d3*3)t 1 e(dg*g,)t _I_ e—(dg*g)t
t = - — -1
(‘U?( 7‘1;) 1 ( 9 Hi + 1 2 Ha,

provided X0 (1) and eV (1y) make sense.
Proof: (A) dw = 0 implies
(1) dg/,bl = —tdgwl.

(2) twl +w = d3 k3 U2 + tdg *3 Wy,
(B) d * w = 0 implies
(3) dg,uz = —tdchQ.

(4) t(.UQ + wy = dg *3 1 + tdg *3 W1 .

Observe that (1), (3) imply that dsps = dspas = dswi; = dswz = 0 because the p; are
t-independent.

Let us first integrate (2) and (4) using (¢f) = tf'(t) + f(t) = h(t) as the model, with
f(t)=1 (c + /4 h(s)ds) as its general solution. If we require f(0) to be finite, ¢ = 0, and we
have f(t) = %fg h(s)ds. Thus,

t
wi(t,z) = %/0 [ds *3 pa(s, ) + sds *3 wa(s, x)] ds

1 t
= dg *3 MQ(O,Jf) —|— ;/ Sdg *3 WQ(S,J})C[S’
0

1 rt
wat, ) = ds*3pq(0,2) + ?/0 sds *3 wy (s, x)ds.
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Plugging w; into the right-hand side of wy (and vice versa), and iterating, we obtain

t 12
wi(t,z) = (ds*z)ps + §(d3*3)2,u1 + E(d3*3)3ﬂ02 + ...
1 e(dg*g)t _I_ e—(dg*g)t 1 1 e(dg*g)t _ e—(dg*g)t
= 7 5 1w+ 7 5 2
1 e(dg*g)t _ e—(dg*g)t 1 e(dg*g)t _I_ e—(dg*g)t D
wy(t,x) = ;( 5 M1+; 5 — 1) p2

Example: (Contact case) This is the situation where w = p; + t(w; + dt A *3w2), with
k31 = &, a contact 1-form, and d3 *3 py = d€ = py. Then we obtain

w = (e"+e Hu+ (e — e dt A*3y
— A+ e,

4 Local considerations

In this section, Met(M) and Q2 (M) are Frechet spaces of smooth sections, with a grading
given by Holder norms | - |gx. With the help of the Nash-Moser iteration technique, we now
pass from the microlocal computation to a local statement:

Theorem 5 @, is surjective near an (w, g) which satisfies the connectivity condition.

It is evident that Theorem 5 implies Theorem 2. Theorem 5, in turn, follows from the
following:

Theorem 6 Let go € Met(M) be a metric for which (wo = ®o(g0), go) salisfies the connec-
tivity condition. Then there exist constants C, > 0 and 6 > 0 with the following property:
Given n € dQ' and |g— go|y < 8, there exists an h € T'(Sym*(TM)) such that d®,(g)(h) = n
and |hlg—> < Cr([nlx + |nlolgle)-

Theorem 6 implies Theorem 5 by the Nash-Moser iteration process, which we describe in
the next two sections.

4.1 Tame maps

We will use the notion of tame maps between tame Frechet manifolds, following R. Hamilton
[7]. We refer the reader to [7] for definitions and a thorough discussion. Note that a smooth
tame map L : F' — G of tame Frechet manifolds is a tame map all of whose derivatives are
tame.
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Let V, W be vector bundles over M, and I'(V'), I'(W) be tame Frechet spaces of C*-
sections over M. Consider D"(V, W), whose sections are differential operators of degree r
from V' to W. Locally we can write a differential operator of degree r as

L)) = > ¢al(Daf).

|| <r

Here o is a multiindex (a4, ...,a,) and D, = 9°'---9°". We can think of ¢ = {¢,} as a
section of D"(V,W). Then we have a map

L:T(D(V,W))xTI'(V)—T(W),
(¢, /) = L()(f).
Proposition 8 L is a smooth tame map.

Now consider an open set U C I'(D"(V,W)) consisting of ¢ = {¢,} such that L(¢) is

elliptic and invertible. Then we have
L7 U xT(W) = T(V),
(6.9) = [L()] " (9).
Proposition 9 L' is a smooth tame map of degree —r.
Proposition 10 @, : Met(M) — Q' (M) is a smooth tame map of degree 0.
Proof: By the previous proposition,
L7 U x QM) — (M)

is a smooth tame map of degree —2, where U C T'(D?(A%, A?)) consists of elliptic and
invertible degree 2 operators.
Now, consider the inclusion

Met(M) x C — T(D* (A, \)).

(97/\) = Ag —I_/\v

which is a smooth tame map of degree 2. Since the composition of tame maps is tame, we
have

G (Met(M) x C)ﬂU) X Q’(M) — QZ(M)
(9. A),w] = Gy(Nw = (A, + 1) w
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is a smooth tame map of degree 0. Next, consider
I : Met(M) x Q'(M) — Q(M)

(ng) = Wg(w)7
where m, : Q' (M) — 7-[; is the orthogonal projection onto the harmonic space 7—[;. ITis a
smooth tame map because

my(@) = 5 [ Gy

2
and ' C C can be fixed on a small neighborhood of ¢g. Finally, composing Il with

i : Met(M) — Met(M) x Q'(M)

g — (gv(‘UO)a
we find that @, is a smooth tame map of degree 0. O

4.2 Nash-Moser iteration scheme

The following is the version of Nash-Moser that we will use:

Theorem 7 (Nash-Moser) Let F', G be lame Fréchel spaces and U C F an open sel.
Suppose L : U — G is a smooth tame map, dL(f) is surjective for all f € U, and there
exists a family of right inverses (dL)™' : U x G — F which is a tame map. Then L is locally
surjective.

We already know that @, : Met(M) — Q2(M) is a smooth tame map and that d®, is
surjective near (wg, go). The conditions

|olr—2 < C(Inle + Inlolglx) (7)

would assure us that (dL)™' is tame. Applying the Nash-Moser iteration process, we see
that Theorem 6 would imply Theorem 5.

4.3 Estimates

We will prove Estimates 7 above by carefully retracing the argument in Theorem 3. Keep
in mind that |g — go|1 < § throughout.
The following interpolation lemma is useful in our estimates:

Lemma 4 (Interpolation) If fi, f; are functions on a compact manifold X, then

|fifole < C(filolfalk + 1 f1lk] f2lo)-

13



In the proof of Theorem 4, we first solve for da = *n A*w. Noting that |w|r < C(1+|g|k)
since @, is smooth tame of degree 0, we obtain bounds

|dali < C(Inlklglo + lgllnlo) < Cnlk + Inlolglr)

by interpolation.

Lemma 5 Given an exact i-form 3 on a compact manifold X, there exists an a € Q~1(X)

such that do = 3 and |a|p41 < C|6)k.
Proof: We make use of the Green’s function G, at go, and write a = d*° G 3. da = (3, and

|alpsr = |d™ oo Blitr < ClGygBlrra < OBk O
Thus, there exists an « such that da = *n A *w and |a|kr1 < C(In]x + |7lolglk)-

Claim 2 bounds: Next, we bound the a modified as in Claim 2 of Theorem 4. Observe
that, as long as |g — go|1 < §, for § small, |w — wp|; is small, and the harmonic form
remains transverse. Hence, the rank 2 subsets N remain submanifolds, and are close together,
provided the |g — go|1 are kept small.

Take a basis {[dvy,]} for H3(N'), with dvy, a volume form of unit volume on N;. Let
[vi] € H*(M) satisfy iy [v;] = [di;dvn;]. Fix representatives v; € [v;]. Then dor = — 3, a;y;,
with |y;[r41 fixed constants, and a; = [y, o. Hence,

[baless < O3 lalolviless < Clalo < Cllnlk + Inlolgli).

Claim 3 bounds: We now have bounds for a, where da = *n A *w and i3 [a] = 0

for all N; semi-contact. Take N; not semi-contact, and we first estimate &; on I x Nj.

£i(t,x) = ¢;f;fi2(0, 2), with In, & N *3fia = [y, a, where we are using the same fifi2(0,2) =

fifi2(g0)(0, z) for all |g — go| < §, and we are simply varying the scaling factor ¢;. Thus,
&ilk+1 < Clalolwolrsr < Clalo,

on I x Nj.

We now give bounds for the damping out process. Let ¢(t) be a smooth function on R
such that -
_ 1 on [_77 5]
o(t) = { 0 outside [—1,1] ’
and 0 < &(¢) <1 on [-1,Z UL, 1].
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Then, modify &; — £;¢. We find that

1§k < C([E rg1]Plo + [Dlrg11Ei10) < ClEi]rs1,

since ¢ is fixed throughout. With this new ¢;,

lo =& A xwligr < C(Inle + |nlolgle)-

Claim 1 bounds: We may now assume that iy [a] = 0 for all N;. We then modify
a— a—da so that (a — da)|y, = 0. If we write oy (0, z) = d3y; on N;, then

Vilkran < Clafrgy

by Lemma 5. However, we can only bound |v; 4+ ta3(0, 2)|z+1 < C|a|kt1 because of the term
tay - we lose one derivative here unless we are careful.
Instead, use ©.(¢)ay(0, z), where

B t on [_575]
Pe(t) = { 0 outside [—1,1] ’

and . damps out slowly to 0 on [—1, —¢][e, 1]. It is not difficult to see that for e small,
there exist 1. with |¢.|g arbitrarily small, and |¢.]; < |[¢|;, for ¢ > 1, where

l on [—

_ 23]
(t) = { 0 outside [—1,1] ’

and ¢ damps out slowly to 0 on [—1,—1]U[L,1]. ¥.(1)@2(0,2) will clearly do the job of
ta3(0, ), with the advantage that we can find an ¢ (dependent on g) with

[9ea2(0,7) k12 < Clafpqa,

[0aferr = [d(7; + e (£)22(0, 2)) k41 < Clers
As before, we do not lose any derivatives by damping out +; + t.(¢)a2(0, x).
Thus,
la = dalerr < C([nlk + [nlolglk)-

Bounds for ’: Finally, a|y, = 0 for all N;, and we solve for £ A *w = a. We do not lose
any derivatives where A is an isomorphism. However, near the N;’s we lose one derivative,
ie.

€1k < CInle + Inlolgle),
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and

17 [x=1 < Cld€|r—1 < C(|nlx + [nlolglr)-

Estimates near S': On N(S'), we have bounds

7'lk < [€lk+1 < Cnlk + Inlolgle)-

Let us compute bounds on njy 51y and {n(si). my = =, so |ni|x < Clnlx. For bounds on
satisfying n) A sw = —(n] +*n) A *w on N(S') and —(n] + *n) A *w|s1 = Fw A *w|s1 = 0,
we look to the proof of Lemma 3. Clearly, |F|x < C(|n|x + |nlolg|x). Solving for o = & A df
with da = Fw A *w, we have

lafe < CIFe < C(nlx + [nlolglr),

and hence
[Envsyle < Cnlk + [nlolgls)-

Note that we have lost one derivative - had we worked a bit harder, that would not have
been necessary, unlike the loss of derivative near N;, which seems inherent to the problem.

Finally, we write dy = (£ — &n(c)) A #w on N(C). By compactifying S' x D? to S' x 5,
for example, we can use Lemma 3 and obtain a v satisfying

[7e+1 < CIE = Enviey) A xwle < C(Inle + [nlolgl)-

Damping v out, we do not lose any derivatives, and hence

1n" = d€lrk—1 < C(Inlk + nlolglk).

In order the complete the proof of Theorem 6, we are left to prove:
Lemma 6 There exists an h on M such that |h|x—1 < C(|n|x + [1]olglk)-

Proof: Consider h away from N(S'). Since n + *n’ = {h,w}, the anticommutator of & and
w viewed as matrices, and 7, has constant rank throughout, we are able to bound

[Alk-1 < C(In+ 40 le-1lwlo + |0 + #n'lolwle—1) < CInle + [lolgls),

by interpolation.

We next find h on N(S'). Writing 8 =71’ 4 *n and 8 = 34 + 5_,

187 k=1 = [B-|r=1 < |Ble=1 < C(Inlx + |nlolglz)-
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B3, B3 come from solving 87 Aw_ = w A 34. Hence,

ritli—z < Clwit A Bile—1 < (Inlk + [nlolglx),

and we lose a derivative. Since b;;a;; = r;;, we have

187 [k—2 < C|nle + Inlolglr)-

Hence |h|z—2 < C(|nlk + Inlolgls) on N(S'). We finally interpolate the h that we find on
N(S') to the h on M — N(S'), while keeping |h|x—2 < C(In|x + |nlolglx)- ]
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