An Openness Theorem for Harmonic 2-forms on 4-manifolds

Ko Honda

Revised June 29, 1998

Abstract

Let M be a closed, oriented 4-manifold with $b_2^{\pm} > 0$. In this paper we show that the space of transverse intrinsically harmonic 2-forms in a fixed cohomology class is open in the space of closed 2-forms, subject to a condition which arises from cohomological considerations of a singular differential ideal.

1 Introduction

In this paper we address the question: When is a closed *i*-form ω on a closed manifold M of dimension n intrinsically harmonic, that is, there exists a Riemannian metric g with respect to which ω is harmonic? In the case of 1-forms, an answer was given by Calabi in [2]:

Theorem 1 (Calabi) Let ω be a closed 1-form on M. Assume that it is transverse to the zero section of T^*M . Then ω is intrinsically harmonic if and only if (i) ω does not have any zeros of index θ or n, and (ii) given any two points p, $q \in M$ which are not zeros of ω , there exists a path $\gamma:[0,1] \to M$ with $\gamma(0) = p$ and $\gamma(1) = q$, such that $\omega(\gamma(t))(\dot{\gamma}(t)) > 0$ for all $t \in [0,1]$.

Let $\Omega^i(M)$ be the space of *i*-forms, and $\Omega^i_{\alpha}(M)$ be the subspace consisting of *i*-forms in the cohomology class $\alpha \in H^i(M; \mathbf{R})$. Denote by $\mathcal{H}^i_{\alpha} \subset \Omega^i(M)$ the space of intrinsically harmonic *i*-forms in the class α , and let $\widetilde{\mathcal{H}}^i_{\alpha} \subset \mathcal{H}^i_{\alpha}$ be the harmonic *i*-forms in α which are transverse to all the strata of $\Lambda^i(\mathbf{R}^n)^*$ under the action of SO(n). Call elements in $\widetilde{\mathcal{H}}^i_{\alpha}$ transverse. For transversality results for harmonic forms we refer the reader to [8]. Calabi's theorem implies the following:

Proposition 1 $\widetilde{\mathcal{H}}^1_{\alpha} \subset \Omega^1_{\alpha}(M)$ is an open subset.

1991 Mathematics Subject Classification. Primary: 58A10, 58A14, 58A15, 53C15.

In the case of 2-forms, the situation is quite subtle. There is no known analog of Calabi's theorem for 2-forms, and an intrinsic characterization of harmonic 2-forms is rather elusive. In this paper we prove an openness theorem for transverse harmonic 2-forms on a 4-manifold, which will illustrate some of the obstructions which may arise in the general case.

Let M be a closed, oriented 4-manifold with $b_2^{\pm} > 0$. Then the generic harmonic 2-form ω in the class $\alpha \in H^2(M; \mathbf{R})$ (generic in the space of metrics) is neither self-dual (SD) nor anti-self-dual (ASD) (cf. Section 4.3 of [3]), and is transverse. In particular, recalling the stratification of $\Lambda^2(\mathbf{R}^4)^*$ under the action of SO(4),

- (i) ω has no zeros.
- (ii) The locus where ω is SD/ASD consists of a union of circles $C = \bigcup S^1$.
- (iii) The locus where ω has rank 2 is a 3-manifold N (possibly disconnected).

Note that C and N are disjoint. For a proof, we refer to [8].

In order to state the theorem, it would be convenient to introduce the following:

Connectivity Condition: Let $\{N_j\}_{j=1}^r$ be the set of connected components of N. ω is said to be *semi-contact* on N_j if the pullback to N_j of $*\omega$ is zero. Let N' be the union of all the semi-contact N_j . Then ω satisfies the *connectivity condition* if M-N' is connected.

We then have the following

Theorem 2 $\widetilde{\mathcal{H}}_{\alpha}^2 \subset \Omega_{\alpha}^2$ is open on the set of transverse intrinsically harmonic 2-forms ω satisfying the connectivity condition.

On the way to proving this theorem we encounter the cohomology of the singular differential ideal $\mathcal{I} = (*\omega)$, which naturally gives rise to our connectivity condition. We will compute the *infinitesimal harmonic perturbations* of a harmonic form ω (see Section 2), via the singular differential ideal, and pass from infinitesimal to local using the Nash-Moser iteration technique.

We remark that the SD harmonic 2-forms are quite interesting in their own right - for a discussion see [9].

2 Infinitesimal harmonic perturbations

Let $\operatorname{Met}(M)$ be the space of C^{∞} -metrics on an n-dimensional manifold M, $T_g\operatorname{Met}(M) = \Gamma(\operatorname{Sym}^2(TM))$ be its tangent space at $g \in \operatorname{Met}(M)$, and $\Omega^i(M)$ consist of C^{∞} i-forms. Then define

$$\Phi_{\alpha}: \operatorname{Met}(M) \to \Omega_{\alpha}^{i}(M),$$

which sends the metric g to the i-form ω with $\Delta_g \omega = 0$ and $[\omega] = \alpha$.

The derivative of Φ_{α} is the infinitesimal harmonic perturbation map

$$d\Phi_{\alpha}(g): \Gamma(\operatorname{Sym}^2(TM)) \to d\Omega^{i-1}(M),$$

which we shall now compute.

Consider a 1-parameter family (ω_t, g_t) of harmonic *i*-forms on M, with $g_0 = g$, $[\omega_t] \in \alpha$, $h = \frac{d}{dt}g_t|_{t=0}$, and $\eta = \frac{d}{dt}\omega_t|_{t=0}$ exact. We differentiate

$$d\omega_t = 0, d^*\omega_t = 0$$

to obtain

$$\begin{array}{ll} (i) & d\eta = 0, \\ (ii) & d^*\eta = \pm d^*(*\dot{*}_{g_t}\omega). \end{array}$$

The Hodge decomposition gives

$$\Omega^i = d\Omega^{i-1} \oplus d^*\Omega^{i+1} \oplus \mathcal{H}^i,$$

so we find that $\eta = \pm \pi_1(*\dot{*}_{g_t}\omega)$, where π_1 is the projection onto the $d\Omega^{i-1}$ factor. Hence, $d\Phi_{\alpha}(g)$ is the composite map

$$\Gamma(\operatorname{Sym}^2(TM)) \stackrel{**\omega}{\to} \Omega^i(M) \stackrel{\pi_1}{\to} d\Omega^{i-1}(M)$$

$$h \mapsto *\dot{*}_{g+th}\omega \mapsto \pi_1(*\dot{*}_{g+th}\omega).$$

Hence, in order to compute the image of $d\Phi_{\alpha}(g)$, we solve the equation

$$\eta + *\eta' + \mu = *\dot{*}_{q+th}\omega, \tag{1}$$

where the exact form η is the given candidate for an infinitesimal harmonic perturbation, and we determine η' exact, μ harmonic, and h, the metric perturbation.

3 Infinitesimal computation for non-self-dual (or antiself-dual) harmonic 2-forms on a 4-manifold

Let us now specialize to the 4-manifold M with $b_2^{\pm} > 0$. We then prove the following microlocal result:

Theorem 3 Let (ω, g) be a transverse harmonic 2-form on M^4 in the class $\alpha \in H^2(M; \mathbf{R})$. If ω satisfies the connectivity condition, then $d\Phi_{\alpha}(g)$ is surjective, i.e. all the exact 2-forms on M are infinitesimal harmonic perturbations.

Observe that a transverse harmonic 2-form must necessarily be non-SD/ASD, when both $b_2^+ > 0$ and $b_2^- > 0$.

In order to make use of Equation 1, we must first compute the image of the map

$$i_{\omega(x)}: \mathcal{S} \to \bigwedge^2(\mathbf{R}^4)^*,$$

$$h \mapsto *\dot{*}_{g+th}\omega(x),$$

where S is the set of symmetric $n \times n$ matrices, and we assume that the bundle T^*M has been trivialized near x. In [8] we computed

- 1. Im $i_{\omega(x)} = 0$, if $\omega(x) = 0$.
- 2. Im $i_{\omega(x)} = \{ASD (SD) \text{ 2-forms}\}, \text{ if } \omega(x) \text{ is SD } (ASD).$
- 3. Im $i_{\omega(x)} = (*\omega(x))^{\perp}$, otherwise.

For a transverse 2-form there are no points x where $\omega(x) = 0$. The primary difficulty with the transverse non-SD/ASD harmonic 2-form on a 4-manifold is that Im $i_{\omega(x)}$ is never surjective.

It is most convenient to rewrite Equation 1 as follows: Noting that Im $i_{\omega(x)} \subset (*\omega(x))^{\perp}$ whenever $\omega(x) \neq 0$, and Im $i_{\omega(x)} = (*\omega(x))^{\perp}$ in particular when $\omega(x)$ is not SD/ASD, we obtain, after taking *,

$$\eta' + *\eta + \mu \perp \omega, \tag{2}$$

where \perp is the pointwise inner product with respect to g, and μ is some harmonic 2-form which may not be the same μ as in Equation 1. This can be rephrased as

$$(\eta' + *\eta + \mu) \wedge *\omega = 0. \tag{3}$$

We will thus compute the image of $d\Phi_{\alpha}(g)$ in the following fashion: Fix $\eta \in d\Omega^{1}(M)$, and solve for $\eta' = d\xi$ and μ harmonic in Equation 3, where we additionally require on each component S^{1} of C that $(\eta' + *\eta + \mu)|_{S^{1}}$ be ASD whenever $\omega|_{S^{1}}$ is SD (and vice versa). If there exist such η' and μ , then, by linear algebra, we can find an h solving Equation 1. Neighborhoods of C require a little care when solving for h.

3.1 Singular differential ideal

We want to compute the image of the following composite map:

$$\Omega^1(M) \stackrel{\mathcal{A}}{\to} \Omega^3(M) \stackrel{d}{\to} \Omega^4(M)$$

$$\xi \mapsto \xi \wedge *\omega \mapsto d(\xi \wedge *\omega) = d\xi \wedge *\omega.$$

We shall relate the image of this map to the cohomology $H^4(M,\mathcal{I})$ of a singular differential ideal, and compute it in this section. Let $\mathcal{I} = (*\omega)$ be the differential ideal generated by $*\omega$. The ideal has the following chain complex:

$$0 \to \mathcal{I}^0 = 0 \to \mathcal{I}^1 = 0 \to \mathcal{I}^2 \to \mathcal{I}^3 \to \mathcal{I}^4 \to 0.$$

Observe that $\mathcal{I}^4 = \Omega^4$: As long as $*\omega$ has no zeros, there exists a 2-form ξ such that $\xi \wedge *\omega = F\omega \wedge *\omega$ for given F. Also noting that $\mathcal{I}^3 = \{\xi \wedge *\omega | \xi \in \Omega^1\}$, we have

Lemma 1 $H^4(M, \mathcal{I}) = \Omega^4(M)/Im \ d \circ \mathcal{A}$.

Hence, our problem is equivalent to computing $H^4(M,\mathcal{I})$ of a singular differential ideal.

Proposition 2 $H^4(U,\mathcal{I}) = H^4(U,\mathbf{R})$, if $U \subset \{x \in M | \omega^2(x) \neq 0\}$.

Proof: This follows from observing that if ω is symplectic at x, then $\xi \mapsto \xi \wedge *\omega$ gives an isomorphism $\bigwedge^1(\mathbf{R}^4)^* \simeq \bigwedge^3(\mathbf{R}^4)^*$.

Corollary 1 If ω is symplectic, then $H^4(M,\mathcal{I}) = \mathbf{R}$.

Corollary 2 If $\omega(x)$ is of generic type for all $x \in M$, then $d\Phi_{\alpha}(g)$ is surjective.

Proof: Note that $*\eta \wedge *\omega = \eta \wedge \omega$, with η exact. Hence $[*\eta \wedge *\omega] = 0 \in H^4(M; \mathbf{R})$. That is, we can let $\mu = 0$ and solve for $d\xi \wedge *\omega = *\eta \wedge *\omega$, which has a solution $d\xi$ by the proposition.

Let us now examine $\mathcal{I} = (*\omega)$ near the rank 2 submanifold N. Let $I \times N$ be a neighborhood of N, with coordinates (t, x). We can write

$$\omega = (\mu_1 + dt \wedge \tilde{\mu}_2) + t(\omega_1 + dt \wedge \tilde{\omega}_2),$$

with μ_1 , ω_1 2-forms, and $\tilde{\mu}_2$, $\tilde{\omega}_2$ 1-forms, all without a dt-term. Here μ_1 , $\tilde{\mu}_2$ do not depend on t

On $I \times N$, we can solve for α in $d\alpha = *\eta \wedge *\omega$. Since α must satisfy $\alpha = \xi \wedge *\omega$ for some 1-form ξ , we require $\alpha|_N = 0$. Let us then modify $\alpha \mapsto \alpha - \delta \alpha$ so that $\alpha - \delta \alpha|_N = 0$. We write

$$\alpha = \alpha_1(t, x) + dt \wedge \widetilde{\alpha}_2(t, x) \tag{4}$$

$$= \alpha_1(0,x) + dt \wedge \tilde{\alpha}_2(0,x) + \text{ h.o. in } t.$$
 (5)

Here, α_1 is a 3-form and $\tilde{\alpha}_2$ is a 2-form, both without dt-terms.

If we let $\delta\alpha(t,x) = \alpha_1(0,x) + d(t\tilde{\alpha}_2(0,x))$, then $(\alpha - \delta\alpha)|_N = 0$; since $\delta\alpha$ is closed, we still have $d(\alpha - \delta\alpha) = *\eta \wedge *\omega$. It is not difficult to see that $(\alpha - \delta\alpha)|_N = 0$ is sufficient to ensure the existence of a ξ such that $\xi \wedge *\omega = \alpha - \delta\alpha$. This follows from the transversality of ω near N. Summarizing,

Proposition 3 $H^4(I \times N, \mathcal{I}) = 0$.

Having taken care of the local aspects, we can pass from local to global. As before, let $\{N_j\}_{j=1}^r$ be the set of connected components of N. ω is said to be *semi-contact* on N_j if $\omega = \mu_1 + t(\omega_1 + dt \wedge \widetilde{\omega}_2)$, with μ_1 nonsingular and closed on N_j , i.e. $i_{N_j}^*(*\omega) = 0$, where $i_{N_j}: N_j \to M$ is the inclusion. Let N' be the union of all the semi-contact N_j . Then we have the following theorem:

Theorem 4 dim $H^4(M, \mathcal{I}) = (\# \ of \ connected \ components \ of \ M - N').$

Proof: If $[\beta] = 0 \in H^4(M; \mathbf{R})$, then there exists a global α such that $d\alpha = \beta$.

Claim 1: If $i_{N_j}^*[\alpha] = 0 \in H^3(N_j; \mathbf{R})$, then we can modify α so that $\alpha|_{N_j} = 0$.

Proof of Claim 1: Recall Equation 4 in the proof of Proposition 3. If $i_{N_j}^*[\alpha] = 0$, then we can write $\alpha_1(0, x) = d_3\gamma_j$ on N_j . Extend γ_j to $I \times N_j$ so that $\gamma_j(t, x) = \gamma_j(0, x)$, and damp $\gamma_j + t\tilde{\alpha}_2(0, x)$ out outside of $I \times N_j$. Finally, modify $\alpha \mapsto \alpha - \delta \alpha$, where $\delta \alpha = d(\gamma_j + t\tilde{\alpha}_2(0, x))$.

Claim 2: If M - N' is connected, then we can modify $\alpha \mapsto \alpha + \delta \alpha$ with $\delta \alpha \in H^3(M; \mathbf{R})$ so that $i_{N_j}^*[\alpha + \delta \alpha] = 0 \in H^3(N_j; \mathbf{R})$ for all N_j semi-contact.

Proof of Claim 2: Consider the exact sequence

$$H^3(M) \xrightarrow{i} H^3(N') \to H^4(M, N') \to H^4(M) \to 0. \tag{6}$$

Since M-N' is connected, $H^4(M,N') \simeq H_0(M-N') \simeq \mathbf{R}$. This implies that i is surjective, and that there exists a $\delta \alpha \in H^3(M;\mathbf{R})$ such that $i^*_{N_j}[\alpha + \delta \alpha] = 0 \in H^3(N_j;\mathbf{R})$ for all N_j semi-contact.

Claim 3: If $i_{N_i}^*[\alpha] = 0$ for all N_i semi-contact, then there exists an $\alpha = \xi \wedge *\omega$ such that $d\alpha = \beta$.

Proof of Claim 3: Let α satisfy $d\alpha = \beta$, with the additional condition that $i_{N_i}^*[\alpha] = 0$ for all N_i which is semi-contact. By Claim 1, we may also assume that $\alpha|_{N_i} = 0$ for all N_i semi-contact. Now assume N_j is not semi-contact. Then we can write

$$\omega = (\mu_1 + dt \wedge \tilde{\mu}_2) + t(\omega_1 + dt \wedge \tilde{\omega}_2),$$

with $\tilde{\mu}_2$ not identically zero. Then,

$$*\omega(0,x) = (*_3\tilde{\mu}_2 + dt \wedge *_3\mu_1)(0,x),$$

and there exist $\xi_j(t,x) = c_j f_j \tilde{\mu}_2(0,x)$ on N_j such that

$$\int_{N_i} c_j f_j \tilde{\mu}_2 \wedge *_3 \tilde{\mu}_2 = \int_{N_i} \alpha.$$

We then damp ξ_j outside of $I \times N_j$, and solve for $\xi \wedge *\omega = \alpha - \sum \xi_j \wedge *\omega$, where the sum runs over all non-semi-contact N_j . Here, we may need to modify α using Claim 1, so that $(\alpha - \sum \xi_j \wedge *\omega)|_{N_i} = 0$ for every component N_i of N. Finally, we can write $\alpha = (\xi + \sum \xi_j) \wedge *\omega$.

We will now complete the proof of Theorem 4. Refer back to Equation 6. Observe that $i_{N'}^*[\xi \wedge *\omega] = 0 \in H^3(N')$ if N' is the union of the semi-contact components. Hence, given β with $[\beta] = 0 \in H^4(M; \mathbf{R})$, for $\beta = d\alpha$ with $\alpha = \xi \wedge *\omega$ to be satisfied, we need $i_{N'}^*[\alpha] = 0 \in H^3(N')/i(H^3(M))$. This condition is also sufficient, since $i_{N'}^*[\alpha] = 0 \in H^3(N')/i(H^3(M))$ implies that there exists a representative α with $i_{N_j}^*[\alpha] = 0 \in H^3(N_j)$ for all N_j semi-contact, and we can apply Claim 3. Finally, dim $H^3(N')/i(H^3(M)) = \dim H^4(M, N') - \dim H^4(M) = (\# \text{ of components of } M - N') - 1$. Thus, dim $H^4(M, \mathcal{I}) = (\# \text{ of connected components of } M - N')$.

Remark 1: We have two differential ideals, $\mathcal{I} = (*\omega)$ and $\mathcal{J} = (\omega)$, whose fates seem interconnected. It would be interesting to find out how they are related.

Remark 2: The computations of the singular differential ideals seem generalizable to higher dimensions, provided we have sufficient genericity.

Let us finally close this section with the following:

Conjecture: The connectivity condition is non-vacuous, i.e. there exists a transverse intrinsically harmonic form ω on a manifold M which does not satisfy the connectivity condition. Although we know of no explicit examples where the connectivity condition is necessary, the condition arises in such a natural fashion as a necessary condition for the surjectivity of the derivative map that we suspect that there indeed exist examples.

3.2 Analysis near $\cup S^1$

In the previous section we saw that, if the connectivity condition is met, then we have a solution to $(\eta' + *\eta + \mu) \wedge *\omega = 0$. Note that we can set $\mu = 0$ since $*\eta \wedge *\omega = \eta \wedge \omega$ is exact on M. Under the conditions for Theorem 3, we find that there exist a 1-form ξ such that $d(\xi \wedge *\omega) = *\eta \wedge *\omega$ by Theorem 4, and hence we can set $\eta' = d\xi$.

We now need to perform a more careful analysis near $C = \bigcup S^1$ in order to finish the proof of Theorem 3. Consider a connected component S^1 of C and let $N(S^1) = S^1 \times D^3$

have coordinates θ, x_1, x_2, x_3 , which are orthonormal at $S^1 \times \{0\}$. Without loss of generality, let ω be SD on S^1 . Fix an exact η , and we will solve for η' satisfying $(\eta' + *\eta) \wedge *\omega = 0$ on $S^1 \times D^3$, with the additional constraint that $\eta' + *\eta$ be ASD on S^1 .

Lemma 2 There exists an exact η'_1 such that $\eta'_1 + *\eta$ is ASD on S^1 .

Proof: Let $\eta'_1 = -\eta$. Then η is exact and $-\eta + *\eta$ is ASD.

Next, consider

$$\Omega^{1}(N(S^{1})) \stackrel{\mathcal{A}}{\to} \Omega^{3}(N(S^{1})) \stackrel{d}{\to} \Omega^{4}(N(S^{1}))$$
$$\xi \mapsto \xi \wedge *\omega \mapsto d(\xi \wedge *\omega) = d\xi \wedge *\omega.$$

Lemma 3 Given $F\omega \wedge *\omega \in \Omega^4(N(S^1))$ with $F|_{S^1} = 0$, there exists a $\xi \in \Omega^1(N(S^1))$ with $\xi|_{S^1} = 0$ and $d\xi|_{S^1} = 0$ such that $d \circ \mathcal{A}(\xi) = F\omega \wedge *\omega$.

Proof: The key is to find $\alpha = \xi \wedge *\omega$ of the form $\alpha = \tilde{\alpha} \wedge d\theta$ with $\tilde{\alpha} = \sum_i \alpha_i dx_{(i)}$, such that

$$\alpha_j(\theta,0) = 0, \ \frac{\partial}{\partial x_i} \alpha_j(\theta,0) = 0, \ \mathrm{and} \ \frac{\partial}{\partial \theta} \alpha_j(\theta,0) = 0,$$

where $1 \leq i, j \leq 3$, and $\theta \in S^1$. $d\alpha = d\tilde{\alpha} \wedge d\theta = d_3\tilde{\alpha} \wedge d\theta$, where d_3 is the differential with respect to $\{x_i\}$; on the other hand, $F\omega \wedge *\omega = f dx_1 dx_2 dx_3 d\theta$ for some f with $f|_{S^1} = 0$. Thus solving for $d\alpha = F\omega \wedge *\omega$ is equivalent to solving for $\sum_i \frac{\partial \alpha_i}{\partial x_i} = f$. It is clearly advantageous to us that this partial differential equation is very underdetermined. Let $\alpha_2 = \alpha_3 = 0$ on $N(S^1)$. Then $\frac{\partial \alpha_1}{\partial x_1} = f$ can be solved with initial condition $\alpha_1(\theta, 0, x_2, x_3) = 0$. Since $f|_{S^1} = 0$, we can choose α with $\frac{\partial \alpha_i}{\partial x_i}(\theta, 0) = \frac{\partial \alpha_i}{\partial \theta}(\theta, 0) = 0$.

Thus, $\alpha = \xi \wedge *\omega$ has $\alpha(\theta, 0)$ and all of its first partials vanish on S^1 . Under the linear map \mathcal{A}^{-1} , α will get sent to ξ , with $\xi(\theta, 0)$ and all of the first partials of ξ equal to zero on S^1 . Thus, $\xi|_{S^1} = 0$ and $d\xi|_{S^1} = 0$.

We find an η'_1 as in Lemma 2 and an η'_2 as in Lemma 3 such that $(\eta'_2 + \eta'_1 + *\eta) \wedge *\omega = 0$ on $N(S^1)$. Let $\eta'_{N(S^1)} = \eta'_1 + \eta'_2$. This proves the following proposition:

Proposition 4 Given any exact 2-form η , there exists an exact $\eta'_{N(S^1)}$ on $N(S^1)$ such that $\eta'_{N(S^1)} + *\eta$ is ASD on S^1 and $(\eta'_{N(S^1)} + *\eta) \wedge *\omega = 0$ on $N(S^1)$.

Let η be an exact 2-form on M as before. On M we have $\eta' = d\xi$ such that $(\eta' + *\eta) \wedge *\omega = 0$, and on N(C) there exists an $\eta'_{N(C)}$ such that $\eta'_{N(C)} + *\eta$ is SD/ASD on the various S^1 as appropriate, and satisfies $(\eta'_{N(C)} + *\eta) \wedge *\omega = 0$ on N(C).

Now write $\eta' = d\xi$ and $\eta'_{N(C)} = d\xi_{N(C)}$. Then, $d((\xi - \xi_{N(C)}) \wedge *\omega) = 0$, and $(\xi - \xi_{N(C)}) \wedge *\omega$ must be exact on N(C). Write $(\xi - \xi_{N(C)}) \wedge *\omega = d\gamma$ on N(C), with γ defined on N(C). Extend γ to all of M by damping out outside of N(C). Since ω is symplectic on Supp (γ) , we can write $d\gamma = \xi' \wedge *\omega$, and modify $\eta' \mapsto \eta' - d\xi' = d(\xi - \xi')$. Summarizing,

Proposition 5 Assume ω satisfies the connectivity condition. Then given an exact 2-form η on M, there exists an $\eta' = d\xi$ on M such that $\eta' + *\eta$ is SD/ASD on C and $(\eta' + *\eta) \wedge *\omega = 0$ on M.

It remains to obtain a section h with $*\dot{*}_{g+th}\omega = \eta' + *\eta$. We use the following proposition with $\beta = \eta' + *\eta$ to complete our argument for Theorem 3.

Proposition 6 There exists a smooth solution h to the equation $i_{\omega}(h) = \beta$, provided $\beta|_{S^1}$ is ASD and $\beta \wedge *\omega = 0$ on $N(S^1) = S^1 \times D^3$.

Proof: Decompose $\omega = \omega_+ + \omega_-$ and $\beta = \beta_+ + \beta_-$ into the SD and ASD parts. If $i_{\omega}(h) = \beta$, then

$$i_{\omega_+}(h) = \beta_-$$

 $i_{\omega_-}(h) = \beta_+.$

We expand $\omega_1^+ = \omega_+$ to a basis $\{\omega_1^+, \omega_2^+, \omega_3^+\}$ for the SD forms near S^1 . Since $T_g \operatorname{Met}(M) \simeq \operatorname{Hom}(\Lambda^+, \Lambda^-)$, in order to specify h it suffices to specify

$$\begin{array}{cccc} \omega_1^+ & \mapsto & \beta_1^- = \beta_- \\ \omega_2^+ & \mapsto & \beta_2^- \\ \omega_3^+ & \mapsto & \beta_3^- \end{array}$$

in a manner consistent with $\omega_- \mapsto \beta_+$.

Claim: $h: \Lambda^+ \oplus \Lambda^- \to \Lambda^- \oplus \Lambda^+$ satisfies $\langle h(\alpha_+), \alpha_- \rangle = -\langle \alpha_+, h(\alpha_-) \rangle$, where $\alpha_{\pm} \in \Lambda^{\pm}$.

The claim is an easy exercise. We then see that the consistency condition is $\langle \beta_i^-, \omega_- \rangle = -\langle \omega_i^+, \beta_+ \rangle$, or, equivalently, $\beta_i^- \wedge \omega_- = \omega_i^+ \wedge \beta_+$. We check that $\beta \wedge *\omega = 0$ implies $(\beta_+ + \beta_-) \wedge (\omega_+ - \omega_-) = \beta_+ \wedge \omega_+ - \beta_- \wedge \omega_- = 0$, giving us $\beta_- \wedge \omega_- = \omega_+ \wedge \beta_+$.

Let us now show that there exist β_2^- , β_3^- satisfying the consistency conditions. Write $\omega_- = \sum_l x_l \omega_l^-$ and $\beta_i^- = \sum_j b_{ij} \omega_j^-$, i = 2, 3, where $\{\omega_1^-, \omega_2^-, \omega_3^-\}$ is a basis for Λ^- on $N(S^1)$, $\omega_i^- \wedge \omega_i^- = a_{ij} dv_{N(S^1)}$, and $dv_{N(S^1)}$ is the volume form on $N(S^1)$. Then

$$\beta_i^- \wedge \omega_- = \sum_{jl} b_{ij} \omega_j^- \wedge x_l \omega_l^- = \sum_{jl} b_{ij} a_{jl} x_l dv_{N(S^1)}$$

$$\omega_i^+ \wedge \beta_+ = \sum_{l} r_{il} x_l dv_{N(S^1)} \text{ for some } r_{il},$$

and solving for β_i^- in $\beta_i^- \wedge \omega_- = \omega_i \wedge \beta_+$ would be tantamount to solving for b_{ij} in $\sum_l b_{ij} a_{jl} = r_{il}$. But here a_{ij} is invertible since $\{\omega_1^-, \omega_2^-, \omega_3^-\}$ is a basis for Λ^- .

This completes the proof of Theorem 3.

3.3 Analysis near N

Although it is not necessary for our theorem, it is instructive to study the neighborhood $I \times N$ of N. Assume N is connected and the metric g on $I \times N$ is the product metric for simplicity. Take coordinates (t, x) on $I \times N$. Write

$$\omega = (\mu_1 + dt \wedge *_3\mu_2) + t(\omega_1 + dt \wedge *_3\omega_2),$$

where μ_1 , μ_2 do not depend on t, ω_1 , ω_2 depend on t, and μ_i , ω_i are all 2-forms without a dt-term. Write d, * on N as d_3 , $*_3$.

It turns out that ω_1 , ω_2 are completely determined by μ_1 , μ_2 because of the harmonicity $(d\omega = 0, d * \omega = 0)$.

Proposition 7 ω_1 and ω_2 are given by

$$\omega_1(t,x) = \frac{1}{t} \left(\frac{e^{(d_3*_3)t} + e^{-(d_3*_3)t}}{2} - 1 \right) \mu_1 + \frac{1}{t} \left(\frac{e^{(d_3*_3)t} - e^{-(d_3*_3)t}}{2} \right) \mu_2,$$

$$\omega_2(t,x) = \frac{1}{t} \left(\frac{e^{(d_3*_3)t} - e^{-(d_3*_3)t}}{2} \right) \mu_1 + \frac{1}{t} \left(\frac{e^{(d_3*_3)t} + e^{-(d_3*_3)t}}{2} - 1 \right) \mu_2,$$

provided $e^{\pm(d_3*_3)t}(\mu_1)$ and $e^{\pm(d_3*_3)t}(\mu_2)$ make sense.

Proof: (A) $d\omega = 0$ implies

- (1) $d_3\mu_1 = -td_3\omega_1$.
- (2) $t\dot{\omega}_1 + \omega_1 = d_3 *_3 \mu_2 + td_3 *_3 \omega_2$.
- (B) $d * \omega = 0$ implies
 - $(3) d_3\mu_2 = -td_3\omega_2.$
 - (4) $t\dot{\omega}_2 + \omega_2 = d_3 *_3 \mu_1 + td_3 *_3 \omega_1$.

Observe that (1), (3) imply that $d_3\mu_1=d_3\mu_2=d_3\omega_1=d_3\omega_2=0$ because the μ_i are t-independent.

Let us first integrate (2) and (4) using (tf)' = tf'(t) + f(t) = h(t) as the model, with $f(t) = \frac{1}{t} \left(c + \int_0^t h(s) ds \right)$ as its general solution. If we require f(0) to be finite, c = 0, and we have $f(t) = \frac{1}{t} \int_0^t h(s) ds$. Thus,

$$\omega_{1}(t,x) = \frac{1}{t} \int_{0}^{t} \left[d_{3} *_{3} \mu_{2}(s,x) + s d_{3} *_{3} \omega_{2}(s,x) \right] ds
= d_{3} *_{3} \mu_{2}(0,x) + \frac{1}{t} \int_{0}^{t} s d_{3} *_{3} \omega_{2}(s,x) ds,
\omega_{2}(t,x) = d_{3} *_{3} \mu_{1}(0,x) + \frac{1}{t} \int_{0}^{t} s d_{3} *_{3} \omega_{1}(s,x) ds.$$

Plugging ω_1 into the right-hand side of ω_2 (and vice versa), and iterating, we obtain

$$\omega_{1}(t,x) = (d_{3}*_{3})\mu_{2} + \frac{t}{2}(d_{3}*_{3})^{2}\mu_{1} + \frac{t^{2}}{6}(d_{3}*_{3})^{3}\mu_{2} + \dots
= \frac{1}{t}\left(\frac{e^{(d_{3}*_{3})t} + e^{-(d_{3}*_{3})t}}{2} - 1\right)\mu_{1} + \frac{1}{t}\left(\frac{e^{(d_{3}*_{3})t} - e^{-(d_{3}*_{3})t}}{2}\right)\mu_{2}
\omega_{2}(t,x) = \frac{1}{t}\left(\frac{e^{(d_{3}*_{3})t} - e^{-(d_{3}*_{3})t}}{2}\right)\mu_{1} + \frac{1}{t}\left(\frac{e^{(d_{3}*_{3})t} + e^{-(d_{3}*_{3})t}}{2} - 1\right)\mu_{2}$$

Example: (Contact case) This is the situation where $\omega = \mu_1 + t(\omega_1 + dt \wedge *_3\omega_2)$, with $*_3\mu_1 = \xi$, a contact 1-form, and $d_3 *_3 \mu_1 = d\xi = \mu_1$. Then we obtain

$$\omega = (e^t + e^{-t})\mu_1 + (e^t - e^{-t})dt \wedge *_3\mu_1$$

= $d((e^t + e^{-t})\xi).$

4 Local considerations

In this section, Met(M) and $\Omega^2_{\alpha}(M)$ are Frèchet spaces of smooth sections, with a grading given by Hölder norms $|\cdot|_{C^k}$. With the help of the Nash-Moser iteration technique, we now pass from the microlocal computation to a local statement:

Theorem 5 Φ_{α} is surjective near an (ω, g) which satisfies the connectivity condition.

It is evident that Theorem 5 implies Theorem 2. Theorem 5, in turn, follows from the following:

Theorem 6 Let $g_0 \in Met(M)$ be a metric for which $(\omega_0 = \Phi_{\alpha}(g_0), g_0)$ satisfies the connectivity condition. Then there exist constants $C_k > 0$ and $\delta > 0$ with the following property: Given $\eta \in d\Omega^1$ and $|g - g_0|_1 \leq \delta$, there exists an $h \in \Gamma(Sym^2(TM))$ such that $d\Phi_{\alpha}(g)(h) = \eta$ and $|h|_{k-2} \leq C_k(|\eta|_k + |\eta|_0|g|_k)$.

Theorem 6 implies Theorem 5 by the Nash-Moser iteration process, which we describe in the next two sections.

4.1 Tame maps

We will use the notion of tame maps between tame Frèchet manifolds, following R. Hamilton [7]. We refer the reader to [7] for definitions and a thorough discussion. Note that a *smooth* tame map $L: F \to G$ of tame Frèchet manifolds is a tame map all of whose derivatives are tame.

Let V, W be vector bundles over M, and $\Gamma(V)$, $\Gamma(W)$ be tame Frèchet spaces of C^{∞} sections over M. Consider $D^r(V,W)$, whose sections are differential operators of degree rfrom V to W. Locally we can write a differential operator of degree r as

$$L(\phi)(f) = \sum_{|\alpha| < r} \phi_{\alpha}(D_{\alpha}f).$$

Here α is a multiindex $(\alpha_1, ..., \alpha_n)$ and $D_{\alpha} = \partial^{\alpha_1} \cdots \partial^{\alpha_n}$. We can think of $\phi = \{\phi_{\alpha}\}$ as a section of $D^r(V, W)$. Then we have a map

$$L: \Gamma(D^r(V, W)) \times \Gamma(V) \to \Gamma(W),$$

 $(\phi, f) \mapsto L(\phi)(f).$

Proposition 8 L is a smooth tame map.

Now consider an open set $U \subset \Gamma(D^r(V, W))$ consisting of $\phi = \{\phi_\alpha\}$ such that $L(\phi)$ is elliptic and invertible. Then we have

$$L^{-1}: U \times \Gamma(W) \to \Gamma(V),$$

 $(\phi, g) \mapsto [L(\phi)]^{-1}(g).$

Proposition 9 L^{-1} is a smooth tame map of degree -r.

Proposition 10 $\Phi_{\alpha}: Met(M) \to \Omega^{i}_{\alpha}(M)$ is a smooth tame map of degree 0.

Proof: By the previous proposition,

$$L^{-1}: U \times \Omega^i(M) \to \Omega^i(M)$$

is a smooth tame map of degree -2, where $U \subset \Gamma(D^2(\Lambda^i, \Lambda^i))$ consists of elliptic and invertible degree 2 operators.

Now, consider the inclusion

$$\operatorname{Met}(M) \times \mathbf{C} \to \Gamma(D^2(\bigwedge^i, \bigwedge^i)),$$

 $(g, \lambda) \mapsto \Delta_g + \lambda,$

which is a smooth tame map of degree 2. Since the composition of tame maps is tame, we have

$$G: ((\operatorname{Met}(M) \times \mathbf{C}) \cap U) \times \Omega^{i}(M) \to \Omega^{i}(M)$$
$$[(g, \lambda), \omega] \mapsto G_{g}(\lambda) \omega \stackrel{def}{=} (\Delta_{g} + \lambda)^{-1} \omega$$

is a smooth tame map of degree 0. Next, consider

$$\Pi: \operatorname{Met}(M) \times \Omega^{i}(M) \to \Omega^{i}(M)$$

$$(g,\omega)\mapsto \pi_g(\omega),$$

where $\pi_g: \Omega^i(M) \to \mathcal{H}_g^i$ is the orthogonal projection onto the harmonic space \mathcal{H}_g^i . Π is a smooth tame map because

$$\pi_g(\omega) = -\frac{1}{2\pi i} \int_C G_g(\lambda) \omega d\lambda,$$

and $C \subset \mathbf{C}$ can be fixed on a small neighborhood of g. Finally, composing Π with

$$i: \operatorname{Met}(M) \to \operatorname{Met}(M) \times \Omega^{i}(M)$$

$$g \to (g, \omega_0),$$

we find that Φ_{α} is a smooth tame map of degree 0.

4.2 Nash-Moser iteration scheme

The following is the version of Nash-Moser that we will use:

Theorem 7 (Nash-Moser) Let F, G be tame Frèchet spaces and $U \subset F$ an open set. Suppose $L: U \to G$ is a smooth tame map, dL(f) is surjective for all $f \in U$, and there exists a family of right inverses $(dL)^{-1}: U \times G \to F$ which is a tame map. Then L is locally surjective.

We already know that $\Phi_{\alpha} : \operatorname{Met}(M) \to \Omega_{\alpha}^{2}(M)$ is a smooth tame map and that $d\Phi_{\alpha}$ is surjective near (ω_{0}, g_{0}) . The conditions

$$|h|_{k-2} \le C(|\eta|_k + |\eta|_0 |g|_k) \tag{7}$$

would assure us that $(dL)^{-1}$ is tame. Applying the Nash-Moser iteration process, we see that Theorem 6 would imply Theorem 5.

4.3 Estimates

We will prove Estimates 7 above by carefully retracing the argument in Theorem 3. Keep in mind that $|g - g_0|_1 \le \delta$ throughout.

The following interpolation lemma is useful in our estimates:

Lemma 4 (Interpolation) If f_1 , f_2 are functions on a compact manifold X, then

$$|f_1f_2|_k \le C(|f_1|_0|f_2|_k + |f_1|_k|f_2|_0).$$

In the proof of Theorem 4, we first solve for $d\alpha = *\eta \wedge *\omega$. Noting that $|\omega|_k \leq C(1+|g|_k)$ since Φ_{α} is smooth tame of degree 0, we obtain bounds

$$|d\alpha|_k \le C(|\eta|_k|g|_0 + |g|_k|\eta|_0) \le C(|\eta|_k + |\eta|_0|g|_k)$$

by interpolation.

Lemma 5 Given an exact i-form β on a compact manifold X, there exists an $\alpha \in \Omega^{i-1}(X)$ such that $d\alpha = \beta$ and $|\alpha|_{k+1} \leq C|\beta|_k$.

Proof: We make use of the Green's function G_{g_0} at g_0 , and write $\alpha = d^{*_0}G_{g_0}\beta$. $d\alpha = \beta$, and

$$|\alpha|_{k+1} = |d^{*_0} G_{g_0} \beta|_{k+1} \le C |G_{g_0} \beta|_{k+2} \le C |\beta|_k.$$

Thus, there exists an α such that $d\alpha = *\eta \wedge *\omega$ and $|\alpha|_{k+1} \leq C(|\eta|_k + |\eta|_0 |g|_k)$.

Claim 2 bounds: Next, we bound the α modified as in Claim 2 of Theorem 4. Observe that, as long as $|g - g_0|_1 \leq \delta$, for δ small, $|\omega - \omega_0|_1$ is small, and the harmonic form remains transverse. Hence, the rank 2 subsets N remain submanifolds, and are close together, provided the $|g - g_0|_1$ are kept small.

Take a basis $\{[dv_{N_i}]\}$ for $H^3(N')$, with dv_{N_i} a volume form of unit volume on N_i . Let $[\gamma_i] \in H^3(M)$ satisfy $i_{N_i}^*[\gamma_j] = [\delta_{ij}dv_{N_i}]$. Fix representatives $\gamma_i \in [\gamma_i]$. Then $\delta \alpha = -\sum_i a_i \gamma_i$, with $|\gamma_i|_{k+1}$ fixed constants, and $a_i = \int_{N_i} \alpha$. Hence,

$$|\delta \alpha|_{k+1} \le C \sum_{i} |\alpha|_{0} |\gamma_{i}|_{k+1} \le C |\alpha|_{0} \le C(|\eta|_{k} + |\eta|_{0} |g|_{k}).$$

Claim 3 bounds: We now have bounds for α , where $d\alpha = *\eta \wedge *\omega$ and $i_{N_i}^*[\alpha] = 0$ for all N_i semi-contact. Take N_j not semi-contact, and we first estimate ξ_j on $I \times N_j$. $\xi_j(t,x) = c_j f_j \tilde{\mu}_2(0,x)$, with $\int_{N_j} \xi_j \wedge *_3 \tilde{\mu}_2 = \int_{N_j} \alpha$, where we are using the same $f_j \tilde{\mu}_2(0,x) = f_j \tilde{\mu}_2(g_0)(0,x)$ for all $|g-g_0| \leq \delta$, and we are simply varying the scaling factor c_j . Thus,

$$|\xi_j|_{k+1} \le C|\alpha|_0|\omega_0|_{k+1} \le C|\alpha|_0,$$

on $I \times N_j$.

We now give bounds for the damping out process. Let $\phi(t)$ be a smooth function on \mathbf{R} such that

$$\phi(t) = \begin{cases} 1 & \text{on } \left[\frac{-1}{2}, \frac{1}{2}\right] \\ 0 & \text{outside } [-1, 1] \end{cases},$$

and $0 \le \phi(t) \le 1$ on $[-1, \frac{-1}{2}] \bigcup [\frac{1}{2}, 1]$.

Then, modify $\xi_j \mapsto \xi_j \phi$. We find that

$$|\xi_j \phi|_{k+1} \le C(|\xi_j|_{k+1}|\phi|_0 + |\phi|_{k+1}|\xi_j|_0) \le C|\xi_j|_{k+1},$$

since ϕ is fixed throughout. With this new ξ_j ,

$$|\alpha - \sum \xi_j \wedge *\omega|_{k+1} \le C(|\eta|_k + |\eta|_0|g|_k).$$

Claim 1 bounds: We may now assume that $i_{N_i}^*[\alpha] = 0$ for all N_i . We then modify $\alpha \mapsto \alpha - \delta \alpha$ so that $(\alpha - \delta \alpha)|_{N_i} = 0$. If we write $\alpha_1(0, x) = d_3 \gamma_j$ on N_j , then

$$|\gamma_j|_{k+2,N} \le C|\alpha|_{k+1}$$

by Lemma 5. However, we can only bound $|\gamma_j + t\tilde{\alpha}_2(0,x)|_{k+1} \le C|\alpha|_{k+1}$ because of the term $t\tilde{\alpha}_2$ - we lose one derivative here unless we are careful.

Instead, use $\psi_{\varepsilon}(t)\widetilde{\alpha}_{2}(0,x)$, where

$$\psi_{\varepsilon}(t) = \begin{cases} t & \text{on } [-\varepsilon, \varepsilon] \\ 0 & \text{outside } [-1, 1] \end{cases},$$

and ψ_{ε} damps out slowly to 0 on $[-1, -\varepsilon] \cup [\varepsilon, 1]$. It is not difficult to see that for ε small, there exist ψ_{ε} with $|\psi_{\varepsilon}|_0$ arbitrarily small, and $|\psi_{\varepsilon}|_i \leq |\psi|_i$, for i > 1, where

$$\psi(t) = \begin{cases} t & \text{on } \left[-\frac{1}{2}, \frac{1}{2}\right] \\ 0 & \text{outside } \left[-1, 1\right] \end{cases},$$

and ψ damps out slowly to 0 on $[-1, -\frac{1}{2}] \bigcup [\frac{1}{2}, 1]$. $\psi_{\varepsilon}(t) \tilde{\alpha}_{2}(0, x)$ will clearly do the job of $t\tilde{\alpha}_{2}(0, x)$, with the advantage that we can find an ε (dependent on g) with

$$|\psi_{\varepsilon}\widetilde{\alpha}_{2}(0,x)|_{k+2} \le C|\alpha|_{k+1},$$

$$|\delta\alpha|_{k+1} = |d(\gamma_j + \psi_{\varepsilon}(t)\widetilde{\alpha}_2(0, x))|_{k+1} \le C|\alpha|_{k+1}.$$

As before, we do not lose any derivatives by damping out $\gamma_j + \psi_{\varepsilon}(t)\tilde{\alpha}_2(0, x)$.

Thus,

$$|\alpha - \delta \alpha|_{k+1} \le C(|\eta|_k + |\eta|_0|g|_k).$$

Bounds for η' : Finally, $\alpha|_{N_i} = 0$ for all N_i , and we solve for $\xi \wedge *\omega = \alpha$. We do not lose any derivatives where \mathcal{A} is an isomorphism. However, near the N_i 's we lose one derivative, i.e.

$$|\xi|_k \le C(|\eta|_k + |\eta|_0|g|_k),$$

and

$$|\eta'|_{k-1} \le C|d\xi|_{k-1} \le C(|\eta|_k + |\eta|_0|g|_k).$$

Estimates near S^1 : On $N(S^1)$, we have bounds

$$|\eta'|_k \le |\xi|_{k+1} \le C(|\eta|_k + |\eta|_0 |g|_k).$$

Let us compute bounds on $\eta'_{N(S^1)}$ and $\xi_{N(S^1)}$. $\eta'_1 = -\eta$, so $|\eta'_1|_k \leq C|\eta|_k$. For bounds on η'_2 satisfying $\eta'_2 \wedge *\omega = -(\eta'_1 + *\eta) \wedge *\omega$ on $N(S^1)$ and $-(\eta'_1 + *\eta) \wedge *\omega|_{S^1} = F\omega \wedge *\omega|_{S^1} = 0$, we look to the proof of Lemma 3. Clearly, $|F|_k \leq C(|\eta|_k + |\eta|_0 |g|_k)$. Solving for $\alpha = \tilde{\alpha} \wedge d\theta$ with $d\alpha = F\omega \wedge *\omega$, we have

$$|\alpha|_k \le C|F|_k \le C(|\eta|_k + |\eta|_0|g|_k),$$

and hence

$$|\xi_{N(S^1)}|_k \le C(|\eta|_k + |\eta|_0|g|_k).$$

Note that we have lost one derivative - had we worked a bit harder, that would not have been necessary, unlike the loss of derivative near N_i , which seems inherent to the problem.

Finally, we write $d\gamma = (\xi - \xi_{N(C)}) \wedge *\omega$ on N(C). By compactifying $S^1 \times D^3$ to $S^1 \times S^3$, for example, we can use Lemma 3 and obtain a γ satisfying

$$|\gamma|_{k+1} \le C|(\xi - \xi_{N(C)}) \wedge *\omega|_k \le C(|\eta|_k + |\eta|_0|g|_k).$$

Damping γ out, we do not lose any derivatives, and hence

$$|\eta' - d\xi|_{k-1} \le C(|\eta|_k + |\eta|_0|g|_k).$$

In order the complete the proof of Theorem 6, we are left to prove:

Lemma 6 There exists an h on M such that $|h|_{k-1} \leq C(|\eta|_k + |\eta|_0|g|_k)$.

Proof: Consider h away from $N(S^1)$. Since $\eta + *\eta' = \{h, \omega\}$, the anticommutator of h and ω viewed as matrices, and i_{ω} has constant rank throughout, we are able to bound

$$|h|_{k-1} \le C(|\eta + *\eta'|_{k-1}|\omega|_0 + |\eta + *\eta'|_0|\omega|_{k-1}) \le C(|\eta|_k + |\eta|_0|g|_k),$$

by interpolation.

We next find h on $N(S^1)$. Writing $\beta = \eta' + *\eta$ and $\beta = \beta_+ + \beta_-$,

$$|\beta_1^-|_{k-1} = |\beta_-|_{k-1} \le |\beta|_{k-1} \le C(|\eta|_k + |\eta|_0|g|_k).$$

 β_2^-, β_3^- come from solving $\beta_i^- \wedge \omega_- = \omega_i^+ \wedge \beta_+$. Hence,

$$|r_{il}|_{k-2} \le C|\omega_i^+ \wedge \beta_+|_{k-1} \le (|\eta|_k + |\eta|_0|g|_k),$$

and we lose a derivative. Since $b_{ij}a_{jl} = r_{il}$, we have

$$|\beta_i^-|_{k-2} \le C(|\eta|_k + |\eta|_0 |g|_k).$$

Hence $|h|_{k-2} \leq C(|\eta|_k + |\eta|_0|g|_k)$ on $N(S^1)$. We finally interpolate the h that we find on $N(S^1)$ to the h on $M - N(S^1)$, while keeping $|h|_{k-2} \leq C(|\eta|_k + |\eta|_0|g|_k)$.

Acknowledgements: I would like to thank Phillip Griffiths for his interest and support throughout this project.

References

- [1] R. Bryant, P. Griffiths, Characteristic cohomology of differential systems (I): General theory, Journal of the AMS 8 (1995), pp. 507-595.
- [2] E. Calabi, An intrinsic characterization of harmonic one-forms, Global Analysis (Papers in Honor of K. Kodaira), pp. 101-107.
- [3] S. Donaldson, P. Kronheimer, *The geometry of four-manifolds*, Oxford Univ. Press, Oxford, 1990.
- [4] G. Folland, Introduction to partial differential equations, Princeton Univ. Press, Princeton, 1976.
- [5] D. Fujiwara, Appendix to Complex manifolds and deformations of complex structures (K. Kodaira), Springer-Verlag, New York, 1986.
- [6] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1977.
- [7] R. Hamilton, The inverse function theorem of Nash and Moser, Bulletin (New Series) of the AMS 7 (1982), pp. 65-222.
- [8] K. Honda, Transversality theorems for harmonic forms, preprint.
- [9] K. Honda, Local properties of self-dual harmonic 2-forms on a 4-manifold, preprint.
- [10] K. Kodaira, Complex manifolds and deformations of complex structures, Springer-Verlag, New York, 1986.

Mathematics Department, Duke University, Durham, NC 27708 honda@math.duke.edu