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In this paper we prove the general form of the theorem conjectured by Farber, Katz,
and Levine in [2] regarding allowable Morse singularities of harmonic 1-forms. Let M be a
closed, connected, oriented n-manifold. Calabi, in [1], gave an intrinsic characterization for
a closed 1-form to be harmonic, which we will describe presently.

Call a closed 1-form w generic if w, as a section of T*M, is transverse to the zero section.
This is equivalent to the critical points of f being Morse, where f is any local function with
df = w. Using a Sard argument it can be shown that the ‘generic’ closed 1-form is transverse
to the zero section - it is true even for harmonic 1-forms (cf. [4]). We may talk about the
index of each zero of w - this is the Morse index of any local function f satisfying df = w.

Theorem 1 (Calabi) Given a generic closed 1-form w, there exisls a melric g with respect
to which w is harmonic, if and only if (1) w does not have any zeros of index 0 or n, and (2)
given any two points p, ¢ on M, which are not zeros of w, there exists a path v : [0,1] = M
with v(0) = p and v(1) = q such that w(~y(t))(¥(t)) > 0 for all t € [0,1].

We shall call such a closed 1-form an intrinsically harmonic 1-form, and a positive path as
in (2) an w-positive path. Using Calabi’s characterization of intrinsically harmonic 1-forms,
we prove the following theorem:

Theorem 2 Let wy be a generic closed 1-form with no zeros of index 0 or n. Then there
exists a family of generic closed 1-forms wy, t € [0,1], with [w,] € H'(M;R) fized, such that
w1 18 intrinsically harmonic and each w; has the same number of zeros of each index.

This theorem tells us that, in studying the Morse theory of closed 1-forms as in [6], the
assumption of harmonicity does not give rise to additional constraints regarding the number
of critical points.

We would like to emphasize the relationship to four-dimensional geometry. The generic
self-dual (or anti-self-dual) harmonic 2-form g on a closed, oriented 4-manifold X is sym-
plectic away from a disjoint union of circles, on which g vanishes. (For a proof of this fact,
see [4].) We view the circles as an obstruction to the existence of a symplectic form on
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X. Note that the primary obstruction is bundle-theoretic (i.e. the existence of an almost
symplectic or almost complex structure), but even if this is satisfied, there is still an ob-
struction to the existence of a symplectic structure, which can presently be detected only by
Seiberg-Witten invariants. Let #p be the number of circles on which p vanishes, ignoring
sign.

On X = M x S', with M a 3-manifold, we can construct an S'-invariant self-dual (SD)
harmonic 2-form p = *3w + w A df, where w is a harmonic 1-form on M, *3 is the *-operator
on M, and the metric on X is split. In this situation, the zero set of p is U,{p} x S', where
p runs over all the zeros of the harmonic 1-form w, and #p = #w, where we define #w to
be the (unsigned) number of zeros of w. We then conjecture the following:

Conjecture 1 If X = M x S, then, given u = *3w +w A df, with w a harmonic 1-form on
M,
min 1) = min(#w),

n€(u] SD(#'LL) Je[w](# )

where we assume that i and & have reqular zeros. Here, [-] denoles cohomology classes.

Theorem 2 tells us that

min(#0) = min (#),
welw] we[w] harmonic

in the case [w] € H'(M;Q), and where we assume that the & are generic. This follows from
a standard cancellation argument for index 0 and index n, found in [5].

We now turn to the proof of Theorem 2. Observe that if w is harmonic with respect to
g, given any local function f with df = w, f is harmonic and, by the maximum principle, w
cannot have any zeros of index 0 or n.

Proof: First note that the closed form w = wy gives rise to an (n — 1)-dimensional foliation
consisting of integral submanifolds of w, away from the zeros of w. For a closed 1-form w
with zeros, define a leaf L, through p € M by L, = {& € M| 3 a smooth path v :[0,1] = M
from p to = with w(y(¢))(4(¢)) = 0 for all ¢t}. If a leaf does not pass through a zero of w, it
is called a nonsingular leaf; otherwise, it is a singular leaf. If L is a singular leaf, then let
the components of L be the closures in L of the connected components of L restricted to
M — {z|w(z) = 0}.
The proof then breaks up into the following components:

(1) The compact leaf case. Here we assume all the leaves of w are compact, and reduce the
problem to a problem in graph theory.

(2) Decompose M into two components M, and M., consisting of (roughly speaking) the
compact leaves and the noncompact leaves, respectively.



(3) The general case. The noncompact leaf case is treated in [2]. Using this, and the same
methods from (1), we obtain the general result.

We note that this method of proof was suggested in [2], and some of the methods and
results from [2] will be repeated here for the sake of completeness. In particular, the idea of
using graphs and self-indexing in (1), all of (2), and the noncompact leaf case in (3) are all
due to [2]

(1) Compact leaf case

Let us first assume that all the leaves of w are compact. If we introduce the equivalence
relation ~, where p ~ ¢ if and only if L, = L,, then I' = M/~ is a graph. Critical points
of index 7, 1 <7 <n —1 do not give rise to true vertices of the graph I, since the surgeries
corresponding to passing such critical points do not change the connectivity of the leaves.
Near a critical point of index 1 we have the situation as in Figure 1, whereas near a critical
point of index n — 1, we have the situation as in Figure 2, provided (i) n > 3, (ii) w does not
have more than 1 critical point on each leaf, and (iii) the leaves which locally come together
or split off were not parts of the same global leaf. When n = 2, at a point of index 1, both
Figure 1 and Figure 2 are possible. The arrows represent the direction of increase for the
local Morse function (f such that df = w).
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Perturb w slightly in its cohomology class, so that each leaf contains at most one zero



of w, while keeping all the leaves of w still compact. Then, I' = M/ ~ can be viewed as
a trivalent (= each vertex has exactly 3 edges), directed graph, and we can assign weights
to each edge: If v is an edge from p to ¢, then its weight is the w-length of any path from
7~ (p) to 771(q) sitting inside 77!(y), where 7 : M — ' = M/ ~. These weights represent
mww on ' = M/~ i.e. they give a cohomology class [m.w] on I'. Thus I' is a collection
(V(T), E(T), W) of vertices, directed edges, and weights W : F(T') — R*.

Note also that the vertices have either (i) two incoming edges and one outgoing, or (ii)
one incoming and two outgoing, from our previous discussion, i.e. no vertices as in Figure 3.

Figure 3

We introduce the two kinds of operations we shall be using:

(A1). Graph modification to increase connectivity. Whenever we have a subgraph of the
type pictured on the left-hand side of Figure 4, we may replace it with one on the right-hand
side, provided that € < d.

Figure 4

This modification corresponds to the self-indexing procedure for Morse functions, and

clearly does not alter the homotopy type of the graph. In order to preserve the cohomology
class, we need:



(Ya+c=d +e+
(ib+d=b+e+d
(iil)a—e+d=d ++d
(iv)yb+et+e=b+e+¢
(V)d—e—c=d - ¢

(

vi)b+e—a="b —d

Upon a moment’s consideration, these six equations are linear combinations of three of them,

say (i), (iv), (v).

a0 b+&-0

Figure 5

A possible solution is given in Figure 5, provided ¢ is small, i.e. < d. Here § can be any
positive number < min(a, b + €). Of course, the key point in solving for o', b', ¢, ', € was
that they were positive numbers.

In terms of Morse theory, if f is a local function with w = df on this subgraph, and ¢
and ¢y are the two critical points of index n — 1 and 1 respectively, then we may reduce
f(e2) so that f(e2) — f(c1) < a, so long as d > e. We can then raise f(c;) using the same
self-indexing procedure and obtain f(cy) < f(¢1). See Figure 6.

(Az). Graph modification as in Figure 7. Morse-theoretically, this corresponds to reversing
the heights of the two critical points of index 1. d > € is sufficient for the modification to be
valid. See Figure 8 for a Morse-theoretic interpretation.
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Figure 8

(B). We may alter the weights of the edges, provided the weights remain positive, and the
total weight around each closed path remains the same (hence preserving the cohomology
class). This corresponds to shortening a Morse function f : f~'([a,b]) — [a,b] by excising
F7H[r, ")) € f~*([a,b]) and regluing, as long as there are no critical values in [r,r’] (or its
reverse process).

Observe that all the above operations can be performed through a 1-parameter family of
closed 1-forms in the same cohomology class.

We shall modify the graph I' using the above operations and inductively increasing the
‘connectivity’. Pick a vertex p on I' = M/ ~. Let U, be the ‘upland’ of p, that is, the
subgraph consisting of all the vertices and edges that can be reached from p by traveling in
the positive direction. Define the ‘lowland’ L, in a similar fashion. We stipulate that p € U,
unless there is a positive path from p back to itself. (Same for p in L,.)

It is sufficient to show that there exists a ¢ such that U, = L, = I'. We find it most
convenient to use a ¢ such that ¢ € U, (and hence ¢ € L,). Indeed, start with p and keep
traveling in some positive direction until we return to a vertex on the path. Simply take ¢
to be this point.

Operation (B) may not appear practical, until we couple it with the following observation:

Key Observation: If U, # I', then there exist disjoint subgraphs U, and U, with V(U,)U
V(U;) = V(') and E(U,)U E(U;)U{edges between U, and U,} = E(I'), such that all the
edges between U, and U; are directed from U, to U,.



Figure 9

Let 71,..., 75 be the edges from U] to U,. Then, modifying each of the W(~;) by the
same constant (that is, modifying W(~;) — W(y;) + C for some C) will not change the
cohomology class represented by w; this is due to the fact that each closed loop in I" must
traverse the same number of times from U to U, as from U, to U,.

Hence, we may now apply (B) and assume without loss of generality that W(vy;) = ¢
where € can be made as small as we want.

There are two possibilities for I" near ~;:

(i)

Figure 10



Figure 11

Figure 12

(i) Since € can be made arbitrarily small, we simply make € < ¢, apply (A;), and increase
the number of vertices in U, as in Figure 11.

(ii) Apply (Az) with € < ¢. See Figure 12.

Since the number of vertices in U, increases after each modification (whereas the total
number of vertices of I' remains the same), by induction, we can find a modified I' with
U, = T'. Next, apply the same procedure for L, - here we simply note that neither (A;) nor
(Az) decreases the circulation, and modifying I' to make L, larger will not affect U, =T



(2) Compact and noncompact leaves

Here we repeat much of the discussion in [2], included for the convenience of the reader.

Let w now be a generic closed 1-form. We describe how M is split into M., which is
roughly the union of compact leaves, and M, roughly the union of noncompact leaves.

First, if L is a compact leaf, then there exists an open neighborhood of . consisting solely
of compact leaves. This is because we can integrate w to give f with df = w near L. Hence,
the union of compact leaves in M is open.

Next, the union of all compact leaves (nonsingular or singular), as well as compact com-
ponents of noncompact singular leaves, is closed in M. This is because all the above leaves
and leaf components are closed leaves when restricted to M — {z|w(z) = 0}. We use a result
of Haefliger’s (c.f. [3]): Given a codimension 1 foliation on a (not necessarily closed) manifold
N with dim H'(N;R) finite, the union of closed leaves is closed.

These tell us that M = M.|J M, where

Mc — U Lozv Moo = U LOZ
L. compact Lo nonsingular
noncompact

are both n-dimensional submanifolds with (non-smooth) boundary, and M, = M., =
M.N M, 1s a union of compact components of noncompact leaves.

Lemma 1 There exists a small perturbation of w in its cohomology class so that each leaf
contains at most one zero of w.

Proof: It suffices to modify w by >, df;, where f; is a compactly supported function near
a zero p;. Consider [w : Hi(M;Z) — R, and let S = Im(fw). Since S is a countable set
in R, there exist f;, new zeros p;, and paths v;; from p; to p; such that w(y;;) ¢ S. This
prevents p; and p; from lying on the same leaf of w + 3=, df;. O

Lemma 2 If all the zeros of w lie on distinct leaves, then OM. = OM,, is the union of all
compact components of singular noncompact leaves.

Proof: Consider w = df near the singular point of a singular noncompact leaf with a compact
component. Without loss of generality assume f has index 1 and f(z1,...,2,) = —2]+> 1, x?
near the zero of w. If we integrate (in the negative direction) a gradient flow emanating from
the compact component, we see that all the neighboring leaves of w ‘below’” the compact
component are compact nonsingular leaves. On the other hand, all the leaves ‘above’ the
singular noncompact leaf will be noncompact and all the leaves ‘below’ the noncompact
component of the noncompact leaf are also noncompact. O
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Figure 13

(3) General result
We start with a lemma:

Lemma 3 (Farber-Katz-Levine) If L is a nonsingular noncompact leaf of w, then there
is an w-positive path between any two points of L.

Proof: We invoke the standard argument used to find a closed transversal to a non-closed leaf
L. Let p € M be alimit point of L. Then there exists a (distinguished) neighborhood U C M
of p, with respect to which LN U consists of hyperplanes converging to the hyperplane
containing p. Which also means that there exist ¢; and ¢, in L and an w-positive path from
g1 to qa. Now take a path on L from any r to ¢, the w-positive path from ¢; to ¢z, and some
path on L from ¢; to r, and perturb so that the composite path is w-positive and smooth.
O

Let w be a generic closed 1-form with no zeros of index 0 or n. We may assume that all
the zeros of w lie on distinct leaves by Lemma 1.

Lemma 4 The interior of each connected component of M, is w-transitive (i.e. we can gel
from any point to any other via an w-positive path, with the possible exception of zeros of w.)

Proof: Let M’ be a component of M, and pick p € int(M’), the interior of M’. Then con-
sider the upland U, pr C M’ of p, defined as follows: U, arr = {q € M'|3 an w-positive path
from p to g}. Using the same methods as in Lemma 3, we find that U, »;» must be compact,
hence a union of compact components of singular noncompact leaves. Thus, if we assume
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that the zeros of w lie on distinct leaves, then Lemma 2 implies that U, a» = M’. Since this
holds for all p € int(M’), we have proved the lemma. O

Hence, we can graph-theoretically represent each connected component of M, by a single
vertex, and take I' = M/ ~, where ~ is the equivalence relation: (i) p ~ ¢ if p,q € L, L
compact, and (ii) p ~ ¢ if p, ¢ belong to the same connected component of M,,. Note that the
resulting graph is no longer trivalent, and we must introduce new characters - the subgraphs
pictured below, where a black dot denotes a component of M.:

Figure 14

Let us start with p € M on a nonsingular noncompact leaf L. The same graph-theoretic
maneuvers carry over to this case with a few differences. Whenever one of the critical points
sits in a noncompact singular leaf (say the higher critical point), we have the following
situations:

Figure 15
In these cases, as long as € can be made small, moving a critical point of higher index
above one of lower index is easily done. This is because one only needs to modify the Morse
function in an arbitrarily small neighborhood of the trajectories (for a gradient-like flow into
and out of a critical point) in order to change the height of the critical point.
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Let us introduce additional graph-theoretic operations in the case one of the critical
points sits in a noncompact singular leaf. The analogs of (A;) are:

(i)

(ii) ;\ [ % j\% \7\%

(iii)

Figure 16

depending on whether the upper critical point sits on a compact singular leaf or a noncompact
singular leaf (and the same for the lower critical point.)

The analogs of (Ajy) are:
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Figure 17
as well as (ii) and (iii) of Figure 16.
The above modifications decrease the total number of vertices in I" by 1, while keeping
the number of vertices in U, at least the same. On the other hand, the modifications in the

compact leaf case preserve the total number of vertices of I', while increasing the number of
vertices in U,. By induction on #V(I') — #V(U,), we complete the proof of Theorem 2. O
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