
NOTES FOR MATH 635: TOPOLOGICAL QUANTUM FIELD THEORY

KO HONDA

The goal of this course is to define invariants of 3-manifoldsand knots and representations of the
mapping class group, using quantum field theory. We will follow Kohno,Conformal Field Theory
and Topology, supplementing it with additional material to make it more accessible.

The amount of mathematics that goes into defining these invariants is rather substantial (espe-
cially for the geometric approach that we will be taking), and we will spend a considerable amount
of time on the preliminaries.

HW will denote “homework”, whereasFSmeans “further study”, indicating that one can spend
some time learning this topic.

1. LIE GROUPS ANDL IE ALGEBRAS

1.1. Lie groups. In this course, manifolds are assumed to be smooth, unless indicated otherwise.

Definition 1.1. A Lie groupis a manifold equipped with smooth mapsµ : G × G → G (multipli-
cation) andi : G → G (inverse) which give it the structure of a group.

Examples: Let Mn(K) be the space ofn × n matrices with entries in the base fieldK = R or C.

(1) GL(n, K) = {A ∈ Mn(K)| detA 6= 0}.
(2) GL(V ) = {K-linear isomorphismsV

∼
→ V }, whereV is a vector space overK.

(3) SL(n, K) = {A ∈ Mn(K)| det A = 1}.
(4) U(n) = {A ∈ Mn(C)|AA∗ = id}. Here theadjoint A∗ is (A)T (the conjugate transpose

of A).
(5) SU(n) = U(n) ∩ SL(n, C).

Example: U(n). If we write A = (aij) and write outAA∗ = id, then
∑

j aijakj = δik, and hence
the row vectors form aunitary basisfor Cn.

Example: SU(2). Let us write outAA∗ = id. HereA =

(
a b
c d

)
. Then

(1) AA∗ =

(
aa + bb ac + bd
ca + db cc + dd

)
=

(
1 0
0 1

)

In addition, we havead − bc = 1.

HW: Prove thatSU(2) is diffeomorphic toS3.
1
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Definition 1.2. A Lie subgroupof G is a subgroupH which is at the same time asubmanifoldsuch
thatH is a Lie group with respect to the induced smooth structure.

Definition 1.3. A Lie group homomorphismis a group homomorphismφ : G → H which is also
a smooth map of the underlying manifolds.

Definition 1.4. Let V be a vector space overK = R or C, and letG be a Lie group. Then aLie
group representationρ : G → GL(V ) is a Lie group homomorphism, i.e.,ρ(gh) = ρ(g)ρ(h).

Zen: We can pretend that every Lie group is a matrix group. Every Lie group admits a representa-
tion with a0-dimensional kernel.

1.2. Left-invariant vector fields and 1-forms. A Lie groupG has a left action and a right action
onto itself: Letg ∈ G. Then

Lg : G → G, g′ 7→ gg′.

Rg : G → G, g′ 7→ g′g.

Definition 1.5. A vector fieldX (defined globally) onG is left-invariant if (Lg)∗X = X for all
g ∈ G. A 1-formω onG is left-invariantif L∗

gω = ω for all g ∈ G.

We denote the vector space of left-invariant vector fields byXG and the vector space of left-
invariant 1-forms byΩ1

G.

Proposition 1.6. XG ≃ TeG as vector spaces. Hencedim XG = dim G.

Proof. Let e ∈ G be the identity. We propagatev ∈ TeG usingLg, g ∈ G. Recall that a tangent
vectorv ∈ TeG corresponds to an equivalence class of smooth arcsγ(t), t ∈ (−ε, ε), γ(0) = e.
Then(Lg)∗v corresponds togγ(t). We therefore define the vector field:

Xv(g) = gγ(t).

Then clearly((Lg)∗Xv)(g
′) = g(g−1g′γ(t)) = g′γ(t). Hence,

dim XG = dim TeG = dim G.

�

Example: O(n). ThenTIO(n) is the set of skew-symmetric matrices. We writeγ(t) ∈ TIO(n)
as:γ(t) = I + At, where we do all the computations modulot2. Then:

I = γγT = (I + At)(I + AT t)

= I + (A + AT )t.

HenceA = −AT . Sincedim O(n) = n(n−1)
2

anddim of the set of skew-symmetric matrices=
n(n−1)

2
, TIO(n) is indeed the set of skew-symmetric matrices.XO(n) = {XA|A ∈ skew-symmetric matrices},

whereXA(B) = BA, B ∈ O(n).

Example: SL(n, R). ThenTISL(n, R) = {traceless matrices}.

Similarly, we haveΩ1
G ≃ T ∗

e G.
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1.3. Lie algebras.

Definition 1.7. A Lie algebrag overK = R or C is aK-vector space together with aLie bracket
[, ] : g × g → g satisfying the following:

(1) [, ] is bilinear,
(2) (skew-symmetric)[X, Y ] + [Y, X] = 0,
(3) (Jacobi identity)[[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0.

Example: Let M be a manifold andX(M) be theC∞ vector fields onM . The Lie bracket[X, Y ]
makesX(M) into an infinite-dimensional Lie algebra.

We now define the Lie algebrag associated to a Lie groupG. As a vector space,g ≃ TeG ≃ XG.
The Lie bracket onXG is inherited from that ofX(G) (Lie bracket of vector fields). We need to
verify the following:

Lemma 1.8. [, ] : XG × XG → XG, i.e., ifX, Y ∈ XG, then[X, Y ] ∈ XG.

Proof. We use the fact thatφ∗[X, Y ] = [φ∗X, φ∗Y ], whereφ : M → M is a diffeomorphism and
X, Y ∈ X(M). (Check this!)

Then,(Lg)∗[X, Y ] = [(Lg)∗X, (Lg)∗Y ] = [X, Y ]. �

Remark: We will often writeg = Lie(G).

For matrix groups, i.e.,G ⊂ GL(V ), we haveXG = {XA|A ∈ TeG}, whereXA(g) = gA.
Therefore,

[XA, XB](I) = lim
s,t→0

(I + sA)(I + tB) − (I + tB)(I + sA)

st
= AB − BA.

Examples: In the following, the Lie bracket is always[A, B] = AB − BA.

Lie group Lie algebra
GL(n, K) gl(n, K) = End(Kn), K = R or C

O(n) o(n)= skew-symmetric matrices
U(n) u(n)= skew-hermitian matrices

SL(n, R) sl(n, R)= traceless matrices

Example: An abelianlie algebratn is Kn with bracket[X, Y ] = 0 for all X, Y ∈ tn.

Definition 1.9. A Lie subalgebrah of a Lie algebrag is a vector subspace which is closed under
[, ]. A Lie algebra homomorphismφ : g → h is a bracket-preserving linear map, i.e.,φ([X, Y ]) =
[φ(X), φ(Y )]. A Lie algebra representationis a Lie algebra homomorphismφ : g → gl(V ).

1.4. Adjoint representation. We define a Lie group representationAd : G → GL(g), where
g = Lie(G), as follows: Think ofg ≃ TeG. Then, fora ∈ G, Ad(a) = (Ra−1◦La)∗ : TeG → TeG.
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We must show thatAd(a) is indeed inGL(g). This is immediate, sinceAd(a−1) is the inverse
of Ad(a).

Remark: Here we are viewingg simply as a vector space.

Example: G = GL(n, R). Ad(A) : TIG → TIG is given by

I + tX 7→ A(I + tX)A−1 = I + tAXA−1,

where we are viewingX ∈ TeG as an arc inG throughI. In other words,X 7→ AXA−1.

We can differentiate any Lie group homomorphism at the identity to get a Lie algebra homomor-

phism. Therefore, there is also an infinitesimal version ofAd : G → GL(g), that is,ad
def
= Ad∗(e).

On the Lie algebra level, we have:
ad : g → gl(g).

Example: Let G be a matrix group. Then we claim that

Ad : G → GL(g),

A 7→ [X 7→ AXA−1].

If we write A = I + tY , thenAd(A) maps (up to first order int):

X 7→ (I + tY )X(I + tY )−1 = (I + tY )X(I − tY ) = X + t[Y, X].

Taking derivatives, we getY 7→ [Y, X]. Therefore,

ad : g → gl(g),

Y 7→ [X 7→ [Y, X]].

REFERENCES

[1] Fulton-Harris, Representation Theory. (Good for the first several lectures on representations ofsl(2, C) and
sl(3, C).)
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2. REPRESENTATIONS OFsl(2, C)

Today’s goal is to work out the (finite-dimensional) irreducible representations ofg = sl(2, C).
A representationρ : g → gl(V ) is irreducible if it has no nontrivial (6= 0 or itself) subrepresenta-
tionsW ⊂ V (i.e., subspaces which are invariant underg). We will be working over the complex
numbers.

Take a basis:

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

Observe thatH is diagonal,E is strictly upper triangular, andF is strictly lower triangular. Then
we have the equations:

(2) [H, E] = 2E, [H, F ] = −2F, [E, F ] = H.

2.1. The adjoint representation. We first study the adjoint representationad : g → gl(g). ad :
X 7→ ad(X), wheread(X) : Y 7→ [X, Y ].

HW: Verify that ad is a Lie algebra representation, i.e.,ad([X, Y ]) = [ad(X), ad(Y )]. Hint: this
follows from the Jacobi identity.

In the expressiongl(g), it’s best to viewV = g asV−2 ⊕ V0 ⊕ V2, whereV−2 = CF , V0 = CH,
andV2 = CE. The structure equations imply that all theVi are eigenspaces ofad(H), since
ad(H)(E) = [H, E] = 2E, ad(H)(H) = [H, H ] = 0, andad(H)(F ) = [H, F ] = −2F .

Also note thatad(E) isomorphically mapsV−2
∼
→ V0, V0

∼
→ V2. Similarly,ad(F ) isomorphically

mapsV2
∼
→ V0, V0

∼
→ V−2.

Lemma 2.1. The adjoint representation is irreducible.

Proof. Let v ∈ V . Then we can writev = aF + bH + cE. If a 6= 0, thenad(E)(v) = aH − 2bE
and(ad(E))2(v) = −2aE. These three vectors clearly span all ofV . If a = 0, then we need to
usead(F )’s as well, but the proof is similar. �

2.2. General case.Let ρ : sl(2, C) → gl(V ) be a (finite-dimensional) irreducible representation.
We will extensively use Equation 2. Ifv ∈ V andX ∈ g, then we will writeXv to meanρ(X)(v).
This way we’re thinking ofV as a leftg-module.

Let v ∈ V be an eigenvector ofH with eigenvalueλ. (Every endomorphism ofV has at least
one eigenvector.)

Lemma 2.2. If Hv = λv, thenH(Ev) = (λ + 2)(Ev) andH(Fv) = (λ − 2)(Fv), i.e.,Ev and
Fv are also eigenvectors ofH with eigenvaluesλ + 2 andλ − 2, respectively.

Proof. By Equation 2,

H(Ev) = EHv + 2Ev = E(λv) + 2Ev = (λ + 2)(Ev).

The expression forH(Fv) is similar. �
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Let v be the eigenvector ofH with the largest eigenvalue. Such an eigenvectorv is called the
highest weight vector. ThenEv = 0, sinceEv, if nonzero, would have a larger eigenvalue. Starting
with Vλ = Cv, we takeVλ−2i = CF iv. (F iv has eigenvalueλ− 2i.) Note thatVλ−2k = 0 for some
k. Let W = ⊕k

i=0Vλ−2i.

Lemma 2.3. W is a subrepresentation ofV .

Proof. It suffices to show thatE : W → W , sinceF andH clearly mapW to itself. We have the
following:

Ev = 0,

E(Fv) = FEv + Hv = λv,

E(F 2v) = FE(Fv) + H(Fv) = F (λv) + (λ − 2)Fv = [(λ) + (λ − 2)]Fv.

In general,

(3) E(F iv) = {(λ) + (λ − 2) + · · ·+ (λ − 2(i − 1))}F i−1v = (λ − i + 1)iF i−1v.

�

SinceV is irreducible, it follows thatV = W = ⊕k−1
i=0 Vλ−2i.

Also, observe thatE(Fv) = λv implies thatFv 6= 0 unlessλ = 0; E(F 2v) = (λ + (λ − 2))Fv
implies thatF 2v 6= 0 unlessλ = 1; etc. In particular:

(1) λ must be a positive integer forV to be finite-dimensional.
(2) Moreover, the only opportunity forV to be finite-dimensional is ifF λ+1v = 0.

Putting these together, we have the following theorem:

Theorem 2.4. The irreducible representations ofsl(2, R) are parametrized by a positive integer
k ∈ Z. For eachk, the representationV ≃ Ck decomposes into 1-dimensional eigenspacesVλ of
H, andV = V1−k ⊕ V3−k ⊕ · · · ⊕ Vk−3 ⊕ Vk−1.

Remark: We still haven’t shown that these representations really exist....

2.3. Tensor products and duals.Given representationsρV : g → gl(V ) andρW : g → gl(W ),
we can construct theirtensor productas follows:

ρV ⊗W : g → gl(V ⊗ W ),

ρV ⊗W (X) : v ⊗ w 7→ (ρV (X)(v)) ⊗ w + v ⊗ (ρW (X)(w)).

Since the tensor product of Lie group representations acts diagonally and the Lie algebra represen-
tations are derivatives of those, the Leibniz rule is in effect.

Given the representationρV : g → gl(V ), we define thedual representation as follows: Let
V ∗ = HomC(V, C) and〈, 〉 : V ∗ × V → C be the natural pairing. IfX ∈ g, ξ ∈ V ∗, η ∈ V , then
we define a right-g action by〈ξX, η〉 = 〈ξ, Xη〉. Then we set

ρ∗(X)(ξ) = −ξX.
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HW: Verify that this indeed gives a Lie algebra representation.

HW: Prove that the dual representation toρ : sl(2, C) → gl(V ) is isomorphic toρ itself.

Notation Change: From now on,Vλ will be the finite-dimensional irreducible representationof
sl(2, C) with highest weightλ. Let V = V1, the standard representationρ : sl(2, C) → gl(2, C).
This is irreducible. Then

V ⊗ V = V2 ⊕ V0,

V ⊗ V ⊗ V = V2 ⊕ V1 ⊕ V1,

V ⊗ V ⊗ V ⊗ V = V4 ⊕ 3V2 ⊕ 2V0.

HW: DecomposeV ⊗n in general.

In particular, the representationsVλ for λ = 0, 1, 2, . . . are all constructed as subrepresentations of
V ⊗n.
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3. DAY 3

3.1. Clebsch-Gordan rule. Let V , W be g-modules. ThenHomg(V, W ) denotes theg-linear
homomorphismsφ : V → W . This means thatφ is aC-linear map andφ(Xv) = Xφ(v) for all
X ∈ g.

Lemma 3.1(Schur’s Lemma). Given finite-dimensional irreducibleg-modulesV andW ,

Homg(V, W ) ≃ C

iff V ≃ W asg-modules. Otherwise,Homg(V, W ) ≃ 0.

Proof. Given a nontrivialφ : V → W , bothker φ andφ(V ) areg-modules. This is not possible
unlessker φ = 0 andφ is onto, sinceV andW are irreducible. Henceφ is an isomorphism.

We will now show that there is only oneg-linear isomorphismφ : V → V , namely a multiple of
the identity. SinceV is finite-dimensional, there is a nonzero vectorv ∈ V satisfyingφ(v) = λv.
Now, φ − λ · id has nontrivial kernel, sincev is in it. SinceV is irreducible,V = ker(φ − λ · id)
andφ = λ · id. �

Now considerg = sl(2, C).

Theorem 3.2(Clebsch-Gordan rule). Homg(Vi ⊗ Vj ⊗ Vk, C) ≃ C iff the following hold:

(1) i + j + k is even;
(2) i ≤ j + k; j ≤ k + i; k ≤ i + j.

Observe that, sinceV ∗
i = Vi for sl(2, C),

Homg(Vi ⊗ Vj ⊗ Vk, C) ≃ Homg(Vi ⊗ Vj, V
∗
k ) ≃ Homg(Vi ⊗ Vj , Vk).

In other words, we are asking whether there is a unique factorof Vk inside the tensor product
Vi ⊗ Vj.

Illustrative Example: V5 ⊗ V7 ≃ V12 ⊕ V10 ⊕ V8 ⊕ V6 ⊕ V4 ⊕ V2. Hence

Homg(V5 ⊗ V7 ⊗ Vk, C) ≃ C

iff k = 2, 4, 6, 8, 10, 12, which is consistent with the Clebsch-Gordan rule.

Suggestive Notation:We draw a trivalent (directed) graph with one vertex and three edges. Two
of the edges (labeledi andj) are incoming and one edge (labeledk) is outgoing. It is supposed to
suggest particle interaction.

HW: Do the same forHomg(Vi ⊗ Vj ⊗ Vk ⊗ Vl, C).

3.2. SL(3, C). We will now study the finite-dimensional irreducible representations ofg = sl(3, C).
Let Eij be then × n matrix with1 in theij-th position and0 elsewhere.

We first examine the adjoint representation.
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Decomposesl(3, C) into h ⊕ n+ ⊕ n−, where

h = C{E11 − E22, E22 − E33},

n+ = C{E12, E23, E13},

n− = C{E21, E32, E31}.

Hereh consists of the diagonal matrices,n+ consists of the strictly upper triangular matrices, and
n− consists of the strictly lower triangular matrices.

Consider the action ofh on sl(3, C) via the adjoint action.h is killed by ad(h) andh acts (simul-
taneously) diagonally onsl(3, C).

We compute that

ad(E11 − E22) : h 7→ 0, E12 7→ 2E12, E23 7→ −E23, E13 7→ E13,

and
ad(E22 − E33) : h 7→ 0, E12 7→ −E12, E23 7→ 2E23, E13 7→ E13.

(The calculations forn− are similar.)

Now let h∗ be the dual ofh. If Li maps the diagonal matrixdiag(a1, a2, a3) to ai, thenh∗ =
C{L1, L2} = C{L1, L2, L3}.

We verify that, onC{E12},

ad(H)(E12) = (L1 − L2)(H) · E12,

for all H ∈ h∗. In other words,C{E12} is the one-dimensional eigenspace on whichh acts by
L1 − L2 ∈ h∗. We writegL1−L2 for C{E12}. Therefore,g admits a decomposition

g = h ⊕ (⊕Li−Lj
gLi−Lj

),

where the sum is over alli 6= j andgLi−Lj
= C{Eij}.

Diagram for the roots: We can draw a diagram which represents the configuration of roots in
h∗ = R2. Usually, we takeL1, L2, L3 to be at the third roots of unity (inR2 ≃ C). (See, for
example, Fulton-Harris for pretty diagrams.)

h is called theCartan subalgebra. In general, for a semisimpleg, h is the maximal abelian subal-
gebra consisting of semisimple elements (X semisimple =ad(X) : g → g is diagonalizable). The
elementsLi −Lj ∈ h∗ are calledroots. gLi−Lj

is theroot spacecorresponding to the rootLi −Lj .
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4. MORE ONsl(3, C)-REPRESENTATIONS

LetV be a finite-dimensional, irreduciblesl(3, C)-module. Much of what we say will generalize
readily to other semisimple Lie algebrasg.

Fact (without proof): V can be simultaneously diagonalized under the action ofh.

We writeV = ⊕Vλ, whereVλ is the eigenspace for whichv ∈ Vλ satisfiesHv = λ(H) · v for all
H ∈ h, andλ runs over a finite subset ofh∗. Theλ for whichVλ 6= 0 are called theweights. The
correspondingVλ are theweight spaces.

Lemma 4.1. gα mapsVλ to Vλ+α.

Proof. If v ∈ Vλ, then for example we have:

HE12v = E12Hv +[H, E12]v = λ(H)E12v +(L1 −L2)(H)(E12v) = (λ+(L1 −L2))(H)(E12v).

�

SinceV is finite-dimensional, by successively applying elements of n+ = C{E12, E23, E13}, we
eventually obtain a nontrivialVλ which is annihilated byn+. (Remark: Ifv is annihilated by the
first two, then it is also annihilated by the last.)

λ is then thehighest weightandv ∈ Vλ is the highest weight vector.

Fact: A highest weight vectorv generates an irreducible representation by successively applying
elements inn− = C{E21, E32, E31}. (You don’t need elements inn+.)

Proof. One needs to generalize the following argument:E12v = 0 and

E12E21v = E21E12v + [E12, E21]v = 0 + H12v = λ(H12)v,

whereH12 = E11 − E22 = [E12, E21]. In general, given a wordW in n− andE12 ∈ n+, say, we
use the commutation relations to prove thatE12Wv can be written asW ′v for some wordW ′ in
n− by induction. �

Claim. The distribution ofλ’s in h∗ corresponding to weights is symmetric about the lines (=hy-
perplanes)Ω12 = {α ∈ h∗| α(H12) = 0}, Ω23 = {α ∈ h∗| α(H23) = 0}, andΩ13 = {α ∈
h∗| α(H13) = 0}.

Proof. As usual, we will treat a special case. Start with a highest weight vectorv ∈ Vλ and
successively applyE21. Observe thatE12, E21 andH12 generate ansl(2, C) →֒ sl(3, C). Hence,
the string

Vλ ⊕ Vλ−(L1−L2) ⊕ Vλ−2(L1−L2) ⊕ . . .

must be ansl(2, C)-representation and the values

{λ(H12), (λ − (L1 − L2))(H12) = λ(H12) − 2, . . . }

must be a set of integers which are symmetric about0.
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Also observe that
E23E21v = E21E23v + [E23, E21]v = 0,

sinceE23v = 0 by the highest weight condition. Similarly,Ei
23E21v = 0. This implies that

v, E21v, E2
21v, etc. form an edge of a polygonP which delineates the weights ofV . �

Remark: Ω12 is spanned byL1 + L2. We can verify thatL1 + L2 is orthogonal toL1 − L2 with
respect to the Killing form, described below. Hence, reflections aboutL1 + L2, L2 + L3, and
L1 + L3 are all symmetries of the set of weights ofV . These involutions generate theWeyl group
of the Lie algebrag.

Remark: Also note thatλ(H12) andλ(H23) must be integers (using what we know aboutsl(2, C)-
representations). Forsl(3, C), the set of allα ∈ h∗ which are integer-valued onH12 andH23 is
spanned byL1 andL2. Hence all weightsλ lie on theweight latticeΛW generated by theLi.

Remark: See Fulton-Harris for pictures ofP .

FS: The multiplicities (= dimension) of theVα on the edge of the polygonP are all one. However,
the multiplicities in the interior are not always one, and require further study. See Fulton-Harris,
for example.

Define aWeyl chamberW to be the closure of a connected component ofh∗ − Ω12 − Ω23 − Ω13.

Theorem 4.2. There is a 1-1 correspondence between finite-dimensional irreducible representa-
tions ofsl(3, C) and pointsα in ΛW ∩W. The representationV corresponding toα has a highest
weight vector with weightα anddim Vα = 1.

4.1. The Killing form. We conclude this lecture by discussing a symmetric bilinearform ong,
called theKilling form. The observant student/reader may have already noticed some sort of inner
product lurking inh∗.

Definition 4.3. TheKilling form on g is a bilinear form ong given by〈X, Y 〉
def
= Tr(ad(X) ◦

ad(Y )).

HW: Prove that the Killing form is symmetric.

g is said to besemisimpleif the Killing form is nondegenerate.

HW: Prove that, onsl(n, C), 〈X, Y 〉 = 2nTr(XY ). (Observe that this is much easier to calculate
directly. In particular, onh, the Killing form is, up to a scaling constant, inherited from the standard
inner product.)

HW: Prove that the Killing form is nondegenerate onsl(n, C).

To do the above HW, it helps to understand the Killing form with respect to the decomposition
g = h ⊕ (⊕gα). If X ∈ gα andY ∈ gβ, andα + β 6= 0, thenad(X) ◦ ad(Y ) mapsgγ to
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gγ+α+β 6= gγ. Hence if we take the trace, we get zero! The Killing form is a (potentially) nonzero
pairing only onh × h andgα × g−α. (If the Killing form is nondegenerate, the above pairings are
also nondegenerate.)

Finally, the nondegenerate pairing onh induces a nondegenerate pairing onh∗ via the natural
isomorphism:

h → h∗,

X 7→ α : α(Y ) = 〈X, Y 〉 ∀Y.

HW: Verify that L1, L2, L3 in h∗ have equal lengths and the angle betweenL1 andL2 is 2π
3

with
respect to the Killing form.
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5. AFFINE L IE ALGEBRAS

The following fact will play an important role today:

Theorem 5.1. The Killing form on a semisimple Lie algebrag is, up to a scaling constant, the
unique bilinear form which isAd-invariant. In particular, this automatically implies that the bilin-
ear form issymmetricas well.

TheAd-invariance can be translated into:

〈[X, Z], Y 〉 = 〈X, [Z, Y ]〉.

Beginning of proof:SupposeX ∈ gα, Y ∈ gβ, andZ ∈ h. Then

〈−α(Z)X, Y 〉 = 〈X, β(Z)Y 〉.

If 〈X, Y 〉 6= 0, thenα = −β. Therefore,〈, 〉 is nonzero only forgα × g−α → C andh × h → C.
(Recall this is also the case for the Killing form.) �

5.1. Central extensions of a Lie algebra.Let g be a complex Lie algebra. We studycentral
extensionsof g:

0 → Cc → g′ → g → 0.

As a vector space,g′ = g ⊕ Cc. Define[, ] ong′ so that:

(i) [c, X] = 0 for all X ∈ g′ (i.e.,c is a central element).
(ii) [X + αc, Y + βc] = [X, Y ] + ω(X, Y )c,

if X, Y ∈ g, α, β ∈ C, andω : g × g → C is a bilinear form.

Claim. [, ] is a Lie bracket iff

(1) ω is skew-symmetric, and
(2) ω([X, Y ], Z) + ω([Y, Z], X) + ω([Z, X], Y ) = 0.

(2) is called the2-cocyle condition.

We now explain the classification of central extensions via Lie algebra cohomology.

Given a Lie algebrag, define thep-th cochain group:

Cp(g, C) = HomC(∧pg, C).

The coboundarydp : Cp(g, C) → Cp+1(g, C) is given by:

dpω(X1, . . . , Xp) =
∑

i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1).

Thep-th Lie algebra cohomology group isHp(g, C) = ker dp/im dp.

HW: Verify thatdp ◦ dp−1 = 0.
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Remark: The coboundary mapdp coincides with the exterior derivative (Cartan’s formula?). In
the context of left-invariant forms and vector fields, termsof the formXiω(X1, . . . , X̂i, . . . , Xp+1)
vanish.

Theorem 5.2. There is a 1-1 correspondence between isomorphism classes of central extensions
of g and elements ofH2(g, C).

Proof. Any ω ∈ C2(g, C) with dω = 0 satisfies (1), (2) above.
If η ∈ C1(g, C), thendη(X, Y ) = η([X, Y ]).
Consider a Lie algebra isomorphismφ of central extensions. As a vector space isomorphism,

φ : g ⊕ Cc
∼
→ g ⊕ Cc maps(0, 1) 7→ (0, 1) (i.e.,c 7→ c), and(X, 0) 7→ (X, η(X)) for some linear

functionalη : g 7→ C.
If [(X, 0), (Y, 0)] = ([X, Y ], ω(X, Y )) for the source and[(X, 0), (Y, 0)] = ([X, Y ], ω′(X, Y ))

for the target, then

φ([(X, 0), (Y, 0)]) = [(X, η(X)), (Y, η(Y ))] = ([X, Y ], ω′(X, Y )),

whereas

φ([(X, 0), (Y, 0)]) = φ(([X, Y ], ω(X, Y ))) = ([X, Y ], ω(X, Y ) + η([X, Y ])).

Hence,ω′(X, Y ) = ω(X, Y ) + η([X, Y ]). �

5.2. The loop algebra. Let G be a Lie group andg be its (complexified) Lie algebra. We define
the loop groupLG as the space of smooth maps fromS1 to G, equipped with a group structure as
follows: givenγ1, γ2 : S1 → G, define(γ1γ2)(t) = γ1(t) · γ2(t). (This is not to be confused with
the product/concatenation of paths.) Question: What is theidentity element?

Remark: At this point, we will not be concerned with topologies onLG.

NextLg is the tangent spaceTe(LG). By appealing to Fourier series, we defineLg = g ⊗ C((t)),
i.e., the Laurent series with values ing. HereC((t)) consists of elements of the form

∑∞
i=n ait

i for
somen ∈ Z. The Lie bracket is

[X ⊗ f, Y ⊗ g] = [X, Y ] ⊗ fg.

Remark: We are thinking ofS1 = {|t| = 1} ⊂ C, i.e., t = eiθ. HenceC((t)) is a reasonable
class of meromorphic functions onC, and we are taking the restriction toS1, which is effectively
a Fourier series.

Theorem 5.3. SupposeG is a connected, compact Lie group, with corresponding Lie algebrag.
ThenH2(Lg, C) ≃ C, and a nontrivial element is given by

ω(X ⊗ f, Y ⊗ g) = 〈X, Y 〉Rest=0(df · g),

whereRest=0(
∑

cit
i) = c−1.
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Another way of writingω is:

ω(X ⊗ tm, Y ⊗ tn) = mδm,−n〈X, Y 〉.

Here,δa,b = 1 if a = b and0 if a 6= b.

Let us denote bỹLg the central extension given byω. Then:

[X ⊗ tm, Y ⊗ tn] = [X, Y ] ⊗ tm+n + 〈X, Y 〉mδm,−nc.

Proof. .

Step 1: Represent any[ω] ∈ H2(Lg, C) by a 2-cocycle which is invariant under conjugation by
G.

Writing g = I + tZ, and takingX, Y ∈ Lg, we compute:

ω(g−1Xg, g−1Y g) − ω(X, Y ) = ω((I − tZ)X(I + tZ), (I − tZ)Y (I + tZ)) − ω(X, Y )

= t(ω([X, Z], Y ) + ω(X, [Y, Z])) = tω(Z, [X, Y ]),

where the last equality uses the 2-cocycle condition. (Notice that in the computation,⊗tm are inde-
pendent ofAd.) If we defineαZ(V ) = ω(Z, V ), thendαZ(X, Y ) = αZ([X, Y ]) = ω(Z, [X, Y ]),
and we see thatωg(X, Y ) = ω(g−1Xg, g−1Y g) is cohomologous toω by integrating. Finally, av-
erage by taking

∫
g∈G

ωgdg. SinceG is assumed to be acompactLie group, the resulting 2-cocycle
is invariant underAd(G).

Step 2:Let α : ∧2g → C be a 2-cocycle which is invariant underAd(G). Defineαm,n : g×g → C
by αm,n(X, Y ) = α(X ⊗ tm, X ⊗ tn). Sinceαm,n is Ad-invariant,αm,n is a multiple of the Killing
form and is symmetric!

We then haveαm,n = −αn,m (by the anti-symmetry ofα and the symmetry ofαm,n), and also

αm+n,p + αn+p,m + αp+m,n = 0,

by the 2-cocycle condition:

α([X ⊗ tm, Y ⊗ tn], Z ⊗ tp) + α([Y ⊗ tn, Z ⊗ tp], X ⊗ tm) + α([Z ⊗ tp, X ⊗ tm], Y ⊗ tn) = 0.

Specializing at various values (i)n = p = 0, (ii) p = −m − n, (iii) p = q − m − n, eventually
gives us thatαm,n = mδm,−nα1,−1. Finally observe thatα1,−1 is the Killing form up to a constant
multiple.

Step 3: (Nontriviality) Let ω(X ⊗ tm, Y ⊗ tn) = 〈X, Y 〉mδm,−n. If ω = dα, then

ω(H ⊗ t, H ⊗ t−1) = α([H ⊗ t, H ⊗ t−1]) = α([H, H ]) = 0,

whereas
ω(H ⊗ t, H ⊗ t−1) = 〈H, H〉,

and there areH ∈ h with 〈H, H〉 6= 0. �
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5.3. The Virasoro algebra. We discussed this material on the next day, but this materialis
probably better placed here. Let Diff(S1) be the group of diffeomorphisms of the unit circle
S1 = {|z| = 1} ⊂ C. One possible tangent space to Diff(S1) at the identity is the Lie alge-
braA = {f(z) d

dz
| f(z) ∈ C[z, z−1]} of Laurent polynomial vector fields.

Write Lm = −zm+1 d
dz

. Then

[Lm, Ln] =

[
−zm+1 d

dz
,−zn+1 d

dz

]

= ((n + 1)zm+n+1 − (m + 1)zm+n+1)
d

dz

= −(m − n)zm+n+1 d

dz
= (m − n)Lm+n.

Just as in the case of the loop algebraLg, we have:

Theorem 5.4.H2(A; C) ≃ C and a representative of a nonzero class is:ω(Lm, Ln) = m3−m
12

δm,−n.

For details of the proof which is very similar to Theorem 5.3,see Kohno. TheVirasoro algebra, as
a vector space, isV ir = A ⊕ Cc, and the Lie bracket is given by:

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm,−nc.

REFERENCES

[1] T. Kohno,Conformal field theory and topology. (We closely followed his presentation in this lecture.)
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6. AFFINE L IE ALGEBRAS, DAY II

6.1. The affine Lie algebra. Last time we started with the loop algebraLg = g ⊗ C((t)) and
constructed the (essentially unique central extensionL̃g = Lg ⊕ Cc with Lie bracket

[X ⊗ tm, Y ⊗ tn] = [X, Y ] ⊗ tm+n + mδm,−n〈X, Y 〉c.

We will (slightly) enlargeL̃g to theaffine Lie algebrâg. Consider the derivationd on L̃g given
by d(X ⊗ tm) = X ⊗ mtm andd(c) = 0. (In other words,d = t d

dt
.)

HW: Show that d
dt

is not a derivation of̃Lg, but t d
dt

is. (A derivation, by definition, satisfies
d[ξ, η] = [dξ, η] + [ξ, dη].)

As a vector space, theaffine Lie algebrâg is given by:

ĝ = L̃g ⊕ Cd = (g ⊗ C((t))) ⊕ Cc ⊕ Cd.

The Lie bracket extends[, ] for L̃g via [c, d] = 0, and[d, X ⊗ tm] = mX ⊗ tm. (In other words,̂g
is thesemidirect productof L̃g andCd.)

Remark: The definition ofĝ is different from that of Kohno. He calls̃Lg the affine Lie algebra.
Observe that̃Lg is [ĝ, ĝ].

6.2. Root space decomposition.An important reason for extending tôg is the following: Define
ĥ = (h ⊗ 1) ⊕ Cc ⊕ Cd. Then we have:

Lemma 6.1. ĥ is a maximal abelian Lie subalgebra.

Proof. Take an elementX ⊗ tm which commutes witĥh. Then[d, X ⊗ tm] = X ⊗ mtm = 0
impliesm = 0, and[X ⊗ 1, h ⊗ 1] = 0 impliesX ∈ h. �

We now decomposêg into root spaces via the action ofĥ. Let∆ be the set of roots forg. Define
γ, δ : ĥ → C by:

γ(h ⊗ 1) = 0, γ(c) = 1, γ(d) = 0,

δ(h ⊗ 1) = 0, δ(c) = 0, δ(d) = 1.

Then
ĝ = ĥ ⊕ (⊕β∈∆aff

ĝβ),

where the set∆aff ⊂ ĥ∗ of affine rootsis:

∆aff = {α + nδ| α ∈ ∆, n ∈ Z}.

The corresponding root spacesĝα+nδ areC{Xα ⊗ tn}, whereXα ∈ gα.

Remark: A good way to picture the root space decomposition for̂sl(2, C) is to placeα corre-
sponding toE on thex-axis andδ on they-axis. (γ is in thez-direction.) The roots are all of the
form α + nδ, nδ, or−α + nδ.
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As before, define
n̂+ = n+ ⊕ (g ⊗ t) ⊕ (g ⊗ t2) ⊕ ...

n̂− = n− ⊕ (g ⊗ t−1) ⊕ (g ⊗ t−2) ⊕ ....

Forg = sl(2, C), n̂+ is generated by the rootsα0 = −α + δ andα1 = α.

6.3. The invariant bilinear form. We now define an invariant bilinear form〈, 〉 on ĝ. Let

〈X ⊗ tm, Y ⊗ tn〉 = 〈X, Y 〉δm,−n,

〈c, c〉 = 〈d, d〉 = 0, 〈c, d〉 = 1.

HereX, Y ∈ g and〈X, Y 〉 is the Killing form ong. (Observe that the first definition makes sense
because we want to pairĝα+nδ with ĝ−α−nδ.)

Lemma 6.2. The invariant bilinear form on̂g is invariant.

Proof. We will work out one case.

〈[X ⊗ tm, Y ⊗ tn], d〉 = 〈[X, Y ] ⊗ tm+n + 〈X, Y 〉mδm,−nc, d〉

= 〈X, Y 〉mδm,−n,

whereas

〈X ⊗ tm, [Y ⊗ tn, d]〉 = 〈X ⊗ tm,−Y ⊗ ntn〉

= 〈X, Y 〉(−n)δm,−n = 〈X, Y 〉mδm,−n

�

Remark: Forsl(2, C) andsl(3, C), the Killing form onh was positive definite, and the Weyl group
was a subgroup ofO(n). For ĥ, the invariant bilinear form is no longer positive definite,and the
corresponding affine Weyl group is a subgroup ofO(n, 1).
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7. COROOTS, WEYL GROUP, ETC.

Before we explain the representation theory of affine Lie algebras, we need to present some
more theory.

7.1. Coroots. Let g be a complex semisimple Lie algebra,〈, 〉 be the Killing form, andg =
h ⊕ (⊕α∈∆gα) be the root space decomposition.

Let Eα ∈ gα, E−α ∈ g−α, andH ∈ h. (AssumeEα, E−α 6= 0.) Then we have:

〈[Eα, E−α], H〉 = 〈Eα, [E−α, H ]〉

= 〈Eα, α(H)E−α〉

= α(H)〈Eα, E−α〉.

Since the root spacesα are 1-dimensional (one needs to verify this for general semisimpleg) and
the Killing form is nondegenerate ongα × g−α, it follows that[Eα, E−α] 6= 0.

Normalizeso that〈Eα, E−α〉 = 1. Then defineHα = [Eα, E−α]. Hα then satisfies:

〈Hα, H〉 = α(H),

so the natural maph → h∗ given by the Killing form sendsHα 7→ α.

HW: Eα, E−α, Hα generate a subalgebra isomorphic tosl(2, C) insideg.

Given a rootα, we can define itscoroot α̌ = 2Hα

〈α,α〉 . Given a set of simple rootsα1, . . . , αn (a
minimal set which generatesn+), we have the corresponding corootsα̌1, . . . , α̌n. For example, for
sl(3, C) we hadα1 = L1 −L2, α2 = L2 −L3 andα̌1 = E11 −E22, α̌2 = E22 −E33. We can define
theCartan matrix

(Cij) = (αj(α̌i)).

FS: (1) The Cartan matrix encodes all of the structure of a semisimple Lie algebra. (2) Cartan
matrices can be classified for〈, 〉 positive definite onh.

7.2. The Weyl group. TheWeyl groupis the group of reflections ofh∗ (i.e., elements ofO(h∗)),
generated by:

Wα : λ 7→ λ − λ(α̌)α.

Wα preserves the hyperplane{λ| λ(α̌) = 0} and mapsα 7→ −α. Sinceλ(α̌) = λ( 2Hα

〈α,α〉 ) = 2〈λ,α〉
〈α,α〉 ,

we see that the hyperplane is orthogonal (with respect to theKilling form) to α. Also note thatα
gets mapped to−α.

Recall that if we have a string of weights

λ, λ − α, λ − 2α, . . . ,

for ag-moduleV , then
λ(α̌), (λ − α)(α̌), (λ − 2α)(α̌), . . .
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is symmetric about0 (since the direct sum of the corresponding weight spaces is an sl(2, C)-
representation). Here we are assuming thatλ + α is not a weight, i.e.,λ is extremal. Hence the set
of weights ofV is invariant under the Weyl group.

7.3. The affine Lie algebra ̂sl(2, C). Let g = sl(2, C). Then the set of simple roots for̂g was
α0 = δ − α, α1 = α, whereα was the simple root forg.

TakeEα0 = F ⊗ t, E−α0 = E ⊗ t−1. Then

〈F ⊗ t, E ⊗ t−1〉 = 〈F, E〉 = 1,

and
α̌0 = Hα0 = [F ⊗ t, E ⊗ t−1] = −H ⊗ 1 + 〈F, E〉c = −H + c.

Similarly, α̌1 = Hα1 = H.

HW: Compute the Cartan matrix forsl(3, C) and ̂sl(2, C).

The Weyl group for̂g is called theaffine Weyl group, and is generated by:W0 = Wα0 andW1 =
Wα1 . If we write x0α + x1γ + x2δ by (x0, x1, x2), then we compute that:

W0(x0, x1, x2) = (−x0 + x1, x1, 2x0 − x1 + x2),

W1(x0, x1, x2) = (−x0, x1, x2).

W1 is just a simple reflection which switchesx0 and−x0, while W0 is harder to understand.

As a symmetry on the set of roots, we havex1 = 0, soW0 maps(x0, 0, x2) 7→ (−x0, 0, 2x0 + x2).
Composing withW1, we get(x0, 0, x2) 7→ (x0, 0, 2x0 + x2), which we can visualize on the root
space. It certainly is not an element of finite order, unlike elements of the Weyl group forg finite-
dimensional and semisimple.

7.4. The universal enveloping algebra.Let g be a Lie algebra. Then itsuniversal enveloping
algebraU(g) is aC-algebra (with unit), constructed as follows. Take the tensor algebraT (g) =
⊕∞

i=0g
⊗i, whereg⊗0 is defined to beC. If I is the double-sided ideal generated byxy − yx− [x, y]

for all x, y ∈ g, then

U(g)
def
= T (g)/I.

There is a natural inclusioni : g → U(g).

Given an associative algebraA, denote byLie(A) the Lie algebra which isA as a vector space
and has Lie bracket[a, b] = ab − ba. The universal enveloping algebra has the following uni-
versal property: Given a Lie algebra homomorphismφ : g → Lie(A), there is a unique algebra
homomorphismΦ : U(g) → A so thatφ = Φ ◦ i.

Remark: Previously, when we had expressions such asEF (v), we meant it to beρ(E)ρ(F )(v)
for some representationρ. We can instead think of them asρ(EF ), whereEF is an element of the
universal enveloping algebra.
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7.5. Integrable highest weight representations ofg. A g-moduleV is called ahighest weight
modulewith highest weightλ ∈ h∗ if there isv 6= 0 ∈ V such thatn+v = 0, Hv = λ(H)v for all
H ∈ h, andV = U(g)v. It is not hard to see that this implies thatV = U(n−)v. (Note thatn± is a
Lie subalgebra ofg.)

First we construct aVerma moduleM(λ) = U(g)/I, whereI is a left ideal inU(g) generated by
n+ andH − λ(H) for all H ∈ h. M(λ) is anU(g)-module and1 ∈ U(g)/I is the highest weight
vector with weightλ, sinceH · 1 = H = λ(H) · 1. After modding out byI, every element of
M(λ) can be represented by an element ofU(n−) (and uniquely so)! Hence the Verma module is
a freeU(n−)-module with highest weight vectorλ.

The Verma module is infinite-dimensional, and to obtain finite-dimensional representations, we
need to quotient byU(g)-submodules.

Example: Let g = sl(2, C). ThenM(λ) ≃ U(n−) = C{1, F, F 2, F 3, . . .}, whereH · 1 = λ · 1,
and1 is the highest weight vector with weightλ. If we recall the formula

EF iv = (λ − i + i)iF i−1v,

we notice thatEF iv = 0 if i = λ+1. Therefore, there is anU(g)-submoduleI generated byF λ+1

which isC{F λ+1, F λ+2, . . . }. (This is providedλ is a nonnegative integer.) The quotientM(λ)/I
is the irreducible finite-dimensionalg-module with highest weightλ.

Remark: Somehow by doing some abstract nonsense, we have managed to construct all the finite
dimensional irreducible representations of a finite dimensional semisimple Lie algebra.

REFERENCES

[1] J.-L. Brylinski’s Princeton lecture notes from Spring 1995.
[2] V. Kac, Infinite dimensional Lie algebras.
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8. INTEGRABLE HIGHEST WEIGHT REPRESENTATIONS OF̂g

Let g be a finite-dimensional complex semisimple Lie algebra. Recall that the Verma module
M = M(λ) is a rank 1 freeU(n−)-module generated by the highest weight vectorv. Suppose
λ ∈ h∗ is in theweight lattice, i.e.,λ(α̌i) ∈ Z for all corootsα̌i. Moreover, assumeλ(α̌i) ≥ 0.
Then we have the following:

Theorem 8.1(Harish-Chandra). The (unique) maximal idealI is generated byEλ(α̌i)+1
−αi

for all i.

The quotient moduleM/I is an irreducibleg-module with highest weightλ. Since the Weyl group
acts onM/I, it is easy to see thatM/I is finite-dimensional. This way, we have abstractly created
all finite-dimensional irreducible representations ofg.

Example: Let g = sl(3, C). In this case, the maximal ideal is generated by two elementsE
λ(α̌i)+1
−αi

,
i = 1, 2, whereα1 = L1 − L2 andα2 = L2 − L3. Then the strings

λ, λ − αi, λ − 2αi, . . . , λ − λ(α̌i)αi,

for i = 1, 2, are two edges of the boundary of the setP of weights of an irreducible representation.
(Note that the edges may be degenerate, i.e., a point.) Now, using the Weyl group, we may reflect
these edges and obtain the boundary ofP . Observe that ifµ is a weight ofM(λ) which does not
occur inI, then the multiplicity of that weight in the irreducible finite-dimensional representation
M(λ)/I is simply that ofM(λ). We just have to calculate multiplicities inU(n−). (Here, the
multiplicity of a weightµ is the dimension of the weight spaceVµ.)

Theorem 8.1 holds for affine Lie algebras as well. Forĝ = ̂sl(2, C), suppose we have a Verma
moduleM with highest weight vectorv satisfying:

n̂+v = 0, cv = kv, dv = µv, Hv = λv.

Sincec is central,cw = kw for all w in the irreducible representationM/I.

Recall that the affine Weyl group for̂g is generated by

W0(x0, x1, x2) = (−x0, x1, 2x0 − x1 + x2),

W1(x0, x1, x2) = (−x0, x1, x2),

whereĥ∗ = {x0α + x1γ + x2δ}. The highest weight vectorv is in the weight space(λ
2
, k, µ). The

factor of two in λ
2

comes from the fact thatα(H) = 2. Since the second coordinatek is invariant
under reflections, we will only write the first and third coordinates.

If 0 ≤ λ ≤ k andλ, k ∈ Z, then the maximal idealI of M is generated by(F ⊗ 1)λ+1 and
(E ⊗ t−1)k−λ+1. These give two edges of the weight space configuration ofM/I.

Starting withx = (λ
2
, µ), we useW0 andW1 to obtain:

W1(x) =

(
−

λ

2
, µ

)
,
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W0(x) =

(
k −

λ

2
,−(k − λ) + µ

)
= x + (k − λ)(1,−1),

W0W1(x) = W0(x) + λ(1,−2),

W0W1W0(x) = W0W1(x) +

(
k −

λ

2

)
(1,−3),

and so on. Note that the boundary fits inside an upside-down parabola. (From the point of view of
physics, one might want to use lowest weight vectors instead. Then the rowx2 = µ is the ground
state and is precisely the irreducible weightλ representation ofsl(2, C).)

8.1. The Casimir element. Let g be a finite-dimensional complex semisimple Lie algebra. Let
{Ii}, {I

i} be dual basesfor g with respect to the Killing form〈, 〉, i.e., 〈Ii, I
j〉 = δij. Then we

define theCasimir elementto be an element ofU(g) given by:

C =
∑

i

IiI
i.

HW: Show thatC is independent of the choice of dual bases{Ii}, {I i}. (Hint: If {Ji}, {J j}
is another dual basis, writeJi = aijIj andJ i = bijI

j, where the summation is omitted. Then
〈Ji, Jj〉 = δij = 〈aikIk, bjlI

l〉 = aikbjk. Henceaikbjk = δij .)

If {Ii} is anorthonormalbasis, i.e.,〈Ii, Ij〉 = δij, then{Ii} is dual to itself, andC =
∑

i Ii · Ii.

Lemma 8.2. [C, X] = 0 for all X ∈ g.

Proof. It is useful to use the (easily verified) identity:[ab, c] = [a, c]b + a[b, c]. Then, with respect
to an orthonormal basis{Ii},

[C, X] =
∑

i

[Ii, X]Ii +
∑

i

Ii[Ii, X].

If we write [Ii, Ij ] = ak
ijIk, then〈[Ii, Ij], Ik〉 = 〈Ii, [Ij , Ik]〉 implies thatak

ij = ai
jk, namelyak

ij is
invariant under cyclic permutation. Also observe thatak

ij = −ak
ji. Now,

∑

i

[Ii, Ij]Ii =
∑

i,k

ak
ijIkIi,

and ∑

i

Ii[Ii, Ij] =
∑

i,k

ak
ijIiIk =

∑

i,k

ai
kjIkIi =

∑

i,k

−ak
ijIkIi.

�

Since[C, X] = 0 for all X ∈ g, it follows thatC acts by a constant on an irreducible representation
V .

Example: If g = sl(2, C), then we take an orthonormal basis1√
2
H, 1√

2
(E + F ), i√

2
(E − F ).

We compute thatC = 1
2
H2 + EF + FE. (Remark: With respect to this orthonormal basis,
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the identification withso(3, C) is clear.) We could also have taken dual bases{ 1√
2
H, E, F} and

{ 1√
2
, F, E}.

Next letC act on the irreducible representationVλ with highest weightλ. Since we can evaluate
C on any vector and get the same answer, let us use the highest weight vectorv.

Cv =

(
1

2
H2 + EF + FE

)
v =

(
1

2
H2 + [E, F ] + 2FE

)
v =

(
1

2
H2 + H

)
v =

(
1

2
λ2 + λ

)
v,

noting thatEv = 0. Now, writing j = λ
2
, we haveCv = 2j(j + 1)v.

FS: The CasimirC is used to givecharacter formulas, i.e., formulas that give the multiplicities
(i.e., dimensions) of weight spacesVµ. (Key useful property:C has the same eigenvalue for the
highest weight vector as well as anyw ∈ Vµ.) There are character formulas such as Freudenthal’s
and Weyl’s.

REFERENCES

[1] F. Malikov, personal communication.
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9. SUGAWARA OPERATOR; INTRODUCTION TO SYMPLECTIC GEOMETRY

9.1. The Sugawara operators.As before, letg be a finite-dimensional complex semisimple Lie
algebra (saysl(2, C)) and{Ii}, {I i} be dual bases forg with respect to the Killing form.

Notation: We will denote elementsX ⊗ tn in the affine Lie algebrâg by X(n). (HereX ∈ g.)

Define theSugawara operatorsas formal sums:

L0 =
∑

i

IiI
i + 2

∑

i

∞∑

n=1

I
(−n)
i I i(n),

Lm =
∑

i

∞∑

n=−∞
I

(−n)
i I i(m+n),

for m 6= 0. Note thatL0 is almost a Casimir forU(ĝ), although, strictly speaking, it is not inU(ĝ)
because the sum is infinite and it is missing the termscd+dc = 2cd, wherec is the central element
andd is the derivation.

Lm are elements of a suitably-defined completionUc(L̃g) of U(L̃g) consisting of infinite sums that
actfinitely on integral highest weight representationsHk,λ of g. (Herek is the level andλ is the
highest weight, i.e.,cv = kv andHv = λv for the highest weight vectorv.) By actingfinitely, we
mean that for anyw ∈ Hk,λ we haveXjw = 0 for j >> 0.

Observe that, if we take sums2
∑∞

n=1 I
(−n)
i I i(n) then there are only finitely many nonzero terms in

2
∑∞

n=1 I
(−n)
i I i(n)w for anyw ∈ Hk,λ. This is why we don’t use

∑
n∈Z I

(−n)
i I i(n) instead.

Remark: If m 6= 0, then
∑

i[I
(−n)
i , I i(m+n)] = 0, so we do not need to worry about the order of

I
(−n)
i andI i(m+n) in the definition ofLm.

Proof: Sincem 6= 0,
∑

i[I
(−n)
i , I i(m+n)] =

∑
i[Ii, I

i](m). To show that
∑

i[Ii, I
i] = 0 we claim

that the expression is independent of the choice of dual bases. WriteJi = aijIj andJ i = bijI
j

with aikbjk = δij (see the HW in Section 8.1). Then
∑

i

[Ji, J
i] =

∑

i,j,k

aijbik[Ij , I
k] =

∑

j,k

δj,k[Ij, I
k] =

∑

j

[Ij, I
k].

HW: Prove that the definition of the Sugawara operators does not depend on the choice of dual
bases{Ii}, {I i}.

The Sugawara operators satisfy the following commutation relations:

Theorem 9.1.
(1) [Lm, X(n)] = −2(c + 2)nX(m+n),
(2) [Lm, Ln] = 2(c + 2)((m − n)Lm+n + m3−m

6
δm+n,03c).
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Proof. We will do a sample calculation. For the rest, refer to Kac’s book. Note that the calculation
requires some care – whenever you use a commutation relations, etc., you must make sure that you
stay withinUc(L̃g)!

Take an orthonormal basis{Ii}. Using the formula[ab, c] = a[b, c] + [a, c]b, we compute:

[L0, I
(n)
j ] = Ii[Ii, I

(n)
j ] + [Ii, I

(n)
j ]Ii + 2I

(−m)
i [I

(m)
i , I

(n)
j ] + 2[I

(−m)
i , I

(n)
j ]I

(m)
i

= Ii[Ii, I
(n)
j ] + [Ii, I

(n)
j ]Ii + 2I

(−m)
i ([Ii, Ij]

(m+n) + δij(m)δm+n,0c)

+2([Ii, Ij]
(−m+n) + δij(−m)δ−m+n,0c)I

(m)
i

= −2ncI
(n)
j + A,

where

A =
∑

i

(
Ii[Ii, Ij]

(n) + [Ii, Ij]
(n)Ii

)
+
∑

i

∑

m>0

(
2I

(−m)
i [Ii, Ij ]

(m+n) + 2[Ii, Ij]
(−m+n)I

(m)
i

)
.

Next, if we let[Ii, Ij ] = ak
ijIk, then
∑

i

I
(−m+n)
i [Ii, Ij]

(m) =
∑

i,k

ak
ijI

(−m+n)
i I

(m)
k ,

∑

i

[Ii, Ij]
(−m+n)I

(m)
i =

∑

i,k

ak
ijI

(−m+n)
k I

(m)
i .

Switchingi andk in the second equation and usingak
ij = −ai

kj , we see that
∑

i

I
(−m+n)
i [Ii, Ij]

(m) +
∑

i

[Ii, Ij]
(−m+n)I

(m)
i = 0.

Hence we have

A =
∑

i

[Ii, [Ii, I
(n)
j ]] +

∑

i

n∑

m=0

2[Ii, Ij]
(−m+n)I

(m)
i .

We now compute
∑

i

(
[Ii, Ij ]

(n−m)I
(m)
i + [Ii, Ij]

(m)I
(n−m)
i

)
=

∑

i,k

(
ak

ijI
(n−m)
k I

(m)
i + ak

ijI
(m)
k I

(n−m)
i

)

=
∑

i,k

(
ak

ijI
(n−m)
k I

(m)
i − ak

ijI
(m)
i I

(n−m)
k

)

=
∑

i,k

ak
ij [Ik, Ii]

(n) =
∑

i,k,l

ak
ija

l
kiI

(n)
l =

∑

i

[[Ii, Ij ], Ii]
(n)

Here we are using the fact thatak
ij = −ai

kj. Now, the term
∑

i[[Ii, X], Ii] be interpreted as the
minus the Casimir (forg) acting onX by the adjoint action. Since the Casimir is constant on all



NOTES FOR MATH 635: TOPOLOGICAL QUANTUM FIELD THEORY 27

the vectors of an irreducible representation,
∑

i

[[Ii, X], Ii] = −4X,

and
A = −4nI

(n)
j .

Putting the above computation together:

[L0, X
(n)] = −2(c + 2)nX(n).

�

FS: Read Kac for a proof of the theorem (or prove it yourself!)

If we rescaleLm by multiplying by 1
2(k+2)

and let the central elementc act onHk,λ by k, then, as
operators onHk,λ we have:

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0

3k

k + 2
.

We have a “representation” of the Virasoro algebraV ir to Uc(L̃g) by sending the central element
of V ir to 3k

k+2
.

Finally, we decomposeHk,λ usingL0. If v ∈ Hk,λ is the highest weight vector, thenL0v =
1

2(k+2)
(
∑

i IiI
i)v = j(j+1)

k+2
v, wherej = λ

2
. We define∆λ = j(j+1)

k+2
to be theconformal weight. By

using the first commutation relation in Theorem 9.1, we have

L0(X
(n)v) = (∆λ − n)(X(n)v).

Recall the weight space diagram from the previous lecture (the upside-down parabola). The top
row is isomorphic to the highest weight representationVλ of sl(2, C) and has conformal weight
∆λ, the next row down has conformal weight∆λ + 1, etc.

9.2. Some symplectic geometry.Now that we are done with the algebraic “preliminaries”, we’d
like to start from the beginning and explain ideas of quantization.

Definition 9.2. A symplectic manifoldis an (even-dimensional) manifoldM with a closed nonde-
generate 2-formω.

Recall that a formω is closed ifdω = 0, andω is nondegenerate ifω(x) : TxM × TxM → R
is a nondegenerate pairing for allx ∈ M . A (symmetric/skew-symmetric) nondegenerate pairing
〈, 〉 : V ×V → R has the property that for anyv 6= 0 ∈ V there existsw ∈ V such that〈v, w〉 6= 0.

HW: Show thatω is nondegenerate iffωn is nowhere vanishing, ifdim M = 2n.

Example: (R2n, ω =
∑n

i=1 dxidyi). Note thatdω = 0 andωn = n!dx1dy1 . . . dxndyn.
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Theorem 9.3(Darboux). Every symplectic manifold(M, ω) is locally isomorphic to(R2n, ω =∑
dxidyi)

Example: The cotangent bundleT ∗M of M has a natural symplectic structure. Letπ : T ∗M → M
be the standard projection. Then there is acanonical1-formθ onT ∗M given by:

θ(x)(v) = x(π∗(v)),

wherex ∈ T ∗M andv ∈ Tx(T
∗M). The symplectic form isω = dθ. Let qi be local coordi-

nates onU ⊂ M . Thenx ∈ π−1(U) can be written as
∑

pidqi, and with respect to coordinates
(q1, . . . , qn, p1, . . . , pn) we haveθ =

∑
pidqi.

The symplectic formω (and in fact any nondegenerate pairing) induces a 1-1 correspondence

X(M)
∼
→ Ω1(M),

X 7→ iXω,

whereX(M) is the set of smooth vector fields onM andΩ1(M) is the set of smooth 1-forms on
M . Here the contractioniXω satisfiesiXω(Y ) = ω(X, Y ).

There exists a special class of vector fieldsHam(M) ⊂ X(M) which correspond to exact 1-forms
dΩ0(M) ⊂ Ω1(M). Given a smooth functionf ∈ C∞(M) (often called aHamiltonian function,
we define its correspondingHamiltonian vector fieldXf as follows:iXf

ω = df .

Example: On (R2n, ω), df = ∂f
∂x

dx + ∂f
∂y

dy (we often omit subscriptsi), andXf = ∂f
∂y

∂
∂x

− ∂f
∂x

∂
∂y

.

C∞(M) acquires aPoisson structurevia this correspondence. Define thePoisson bracketby
{f, g} = −ω(Xf , Xg). (One easily sees that{f, g} = −df(Xg) = dg(Xf) = −Xg(f) = Xf (g).)
A Poisson bracketsatisfies the following conditions:

(1) (Jacobi identity){f, {g, h}} + {g, {h, f}}+ {h, {f, g}} = 0
(2) (Skew-symmetry){f, g} = −{g, f}.
(3) (Derivation property){fg, h} = f{g, h}+ {f, g}h.

In particular, a Poisson bracket is a Lie bracket andC∞(M) is a Lie algebra via the Poisson bracket.
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10. TOWARDS QUANTIZATION

10.1. Poisson structure. Let (M, ω) be a symplectic manifold. Givenf ∈ C∞(M), Xf is the
Hamiltonian vector field corresponding tof , given by:iXf

ω = df . We then have a map:

C∞(M) → Ham(M),

f 7→ Xf ,

whereHam(M) is the set of Hamiltonian vector fields ofM .

Define the Poisson bracket{f, g} = −ω(Xf , Xg).

Example: ForR2 with ω = dxdy, {f, g} = ∂f
∂y

∂g
∂x

− ∂f
∂x

∂g
∂y

.

Lemma 10.1. [Xf , Xg] = X{f,g}.

Proof.

[Xf , Xg]y ω = (LXf
Xg)y ω = LXf

(Xgy ω) − Xgy (LXf
ω)

= LXf
(dg) − Xgy d(Xfy ω)

= d(Xfy dg) − Xgy (d ◦ df)

= dω(Xg, Xf) = −d(ω(Xf , Xg))

= d{f, g} = X{f,g}y ω.

�

Since a Poisson bracket is a Lie bracket with additional structure, the above lemma implies that
the mapf 7→ Xf is a Lie algebra homomorphism! We now prove the properties ofthe Poisson
bracket from last time.

Proof. (2). The skew-symmetry is straightforward.
(1). By the Cartan formula, we have:

dω(Xf , Xg, Xh) = Xfω(Xg, Xh) − Xgω(Xf , Xh) + Xhω(Xf , Xg)

−ω([Xf , Xg], Xh) + ω([Xf , Xh], Xg] − ω([Xg, Xh], Xf).

If we call the first row of the above equationA and the second rowB, then

A = XfXhg − XgXhf + XhXgf = −XfXgh + XgXfh − XhXfg.

Adding the two equivalent expressions and dividing by 2, we have:

A = −
1

2
([Xf , Xg]h + [Xg, Xh]f + [Xh, Xf ]g).

Next,
−ω([Xf , Xg], Xh) = dh([Xf , Xg]) = [Xf , Xg]h,

soA + B = 1
2
B, andB = 0. Now,

{{f, g}, h} = −ω(X{f,g}, Xh) = −ω([Xf , Xg], Xh),



30 KO HONDA

and we are done.
(3). −ω(Xfg, Xh) = −d(fg)(Xh) = −fdg(Xh) − gdf(Xh) = f{g, h} + g{f, h}. �

HW: Prove the above properties in local coordinates, i.e., for(R2n, ω =
∑

i dxidyi).

Remark: We have acentral extension

0 → R → C∞(M) → Ham(M) → 0.

Mantra: Central extensions give rise to quantization.

10.2. Connections. Let E be a rankk vector bundle overM and lets be a section ofE. (We may
takeE to be a real or complex vector bundle, but we’ll work overC today.)s may be local (i.e., in
Γ(E, U)) or global (i.e., inΓ(E, M)). (HereU ⊂ M andΓ(E, U) is the set of smooth sections of
Γ overM .) Also let X be a vector field. We want to differentiates at p ∈ M in the direction of
X(p) ∈ TpM .

Definition 10.2. A connectionor covariant derivative∇ assigns to every vector fieldX ∈ X(M)
a differential operator∇X : Γ(E) → Γ(E) which satisfies:

(1) ∇Xs is C-linear in s, i.e.,∇X(c1s1 + c2s2) = c1∇Xs1 + c2∇Xs2 if c1, c2 ∈ C.
(2) ∇Xs is C∞(M)-linear in X, i.e.,∇fX+gY s = f∇Xs + g∇Y s.
(3) (Leibniz rule)∇X(fs) = (Xf)s + f∇Xs.

Note: The definition of connection is tensorial inX (condition (2)), so(∇Xs)(p) depends ons
nearp but only onX at p.

Flat connections: We will now present the first example of a connection. A vectorbundleE of
rankk is said to betrivial or parallelizableif there exist sectionss1, . . . , sk ∈ Γ(E, M) which span
Ep at everyp ∈ M . (HereEp = π−1(p), whereπ : E → M is the projection.) Although not every
vector bundle is parallelizable, locally every vector bundle is trivial sinceE|U ≃ U × Ck. We will
now construct connections on trivial bundlesE|U → U .

Write any sections ∈ Γ(E, U) ass =
∑

i fisi, wherefi ∈ C∞(U). Then define

∇Xs =
∑

i

(Xfi)si = (Xf1)s1 + · · ·+ (Xfk)sk ∈ Γ(E).

This connection is usually called aflat connection.

HW: Check that this satisfies the axioms of a connection.

With respect to the given trivialization,s has coordinates(f1, . . . , fk)
T and∇Xs has coordinates

(Xf1, . . . , Xfk)
T = d(f1, . . . , fk)

T (X). Hence we can write∇ = d, the exterior derivative.
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In general, flat connections do not exist globally on a manifold M , but one can always globally
construct (not necessarily flat) connections by patching flat connections in a manner similar to
constructing a Riemannian metric.

Difference of connections:Next, given two connections∇ and∇′, we compute their difference:

(∇X −∇′
X)(fs) = f(∇X −∇′

X)s.

Therefore, the difference of two connections is tensorial in s.

Locally, take sectionss1, . . . , sk which spanE. Then(∇X − ∇′
X)si =

∑
j aijsj, whereaij is a

k × k matrix of functions. We can therefore write

∇ = d + A,

whereA = (Aij) is ak × k matrix of 1-formsAij, whereAij(X) = aij .

Gauge change:Suppose that∇ is written asd+A with respect to the trivialization{s1, . . . , sk} on
E|U . If {s1, . . . , sk} is another trivialization (here thes does not mean the conjugate ofs), then we
write si =

∑
j gijsj. (Hereg = (gij) is ak × k matrix-valued function onU .) Since∇si = Aijsj,

we compute that:

∇si = ∇gijsj = (dgij)sj + gijAjksk = (dgij)(g
−1)jksk + gijAjk(g

−1)klsl,

andA transforms todg · g−1 + gAg−1. This is usually calledgauge change.

Curvature: Thecurvatureof a connection∇ is given by:

R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ].

HW: Prove that
R(X, Y ) = (dA + A ∧ A)(X, Y )

in local coordinates. (Here(A ∧ A)(X, Y ) = A(X) · A(Y ) − A(Y ) · A(X).)

HW: Prove that the curvatureR transforms togRg−1 under gauge transformation.

REFERENCES

[1] K. Honda, Math 535a notes, available from my webpage. (These notes were based on R. Bott’s lecture notes at
Harvard.)
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11. GEOMETRIC QUANTIZATION

11.1. Line bundles and connections.SupposeL is a complex line bundle overM . Let {Uα} be
an open cover ofM so thatL|Uα is trivial. Pick a connection∇ onL. OnUα let ∇ = d − 2πiAα.
(Note the minus sign – apparently this is needed to makec1(L) agree with the usual one.)

Gauge change:Supposeg : Uα ∩ Uβ → S1 = {|z| = 1} ⊂ C is a gauge transformation, i.e., a
change of trivialization. Then we writeg(x) = e−2πif(x). Under gauge change,

−2πiAα 7→ dgg−1 + g(−2πi)Aαg−1 = −2πi(Aα + df).

HenceAα 7→ Aα + df .

Curvature: The curvature is given by−2πidAα + (−2πi)2Aα ∧ Aα = −2πidAα, since we’re
dealing with1 × 1 matrices (and they commute)! Moreover,dAα transforms togdAαg−1 = dAα,
i.e.,dAα is invariant under gauge change. Therefore,{dAα} can be patched into a closed 2-form
on M . The cohomology class of the closed 2-formM is called thefirst Chern classof L and is
denotedc1(L) ∈ H2

dR(M ; R). Note thatc1(L) = i
2π

[FA].

HW: Prove that the first Chern class ofL does not depend on the specific choice of connection.

Remark: c1(L) is actually an element ofH2(M ; Z) ⊂ H2(M ; R).

Theorem 11.1.Let ω be a closed 2-form onM such that[ω] ∈ H2(M ; Z) ⊂ H2(M ; R). Then
there exists a complex line bundleL → M and a connection∇ such thatω = i

2π
FA. (In particular,

this means thatc1(L) = [ω].)

Proof. Choose agood cover{Uα} of M . A good coveris a cover for whichUα ≃ Rn, Uα ∩ Uβ ≃
Rn or ∅, Uα ∩Uβ ∩Uγ ≃ Rn or ∅, etc. Here≃ means “diffeomorphic to”, anddim M = n. Such a
good cover exists on any smooth manifold – the usual proof uses a Riemannian metric to construct
geodesically convex neighborhoods.

Over Uα, construct the trivial line bundleUα × C → Uα with connection−2πiAα so that
dAα = ω on Uα. Here we are using the fact thatUα ≃ Rn and the Poincaré lemma to find a
primitive for ω.

Next, on overlapsUα ∩ Uβ ≃ Rn, Aα − Aβ = dfαβ sincedAα = dAβ = ω. Again, we are
using the Poincaré lemma. Observe that the choice offαβ is unique up to the choice of a constant
function.

We now usegαβ = e−2πifαβ to patch theUα × C’s. Namely, we glue(Uα ∩ Uβ) × C ⊂ Uβ × C
to (Uα ∩ Uβ) × C ⊂ Uα × C by sending(x, z) to (x, g(x)z).

In order to make sure that the gluing is consistent, we need toverify the following on triple
intersectionsUα ∩ Uβ ∩ Uγ :

gαβgβγ = gαγ,

or, equivalently,

(4) fαβ + fβγ = fαγ modZ.
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We ask whether it is possible to choose complex numbersaαβ so thatfαβ = fαβ + aαβ satisfies
Equation 8. To answer this, consider the simplicial complexfor M corresponding to the good
cover{Uα}: To eachUα, assign a vertex (0-simplex)vα. To each nontrivialUα ∩ Uβ, assign an
edge (1-simplex) betweenvα andvβ . To each nontrivialUα ∩ Uβ ∩ Uγ , place a 2-simplex with
verticesvα, vβ , vγ . With respect to this simplicial decomposition ofM , δf = {fαβ + fβγ − fαβ} is
a 2-cocycle with values inC. Now, the question can be rephrased as follows: Is there a 1-cochain
a = {aαβ} with values inC such thatf − δa has values inZ? This is precisely the same as asking
for [ω] to be inH2(M ; Z). �

FS: Study the isomorphism between the de Rham cohomology andH i
dR(M ; R) and simplicial

cohomologyH i(M ; R) to verify the last statement.

11.2. Geometric quantization. Given a symplectic manifold(M, ω), construct a complex line
bundleL → M and a connection∇ such that the curvature is−2πiω. Let C∞(M) be the Poisson
algebra ofC∞-functions on(M, ω), and letΓ(L) be the smooth sections ofL.

By (geometric) quantizationwe mean a Lie algebra representation ofC∞(M) on Γ(L), i.e., a
Lie algebra homomorphism fromC∞(M) to End(Γ(L)). (Usually the operators are unbounded.)
In the case at hand, assign:

f 7→ ∇Xf
− 2πif.

The assignment is a Lie algebra homomorphism:

{f, g} 7→ [∇Xf
− 2πif,∇Xg − 2πig]

= (∇[Xf ,Xg] − 2πiω(Xf , Xg)) − 2πiXfg − 2πiXgf

= ∇X{f,g}
+ 2πiω(Xf , Xg)

= ∇X{f,g}
− 2πi{f, g}

Primordial Example: Consider(R2n, ω = dpdq) with coordinates(p, q). (Here,p stands for
momentum andq for position.) Construct the trivial line bundleR2n × C with connection∇ =
d − i

ℏ
A. Then quantize by sending

f 7→ ∇Xf
−

i

ℏ
f.

We compute thatXp = − ∂
∂q

andXq = ∂
∂p

. Hence, upon quantizing:

p 7→ ∇− ∂
∂q

−
i

ℏ
p = −

∂

∂q
−

i

ℏ
pdq

(
−

∂

∂q

)
−

i

ℏ
p = −

∂

∂q
,

q 7→ ∇ ∂
∂p

−
i

ℏ
q =

∂

∂p
−

i

ℏ
pdq

(
∂

∂p

)
−

i

ℏ
q =

∂

∂p
−

i

ℏ
q.
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This looks a bit different from what we usually learn in quantum mechanics (i.e.,p 7→ ∂
∂q

and
q 7→ q. If we restrict to sections that are functions only inq, then the above (more or less) reduces
to the familiar quantization rules.
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12. PATH INTEGRALS

12.1. Sigma models.We study mapsu : X → M between Riemannian manifolds. LetMap(X, M)
be the set of smooth maps fromX to M . Then givenu ∈ Map(X, M) we define theenergy func-
tional:

SX : Map(X, M) → R,

u 7→

∫

X

|du|2dvolX .

More precisely, atx ∈ X, take an orthonormal basise1, . . . , en of TxX. (Heredim X = n.) Then
|du|2 means

∑n
i=1〈u∗ei, u∗ei〉, where〈, 〉 is with respect to the Riemannian metric forM .

HW: Prove that|du|2 is independent of the choice of orthonormal frame.

By “functional” we mean a function on some space of functions. A critical point of the energy
functional is called a “harmonic map”.

HW: SupposeX = Dn (the n-dimensional disk) andM = R. ConsiderMap(X, M, f) ⊂
Map(X, M), the set of mapsu satisfying the boundary conditionu|∂X = f . (This is called a
Dirichlet boundary condition.) Then a critical pointu ∈ Map(X, M, f) satisfies (by definition)

lim
t→0

SX(u + tv) − SX(u)

t
= 0,

for all v ∈ TuMap(X, M, f). Show that a criticalu is aharmonic function, i.e.,
∑

i
∂2u
∂x2

i
= 0.

The energy functional (the generic term is “action”) has thefollowing obvious properties:

(1) If f : X ′ → X is an isometry, thenSX′(u ◦ f) = SX(u).
(2) If −X is X with reversed orientation, thenS−X(u) = −SX(u).
(3) If X = X1 ⊔ X2 (disjoint union), thenSX(u) = SX1(u|X1) + SX2(u|X2).
(4) SupposeX = X+ ∪ X−, where∂X+ = −∂X− = Y is a codimension 1 submanifold

of X. If u+ ∈ Map(X+, M), u− ∈ Map(X−, M), andu+|Y = u−|Y , thenSX(u) =
SX+(u+) + SX−(u−). Hereu is defined to beu+ onX+ andu− onX−.

12.2. Feynman path integral. In classical mechanics, the trajectory of a particle between two
points (saya andb) in configuration space minimizes the actionS(γ).

In quantum mechanics, to each pathγ you assign a “probability function”eiS(γ)/ℏ and integrate
over the space of all paths connectinga andb:

∫
eiS(γ)/ℏdµ(γ).

This is called theFeynman path integral. Heredµ is some measure on the space of paths connecting
a andb.
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Remark: The Feynman path integral has been rigorously defined only insome cases. (Even in
cases where the integral is rigorously defined, I’m not sure if there is a measureµ which satisfies
all the properties you’d expect from a measure in finite dimensions.)

When we go from quantum to classical (i.e., in the largeℏ limit), we expect the rapid oscillations of
eiS(γ)/ℏ to cancel each other, except near the critical points ofS(γ). Hence the main contributions
are theclassical trajectories.

Sigma model: Let us consider the sigma model. LetCX = Map(X, M). If X does not have
boundary, then the “partition function”

Z(X) =

∫

CX

eiS(u)/ℏdµX(u)

is expected to be a complex number. If∂X = Y , then we can define a functionZ(X) on CY as
follows: Givenα ∈ CY , let:

Z(X)(α) =

∫

CX(α)

eiS(u)/ℏdµX(u).

Here we are integrating overCX(α) which is the subset ofCX consisting of mapsu : X → M
which restrict toα on∂X = Y .

Plan: AlthoughZ(X) may not be rigorously defined, we can write down expected properties of
Z(X) and also ofZY , which is some vector subspace of functions onCY thatZ(X) should live in.

Axioms:

(1) (Orientation)Z−Y = Z∗
Y , whereZ∗

Y is the dual vector space ofZY .
(2) (Multiplication)ZY1⊔Y2 = ZY1 ⊗ ZY2.
(3) (Gluing)Z(X) = 〈Z(X+), Z(X−)〉, whereX = X+ ∪ X−, ∂X+ = −∂X− = Y , and the

pairing is betweenZY andZ∗
Y .

Explanation: We explain the Gluing Axiom. Using the expected properties of the Feynman path
integral (e.g., Fubini’s theorem),

Z(X) =

∫

CX

eiSX(u)/ℏdµX(u)

=

∫

CY

(∫

CX+
(α)

eiSX+
(u+)/ℏdµX+(u+) ·

∫

CX−
(α)

eiSX−
(u−)/ℏdµX−(u)

)
dµY (α)

=

∫

CY

Z(X+)(α) · Z(X−)(α)dµY (α)

= 〈Z(X+), Z(X−)〉.

Here,u+ = u|X+, u− = u|X−, andα = u|Y . We are also usingSX(u) = SX+(u+) + SX−(u−).
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12.3. Topological Quantum Field Theory (TQFT) axioms. We will now formulate the TQFT
axioms in the sense of Atiyah. They are almost the same as the axioms derived for the sigma model
above; the only major difference is that we ask the vector spaces to be finite-dimensional.

A TQFT in (d + 1)-dimensions is a functorZ which:
(1) To ad-dimensional (smooth) manifoldΣ without boundary assigns afinite-dimensional

vector spaceZΣ. (These are the objects.)
(2) To a(d + 1)-dimensional manifoldY with ∂Y = Σ assigns a vectorZ(Y ) ∈ ZΣ. (These

are the morphisms.)
The functorZ satisfies:
A1. Z−Σ = Z∗

Σ.
A2. ZΣ1⊔Σ2 = ZΣ1 ⊗ ZΣ2.
From A1 and A2 if∂Y = −Σ1 ⊔ Σ2, then

Z(Y ) ∈ Z−Σ1 ⊗ ZΣ2 = Z∗
Σ1

⊗ ZΣ2 = HomC(ZΣ1 , ZΣ2).

A3. Given a composition of cobordisms∂Y1 = −Σ1 ⊔ Σ2, ∂Y2 = −Σ2 ⊔ Σ3, we haveZ(Y1 ∪
Y2) = Z(Y2) ◦ Z(Y1).

A4. Z(∅) = C.
A5. Z(Σ × [0, 1]) = id : ZΣ → ZΣ.
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13. LOOP GROUPS

13.1. Maurer-Cartan form.

Definition 13.1. Let G be a Lie group. Then theMaurer-Cartanform µ is a left-invariant 1-form
on G with values in the Lie algebrag which satisfiesµ(e)(A) = A, whereA ∈ TeG = g. (More
generally,µ(g)(g(I + tA)) = I + tA, if we writeA asI + tA.)

Notation: Often we writeA ∈ TeG asI + tA or etA and think ofA as an equivalence class of arcs.

For matrix Lie groups (i.e., subgroups ofGL(n, C)), the Maurer-Cartan form isµ = X−1dX,
whereX is ann × n matrix whose(ij)-th entry is the coordinate functionxij . One verifies that
µ(I)(I + tA) = dX(I + tA) = I + tA andµ(g)(g(I + tA)) = g−1g(I + tA) = I + tA.

Now letG = SU(2). We recall thatSU(2) is diffeomorphic toS3: If A =

(
a b
c d

)
∈ SU(2), then

a, b determineA and{|a|2 + |b|2 = 1} is the unit sphere inC2.

Consider the 3-form

σ =
1

24π2
Tr(µ ∧ µ ∧ µ),

whereµ is the Maurer-Cartan form.

Lemma 13.2. [σ] generates the integral cohomology groupH3(SU(2); Z) ≃ H3(S3; Z) ≃ Z.

Proof. Let us perform the calculation ate ∈ G and rely on the left-invariance.su(2) is the set of
traceless skew-Hermitian matrices, and has anR-basis:{

A =

(
i 0
0 −i

)
, B =

(
0 1
−1 0

)
, C =

(
0 i
i 0

)}
.

We compute that:

σ(e)(A, B, C) =
1

24π2
(3!)Tr(ABC) =

1

4π2
Tr

(
−1 0
0 −1

)
= −

1

2π2
.

The 3! comes from observing that we are taking alternating sums when evaluating three tangent
vectorsA, B, C, and each sum is the same. Since2π2 is the volume of the unit3-sphere inR4

(HW: verify this!),
∫

S3 σ = −1 and[σ] generatesH3(SU(2); Z). �

13.2. The loop group. SupposeG = SU(2) still. Let LG be the loop group, i.e., the group of
smooth mapsS1 → G.

Lemma 13.3.H2(LG; Z) = Z.

Proof. First observe thatLG ≃ G×ΩG, whereΩG is the set ofbasedloops, namely smooth maps
S1 → G which map1 7→ e. (Here we are viewingS1 = {|z| = 1} ⊂ C ande is the identity ofG.)
In fact, we can sendγ ∈ LG to (γ(1), (γ(1))−1γ).
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Now, we haveπi(ΩG, e) ≃ πi+1(G, e). (Heree ∈ ΩG refers to the mapS1 → G which maps to
e ∈ G.) For the isomorphism, we think of a map(Si, pt) → (ΩG, e) as a map(Si+1, pt) → (G, e).

We then have:
π1(G) = π1(S

3) = 0, π2(G) = 0, π3(G) = Z,

π1(LG) = π1(G) × π1(ΩG) = π1(G) × π2(G) = 0, π2(LG) = π2(G) × π3(G) = Z.

By the Hurewicz isomorphism theorem, the first nontrivialπi andHi agree, and we have

H2(LG) ≃ π2(G) ≃ Z.

�

Lemma 13.4. A generator forH2(LG; Z) is given byω0 =
∫

S1 φ∗σ, whereφ : LG × S1 → G is
theevaluation mapφ(γ, θ) = γ(θ).

We need to explain the integration operation. First,

φ∗(σ)(γ, θ)

(
ξ, η,

∂

∂θ

)
= σ(γ(θ))(ξ(θ), η(θ), γ′(θ)),

whereξ, η ∈ TγLG. Then

ω0(γ)(ξ, η) =

(∫

S1

φ∗(σ)

)
(γ)(ξ, η)

=

∫ 2π

0

σ(γ(θ))(ξ(θ), η(θ), γ′(θ)) dθ

=
1

4π2

∫ 2π

0

Tr(γ−1ξ(θ) · γ−1η(θ) · γ−1γ′(θ)) dθ.

The composition

H3(G)
φ∗

→ H3(LG × S1)

R
S1
→ H2(LG)

is calledtransgression. It is not hard to see that the composition sends generators to generators.
(Compare with the isomorphismπ3(G) ≃ π2(LG).) See Bott-Tu for more details on transgression.

Now let ω be the left-invariant 2-form onLG given by extending the Lie algebra 2-cocycleω
(with [ω] ∈ H2(Lg; C)), where

ω(e)(ξ, η) =
1

4π2

∫ 2π

0

〈ξ′(θ), η(θ)〉 dθ.

Here 〈, 〉 is the Killing form for su(2), which is a multiple of(A, B) 7→ Tr(AB). If we set
ξ = X ⊗ tm andη = Y ⊗ tn, and itt = eiθ, then d

dθ
eimθ = imeimθ and

(5) ω(e)(X ⊗ tm, Y ⊗ tn) =
i

2π
〈X, Y 〉mδm+n,0.

Observe that〈X, Y 〉mδm+n,0 is the Lie algebra 2-cocycle. The 2-cocycle property translates into
dω being closed.
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Lemma 13.5.ω = ω0 + dβ, where

β(γ)(ξ) =
1

8π2

∫ 2π

0

Tr(γ−1γ′(θ) · γ−1ξ(θ)) dθ.

Henceω is also a generator forH2(LG; Z).

Proof. We compare

(6) ω0(γ)(ξ, η) =
1

4π2

∫ 2π

0

Tr(γ−1ξ(θ) · γ−1η(θ) · γ−1γ′(θ)) dθ

and

(7) ω(γ)(ξ, η) =
1

4π2

∫ 2π

0

Tr((γ−1ξ)′(θ) · γ−1η(θ)) dθ.

Let ξ̃ and η̃ be left-invariant extensions ofξ and η to all of LG. Then we can use the Cartan
formula:

dβ(γ)(ξ, η) = ξ̃(β(η̃)) − η̃(β(ξ̃)) − β([ξ̃, η̃]).

We haveβ(γ)([ξ̃, η̃]) = ω0(γ)(ξ, η), and sinceγ−1ξ̃(θ), γ−1η̃(θ) are constant for allγ, we have

ξ̃(β(η̃)) =
1

8π2

∫ 2π

0

Tr((γ−1ξ)′ · γ−1η) dθ,

−η̃(β(ξ̃)) = −
1

8π2

∫ 2π

0

Tr((γ−1η)′ · γ−1ξ) dθ.

This provesω = ω0 + dβ. �

Symplectic form: Observe thatω given by Equation 5 is degenerate on elements ofLg of the form
X ⊗ 1 (but nondegenerate otherwise). If we take the quotientLG/G ≃ ΩG, then we quotient out
the degeneracy. Henceω is a symplectic form onΩG. (In factΩG is a Kähler manifold.) For more
information, consult Pressley-Segal [2].

HW: Theenergy functionalE : ΩG → R is given by

E(γ) =

∫ 2π

0

〈γ−1γ′(θ), γ−1γ′(θ)〉 dθ.

Prove that the Hamiltonian vector field corresponding toE rotates the loops.

REFERENCES
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14. THE WESS-ZUMINO-WITTEN MODEL

Today we discuss the Wess-Zumino-Witten (WZW) model.

14.1. Definitions. Let Σ be a compact Riemann surface, i.e., a 1-dimensional complexmanifold,
without boundary (sometimes called a closed Riemann surface). LetG be the Lie groupSU(2).
ConsiderMap(Σ, G), the space of smooth mapsf : Σ → G.

We first define theenergy functional

EΣ(f) = −i

∫

Σ

Tr(f−1∂f ∧ f−1∂f).

Interpretation: First recall that the Killing form ofG = SU(2) is a constant multiple of(X, Y ) 7→
Tr(XY ). If we use local holomorphic coordinatez = x + iy for Σ, then

∂f =
∂f

∂z
dz =

1

2

(
∂f

∂x
− i

∂f

∂y

)
(dx + idy),

∂f =
∂f

∂z
dz =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
(dx − idy).

If f(z) = e (which we may assume becausef−1∂f andf−1∂f are left-invariant), then:

−iT r(f−1∂f ∧ f−1∂f) = −
1

2
Tr

((
∂f

∂x

)2

+

(
∂f

∂y

)2
)

dxdy.

Hence,EΣ(f) is, up to constant multiple, equal to the energy
∫
Σ
|df |2dvol defined previously. Note

that there is no metric defined forΣ. A complex structure onΣ defines a metric up to a conformal
factor, i.e.,g ∼ fg, wheref is a positive function onΣ. HenceEΣ(f) only depends on the
conformal classof the metric, corresponding to the complex structure onΣ.

WZW action SΣ: Let k be a nonnegative integer, called the level. Then define:

SΣ(f) =
k

4π
EΣ(f) − 2πik

∫

B

f̃ ∗σ,

whereB is a 3-manifold with∂B = Σ, f̃ : B → G is an extension off : Σ → G, and
σ = 1

24π2 Tr(µ ∧ µ ∧ µ) whereµ is the Maurer-Cartan form. (Recallσ was treated in the previous
lecture.)

HW: Prove thatf : Σ → G always admits and extensioñf : B → G.

Remark: The second, topological term−2πik
∫

B
f̃ ∗σ is called the Wess-Zumino term. This is

apparently needed for conformal invariance. (I don’t know why at this point.)

Remark: SΣ(f) is, strictly speaking,SΣ(f̃). To remove the dependence on the extensionf̃ , we
exponentiate it.
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Lemma 14.1.exp(−SΣ(f)) does not depend on the choice off̃ : B → G.

Proof. Take two extensions̃f : B → G andf̃ ′ : B′ → G. We can glue them together to obtain
F : M = B ∪ (−B′) → G. Then

SΣ(f̃) − SΣ(f̃ ′) = 2πik

(∫

B

f̃ ∗σ −

∫

B′

(f̃ ′)∗σ

)
= 2πik

∫

M

F ∗σ.

Now,
∫

M
F ∗σ is an integer since[σ] ∈ H3(G; Z). If we exponentiate, thenexp(−SΣ(f̃)) =

exp(−SΣ(f̃ ′)). �

14.2. The Polyakov-Wiegmann formula.

Proposition 14.2 (Polyakov-Wiegmann formula). Let Σ be a closed Riemann surface. Given
f, g : Σ → G, we have:

exp(−SΣ(fg)) = exp(−SΣ(f) − SΣ(g) + ΓΣ(f, g)),

whereΓΣ(f, g) = − ik
2π

∫
Σ

Tr(f−1∂f ∧ ∂gg−1).

Proof. We will often use the identity

Tr(ω ∧ η) = (−1)pqTr(η ∧ ω),

whereω is ap-form with values ing andη is aq-form with values ing.
We compute

−
k

4π
EΣ(f) =

ik

4π

∫

Σ

Tr((fg)−1∂(fg) ∧ (fg)−1∂(fg))

=
ik

4π

∫

Σ

Tr((g−1f−1)(f∂g + ∂f · g) ∧ (g−1f−1)(f∂g + ∂f · g))

=
ik

4π

∫

Σ

Tr((g−1∂g + g−1f−1∂f · g) ∧ (g−1∂g + g−1f−1∂f · g))

=
ik

4π

∫

Σ

Tr(g−1∂g ∧ g−1∂g + f−1∂f ∧ f−1∂f + ∂gg−1 ∧ f−1∂f + f−1∂f ∧ ∂g · g−1)

= −
k

4π
(EΣ(f) + EΣ(g)) +

ik

4π

∫

Σ

Tr(−f−1∂f ∧ ∂gg−1 + f−1∂f ∧ ∂g · g−1)

Next,

Tr(f−1df ∧ dgg−1) = Tr(f−1(∂f + ∂f) ∧ (∂g + ∂g)g−1)

= Tr(f−1∂f ∧ ∂gg−1) + Tr(f−1∂f ∧ ∂gg−1),

since terms of the form∂f ∧ ∂g and∂f ∧ ∂g are zero. Hence we conclude that:

(8) −
k

4π
EΣ(f) =

ik

4π
(−EΣ(f) − EΣ(g)) + ΓΣ(f, g) +

ik

4π

∫

Σ

Tr(f−1df ∧ dgg−1).
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Next consider the Wess-Zumino terms. Omitting tildes for convenience, we have:

2πik

∫

B

(fg)∗σ =
2πik

24π2

∫

B

Tr((fg)−1d(fg) ∧ (fg)−1d(fg) ∧ (fg)−1d(fg))

=
ik

12π

∫

B

(A1 + 3A2 + 3A3 + A4),

= 2πik

∫

B

(f ∗σ + g∗σ) +
ik

4π

∫

B

(A2 + A3)

where

A1 = Tr(f−1dff−1dff−1df)

A2 = Tr(dgg−1f−1dff−1df)

A3 = Tr(dgg−1dgg−1f−1df)

A4 = Tr(g−1dgg−1dgg−1dg)

Now,
d(Tr(dgg−1f−1df)) = dgg−1dgg−1df + dgg−1f−1dff−1df = A2 + A3,

usingd(f−1) = −f−1dff−1. Finally,

(9)
ik

4π

∫

B

(A2 + A3) =
ik

4π

∫

Σ

Tr(dgg−1f−1df),

using Stokes’ Theorem. Combining Equations 8 and 9 gives theresult. �

14.3. Line bundles overLGC. Let us use the complexificationGC instead ofG.

ConsiderCP1 = C ∪ {∞}. Let D0 = {|z| ≤ 1} ⊂ C, D∞ = {|z| ≥ 1} ∪ {∞}, andS1 = {|z| =
1} = ∂D0 = −∂D∞.

We define a complex line bundleL overLGC as follows: LetMap0(D∞, G) be the set of smooth
mapsf∞ : D∞ → GC with f∞(∞) = e. Then letL = Map0(D∞, GC)/ ∼, where(f∞, u) ∼
(g∞, v) if:

(1) f∞|S1 = g∞|S1.
(2) If g∞ = f∞h∞, then

v = u · exp(−SCP1(h) + ΓD∞(f∞, h∞)).

Hereh is an extension ofh∞ to D0 by e. (Note thath∞|S1 = e.)

The equivalence class of(f∞, u) will be denoted[f∞, u]. The projectionL → LGC is given by
[f∞, u] 7→ f∞|S1.

We can viewf0 : D0 → GC as an element ofL as follows: Letf∞ be a smooth extension off0,
i.e.,f∞|S1 = f0|S1. Then assignf0 7→ [f∞, exp(−SCP1(f))].

Lemma 14.3. [f∞, exp(−SCP1(f))] does not depend on the extensionf∞.
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Proof.

[f∞, exp(−SCP1(f))] = [g∞, exp(−SCP1(f))exp(−SCP1(h) + ΓD∞(f∞, h∞))],

= [g∞, exp(−SCP1(f0 ∪ g∞))],

using the Polyakov-Wiegmann formula. Hereg∞ = f∞h∞, andh is the extension ofh∞ to CP1

by settingh(D0) = e. �
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15. WZW, CONTINUED

We use the notation from last time. In particular,G = SU(2) still.

15.1. Line bundles. Last time we defined the complex line bundleL = Map0(D∞, GC)×C/ ∼,
where(f∞, u) ∼ (g∞, v) if the following hold:

(1) f∞|S1 = g∞|S1.
(2) If g∞ = f∞h∞, thenv = u · exp(−SCP1(h) + ΓD∞(f∞, h∞)).

Hereh is h∞ extended toD0 by h(D0) = e.

We can also define the dual line bundleL−1 = Map0(D0, GC)×C/ ∼, where(f0, u) ∼ (g0, v) if:

(1) f0|S1 = g0|S1.
(2) If g0 = f0h0, thenv = u · exp(−SCP1(h) + ΓD0(f0, h0)).

Again,h is h0 extended toD∞ by h(D∞) = e.

Let γ ∈ GC. Then the fiber ofL overγ is denotedLγ. Then there is a pairingLγ × L−1
γ → C,

given by

(10) 〈[f∞, u], [g0, v]〉 = uv · exp(SCP1(f∞ ∪ g0)).

We use the notationf∞ ∪ g0 to mean the mapCP1 → GC which restricts tof∞ onD∞ andg0 on
D0. Observe that there is no minus sign in front ofSCP1 .

HW: Verify that the pairing does not depend on the choice of representative of[f∞, u] and[g0, v].

Lemma 15.1.

(1) f0 : D0 → GC determines an element[f∞, exp(−SCP1(f0 ∪ f∞))] in L which does not
depend on the choice off∞.

(2) f∞ : D∞ → GC determines an element[f0, exp(−SCP1(f0 ∪ f∞))] in L−1 which does not
depend on the choice off0.

The pairing in Equation 10 can be reinterpreted as follows:

〈exp(−SD0(f0)), exp(−SD∞(f∞))〉 = exp(−SCP1(f0 ∪ f∞)).

More generally, letΣ be a compact Riemann surface with (oriented) boundary components(∂Σ)i,
i = 1, . . . , n. Let Σ̃ be a closed Riemann surface obtained fromΣ by capping off(∂Σ)i, i =
1, . . . , n, by disksDi. (We need to put complex structures onDi.) Givenf : Σ → GC, extendf to
f̃ : Σ̃ → GC via fi : Di → GC. Then defineexp(−SΣ(f)) ∈ ⊗n

i=1Lγi
, whereγi = f |(∂Σ)i

, by the
following relation:

〈exp(−SΣ(f)),⊗n
i=1exp(−SDi

(fi))〉 = exp(−SeΣ(f̃)).

Observe thatexp(−SDi
(fi)) are elements inLγi

.
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15.2. Holonomy. A connection∇ on a rankk vector bundleE → M gives rise toparallel
transportalong arcs inM . In local coordinates∇ = d + A, whereA is ak × k matrix of 1-forms.

Model situation: Let M = [0, 1]. ThenE = [0, 1] × Rk. We are looking for solutionsx(t) (i.e.,
sections of the bundle) which satisfy

ẋ(t) + A(t)x(t) = 0.

Heret ∈ [0, 1] andx(t) ∈ Rk.

HW: Prove that there is a unique solution, given an initial condition x(0) = x0.

Given a connection∇, there is a well-defined linear map called theholonomy mapHol which sends
E0 to E1: Givenx0 ∈ E0, find a solutionx(t) with x(0) = x0. Then Hol(x0) = x(1).

More generally, if we fix∇, then to each arcγ : [0, 1] → M , we have the correspondingholonomy
mapHolγ : Eγ(0) → Eγ(1) obtained by pulling back to the model situation on[0, 1].

HW: Prove that, for line bundles,Holγ : Lγ(0) → Lγ(1) is given by multiplication bye2πi
R
D ω, if

γ is a closed curve which bounds a diskD andω is i
2π

times the curvature form, i.e.,ω represents
the first Chern class.

We now explain the following fact:

Proposition 15.2. The line bundleL is thekth tensor power of the line bundle overLGC which
corresponds to[

∫
S1 φ∗σ] ∈ H2(LG; Z) given in Lemma 13.4. In other words,c1(L) = k[

∫
S1 φ∗σ].

Proof. Think of f∞ : D∞ → GC with f∞(∞) = e as a pathγ in LGC based ate. Heree ∈
LGC mapsS1 → e. More precisely,γ(0) = e and γ(t), t ∈ [0, 1], is f∞|{|z|=1/t} with the
counterclockwise orientation onC.

Givenf∞, g∞ : D∞ → GC with f∞|S1 = g∞|S1 andf∞(∞) = g∞(∞) = e, we have correspond-
ing pathsγ1, γ2 of LGC based ate, and the holonomy aroundγ−1

2 γ1 is:

exp(−SCP1(h) + ΓD∞(f∞, h∞)) = exp(−SCP1(f0 ∪ g∞) + SCP1(f0 ∪ f∞))

= exp(−
k

4π
ED∞(g∞) +

k

4π
ED∞(f∞) + 2πik

∫

B′

G∗σ).

Heref0 is an extension off∞ andg∞ to D0, andg∞ = f∞h∞. If F : B → GC extendsf0 ∪ f∞ to
a 3-manifoldB with boundaryCP1 andG : B ∪B′ → GC extendsf0 ∪ g∞, then−f∞ ∪ g∞ is the
restriction ofG to ∂B′. (Here−f∞ meansf∞ with the opposite orientation.)

Moreover, we can takeB′ to be the 3-ballB3 = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1} andG to map
the axisx = y = 0 to e. (Prove this using properties of the homotopy groups ofG!) By fibering
B3 − {x = y = 0} by circles of typex2 + y2 = r2, z = const, we can viewG : B′ → GC

as a map from the 2-dimensional disk toLGC. We then conclude thatexp(2πik
∫

B′ G
∗σ) =

exp(2πik
∫

D

∫
S1 φ∗σ), where we are thinking of

∫
S1 φ∗σ as the curvature form of a connection on
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the line bundleL′ whose first Chern class generatesH2(LG; Z). Modulo the energy terms, we
would conclude thatL = (L′)⊗k.

One way to get rid of the energy terms is to defineLt asMap0(D∞, GC)×C/ ∼, where we replace
condition (2) in the definition ofL by:

(2’) If g∞ = f∞h∞, thenv = u · exp(−t k
4π

(ED∞(g∞) − ED∞(f∞)) + 2πik
∫

B′ G
∗σ).

L1 = L andL0 is the desired line bundle which is homotopic toL and does not have the energy
terms. (Verify that the definition ofLt is consistent!) �
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16. MORE ONWZW

16.1. Group central extensions. In the previous lectures we constructed the line bundleL →

LGC by takingL = Map0(D∞, GC) × C/ ∼. Today we investigate the group structure on̂LGC,
which isL minus the zero section.

Givengi : D → GC, i = 1, 2, we haveexp(−SD(gi)) ∈ Lgi|S1
. (When we writeD we meanD0.)

Define the product:

exp(−SD(g1)) ⋆ exp(−SD(g2)) = exp(−ΓD(g1, g2))exp(−SD(g1g2)),

and extend linearly.

Unit: exp(−SD(e)), wheree : D → GC mapsD 7→ e. Then ΓD(e, g) = 0 implies that
exp(−SD(e)) ⋆ exp(−SD(g)) = exp(−SD(g)).

Associativity: Let us use the shorthandg1 ∗ g2 for the above product. Then:

(g1 ⋆ g2) ⋆ g3 = exp(−ΓD(g1, g2))g1g2 ⋆ g3 = exp(−ΓD(g1, g2) − ΓD(g1g2, g3))g1g2g3,

g1 ⋆ (g2 ⋆ g3) = g1 ⋆ exp(−ΓD(g2, g3))g2g3 = exp(−ΓD(g2, g3) − ΓD(g1, g2g3))g1g2g3.

Therefore, associativity is equivalent to:

(11) ΓD(g1, g2) + ΓD(g1g2, g3) − ΓD(g2, g3) − Γ(g1, g2g3) = 0.

HW: Verify Equation 11!

Alternate definition: For i = 1, 2, choosehi onD∞ so thathi|S1 = gi|S1. Then

exp(−SD(gi)) = [hi, exp(−SCP1(gi ∪ hi))],

and the equation defining the product is equivalent to:

[h1, exp(−SCP1(g1 ∪ h1))] ⋆ [h2, exp(−SCP1(g2 ∪ h2))]

= [h1h2, exp(−SCP1(g1g2 ∪ h1h2) − ΓD(g1, g2))],

or

(12) [h1, 1] ⋆ [h2, 1] = [h1h2, exp(ΓD∞(h1, h2))].

Well-definition: We prove the well-definition using the alternate definition (although it is possible
to prove directly). Leth : D∞ → GC satisfyh|S1 = e. Then

[h1, 1] ⋆ [h2, 1] = [h1h2, exp(ΓD∞(h1, h2))]

= [hh1h2, exp(−SCP1(e ∪ h) + ΓD∞(h, h1h2) + ΓD∞(h1, h2))].

We also have:

[h1, 1] ⋆ [h2, 1] = [hh1, exp(−SCP1(e ∪ h) + ΓD∞(h, h1))] ⋆ [h2, 1]

= [hh1h2, exp(−SCP1(e ∪ h) + ΓD∞(h, h1) + ΓD∞(hh1, h2))].
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Equation 11 shows that they are equal.

We now have the following group central extension

1 → C∗ i
→ L̂GC

π
→ LGC → 1.

Herei maps1 7→ exp(−SD(e)) andπ mapsexp(−SD(g)) 7→ g|S1. This central extension is the
analog of the Lie algebra central extension

0 → C → L̃g → Lg → 0.

16.2. Left and right actions. SupposeΣ is a Riemann surface with only one boundary compo-
nent. ThenMap(Σ, GC) acts onL̂GC as follows: givenf : Σ → GC, we set:

l(f)exp(−SΣ(g)) = exp(−SΣ(f)) ⋆ exp(−SΣ(g)).

HW: Prove thatexp(−SΣ(f))⋆exp(−SΣ(g)) = exp(−SΣ(fg))exp(−ΓΣ(f, g)). (Hint: use Equa-
tion 12.)

Similarly, we can define

r(f)exp(−SΣ(g)) = exp(−SΣ(g)) ⋆ exp(−SΣ(f)).

Representations ofMap(Σ, GC) on Γ(L). Let Γ(L) be the space of sections ofL. The left and
right actions above give rise to:

ρ : Map(Σ, GC) → Aut(Γ(L)).

If s ∈ Γ(L) andγ ∈ LGC, then:

[ρ(f)s](γ) = l(f)s((f |∂Σ)−1γ).

Also we haveρ∗ : Map(Σ, GC) → Aut(Γ(L)) given by:

[ρ∗(f)s](γ) = r(f ∗)s(γ(f ∗|∂Σ)−1).

wheref ∗(z) = f(z)
T
.

Lemma 16.1. If h : Σ → GC is holomorphic andg : Σ → GC is smooth, then

l(h)exp(−SΣ(g)) = exp(−SΣ(hg)).

Similarly, if h : Σ → GC is antiholomorphic, then

r(h)exp(−SΣ(g)) = exp(−SΣ(gh)).

Proof. Since∂h = 0, ΓΣ(h, g) = C
∫
Σ

Tr(h−1∂h ∧ ∂gg−1) = 0. (HereC is some constant.) �
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16.3. Representation of affine Lie algebras.We now explain howΓ(L) is a representation of
the Lie algebrãLg.

Let Σ = D andX ∈ g. At the infinitesimal level, defineXn,ε(z) = eεXzn
for nonnegative

integersn andeεXz−n
for negative integersn. Herez ∈ D andε is a small real number. Then

define the infinitesimal action

Xns =
d

dε
|ε=0ρ(Xn,ε)s

for s ∈ Γ(L).

Proposition 16.2. [Xm, Yn] = [X, Y ]m+n + mkδm+n,0〈X, Y 〉, as actions onΓ(L).

Therefore,X ⊗ tm 7→ Xm gives a representation of̃Lg onΓ(L).

Proof. Supposem, n ≥ 0. First note thatΓD(f, g) = 0 if f is holomorphic by Lemma 16.1. We
compute that

[Xm, Yn]s = lim
ε1→0
ε2→0

1

ε1ε2

(l(Xm,ε1)l(Yn,ε2)l((−X)m,ε1)l((−Y )n,ε2)s − s)

= lim
ε1→0
ε2→0

1

ε1ε2

(l(eε1Xzm

eε2Y zn

e−ε1Xzm

e−ε2Y zn

)s − s)

= lim
ε1→0
ε2→0

1

ε1ε2

(l(1 + ε1ε2[X, Y ]zm+n + . . . )s − s)

= lim
ε→0

1

ε
(l(eε[X,Y ]zm+n

)s − s)

= [X, Y ]m+ns.

Next, supposem ≥ 0 andn < 0. We compute

ΓD(eε2Y z−n

, e−ε1Xzm

) =
−ik

2π

∫

D

Tr((−n)ε2Y z−n−1dz ∧ mε1Xzm−1dz)

= ε1ε2
ik

2π
(m)(−n)〈X, Y 〉

∫

D

zm−1z−n−1dzdz.

Now using polar coordinatesz = reiθ and writingdzdz = −2idxdy = −2irdrdθ, we have:

ΓD(eε2Y z−n

, e−ε1Xzm

) = ε1ε2
k

π
(m)(−n)〈X, Y 〉

∫ 2π

0

e(m+n)iθdθ

∫ 1

0

rm−n−1dr

= ε1ε2
k

π
(m)(−n)〈X, Y 〉(2πδm+n,0)

1

m − n
= ε1ε2km〈X, Y 〉δm+n,0.

A similar calculation of[Xm, Yn]s as in the casem, n ≥ 0 gives the desired result. �
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Recall the Feynman path integral philosophy. In order to understand∫

Map(eΣ,GC)

exp(−SeΣ(f))Df,

whereΣ̃ is a closed surface, we instead calculate:

s(γ) =

∫

Mapγ(Σ,GC)

exp(−SΣ(f))Df,

whereγ ∈ LGC, Σ has one boundary component, andMapγ means maps that restrict toγ on
∂Σ. Sinceexp(−SΣ(f)) can be interpreted as an element ofLγ, so iss(γ). We therefore obtain
a sections ∈ Γ(L). Moreover, the section is invariant under left multiplication by holomorphic
maps and right multiplication by antiholomorphic maps.
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17. CONFORMAL BLOCKS

Let Σ be a closed Riemann surface andp1, . . . , pn ben distinct points onΣ. LetMp1,...,pn be the
space of meromorphic functions onΣ with poles of arbitrary order at most atp1, . . . , pn. (Note that
our setting is slightly different from last time — last time we had a Riemann surface with boundary
and this time we have a Riemann surface with punctures.)

Defineg(p1, . . . , pn) = g ⊗C Mp1,...,pn. This is a Lie algebra with bracket[X ⊗ f, Y ⊗ g] =
[X, Y ] ⊗ fg. Note thatg(p1, . . . , pn) is supposed to correspond to the infinitesimal version of the
Lie groupMap(surface with boundary, GC).

For eachi = 1, . . . , n there is a linear mapφi : g(p1, . . . , pn) → L̃g (not a Lie algebra ho-
momorphism), defined as follows: Choose local holomorphic coordinatesti aboutpi. Given
X ⊗ f ∈ g(p1, . . . , pn), write f as a Laurent seriesf(ti) in ti and mapX ⊗ f 7→ X ⊗ f(ti). φi is
the composition of this map with the natural inclusiong ⊗ C((ti)) → (g ⊗ C((ti))) ⊕ Cc = L̃g.

Fix a levelk and letHλi
be an integral highest weight representation ofL̃g with highest weight

λi (i.e., if v is the highest weight vector, thenHv = λiv). We define the diagonal action∆ of
g(p1, . . . , pn) onHλ1 ⊗ · · · ⊗ Hλn as follows:

∆(X ⊗ f)(ξ1 ⊗ · · · ⊗ ξn) =
n∑

i=1

ξ1 ⊗ · · · ⊗ φi(X ⊗ f)ξi ⊗ ξn.

Lemma 17.1. δ : g(p1, . . . , pn) → End(Hλ1 ⊗ · · · ⊗ Hλn) is a representation ofg(p1, . . . , pn).

Proof. We show that∆([X ⊗ f, Y ⊗ g]) = ∆([X, Y ] ⊗ fg) is equal to[∆(X ⊗ f), ∆(Y ⊗ g)].

∆(X ⊗ f)∆(Y ⊗ g)(ξ1 ⊗ · · · ⊗ ξn) =
∑

i6=j

ξ1 ⊗ · · · ⊗ φi(X ⊗ f)ξi ⊗ φj(Y ⊗ g)ξj ⊗ · · · ⊗ ξn

+
∑

i

ξ1 ⊗ · · · ⊗ φi(X ⊗ f)φj(Y ⊗ g)ξi ⊗ · · · ⊗ ξn.

Taking commutators, what remains is:

[∆(X ⊗ f), ∆(Y ⊗ g)](ξ1 ⊗ · · · ⊗ ξn) =
∑

i

ξ1 ⊗ · · · ⊗ [X ⊗ f(ti), Y ⊗ g(ti)]ξi ⊗ · · · ⊗ ξn.

Now,
[X ⊗ f(ti), Y ⊗ g(ti)]ξi = ([X, Y ] ⊗ f(ti)g(ti) + 〈X, Y 〉Respi

(df · g)k)ξi,

whereRespi
is the residue atpi. The lemma follows once we show that the sum of the residues of

df · g is zero. �

Residues:A meromorphic 1-formω is a 1-form which can be written locally as asFdz, wherez
is the holomorphic coordinate andF is a meromorphic function. The residue of a meromorphic
1-form at a pointa is: 1

2πi

∫
γ
ω, whereγ is a sufficiently small closed curve which encirclesa
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counterclockwise exactly once. The residue is a purely topological quantity, since the integral only
depends on the homology class ofγ.

Lemma 17.2.The sum of residues of a meromorphic 1-formω is zero on a closed Riemann surface
Σ.

Proof. A meromorphic 1-formω is closed: Ifω = Fdz locally, thendω = (∂F + ∂F )dz =
∂F ∧ dz = ∂f

∂z
dz ∧ dz = 0. Now if D ⊂ Σ is a disk that contains all the poles, then the sum of the

residues is 1
2πi

∫
∂D

ω. However, it is also 1
2πi

∫
−∂(Σ−D)

ω, which is zero by Stokes’ theorem (since
there are no poles inΣ − D). �

Conformal blocks: The space ofconformal blocksH(p1, . . . , pn; λ1, . . . , λn) is the space of mul-
tilinear maps

Ψ : Hλ1 ⊗ · · · ⊗ Hλn → C

which are invariant under the diagonal action∆ of g(p1, . . . , pn). By invariancewe mean
n∑

i=1

Ψ(ξ1 ⊗ · · · ⊗ (X ⊗ f(ti))ξi ⊗ · · · ⊗ ξn) = 0

for all X ⊗ f . (This is also often called “coinvariance”.) We can also write

H(p1, . . . , pn; λ1, . . . , λn) = Homg(p1,...,pn)(⊗
n
i=1Hλi

, C),

where the action ofg(p1, . . . , pn) on C is the trivial action.

The definition of the space of conformal blocks is consistentwith our discussion ofΓ(L) from last
time (although not exactly on the nose). Each polepi corresponds to a boundary component of
a Riemann surface and a line bundleL is attached to it. Invariance under left multiplication by
holomorphic mapsf : Σ → GC (hereΣ has boundary) corresponds tog(p1, . . . , pn)-invariance.

The space of conformal blocks seems like a daunting infinite-dimensional object. The next lemma
shows that,H(p1, . . . , pn; λ1, . . . , λn) is finite-dimensional! Recall first the weight space diagram
of Hλ. Hλ = ⊕∞

d=0Hλ(d), whereHλ(0) = Vλ is the top row of the weight space diagram (with
conformal weight∆λ, defined before),Hλ(1) is the next row down, etc.

Lemma 17.3.SupposeΣ = CP1. Then the mapH(p1, . . . , pn; λ1, . . . , λn) → Homg(⊗
n
i=1Vλi

, C)
is injective.

Proof. SupposeΨ = 0 on⊗iVλi
. We show thatΨ = 0 on all of⊗iHλi

.
Let z be the usual coordinate onCP1 = C ∪ {∞}. Considerf(z) = (z − zi)

r onCP1, wherezi

is theith pole andr < 0. If we expand about the other poles and writeti = z − zi, then we have
f(ti) =

∑∞
m=0 a

(j)
m tmj , and

Ψ(ξ1, . . . , (X ⊗ tri )ξi, . . . , ξn) = −
∑

j 6=i

∑

m≥0

a(j)
m Ψ(ξ1, . . . , (X ⊗ tmj )ξj, . . . , ξn).
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Note thatr < 0 but them’s are≥ 0.
We argue inductively, starting with allξi ∈ Vλi

= Hλi
(0). Then(X ⊗ tmj )ξj for m > 0 are zero

since they raiseξj further up (and there’s nothing above it). Also,Ψ = 0 on⊗iVλi
, so the RHS of

the equation vanishes. Hence so does the LHS. Now apply induction. �
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18. MORE ON CONFORMAL BLOCKS

Recall from last time that the space of conformal blocks

H(p1, . . . , pn; λ1, . . . , λn) = Homg(p1,...,pn)(Hλ1 ⊗ · · · ⊗ Hλn , C)

injects intoHomg(Vλ1 ⊗ · · · ⊗ Vλn , C). Today we determine its image.

18.1. Quantum Clebsch-Gordan rule.

Theorem 18.1.dimC H(p1, p2, p3; λ1, λ2, λ3) = 1 if (∗) holds and= 0 otherwise.

Here,(∗) is:

(1) λ1 + λ2 + λ3 ∈ 2Z;
(2) λ1 + λ2 ≥ λ3, λ2 + λ3 ≥ λ1, λ1 + λ3 ≥ λ2;
(3) λ1 + λ2 + λ3 ≤ 2k.

Conditions (1) and (2) were called the Clebsch-Gordan rule.These were the conditions forg =
sl(2, C). (3) is the quantum condition, and (1), (2), and (3) togetherare called thequantum
Clebsch-Gordan rule.

Step 1:

Lemma 18.2. If Ψ ∈ H(p1, p2, p3; λ1, λ2, λ3), then

Ψ(v1, E
m2ξ2, E

m3ξ3) = 0,

if v1 ∈ Vλ1 of highest weight,ξj ∈ Vλj
, j 6= 1, andm2 + m3 = d1 = k − λ1 + 1.

Proof. We use theg(p1, p2, p3)-invariance withE ⊗ f , wheref(z) = (z − z1)
−1. Let us use the

standard complex coordinatez ∈ CP1 = C ∪ {∞}. Also writepi aszi, and letti = z − zi be the
local coordinate centered aboutzi.

HW: Prove that the power series expansion off(z) = (z − z1)
−1 aboutzj is

∑∞
0 (−1)n(zj −

z1)
−n−1(z − zj)

n. (Hint: use the binomial theorem.)

The invariance gives:

Ψ((E ⊗ t−1
1 )v1, ξ2, ξ3) = −

∑

m≥0

(−1)m(z2 − z1)
−m−1Ψ(v1, (E ⊗ tm2 )ξ2, ξ3)

−
∑

m≥0

(−1)m(z3 − z1)
−m−1Ψ(v1, ξ2, (E ⊗ tm2 )ξ3)

= −(z2 − z1)
−1Ψ(v1, Eξ2, ξ3) − (z3 − z1)

−1Ψ(v1, ξ2, Eξ3).

Note that(X ⊗ tm)(ξ) = 0 if ξ ∈ Vλ andm > 0, since theξ are on the top row of the weight space
diagram andtm raises it.
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By repeated application of the invariance, we have:
(13)

Ψ((E⊗t−1
1 )d1v1, ξ2, ξ3) = (−1)d1

∑

m2+m3=d1

d1!

m2!m3!
(z2−z1)

−m2(z3−z1)
−m3Ψ(v, Em2ξ2, E

m3ξ3) = 0.

Here Kohno immediately concludes the lemma by arguing thatz1, z2, z3 are arbitrary. SinceΨ
depends on the particular choice ofz1, z2, z3, the argument seems incomplete. Instead, we use the
following trick: Using the fact thatΨ is g-invariant, it follows that:

Ψ(E(v ⊗ ξ2 ⊗ Ed1−1ξ3)) = 0.

We therefore have:

Ψ(v, Eξ2, E
d1−1ξ3) + Ψ(v, ξ2, E

d1ξ3) = 0
...

Ψ(v, Ed1ξ2, ξ3) + Ψ(v, Ed1−1ξ2, Eξ3) = 0

HW: Verify that thesed1 equations and Equation 13 are linearly independent.

The proof of the lemma is complete. �

Remark: Equation 13 is the only relation that only involves elementsin Vλ1 ⊗ Vλ2 ⊗ Vλ3 , besides
those that come from theg-invariance. We should think of Equation 13 as theextra conditionsthat
need to be satisfied in addition to theg-invariance.

Step 2. Supposeλ1 + λ2 + λ3 ≤ 2k. Write Hv1 = λ1v1, Hξ2 = (−λ2 + 2n2)ξ2, andHξ3 =
(−λ3+2n3)ξ3, wheren2, n3 ≥ 0. Thenv1⊗Em2ξ2⊗Em3ξ3 is an eigenvector ofH with eigenvalue

λ = λ1 + 2(m2 + m3) − λ2 − λ3 + 2(n2 + n3)

= (2k − λ1 − λ2 − λ3) + 2 + 2(n2 + n3) > 0.

Hence,

Ψ(H(v1 ⊗ Em2ξ2 ⊗ Em3ξ3)) = λ · Ψ(v1 ⊗ Em2ξ2 ⊗ Em3ξ3) = 0,

andλ 6= 0 implies:

Ψ(v, Em2ξ2, E
m3ξ3) = 0.

In other words, the only extra conditions — those of Equation13 — are automatically satisfied by
g-invariance. Therefore,dimCH(p1, p2, p3; λ1, λ2, λ3) = 1.

Step 3.Supposeλ1 + λ2 + λ3 > 2k. Observe that ifηi ∈ Vλi
are eigenvectors ofH andH(η1 ⊗

η3 ⊗ η3) 6= 0, thenΨ(η1, η2, η3) = 0.
We inductively show thatΨ = 0 on all ofVλ1 ⊗ Vλ2 ⊗ Vλ3 .
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Takev1, ξ2, ξ3 so thatHv1 = λ1v1, Hξ2 = −λ2ξ2, andHξ3 = (λ2 − λ1)ξ3. We claim that
Ψ(v1, ξ2, ξ3) = 0. Indeed,

λ2 − λ1 ≥ −λ3 + 2d1 = −λ3 + 2(k − λ1 + 1).

Therefore, we can writeξ3 = Ed1ξ for someξ ∈ Vλ3, and

Ψ(v1, ξ2, ξ3) = Ψ(v1, ξ2, E
d1ξ) = 0

by Equation 13. Moreover, Equation 13 tells us that

Ψ(v1, E
m2ξ2, E

m3ξ) = 0

wheneverm2 + m3 = d1. HenceΨ(v1, ξ2, ξ3) = 0 if v1 is the highest weight vector and the
eigenvalues ofH add up to zero.

We continue by taking

Ψ(F (v1 ⊗ ξ2 ⊗ Eξ3)) = Ψ(Fv1, xi2, Eξ3) + Ψ(v1, F ξ2, Eξ3) + Ψ(v1, ξ2, FEξ3).

The last two terms on the right-hand side are zero by the previous paragraph, so

Ψ(Fv1 ⊗ ξ2 ⊗ Eξ3).

Now continue in like manner....

18.2. The general case.We will now describe a basis for the space of conformal blocksof the
form

H(p1, . . . , pn, pn+1; λ1, . . . , λn, λ∗
n+1) = Homg(p1,...,pn+1)(Hλ1 ⊗ Hλn , Hλn+1).

As before, this injects intoHomg(Vλ1 ⊗ · · · ⊗ Vλn, Vλn+1).
Fix a directed graphΓ with n incoming edges and one outgoing edge. The incoming edges are

labeledλ1, . . . , λn and the outgoing one is labeledλn+1. The interior vertices are all trivalent, with
two incoming edges and one outgoing.

Then a basis forHomg(Vλ1 ⊗ · · · ⊗ Vλn, Vλn+1) is given by all labelings ofΓ (subject to the
above conditions) so that the Clebsch-Gordan rule is satisfied at every trivalent vertex.

Theorem 18.3.A basis for the space of conformal blocks is given by all labelings ofΓ so that the
quantumClebsch-Gordan rule is satisfied at every trivalent vertex.

Remark: I do not know how to prove this theorem. If someone could pointme to a proof, I’d
appreciate it!

If we take a different directed graphΓ′ (also satisfying the above conditions), then we obtain a
different basis for eitherHomg(Vλ1 ⊗ · · · ⊗ Vλn , Vλn+1) or H(p1, . . . , pn, pn+1; λ1, . . . , λn, λ

∗
n+1).

In the classical case, whenn = 3, the transformation between the two bases corresponding to
the two possibleΓ is encoded in theclassical6j-symbol. The quantum version is thequantum
6j-symbol.
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19. BUNDLE OF CONFORMAL BLOCKS

Today we try to understand what happens to the conformal blocks as we varyp1, . . . , pn ∈ CP1.
Let us fix the levelk and highest weightsλ1, . . . , λn.

Let Confn(CP1) = {(p1, . . . , pn) | pi ∈ CP1, pi 6= pj if i 6= j} be the configuration space ofn
distinct ordered points inCP1.

19.1. Conformal block bundle. The goal is to try to put a vector bundle structure on

Eλ1,...,λn

def
=

⋃

(p1,...,pn)∈Confn(CP1)

H(p1, . . . , pn; λ1, . . . , λn).

Once the vector bundle property is verified, it will be calledtheconformal block bundle. (We won’t
quite succeed — see the remarks at the end of the lecture.)

First we spend some time discussing the family version of theconstructions done in the last two
lectures.

1. Consider the projectionπ : (CP1)n+1 → (CP1)n onto the firstn factors. In other words,
coordinates(z1, . . . , zn, zn+1) map down to(z1, . . . , zn). (We will equivalently writep1, . . . , pn

or z1, . . . , zn.) At this point, (CP1)n+1 is a bundle ofCP1’s over the base. Next restrict to
Confn(CP1) ⊂ (CP1)n. Then we haveπ−1(Confn(CP1)) → Confn(CP1). Define the divisors
Dj = {zn+1 = zj}. TheDj are disjoint onπ−1(Confn(CP1)). On π−1(z1, . . . , zn) the divisors
restrict toz1, . . . , zn.

2. Let U ⊂ Confn(CP1) be an open set. Then defineMD1,...,Dn as the set of meromorphic
functions onπ−1(U) with poles of any order at most alongD1, . . . , Dn. We then considerg ⊗C

MD1,...,Dn(U). An elementf ∈ g ⊗C MD1,...,Dn(U) can be written locally alongDj as:

fDj
(tj) =

∞∑

m=−N

am(z1, . . . , zm)tmj .

Heretj = zn+1 − zj. We will also writeτj(f) for fDj
(tj).

3. Eλ1,...,λn can naturally be viewed as a subset ofE = Confn(CP1) × HomC(⊗Hλj
, C), which is

an infinite-dimensional vector bundle over Confn(CP1). DefineEλ1,...,λn(U) as the space of smooth
sectionsΨ : U → E such thatΨ(p1, . . . , pn) is g ⊗MD1,...,Dn(U)-invariant for all(p1, . . . , pn) ∈
U . In other words:

n∑

j=1

Ψ(p1, . . . , pn)(ξ1, . . . , τj(f)ξj, . . . , ξn) = 0

for all (p1, . . . , pn) ∈ U .
At this point, we do not know whetherEλ1,...,λn(U) has any nontrivial elements.
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19.2. Main proposition. GivenΨ : Hλ1⊗· · ·⊗Hλn → C andX ∈ U(L̃g), define the multilinear
map

X(j)Ψ : Hλ1 ⊗ · · · ⊗ Hλn → C,

(ξ1, . . . , ξn) 7→ Ψ(ξ1, . . . , Xξj, . . . , ξn).

In other words, we insertX in thejth spot.
Also we recall theSugawara operator

L−1 =
1

2(k + 2)

∑

µ

∑

j∈Z

Iµ ⊗ tj−1 · Iµ ⊗ t−j ,

where{Iµ} is an orthonormal basis forg with respect to the Killing form.

Proposition 19.1. If Ψ is a smooth section ofEλ1,...,λn overU , then so is∂Ψ
∂zj

− L
(j)
−1Ψ.

Proof. Givenf ∈ g ⊗MD1,...,Dn(U), we show that

∑

i

(
∂Ψ

∂zj
− L

(j)
−1Ψ

)
(ξ1, . . . , τi(f)ξi, . . . , ξn) = 0.

First observe that ifτj(f) =
∑

am(z1, . . . , zn)tmj , wheretj = zn+1 − zj , then

τj(fzj
) =

∑ ∂am

∂zj
tmj − ammtm−1

j .

If ∂j = ∂
∂zj

with respect to the variables(z1, . . . , zn, tj) (which we view as independent), then we
write

τj(fzj
) = ∂jτj(f) −

∂

∂tj
τj(f),

τi(fzj
) = ∂jτi(f).

Since the Sugawara operatorL−1 satisfies[L−1, X ⊗ tn] = −nX ⊗ tn−1, it follows that:

[L−1, τj(f)] = −
∂

∂tj
τj(f).

Also observe that:

∂

∂zj

(Ψ(ξ1, . . . , τi(f)ξi, . . . , ξn)) =
∂Ψ

∂zj

(ξ1, . . . , τi(f)ξi, . . . , ξn) + Ψ(ξ1, . . . , ∂jτi(f)ξi, . . . , ξn),

by the product rule.
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Now,
∑

i

(
∂Ψ

∂zj
− L

(j)
−1Ψ

)
(ξ1, . . . , τi(f)ξi, . . . , ξn) =

∑

i

∂

∂zj
(Ψ(ξ1, . . . , τi(f)ξi, . . . , ξn))

−
∑

i

Ψ(ξ1, . . . , ∂jτi(f)ξi, . . . , ξn)

−
∑

i6=j

Ψ(ξ1, . . . , τi(f)ξi, . . . , L−1ξj, . . . , ξn)

−Ψ(ξ1, . . . , L−1τj(f)ξj, . . . , ξn)

The second term on the RHS equals

−

(∑

i6=j

Ψ(ξ1, . . . , τi(fzj
)ξi, . . . , ξn)

)
− Ψ(ξ1, . . . , ∂jτj(f)ξj, . . . , ξn).

The fourth term on the RHS can be written as

−Ψ(ξ1, . . . , (τj(f)L−1 + τj(fzj
) − ∂jτj(f))ξj, . . . , ξn).

Finally,
∑

i

(
∂Ψ
∂zj

− L
(j)
−1Ψ

)
(ξ1, . . . , τi(f)ξi, . . . , ξn) is the sum of the following three terms, each

of which is zero by invariance.

∂

∂zj

(∑

i

Ψ(ξ1, . . . , τi(f)ξi, . . . , ξn)

)
,

−
∑

i

Ψ(ξ1, . . . , τi(fzj
)ξi, . . . , ξn),

−
∑

i

Ψ(f(ξ1 ⊗ · · · ⊗ L−1ξj ⊗ · · · ⊗ ξn)).

�

19.3. Flatness. A connection∇ on a vector bundleE
π
→ M is flat if it has zero curvature, i.e., if

A is the connection 1-form, thendA+A∧A = 0. By the Frobenius integrability theorem, through
any point inE there is a local sections : U → π−1(U) which passes through it and satisfies
∇s = 0. (Let us call these sectionscovariant constantsections.)

In our case, letω =
∑n

j=1 L
(j)
−1dzj be the connection 1-form on the bundleE defined previously.

Then

∇Ψ = dΨ −
n∑

j=1

L
(j)
−1Ψdzj,

and we have a covariant derivative

∇ ∂
∂zj

: Eλ1,...,λn(U) → Eλ1,...,λn(U),
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Ψ 7→
∂Ψ

∂zj
− L

(j)
−1Ψ.

(The restriction toEλ1,...,λn(U) follows from the previous proposition.)

Lemma 19.2.ω is a flat connection.

Proof. SinceL−1 does not depend onz1, . . . , zn, dω = 0. Also,ω∧ω =
∑

i,j[L
(i)
−1, L

(j)
−1]dzi∧dzj =

0 since[L
(i)
−1, L

(j)
−1] = 0 for all i, j. We then havedω + ω ∧ ω = 0. �

Remark: Lemma 19.2 implies the existence of local covariant constant sections that pass through
any point onE. Together with Proposition 19.1 one would like to conclude that through each
s(0) ∈ Eλ1,...,λn there is a covariant constant sections which is a section ofEλ1,...,λn . (Hence this
would show thatEλ1,...,λn is a vector bundle.) To first order nears(0) that is true, but I do not know
how to do this to higher orders.

Instead, one can use the following strategy to show thatEλ1,...,λn is a vector bundle. Restrict to
Vλ1 ⊗ · · · ⊗ Vλn , which is finite-dimensional. Theg-invariance does not depend onz1, . . . , zn and
conditions analogous to Equation 13 gives extra linear conditions which depend holomorphically
onz1, . . . , zn. The dimension ofEλ1,...,λn(p1, . . . , pn) (the fiber over(p1, . . . , pn)) is an upper semi-
continuous function of(p1, . . . , pn). If we accept that the dimension of eachEλ1,...,λn(p1, . . . , pn)
is the same (from the previous lecture), it follows thatEλ1,...,λn is a vector bundle.
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20. THE KZ EQUATION

20.1. The KZ equation. KZ = Knizhhnik-Zamolodchikov. Last time we constructed thecon-
formal block bundleEλ1,...,λn → Confn(C) and a flat connection on it. Horizontal (=covariant
constant) sectionsΨ of Eλ1,...,λn satisfied:

∂Ψ

∂zi

= L
(i)
−1Ψ.

Let us now restrict this equation toVλ1 ⊗ · · · ⊗ Vλn.

Theorem 20.1.Let Ψ be a horizontal section ofEλ1,...,λn. ThenΨ restricted toVλ1 ⊗ · · · ⊗ Vλn

(call it Ψ0) satisfies:

(14)
∂Ψ0

∂zi

=
1

k + 2

∑

j,j 6=i

Ω(ij)Ψ0

zi − zj

.

Equation 14 is called theKZ equation.
HereΩ =

∑
µ Iµ ⊗ Iµ, where{Iµ} is an orthonormal basis forg = sl(2, C) with respect to the

Killing form. Ω is not quite a Casimir (we’ll have more to say about their relation next time). Also,
for i 6= j, we set

Ω(ij)Ψ0(ξ1, . . . , ξn) =
∑

µ

Ψ0(ξ1, . . . , Iµξi, . . . , Iµξj, . . . , ξn),

whereξi ∈ Vλi
, i = 1, . . . , n. If i = j, then we set

Ω(ii)Ψ0(ξ1, . . . , ξn) =
∑

µ

Ψ0(ξ1, . . . , IµIµξi, . . . , ξn).

Proof. Recall that

L−1ξ =
1

2(k + 2)

∑

µ,j

Iµ ⊗ tj−1 · Iµ ⊗ t−jξ,

and if ξ ∈ Vλ, then the only nonzero terms in the sum are(Iµ · Iµ ⊗ t−1)ξ and(Iµ ⊗ t−1 · Iµ)ξ,
which are equal. Hence,

(L
(i)
−1Ψ)0(ξ, . . . , ξn) =

1

k + 2

∑

µ

Ψ0(ξ1, . . . , (Iµ ⊗ t−1 · Iµ)ξi, . . . , ξn)

=
1

k + 2

∑

µ

∑

j,j 6=i

(zi − zj)
−1Ψ0(ξ1, . . . , Iµξi, . . . , Iµξj, . . . , ξn)

=
1

k + 2

∑

j,j 6=i

Ω(ij)Ψ0

zi − zj

(ξ1, . . . , ξn).

Here we are using the fact that

((X ⊗ t−1)(i)Ψ)0(ξ1, . . . , ξn) =
∑

j,j 6=i

(zi − zj)
−1Ψ(ξ1, . . . , Xξj, . . . , ξn)
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by theg(p1, . . . , pn)-invariance. �

20.2. Conformal invariance.

Lemma 20.2. If Ψ is a horizontal section ofEλ1,...,λn , then its restrictionΨ0 to Vλ1 ⊗ · · · ⊗ Vλn

satisfies:

(1)
∑n

i=1
∂

∂zi
Ψ0 = 0;

(2)
∑n

i=1

(
zi

∂
∂zi

+ ∆λi

)
Ψ0 = 0;

(3)
∑n

i=1

(
z2

i
∂

∂zi
+ 2zi∆λi

)
Ψ0 = 0.

Here∆λ = j(j+1)
k+2

is theconformal weight, wherej = λ
2
.

Proof.

(1)
∑

i
∂Ψ0

∂zi
= 1

k+2

∑
i6=j

Ω(ij)Ψ0

zi−zj
= 0 sinceΩ(ij) = Ω(ji). The termΩ(ij)Ψ0

zi−zj
is canceled byΩ

(ji)Ψ0

zj−zi
.

(2) SinceΨ0 is g-invariant,
n∑

j=1

Ω(ij)Ψ0(ξ1, . . . , ξn) =
∑

j,µ

Ψ0(ξ1, . . . , Iµξi, . . . , Iµξj, . . . , ξn) = 0.

Here j is summed from1 to n in the RHS. Ifj = i, then we haveΨ0(ξ1, . . . , IµIµξi, . . . , ξn).
Hence,

∑

j,j 6=i

Ω(ij)Ψ0(ξ1, . . . , ξn) = −Ω(ii)Ψ0(ξ1, . . . , ξn)

= −Ψ0(ξ1, . . . , Cξi, . . . , ξn)

= −2j(j + 1)Ψ0(ξ1, . . . , ξi, . . . , ξn)

(15)
∑

j,j 6=i

Ω(ij)Ψ0(ξ1, . . . , ξn) = −2(k + 2)∆λi
Ψ0(ξ1, . . . , ξn).

HereC =
∑

µ Iµ · Iµ is the Casimir and has eigenvalue2j(j + 1) on all of Vλ. Also thej in the

third line is
∆λi

2
. Summing over all thei’s we can write:

∑

i<j

Ω(ij)Ψ0 = −(k + 2)
∑

j

∆jΨ0.

Finally, since zi

zi−zj
+

zj

zj−zi
= 1,

∑

i

zi
∂Ψ0

∂zi
=

1

k + 2

∑

i6=j

zi

zi − zj
Ω(ij)Ψ0 =

1

k + 2

∑

i<j

Ω(ij)Ψ0 = −
∑

j

∆jΨ0.
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(3) Since z2
i

zi−zj
+

z2
j

zj−zi
= zi + zj ,

∑

i

z2
i

∂Ψ0

∂zi

=
1

k + 2

∑

i<j

(zi + zj)Ω
(ij)Ψ0

=
1

k + 2

∑

i

zi

∑

j,j 6=i

Ω(ij)Ψ0

=
1

k + 2

∑

i

zi(−2(k + 2)∆λi
)Ψ0

= −2
∑

i

zi∆λi
Ψ0.

Here we are using Equation 15 to go from the second line to the third. �

Theorem 20.3(Conformal Invariance). Let Ψ be a horizontal section ofEλ1,...,λn. Under the frac-
tional linear transformationw = az+b

cz+d
with ad − bc = 1, applied to eachz1, . . . , zn, we have:

Ψ0(w1, . . . , wn) =
∏

j

(czj + d)2∆λj Ψ0(z1, . . . , zn).

Proof. We verify the equation on generators ofPSL(2, C).

1. Consider the translationfs(z) = z + αs, wheres ∈ R andα ∈ C. Then

d

ds
Ψ0(fs(z1), . . . , fs(zn)) =

∑

i

∂Ψ0

∂zi

d

ds
(zi + αs) = α

∑

i

∂Ψ0

∂zi
= 0,

where the last equality follows from Lemma 20.2. HenceΨ0 is invariant under translation.

2. Consider the dilatationfs(z) = eαsz. (In this case, we rewritefs(z) = eαs/2z
e−αs/2 . Hencecz + d =

e−αs/2.) Then

d

ds
Ψ0(fs(z1), . . . , fs(zn)) =

∑

i

∂Ψ0

∂zi

d

ds
(eαszi) =

∑

i

∂Ψ0

∂zi

zi(αeαs) = −αeαs
∑

i

∆λi
Ψ0,

by Lemma 20.2. Hence

Ψ0(e
αsz1, . . . , e

αszn) = eαs(−
P

i ∆λi
)Ψ0(z1, . . . , zn) = (e−αs/2)(

P
i 2∆λi

)Ψ0(z1, . . . , zn).

3. If fs(z) = z
−sz+1

, then

d

ds

∣∣∣∣
s=0

Ψ0(fs(z1), . . . , fs(zn)) =
∑

i

∂Ψ0

∂zi
z2

i ((−szi + 1)−2)|s=0 = −(
∑

i

2zi∆λi
)Ψ0(z1, . . . , zn).
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This is the infinitesimal version of the equation:

Ψ0(fs(z1), . . . , fs(zn)) =
∏

j

(−szj + 1)2∆λj Ψ0(z1, . . . , zn).

Since the above three fractional linear transformations infinitesimally generatePSL(2, C), the
theorem follows. (The first two fractional linear transformations are much more satisfactory, since
we do not need to specialize ats = 0.) �

What is truly conformally invariant is:

Ψ0(dz1)
∆λ1 . . . (dzn)∆λn ,

wheredza are weighted differentials with weighta ∈ R.

HW: Check that ifw = az+b
cz+d

, thendw = 1
(cz+d)2

dz.

20.3. The KZ equation in general. Letg be a finite-dimensional complex semisimple Lie algebra
andVi, i = 1, . . . , n, be finite-dimensional irreducible representations ofg. Given a map

Φ : Confn(C) → HomC(V1 ⊗ · · · ⊗ Vn, C),

we have the KZ equation:
∂Φ

∂zi

=
1

κ

∑

j,j 6=i

Ω(ij)Φ

zi − zj

,

whereκ is some complex parameter.

Let us writeωij = d log(zi − zj) =
dzi−dzj

zi−zj
andω = 1

κ

∑
i<j Ω(ij)ωij . Then the KZ equation is

dΦ = ωΦ.

As before, we have:

Theorem 20.4.The KZ connection is flat connection on the trivialHomC(V1 ⊗ · · · ⊗ Vλn, C)-
bundle over Confn(C).
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21. BRAID GROUPS AND THE MONODROMY REPRESENTATION

21.1. Braid groups. Let Confn(C) be the configuration space ofn ordered distinct points onC,
i.e.,{(z1, . . . , zn) | zi ∈ C, zi 6= zj for i 6= j}.

The pure braid groupPn is π1(Confn(C)). Think of the motion ofn distinct pointsz1, . . . , zn

which begin and end at the same location. If we takeC × [0, 1], wheret ∈ [0, 1] represents the
time direction, then we can represent an element ofPn by n strands starting atC×{0} and ending
at C × {1}. (Picture needed here!)

There is also a configuration space ofn unordereddistinct points. That is given by Confn(C)/Sn,
whereSn is the symmetric group onn elements. Thebraid groupBn is π1(Confn(C)/Sn).

Fact: Bn has generatorsσ1, . . . , σn−1 and relations

σiσj = σjσi, |i − j| > 1;

σiσi+1σi = σi+1σiσi+1.

Hereσi switches theith andi + 1st stands in a particular way – if we think of strands as going
from bottom to top inC × [0, 1], then the strand fromzi to zi+1 is in front of the strand fromzi+1

to zi. (Picture needed here!)

HW: Verify that σiσi+1σi = σi+1σiσi+1 by drawing a picture of the two braids. (Note they are
equivalent by a type III Reidemeister move.)

HW: Verify that we have an exact sequence:

0 → Pn → Bn → Sn → 0.

21.2. Monodromy representation of the KZ equation. Recall that givenΦ : Confn(C) →
HomC(V1 ⊗ Vn, C), the KZ equation is the differential equation:

dΦ = ωΦ,

andω is a flat connection, i.e.,dω + ω ∧ ω = 0.

Holonomy: The holonomy of a flat connection on a vector bundleE → M only depends on the
homotopy class of paths relative to the endpoints (i.e., fixing the endpoints). Ifγ is a path froma
to b in M , then the holonomy

Holγ : Ea
∼
→ Eb

only depends on the homotopy class[γ].

Hence, the flat connectionω on the trivial bundle

Confn(C) × HomC(V1 ⊗ · · · ⊗ Vn, C) → Confn(C)

(or the conformal block bundleEλ1,...,λn) gives rise to a representation:

ρ : Pn = π1(Confn(C)) → GL(V ∗
1 ⊗ · · · ⊗ V ∗

n ).
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For the braid groupBn, takeV1 = · · · = Vn = V . ThenSn acts diagonally on Confn(C)× (V ∗)⊗n,
whereσ ∈ Sn permutes(z1, . . . , zn) andσ · φ(v1, . . . , vn) = φ(vσ(1), . . . , vσ(n)). The quotient is a
vector bundle over Confn(C)/Sn. The corresponding representation is:

ρ : Bn → GL((V ∗)⊗n).

21.3. Comultiplication. Thecomultiplicationfor U(g) is analgebra homomorphism

∆ : U(g) → U(g) ⊗ U(g),

where∆(X) = X ⊗ 1 + 1 ⊗ X if X ∈ g. Since∆ is an algebra homomorphism, we extend the
definition by writing∆(X · Y ) = ∆(X) · ∆(Y ).

The topologist’s way of expressing a comultiplication is todraw a pair-of-pants with one bound-
ary component on the left and two boundary components on the right. The left-hand boundary
corresponds toX and the right-hand ones correspond toX ⊗ 1 + 1 ⊗ X. Thencoassociativity
(∆ ⊗ 1)∆ = ∆(∆ ⊗ 1) can be interpreted as in the following diagram.

=

FIGURE 1. Coassociativity.

We denote(∆ ⊗ 1)∆ by ∆(3). For our purposes,∆ is important because the tensor product repre-
sentationV1⊗V2 is a representation ofg via the diagonal action∆ which sendsX toX⊗1+1⊗X.
The same holds true for∆(3) and the higher∆(n), defined analogously.

Calculation: Ω = 1
2
(∆(C)−C ⊗1−1⊗C), whereC is the Casimir

∑
µ Iµ · Iµ. Indeed, omitting

summations,

∆(C) = ∆(Iµ) · ∆(Iµ) = (Iµ ⊗ 1 + 1 ⊗ Iµ) · (Iµ ⊗ 1 + 1 ⊗ Iµ)

= Iµ · Iµ ⊗ 1 + 1 ⊗ Iµ · Iµ + 2Iµ ⊗ Iµ

= C ⊗ 1 + 1 ⊗ C + 2Ω.

Similarly, one calculates that

∆(3)(C) = (Iµ ⊗ 1 ⊗ 1 + 1 ⊗ Iµ ⊗ 1 + 1 ⊗ 1 ⊗ Iµ)(same)

= C ⊗ 1 ⊗ 1 + 1 ⊗ C ⊗ 1 + 1 ⊗ 1 ⊗ C

+2(Ω(12) + Ω13 + Ω(23)).
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21.4. Computation of the holonomy with respect to a preferred basis. Let us useHomC(V1 ⊗
· · ·⊗Vn, Vn+1) instead. Supposen = 3 andg = sl(2, C). Use the basis of conformal blocks which
corresponds to the tree((12)3), which means1 and2 are merged together first, and the resulting
outgoing edge with3. The edge obtained by merging1 and2 is labeledλ. LetΦ be a basis element
corresponding toλ.

Settingζ1 = z2 − z1 andζ2 = z3 − z1, we write

ω =
1

κ

(
Ω(12) dz1 − dz2

z1 − z2

+ Ω(13) dz1 − dz3

z1 − z3

+ Ω(23) dz2 − dz3

z2 − z3

)

=
1

κ

(
Ω(12) dζ1

ζ1
+ Ω(13) dζ2

ζ2
+ Ω(23) d(ζ2 − ζ1)

ζ2 − ζ1

)
.

Effectively we are settingz1 = 0.

We calculate the holonomy/monodromy asζ1 circles once about0. Here we assume that|ζ2| ≫ |ζ1|
andζ2 is fixed. Then the second and third terms of the sum do not contribute, and the monodromy
is given by:

resζ1=0ω =
1

κ
Ω(12).

(Note that theΩ(ij) do not depend on thezi or ζi.)

Computation of 1
κ
Ω(12)Φ. Φ is the composition

Vλ1 ⊗ Vλ2 ⊗ Vλ3 → Vλ ⊗ Vλ3 → Vλ4 .

Here the first map is given by taking the direct sum of irreducible factorsVλ1 ⊗ Vλ2 and projecting
down to the factorVλ, and the second map is the projection to the factorVλ4. Hence we are
interested inΦ((

∑
v1 ⊗ v2) ⊗ v3), where

∑
v1 ⊗ v2 is in Vλ. We easily verify that:

(C ⊗ 1 ⊗ 1)(v1 ⊗ v2 ⊗ v3) = 2(k + 1)∆λ1(v1 ⊗ v2 ⊗ v3),

(1 ⊗ C ⊗ 1)(v1 ⊗ v2 ⊗ v3) = 2(k + 1)∆λ2(v1 ⊗ v2 ⊗ v3).

Using our interpretation of∆ as giving the tensor product representation, we have:

(∆(C) ⊗ 1)((
∑

v1 ⊗ v2) ⊗ v3) = 2(k + 1)∆λ((
∑

v1 ⊗ v2) ⊗ v3).

Via the formulaΩ = 1
2
(∆(C) − C ⊗ 1 − 1 ⊗ C), we compute that:

(resζ1=0ω)Φ = (∆λ − ∆λ1 − ∆λ2)Φ.

Next we calculate the monodromy asζ1 circles once about0 andζ2 circles once about0 andζ1.
(They both happen at the same time, and|ζ2| ≫ |ζ1| again!) Hence we are adding up the residues
to get 1

κ
(Ω(12) + Ω(13) + Ω(23)).

HW: Verify that 1
κ
(Ω(12) + Ω(13) + Ω(23))Φ = (∆λ4 −∆λ1 −∆λ2 −∆λ3)Φ. (Hint: use the formula

for ∆(3)(C) above.)
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22. LINK INVARIANTS (PRELIMINARIES)

22.1. Monodromy representation. Let us summarize our findings about the monodromy repre-
sentation from last time.

Let g = sl(2, C). Fix a levelk and letλ1, . . . , λn be highest weights at0 < z1 < z2 < · · · < zn.
The n-tuple (z1, . . . , zn) will be our basepoint in the configuration space Confn(C). We will
also take weightsλ0 = 0 at z0 = 0 and λn+1 = 0 at zn+1 = ∞. (These additional points
correspond to the trivialg-representationC.) Let Vλ1,...,λn be the space of conformal blocks
H(z0, . . . , zn+1; λ0, . . . , λn, λ

∗
n+1). The KZ equation gives rise to a representation:

ρ : Pn → GL(Vλ1,...,λn).

Take a basis forVλ1,...,λn corresponding to a treeΓ of form ((((12)3)4) . . . n). By this we mean the
edges 1 and 2 come together first, then the outgoing edge is merged with edge 3, and the outgoing
edge is merged with edge 4, etc. Last time we computed thatρ(σ2

1) is diagonal with respect to the
basis corresponding toΓ and that:

ρ(σ2
1)(vµ) = e2πi(∆µ−∆λ1

−∆λ2
)vµ.

Here,vµ is any basis element whose labeling of the third edge at a vertex whereλ1 andλ2 come
together isµ. Also, we use the standard generatorsσ1, . . . , σn of Bn and viewPn ⊂ Bn. Then one
full twist of strands 1 and 2 isσ2

1.

For the braid groupBn, we letλ = λ1 = · · · = λn. Thenρ is a representation:

ρ : Bn → GL(Vλ,...,λ).

With respect to theΓ-basis, we have:

ρ(σ1)(vµ) = eπi(∆µ−∆λ1
−∆λ2

)vµ.

Notice the loss of the factor2 in front of 2πi.

Example: Supposeλ = 1, i.e., all the representationsV1 are the standard 2-dimensional rep-
resentation ofsl(2, C). Then a basis ofV1,...,1 is given by orderedn + 1-tuples(µ0, . . . , µn+1),
where:

(1) µ0 = µn+1 = 0;
(2) |µi − µi+1| = 1 for 0 ≤ i ≤ n;
(3) 0 ≤ µi ≤ k for 1 ≤ i ≤ n.

Theµi are labelings of the edges of graphs of type((((01)2)3) . . . n+1). (2) holds because we are
always fusingµi with λi+1 = 1. (3) is the quantum Clebsch-Gordan condition.

Remark: I have been told that this has something to do with theCatalan number, if we disregard
the quantum condition.
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22.2. Iwahori-Hecke algebra representations.The Iwahori-Hecke algebrais an associative al-
gebra overC with unit, generated byσ1, . . . , σn−1 and relations:

(1) σiσj = σjσi, if |i − j| > 1;
(2) σiσi+1σi = σi+1σiσi+1;
(3) (σi − q1/2)(σi − q−1/2) = 0,

whereq is some nonzero complex number. Conditions (1) and (2) are just the braid relations, and
condition (3) tells us that a representation of the Iwahori-Hecke algebra is a representation of the
braid group, where eachσi has at most two eigenvalues. See Jones’ fundamental paper [1].

Again letg = sl(2, C) andλ = 1 (corresponding to the 2-dimensional irrep). We defineq1/2 =
eπi/k+2 andη = eπi/2(k+2).

Theorem 22.1.Given the monodromy representationρ : Bn → GL(V1,...,1) of the KZ equation,
the modified representatioñρ : Bn → GL(V1,...,1), ρ̃(σi) = ηρ(σi) is an Iwahori-Hecke algebra
representation.

Remark: Note that the modificatioñρ is also a representation ofBn. This is the multiplicative ver-
sion of the fact that thelinking numberlk : Bn → Z given byσi = 1 for all i is a homomorphism.
This follows from observing that the braid relations alwayspreserveword length.

Proof. Without loss of generality, we show the theorem forσ1. With respect toΓ = (((01)2) . . . n+

1), µ1 is either0 or 2. Henceρ(σ1) has eigenvalueseπi(∆0−∆1−∆1) = e−
3
2

πi
k+2 or eπi(∆2−∆1−∆1) =

e
1
2

πi
k+2 . Multiplying with η givesq±1/2. �

Remark: In Kohno’s book, the Iwahori-Hecke algebra is supposed to satisfy (σi − q1/2)(σi +
q−1/2) = 0. I do not see where the plus sign comes from, and would appreciate any suggestions!

22.3. Knots and links. A link is an embeddingf : S1 ⊔ · · · ⊔ S1 →֒ S3 (or the image of the
embedding). Here⊔ represents disjoint union. The image will be denotedL = L1 ⊔ · · · ⊔ Lm.
We will also blur the distinction between knots andisotopy classes of knots. Also, we will switch
back and forth betweenS3 andR3 with impunity. We will usually project the knot fromR3 to R2

so that the projection has only transverse intersections, and denote the knot by the crossing data.

A Seifert surfaceΣ of an oriented knotL is an embedded oriented surfaceΣ ⊂ S3 such that
∂Σ = L (and the boundary orientation ofΣ agrees with the orientation ofL). The Seifert surface
is not unique.

There is an algorithm, called theSeifert algorithmfor finding a Seifert surface. We locally resolve
each crossing so that the orientations (arrows) are well-defined after each resolution. See Figure 2.
The result is a union of circles, and the Seifert surface is obtained from the disjoint union of disks
that bound these circles, by banding in a manner dictated by the crossing data.

The linking numberlk(L1, L2) between two linksL1 andL2 is the (oriented) intersection number
of L2 with the Seifert surface forL1.
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FIGURE 2. Resolving crossings.

HW: Prove thatlk(L1, L2) = lk(L2, L1).

We can assign a sign to each crossing in the knot projection. See Figure 3.

+ -

FIGURE 3. Crossing signs.

HW: Prove thatlk(L1, L2) is the number of positive crossings ofL1 andL2 minus the number of
negative crossings ofL1 andL2.

Framings: A framingof L is a homotopy class of trivializations of the normal bundleνL of L (in
S3 or R3). In other words, it is a homotopy class of nowhere zero sections ofνL. For example, a
Seifert surfaceΣ of L induces a framingTΣ ∩ νL alongL, which is usually called the0-framing.
In general, take a pushoffL′ of L in the direction dictated by the section ofνL. Then the framing
is given bylk(L, L′).

REFERENCES

[1] V. Jones,Hecke algebra representations of braid groups and link polynomials, Ann. of Math.126(1987), 335–388.
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23. LINK INVARIANTS

Today’s goal is to define an invariant of oriented, framed links.

Blackboard framing: Given a planar diagram of a linkL, the blackboard framingis given as
the normal to the tangent spaceTL of the link insideR2. (We need to exercise some care at the
crossings....) Figure 4 gives the blackboard framing of theright-handed trefoil.

FIGURE 4. Blackboard framing.

Decomposition into elementary tangles:Suppose the link is in planar form, with coordinates
x, t for the plane. After perturbing the linkL if necessary, we decompose the link into slices
ti ≤ t ≤ ti+1, wherei = 0, . . . , s − 1, so that on each slice there is only one of the following
(1) crossing, (2) maximum (with respect tot), or (3) minimum. (Such a slice is called anele-
mentary tangle.) See Figure 5 for an elementary tangle with a crossing (there is another with the
overcrossing/undercrossing switched).

FIGURE 5. An elementary tangle with a crossing.

Write L as a disjoint unionL1 ∪ · · · ∪ Lm of knotsLj . We will keep track of the order of theLj ,
and such a link is often called acolored link. Fix a levelk. Label eachLj by the highest weight
µj.

We will use the TQFT philosophy to assign a vector spaceV (ti) to each levelt = ti and a mor-
phismZi : V (ti) → V (ti+1) to each[ti, ti+1]. We setV (t0) = C andV (ts) = C. Once theV (ti)
andZi are defined, we define:

Z(L; µ1, . . . , µm) = Zs−1 ◦ Zs−2 ◦ · · · ◦ Z1 ◦ Z0(1).
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Definition of V (ti): If t = ti intersectsL at n points (n is even), then we assignµj if the inter-
section is inLj ∩ {t = tj} andLj is oriented downwards; we assignµ∗

j if Lj is oriented upwards.
(By µ∗

j we mean the dual toVµj
.) Then we setV (ti) = Vλ1,...,λn, where eachλl, l = 1, . . . , n, is

one of theµj, µ∗
j , j = 1, . . . , m. We will also writeV (ti) = V0,λ1,...,λn,0. In this way, we see that

V (t0) = V (ts) = V0,0, and its basis can be denoted by a tree with one edge which is labeled0.

Definition of Zi for a crossing: We will give Zi : V (ti) → V (ti+1) if the elementary tangle is a
crossing given in Figure 5. Writeσa for the corresponding braid inBn, whereσa switches theath
and(a + 1)st strands. It is convenient to defineZi with respect to the basis corresponding to some
treeΓ = (. . . (a, a+1) . . . ). In other words, we have an edgeλa andλa+1 come together at a triva-
lent vertex and an edgeν emanating from the vertex. Letvν be any basis element corresponding to
such a labeling. Then

Zi(vν) = eπi(∆ν−∆λa−∆λa+1
)Pa,a+1vν ,

wherePa,a+1 permutes theath and(a + 1)st factors. If the overcrossing and undercrossing are
reversed, then the multiplicative factor changes toe−πi(∆ν−∆λa−∆λa+1

). See Figure 6.

λa λa+1 λa+1 λa

ν ν

FIGURE 6. Zi for a crossing.

Definition of Zi for a minimum: SupposeL ∩ {t = ti} hasn intersection points. Then

Zi : V0,λ1,...,λn,0 → V0,λ1,...,λa,µj ,µ∗
j ,λa+1,...,λn,0

is given as follows. (Here the minimum lies onLj , corresponding toµj.) First embedV0,λ1,...,λn,0

into V0,λ1,...,λa,0,λa+1,...,λn,0 by adding an edge with label0 onto someΓ for V0,...,λ1,...,λn,0. Then add
two edges labeledµj andµ∗

j onto the univalent vertex of the edge labeled0. This corresponds to
the embeddingV0,λ1,...,λa,0,λa+1,...,λn,0 into V0,λ1,...,λa,µj ,µ∗

j ,λa+1,...,λn,0. See Figure 7.

0 0

µj µ∗
j

FIGURE 7. Zi for a maximum.

Definition of Zi for a maximum:

Zi : V0,λ1,...,λa,µj ,µ∗
j ,λa+1,...,λn,0 → V0,λ1,...,λn,0
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is given by starting with a basis corresponding toΓ as in the right-hand side of Figure 7, but the
labelings areµj, µ∗

j andν instead of0. Then all the basis elements withν 6= 0 are mapped to zero
and the basis elements withν = 0 are mapped to itself. (In other words, we have a projection toa
subspace consisting ofν = 0.) Now we can (naturally) map to the basis in the center of Figure 7,
and hence to the basis on the left.

Lemma 23.1.Z(L; µ1, . . . , µm) is invariant under the moves given below.

FIGURE 8

The top three moves are the “horizontal moves”. The invariance of Z under the top two moves
follows from the flatness of the KZ connection, since the moves represent homotopic paths in the
configuration space Confn(C) (relative to the endpoints). I have not been able to figure outthe
proof for the third move. The fourth move represents moving maxima and minima above one
another, and is straightforward to verify.

It turns out thatZ(L; µ1, . . . , µm) is not yet an invariant of the oriented framed colored link. Under
the move below which increases the number of maxima and minima by one each,Z(L) satisfies
the following:
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Fact: Z(L′; µ1, . . . , µm) = Z(K0; µj)Z(L; µ1, . . . , µm), whereK0 is an unknot with two maxima
and two minima and no crossings. Also,µj is the labeling on the componentLj of the linkL which
has its number of maxima/minima increased. (This is not too hard to verify.)

Lj

FIGURE 9

Write d(µ) = Z(K0; µ)−1. Also let maxj be the number of maxima inLj . Then define:

J(L; µ1, . . . , µm) = d(µ1)
max1 . . . d(µm)maxmZ(L; µ1, . . . , µm).

Theorem 23.2.J(L; µ1, . . . , µm) is an invariant of the colored oriented framed link.

Proof. Two colored oriented framed linksL andL′ are isotopic iffL′ is obtained fromL′ by a
sequence of moves already considered, namely: local horizontal moves, moves that shift max-
ima/minima above one another, and cancellations of critical points. �
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24. THE JONES POLYNOMIAL

24.1. Link invariants. Last time we definedZ(L; µ1, . . . , µm), whereL = L1 ∪ · · · ∪ Lm is
an oriented colored link,k is the level, andµj is the highest weight forLj . Z was obtained by
decomposing a link diagram into elementary tangles and defining mapsZi : V (ti) → V (ti+1).

To get an invariant of an oriented colored link, we need two modifications:

1. Z is not invariant under the modification given in Figure 9. Instead,Z(L′; µ1, . . . , µm) =
Z(K0; µj)Z(L; µ1, . . . , µm), whereK0 is an unknot with two maxima and two minima and no
crossings, andµj is the labeling of the componentLj involved. Hence, we modify:

J(L; µ1, . . . , µm) = d(µ1)
max1 . . . d(µm)maxmZ(L; µ1, . . . , µm).

Hered(µj) = Z(K0; µj)
−1.

2. NowJ is an oriented framed link invariant, but not an oriented link invariant.

Fact: If L′ is the link obtained fromL by increasing the framing ofLj by 1, then

J(L′; µ1, . . . , µm) = e2πi∆µj J(L; µ1, . . . , µm).

(I do not know how to prove this.)

For example, the (blackboard) framing can be increased or decreased as follows: Take a vertical
line in one of the elementary tangles[ti, ti+1] and add an extra loop (do a Reidemeister I move).

To keep track of the number of Reidemeister I moves performed, we use thewrithe w(L), which
is the number of positive crossings minus the number of negative crossings. If we modify

J(L; µ1, . . . , µm) 7→ e−2πi(
P

j ∆µj w(Lj))J(L; µ1, . . . , µm),

then the new polynomial is an invariant of the oriented colored link.

24.2. The Jones polynomial.To define the Jones polynomial, we specialize toµ1 = · · · = µm =
1. Write J(L; 1, . . . , 1) = JL. Let L+ be a (planar diagram of) a link, and letp be a positive cross-
ing of L+. Let L− be obtained fromL+ by replacing the positive crossingp by a negative crossing
(without changingL+ away fromp), andL0 be obtained fromL+ by resolving the crossingp (in a
way which preserves the orientation).

Lemma 24.1(Skein relation). If q = e
2πi
k+2 , then

q1/4JL+ − q−1/4JL− = (q1/2 − q−1/2)JL0.

We also writeκ = k + 2.

Proof. I seem to get
q1/4JL+ + q−1/4JL− = (q1/2 + q−1/2)JL0

instead....
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At any rate, consider an elementary tangle which contains the crossingp. Consider the basis
corresponding to the tree(. . . (a, a + 1) . . . ), where the crossing involves theath and(a + 1)st
strands. The eigenvalues ofρ(σa) areeπi(∆0−2∆1) = q−3/4 or eπi(∆2−2∆1) = q1/4. HenceZi(L) :
V (ti) → V (ti+1) are given by:

Zi(L+) = diag(q−3/4, . . . , q−3/4, q1/4, . . . , q1/4),

Zi(L−) = diag(q3/4, . . . , q3/4, q−1/4, . . . , q−1/4),

Zi(L0) = id.

Here diag means the diagonal matrix with the given entries. We then have:

q1/4Zi(L+) + q−1/4Zi(L−) = (q1/2 + q−1/2)Zi(L0).

All the other elementary tangles are the same forL+, L−, andL0, implying the lemma. �

Jones polynomial normalization: Let PL = d(1)−1e−2πi∆1w(L)JL. Then the skein relation be-
comes

qPL+ − q−1PL− = (q1/2 − q−1/2)PL0.

Note thatd(1)−1 is a constant which is thrown in to makePL of the unknot equal to1. Finally, if
we sett1/2 = −q−1/2, then we obtain the originalJones polynomialVL which satisfies the skein
relation

t−1VL+ − tVL− = (t1/2 − t−1/2)VL0.

FS: The way we defined the Jones polynomial is not the most straightforward way. There is a
straightforward combinatorial way due to Kauffman, using Kauffman brackets.

FS: There is a homology theory, calledKhovanov homology, whose (graded) Euler characteristic
gives the coefficients of the Jones polynomial.

24.3. Calculations. The skein relation, together with the normlizationV (unknot) = 1, com-
pletely determines the Jones polynomial for all knots and links. The proof is by induction on the
number of crossings. To give plausibility to this assertion, we compute the Jones polynomial for
several knots and links, with an increasing number of crossings.

1. Let L0 be the union of two unknotsK1, K2, where theKi are contained in disjoint 3-balls.
Applying the skein relation to the links in Figure 10, we obtain

V (L0) =
t−1 − t

t1/2 − t−1/2
= −(t1/2 + t−1/2).

2. If L is the Hopf link given on the LHS of Figure 11, thenV (L) = −t5/2 − t1/2. If L is the Hopf
link given on the RHS, thenV (L) = −t−5/2 − t−1/2.

3. If L is the right-handed trefoil, thenV (L) = −t4 + t3 + t. If L is the left-handed trefoil, then
V (L) = −t−4 + t−3 + t−1.
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L+ L− L0

FIGURE 10

FIGURE 11

Properties of the Jones polynomial:

A. If L1 andL2 are contained in disjoint 3-balls, then

J(L1 ∪ L2) = J(L1)J(L2).

This implies thatP (L1 ∪ L2) = d(1)P (L1)P (L2) andV (L1 ∪ L2) = d(1)V (L1)V (L2).

B. If L is the mirror image ofL (the mirror image is obtained by reflecting the planar diagram
across a line in the plane), thenJ(L) = J(L), where the latter refers to the complex conjugate of
J(L). In terms oft, JL(t) = JL(t−1). This property explains why the mirror images in 2 and 3
above differ by substitutingt by t−1.
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25. TOWARDS THE WITTEN INVARIANT OF 3-MANIFOLDS

25.1. Invariants of embedded trivalent graphs. Although it is not explicitly stated in Kohno’s
book, it appears that there are invariants of embeddings of closed (finite) trivalent graphs. (Trivalent
means all the vertices have three edges.)

Given an elementary tangle as in Figure 12,Zi : V (ti) → V (ti+1) is defined as in Figure 7, where
the labels0, µj, µ

∗
j are changed toν, µ1, µ2, respectively.

ν

µ1 µ2

FIGURE 12

Similarly, if we have an elementary tangle given by the upside-down version of Figure 12, theZi

is given by the projection on the right-hand diagram of Figure 7 (with labelsν, µ1, µ2) onto the
middle diagram of Figure 7 (with labelν instead of0).

Let Nλµν be the dimension of the space of conformal blocksH(p1, p2, p2; λ, µ, ν), which is either
0 or 1, depending on whether the quantum Clebsch-Gordan ruleis satisfied or not.

Lemma 25.1. Zi(A) =
∑

ν Nµ1µ2νZi(B), whereA andB are elementary tangles given in Fig-
ure 13.

µ1 µ2 ν

A B

µ1 µ2

FIGURE 13

Proof. This is straightforward to verify, by taking a basis corresponding to the right-hand diagram
of Figure 7. �

Remark: We must check thatJ (defined similarly as before) of a trivalent graph is independent of
the slicing into elementary tangles and Reidemeister II andIII moves. I have some trouble showing
this.
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25.2. J(L; µ1, . . . , µm). The goal of this section is to give a recursive formula which expresses
J(L; µ1, . . . , µm) in terms ofJ(L; 1, . . . , 1), i.e., the Jones polynomial.

Surgery convention: Given a knotK, take its tubular neighborhoodN(K). Take an oriented
identification of−∂N(K) with T 2 ≃ R2/Z2 so that the meridian ofN(K) (i.e., the nontrivial
curve on∂N(K) that bounds a disk inN(K)) corresponds to±(0, 1) and the longitude (given as
the boundary of the Seifert surface of K) corresponds to±(1, 0). We observe that the longitude
is independent of the choice of Seifert surface, providedK is a knot. (More precisely, we are
choosing the longitude to be the intersection of the Seifertsurface and∂N(K).) With respect to
the identification withR2/Z2, the meridian has slope∞ and the longitude has slope0.

A (p, q)-cable ofK is a knot on∂N(K) which represents a(q, p)-curve with respect to the above
coordinates onT 2. Alternatively, it windsp times around the meridian andq times around the
longitude. For example, an(n, 1)-cable is a pushoff ofK in then-framing direction.

Computation of d(λ): Let us apply this to the(0, 1)-cable of the unknot. See Figure 14.

µ λ νµλ νµλ ν

FIGURE 14

J of the leftmost diagramL equals the sum, over allν, of Nλµν timesJ of any of the other three
diagrams. Rephrasing in terms ofZ, we have:

d(λ)d(µ)Z(L; µ, λ) =
∑

ν

Nλµνd(ν)Z(unknot; ν).

SinceZ(L; µ, λ) = Z(unknot; ν) = 1, it follows that:

(16) d(λ)d(µ) =
∑

ν

Nλµνd(ν).

Lemma 25.2.d(1) = q−q−1

q1/2−q−1/2 , whereq = e
2πi
k+2 .

We will often call [n] = qn/2−q−n/2

q1/2−q−1/2 thequantum integern. Henced(1) = [2].

Proof. Apply the skein relation ofP to Figure 10. Then we have

q · 1 − q−1 · 1 = (q1/2 − q−1/2)d(1) · 1,

sinceP (L) = d(1)−1e−2πi∆1w(L)J(L) andJ(L1 ∪ L2) = J(L1)J(L2) by the previous lecture.�
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Equation 16, together with Lemma 25.2, can be used to recursively computed(λ). One checks that
d(0) = 1. By Equation 16, using the quantum Clebsch-Gordan rule we can write

d(1)d(1) = d(0) + d(2),

providedk ≥ 2. This allows us to compute thatd(2) = [3]. In general, we obtain (with more
work):

Lemma 25.3.d(λ) = [λ + 1].

Reduction toJ(L): Using the same technique of fusing together strands, we obtain the following:

Theorem 25.4.If K1 is the cable ofK0 with respect to the blackboard framing, then

J(K0, K1; λ, µ) =
∑

ν

NλµνJ(K0, ν).

If we takeλ, µ = 1, then we can findJ(K0; 2), etc., using the above formula.

25.3. Dehn surgery. Let K be a knot inS3. The p
q
-surgery onK is the closed (= compact without

boundary) 3-manifold obtained by first removingN(K) ≃ (S1×D2) fromS3 and gluing it back so
that the new meridian has slopep

q
with respect to the coordinates introduced earlier. Our notation

for the resulting 3-manifold isS3
p/q(K). If p

q
∈ Z, then the surgery is called aninteger surgery. If

K is a framed knot, then the framing gives rise to an integer surgery coefficientp
q

= n, and we
often writeS3(K).

Similarly, given a linkL = L1 ∪ · · · ∪ Lm, eachLj is a knot and has a framing coming from its
Seifert surface. We writeS3

(p1/q1,...,pm/qm)(L1, . . . , Lm) for the result ofpj

qj
-surgery alongLj , done

simultaneously on allLj .

Theorem 25.5.Any oriented, closed 3-manifold is obtained by integer surgery on a link inS3.
(The coefficients may be different for different componentsof the linkL.)

Theorem 25.6(Kirby, improved by Fenn-Rourke). Let L and L′ be framed links inS3. Then
S3(L), S3(L′) are diffeomorphic iffL′ is obtained fromL by applying the following moves, called
blowing up/blowing down.

In Figure 15, from the left to the right we areblowing downand from the right to the left we
areblowing up. LetL0 be the unknot with Dehn surgery coefficient±1 which links with strandLj

with surgery coefficientnj . Then blowing down entails removingL0 and replacing it with∓1 full
twists, and further changing the framing ofLj from nj to nj ∓ (lk(L0, Lj))

2.

REFERENCES

[1] R. Gompf and A. Stipsicz,4-Manifolds and Kirby Calculus.
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±1

n1 n2 nl

FIGURE 15. Blowing up/blowing down

26. THE WITTEN INVARIANT OF 3-MANIFOLDS

Today we define theWitten invariantof a closed oriented 3-manifoldM . It is obtained by taking
a suitable linear combination ofJ(L; λ1, . . . , λm), whereL = L1 ∪ Lm is a framed link such that
M ≃ S3(L).

26.1. Some preparation.

Modularity: Let

Sλµ =

√
2

k + 2
sin

(
π

(λ + 1)(µ + 1)

k + 2

)
,

∆λ =
λ(λ + 2)

4(k + 2)
.

Also letc = 3k
k+2

andC = e−πic/4. Then consider the(k +1)× (k +1)-matricesS = (Sλµ), where
λ, µ range from0 to k, andT = diag(e2πi(∆0−c/24), . . . , e2πi(∆k−c/24)).

Proposition 26.1.There is a representationPSL(2, Z) → GL(k+1, C) which sends

(
0 1
−1 0

)
7→

S and

(
1 1
0 1

)
7→ T .

In particular,S2 = (ST )3 = I and henceTSTST = S. This gives us the following equation:

(17) C

k∑

µ=0

SλµSµνe
2πi(∆λ+∆µ+∆ν) = Sλν .

FS: Apparently the representation arises from the modular transformation properties of characters
of representations of affine Lie algebras.

Signature: Let L = L1 ∪ · · · ∪ Lm be a framed link. Note that we need the link to be framed in
order to definelk(Li, Li). The linking number is symmetric, i.e.,lk(Li, Lj) = lk(Lj , Li). Given
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the symmetricm × m matrixA = (lk(Li, Lj)) (called theSeifert matrix), we define thesignature
of L to be

σ(L) = #(positive eigenvalues)− #(negative eigenvalues).

26.2. The Witten invariant. Let M be a closed oriented 3-manifold. IfM = S3(L), then set

(18) Zk(M) = S00C
σ(L)

∑

λ

S0λ1 . . . S0λmJ(L; λ1, . . . , λm).

Here the sum is over allλ : {1, . . . , m} → P+(k) = {0, . . . , k}, andλi = λ(i).

Theorem 26.2.Zk(M) is a topological invariant, i.e., does not depend on the choice ofL such
thatM ≃ S3(L).

A formulation similar to Equation 18 was first given by Reshetikhin-Turaev.

We need to show that the RHS expression in Equation 18 does notchange under blowing up and
blowing down. Let us writeL = L0 ∪ L1 ∪ · · · ∪ Lm, whereL0 is an unknot with±1 framing.

Case 1.SupposeL0 andL1 ∪ · · · ∪Lm are contained in disjoint3-balls, i.e.,L0 is not linked to the
rest.

HW: Show directly thatS3(L0 ∪ · · · ∪ Lm) ≃ S3(L1 ∪ · · · ∪ Lm).

Recall that by Property A in Section 24.3,

J(L; λ0, . . . , λm) = J(L1 ∪ · · · ∪ Lm; λ1, . . . , λm) · J(L0; λ0),

sinceL0 and theL1 ∪ · · · ∪ Lm are contained in disjoint3-balls. SupposeL0 is the+1-framed
unknot. Then

J(L0; λ0) = e2πi∆λ0J(0-framed unknot; λ0) = e2πi∆λ0d(λ0) = e2πi∆λ0
S0λ0

S00
.

HW: Verify thatd(λ) = S0λ

S00
.

Next we compare signatures. LetA = (lk(Li, Lj)) wherei, j = 1, . . . , m. Then the Seifert matrix
for L0 ∪ · · · ∪ Lm is diag(1, A). Hence

σ(L0 ∪ · · · ∪ Lm) = σ(L1 ∪ · · · ∪ Lm) + 1.

Hence,

S00C
σ(L0∪···∪Lm)

∑

λ

S0λ0 . . . S0λmJ(L; λ0, . . . , λm)

= S00C
σ(L1∪···∪Lm)+1

∑

λ1,...,λm

S0λ1 . . . S0λmJ(L; λ1, . . . , λm)
∑

λ0

S0λ0e
2πi∆λ0

S0λ0

S00
.
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Hence, to show the invariance we need:

C
∑

λ0

S0λ0

S0λ0

S00
e2πi∆λ0 = 1,

which follows from Equation 17 by settingλ = 0, ν = 0, µ = λ0.

Case 2.Suppose the Seifert surface ofL0 (a disk) has nontrivial intersection with onlyL1 and they
intersect in only one point.

L1 ∪ · · · ∪ Lm L1 ∪ · · · ∪ Lm

FIGURE 16. Chopping and rearranging

As shown in Figure 16, we divide the linkL0 ∪ · · · ∪ Lm on the left-hand side into two tangles,
and complete the two tangles by attaching half of an unknot (with 0 framing) to each.

We have

J(L0 ∪ · · · ∪ Lm; λ0, . . . , λm) =
J(L1 ∪ · · · ∪ Lm; λ1, . . . , λm) · J(H ′; λ0, λ1)

J(0-framed unknot; λ1)
.

HereH ′ is the Hopf link with framings+1 and0. (Prove the above relation!)

Fact: If H is the Hopf link with framings0, 0, thenJ(H ; λ, µ) =
Sλµ

S00
.

This can be verified by viewing the Hopf link as a cable of the unknot. Hence,

J(H ′; λ0, λ1) = e2πi∆λ0J(H ; λ0, λ1) = e2πi∆λ0
Sλ0λ1

S00

.

Since

J(0-framed unknot; λ1) =
S0λ1

S00

,

it follows that:

J(L0 ∪ · · · ∪ Lm; λ0, . . . , λm) = J(L1 ∪ · · · ∪ Lm; λ1, . . . , λm)

(
e2πi∆λ0

Sλ0λ1

S00

)(
S00

S0λ1

)
.
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Also observe that, after blowing down, the new link isL′
1 ∪L2 ∪· · ·∪Lm, where ifL0 has framing

+1 andL1 has framingn1, thenL′
1 is L1 with framingn1 − (lk(L0, L1))

2 = n1 − 1. Hence

J(L′
1 ∪ · · · ∪ Lm; λ1, . . . , λm) = e−2πi∆λ1J(L1 ∪ · · · ∪ Lm; λ1, . . . , λm).

Next we consider Seifert matrices. LetA = (aij) be the Seifert matrix forL1 ∪ · · · ∪Lm. Then the
Seifert matrices forL′

1 ∪ · · · ∪ Lm andL0 ∪ · · · ∪ Lm are (respectively):

A′ =




a11 − 1 a12 . . .
a21 a22 . . .
...

...
. . .


 , A′′ =




1 1 0 . . .
1 a11 a12 . . .
0 a21 a22 . . .
...

...
...

. . .




HW: Verify thatσ(A′′) = σ(A′) + 1. (Hint: A change of coordinates forA′′ is helpful.)

Finally, the following equality (a special case of Equation17) gives the result.

C
∑

λ0

S0λ0Sλ0λ1e
2πi∆λ0 = S0λ1e

−2πi∆λ1 .

Case 3. Suppose there the Seifert surface ofL0 has multiple intersections withL1 ∪ · · · ∪
Lm. In that case, we fuse together two strands. Refer to Figure 17. ThenJ(LHS) is equal to∑

ν Nνλ1λ2J(RHS), whereν is the label of the new edge which intersects the Seifert surface ofL0,
andλ1, λ2 are the labels of the strands that are fused together. By induction, we reduce to Case 2.

FIGURE 17. Fusing together strands

26.3. Properties ofZk(M).
(1) Zk(S

3) = S00, sinceS3 is given by the empty knot.
(2) SinceS1 × S3 is given by0-surgery on the unknot inS3,

Zk(S
1 × S3) = S00

∑

µ

S0µ
S0µ

S00
=
∑

µ

(S0µ)
2 = 1.

(The last equality follows fromS2 = I, whereS is the matrix given earlier.)
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(3) If M1#M2 is theconnected sumof M1 andM2, then

Zk(M1#M2) =
1

S00
Zk(M1) · Zk(M2).

HereM1#M2 = (M1−B3)∪ (M2 −B3) where∂B3 from M1 is identified with∂B3 from
M2 via a diffeomorphism.

(4) If −M is M with reversed orientation, then

Zk(−M) = Zk(M).
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27. REPRESENTATIONS OF MAPPING CLASS GROUPS

27.1. Mapping class groups.Let Σ be a closed oriented surface of genusg. Denote by Diff+(Σ)
the group of orientation-preserving diffeomorphisms ofΣ. We now put an equivalence relation
on Diff+(Σ). Two h, h′ ∈ Diff +(Σ) are equivalent (h ∼ h′) iff there exists a smooth mapH :
Σ × [0, 1] → Σ such thatHt(x) = H(t, x), Ht : Σ → Σ is a diffeomorphism, andH0 = h,
H1 = h′. We say thath andh′ areisotopic.

Define themapping class groupto beMap(Σ) = Diff +(Σ)/ ∼. We usually blur the distinction
between diffeomorphisms and equivalence classes of diffeomorphisms.

Fundamental Example:Let γ be a homotopically nontrivial simple closed curve onΣ. A positive
Dehn twistis an element of Diff+(Σ) which is the identity outside an annular neighborhoodN(γ)
of γ. OnN(γ), cutN(γ) alongγ and reglue after doing one full twist along one of the (cut-open)
copies ofγ, as given in Figure 18. We denote the positive Dehn twist along γ by Rγ . (If you are
looking towardsγ onΣ, then an arc will be sent “to the right” after the positive Dehn twist.)

γ

FIGURE 18. A positive Dehn twist

Theorem 27.1(Lickorish-Humphreys). Map(Σ) is generated by (positive) Dehn twists aboutαi,
βi, δ given in Figure 19.

α1 α2

αg

δ

β1
β2

FIGURE 19. Generators of the mapping class group
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27.2. Heegaard splittings. Any closed oriented 3-manifoldM admits a decompositionM =
H1 ∪ H2, whereHi are handlebodies. AhandlebodyH of genusg is a compact 3-manifold with
boundary which is bounded by a closed surfaceΣ of genusg insideR3. Equivalently,H can be
given as a tubular neighborhood (insideR3) of a bouquet ofg circles.

If H1 = H, H2 = −H (by this we mean take two copies ofH with opposite orientations), then
we can identify∂H1 = ∂H with −∂H2 = ∂H via the diffeomorphismh : ∂H

∼
→ ∂H. The

diffeomorphism type ofM only depends on[h] ∈ Map(Σ), whereΣ = ∂H.

HW: Show that ifh = id, thenM is the connected sum ofg copies ofS1 × S2.

h = id corresponds to the following link diagram:

0 0 0

FIGURE 20. 3-manifold corresponding toid ∈ Map(Σ)

The top and bottom graphs areΓ′ andΓ, respectively.H1 is the thickening ofΓ andH2 is the
thickening ofΓ′. We are surgering along three unknots with framing0 which lie in disjoint3-balls.
One can check that the complement ofΓ∪Γ′ in S3, after surgery, isΣ× [0, 1], whereΣ is a closed
surface of genusg.

If h = Rα1 , Rα2 , or Rβ1, then we have the link diagram:

α1 α2

β1

FIGURE 21. 3-manifolds corresponding toRα1 , Rα2 , Rβ1 ∈ Map(Σ).
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Each link diagram is obtained from the link in Figure 20 by adding a(−1)-framed unknot, labeled
α1, α2, α3, respectively, in Figure 21.

HW: What aboutRδ?

27.3. The TQFT representations ofMap(Σ).

The vector space:Define the complex vector spaceVΣ to be the vector space generated by label-
ings of the uni/trivalent graphΓ given below. The edges on the left and on the right have labelings
0, and at each trivalent vertex the levelk quantum Clebsch-Gordan rule must be satisfied.

0 0

µ1 µ2 µg

FIGURE 22. The graphΓ.

We can alternatively writeVΣ as a direct sum, overµ1, µ
∗
1, . . . , µg, µ

∗
g ∈ P+(k) = {0, . . . , k}, of

the space of conformal blocks

Vµ1µ∗
1...µgµ∗

g

def
= H(0, p1, . . . , p2g,∞; 0, µ1, µ

∗
1, . . . , µg, µ

∗
g, 0).

(We can think of cuttingΓ along the edges with labelingsµ1, . . . , µg so it becomes a tree.)

Fact: dim VΣ =
∑

λ∈P+(k)

(
1

S0λ

)2g−2

.

The morphisms: If h is one of the generatorsRαi
, Rβi

, Rδ of Map(Σ), then consider the corre-
sponding tangleT (h) given in Figure 21. IfΓ has labelsµ1, . . . , µg andΓ′ has labelsν1, . . . , νg

(these are the labels on the semicircular edges), then consider

J(T (h); λ)µν : Vµ1µ∗
1...µgµ∗

g
→ Vν1ν∗

1 ...νgν∗
g
.

Then define
ρ(h) : VΣ → VΣ

by ρ(h) = ⊗µνρ(h)µν , where

ρ(h)µν =
√

S0µ1 . . . S0µg

√
S0ν1 . . . S0νgC

σ(L(h))
∑

λ

S0λ1 . . . S0λmJ(T (h); λ)µν ,

whereλ is the set of all labelings (with values inP+(k)) of the link components.

Theorem 27.2.ρ : Map(Σ) → GL(VΣ) is a projective representation.

For aprojective representationρ, ρ(h1h2) 6= ρ(h1)ρ(h2) but instead

ρ(h1h2) = ξ(h1, h2)ρ(h1)ρ(h2),

whereξ(h1, h2) = Cσ(h1h2)−σ(h1)−σ(h2).
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Let us consider what happens when you stack two tanglesT (h1) andT (h2) (T (h1) belowT (h2)).
It is easy to see thatρ is a projective representation. (HW: verify this!) What seems a little strange,
however, is that if we stack two “elementary” tangles corresponding to one of the Dehn twist
generators, then the lower semicircles fromT (h1) and the upper semicircles ofT (h2) glue to give
0-framed unknots. All of a sudden new unknots appears into thesurgery picture! Upon further
inspection, this turns out to be quite natural:

Fact: T (h1h2) representsM = H ∪h1h2 (−H). (Hint: there is a way to cancel certain chains of
0-framed unknots.)

We end this lecture with an important fact:

Fact: Supposevλ is an element ofVΣ corresponding to a labeling ofΓ in Figure 22. Lete be an
edge ofΓ andC(e) be a curve which is the meridian corresponding toe for the thickening ofΓ.
Then:

ρ(RC(e))(vλ) = e2πi∆λ(e)vλ.
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28. CHERN-SIMONS THEORY

In this lecture, we briefly describe the original way Witten’s invariant for 3-manifolds was de-
fined (using path integrals).

28.1. Connections on principal bundles. Let M be a compact oriented 3-manifold. LetG be a
Lie group andg be its Lie algebra. For simplicity we setG = SU(2). Some of the discussion
below will be valid for arbitraryG, and others will depend onG = SU(2).

Let P be a principalG-bundle overM . A principal G-bundle admits aright G-action and a
local trivializationπ−1(U)

∼
→ U × G, where the identification commutes with theG-action. Here

π : P → M is the projection. One can show that ifG = SU(2), thenP is trivial, i.e.,P ≃ M ×G.

Next, a connectionω is a 1-form onP with values ing which satisfies the following:

(1) ω(p)((ip)∗ξ) = ξ, if p ∈ P andξ ∈ g;
(2) R∗

gω = Ad(g−1)ω.

HereRg : P → P is right multiplication byg, i.e., p 7→ pg, andip : G → P is the inclusion
p 7→ pg. If condition (1) reminds you of the Maurer-Cartan form, youare right: ifP = M × G,
then, with respect to the second projectionπG : M ×G → G, the Maurer-Cartan formµ onG gets
pulled back to a connection 1-formπ∗

G(µ) onP .

It is possible to pushω down toM by taking the difference with a fixed connection, sayω0 =
π∗

G(µ). ThenA = ω − ω0 ∈ Ω1(M ; g). We writeAM = Ω1(M ; g) for the space ofG-connections
onP = M × G.

Now, we define thegauge groupGM to be the set of mapsg : M → G. Hereg acts onP by right
multiplication. If g ∈ GM , then

(19) g∗A = g−1Ag + g−1dg.

(Observe that this is similar to the gauge change for affine connections, discussed earlier.)

FS: For more information on principalG-bundles and their connections, refer to my second se-
mester differential geometry (Math 535b) notes, availablefrom my website.

28.2. The Chern-Simons functional. TheChern-Simons functionalis a function:

CS : AM → R,

A 7→
1

8π2

∫

M

Tr(A ∧ dA +
2

3
A ∧ A ∧ A).

FS: We briefly mention Chern-Weil theory. Given a connectionA onP , one can construct charac-
teristic classes out of the curvatureFA = dA+A∧A by takingωk = Tr(F k

A). It can be shown that
dωk = 0 and[ωk] ∈ H2k(M ; R) does not depend on the choice of connectionA. The integrand of
the Chern-Simons functional is supposed to be a primitive ofTr(FA ∧ FA).
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Lemma 28.1.Suppose∂M = ∅. Then the critical points ofCS are flat connections, i.e., connec-
tionsA such thatFA = 0.

Proof. At a critical point A ∈ A all directional derivatives

lim
t→0

CS(A + ta) − CS(A)

t
= 0,

wherea ∈ TAA = Ω1(M ; g). (Note that what we are trying to do is an analog, in infinite dimen-
sions, of exploring the topology of the space by looking at the critical points of a Morse function.)

Using the invariance of the trace under cyclic permutationTr(a1a2a3) = Tr(a3a1a2), whereai

aren × n matrices, and ignoring terms which are quadratic or higher in t, we compute that:

lim
t→0

CS(A + ta) − CS(A)

t
=

1

8π2

∫

M

Tr(a ∧ dA + A ∧ da + 2a ∧ A ∧ A)

=
1

8π2

∫

M

2 · Tr(a ∧ (dA + A ∧ A)).

Here,d(Tr(A ∧ a)) = Tr(dA ∧ a) − Tr(A ∧ da) and
∫

M
d(Tr(A ∧ a)) = 0 (sinceM is closed),

so
∫

M
Tr(A ∧ da) =

∫
M

Tr(a ∧ dA).

Sincea was arbitrary,FA must equal zero at a critical pointA. �

One can similarly compute:

Lemma 28.2.Suppose∂M is not necessarily empty. Then

CS(g∗A) = CS(A) +
1

8π2

∫

∂M

Tr(A ∧ dgg−1) −

∫

M

g∗σ.

Hereσ is the 3-form onG = SU(2) given by 1
24π2 Tr(µ∧µ∧µ), andµ is the Maurer-Cartan form

onG. (Recall[σ] ∈ H3(SU(2); Z) is the generator.)

HW: Prove the lemma!

Observe that the last term is the Wess-Zumino term.

If ∂M = ∅, then the boundary term drops out, and

CS(g∗A) = CS(A) −

∫

M

g∗σ.

Notice
∫

M
g∗σ ∈ Z since it is the pullback of an integral class ofG. HenceCS is a function

CS : AM/GM → R/Z.

It also makes sense to writee2πiCS([A]), where[A] ∈ AM/GM .
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28.3. The path integral. Just as for the WZW model, consider the Feynman path integral:

Zk(M) =

∫

AM /GM

e2πikCS(A)dµ.

(Herek is the level.) Cut a closed oriented 3-manifoldM along an oriented surfaceΣ so that
M = M1 ∪ M2, ∂M1 = Σ, ∂M2 = −Σ.

We construct a line bundle overAΣ/GΣ in much the same way as before. Extenda ∈ AΣ to
A ∈ AM1 and considere2πiCS(A). Also, giveng ∈ GΣ, extend tõg ∈ GM1 . If we define

c(a, g) = e2πi(CS(g̃∗A)−CS(A)) = e
2πi[ 1

8π2

R
Σ a∧dgg−1−

R
M1

g̃∗σ]
,

thec(a, g) does not depend on the extensionsA andg̃ toM1. Now take the trivial bundleAΣ×C →
AΣ and quotient out by the equivalence relation:(a, 1) ∼ (g∗a, c(a, g)).

Now, Aσ/GΣ is still infinite, so we further restrict to the space of flat connections onΣ. The
quotient of the space of flat connections onΣ by GΣ will be denotedMΣ, and will be called the
moduli spaceof flat connections onΣ. It is equivalent toHom(π(Σ), G)/G, and can be given
the structure of a complex manifold. Also, the restriction of the above line bundle toMΣ will be
writtenLΣ, and is a holomorphic line bundle. Thek-fold tensor power ofLΣ will be writtenL⊗k

Σ .

The space of holomorphic sectionsΓ(L⊗k
Σ ) is called thequantum Hilbert spaceof levelk.

FS: The quantum Hilbert space of levelk is isomorphic to the space of conformal blocks of level
k. (See Beauville-Laslo,Conformal blocks and theta functions.)

If L = L1 ∪ · · · ∪ Lm is a link in a 3-manifoldM , then assign a representationVj of G to each
componentLj . Let WLj ,Rj

(A) be the trace of the holonomy ofA aroundLj . Then Witten’s
invariant is given by:

Zk(M ; L1, . . . , Lm) =

∫
e2πikCS(A)

m∏

j=1

WLj ,Rj
(A) dµ.


