NOTES FOR MATH 635: TOPOLOGICAL QUANTUM FIELD THEORY

KO HONDA

The goal of this course is to define invariants of 3-manifaldd knots and representations of the
mapping class group, using quantum field theory. We willdi@lKohno,Conformal Field Theory
and Topologysupplementing it with additional material to make it moceessible.

The amount of mathematics that goes into defining theseianaris rather substantial (espe-
cially for the geometric approach that we will be taking)dave will spend a considerable amount
of time on the preliminaries.

HW will denote “homework”, whereaBS means “further study”, indicating that one can spend
some time learning this topic.

1. LIE GROUPS ANDLIE ALGEBRAS

1.1. Lie groups. In this course, manifolds are assumed to be smooth, unldgsated otherwise.

Definition 1.1. A Lie groupis a manifold equipped with smooth mgps G x G — G (multipli-
cation) andi : G — G (inverse) which give it the structure of a group.

Examples: Let M,,(K) be the space of x n matrices with entries in the base field = R or C.
(1) GL(n,K) ={A € M,(K)|det A # 0}.
(2) GL(V) = { K-linear isomorphism§& — V'}, whereV is a vector space ovét .
() SL(n,K) ={A € M,(K)|det A =1}.
(4) U(n) = {A € M,(C)|AA* = id}. Here theadjoint A* is (A)T (the conjugate transpose
of A).
(5) SU(n) =U(n)NSL(n,C).

Example: U(n). If we write A = (a;;) and write outdA* = id, then} a;;ax; = d;, and hence
the row vectors form anitary basisor C".

d

. (a@a+bb ac+bd\ (1 0
@ A4 _(ca+d5 c5+d8)_<0 1)

In addition, we haved — bc = 1.

Example: SU(2). Let us write outAA* = id. Here A = ( CCL b ) . Then

HW: Prove thatSU(2) is diffeomorphic taS?.
1
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Definition 1.2. ALie subgroupof GG is a subgroupd which is at the same timesubmanifoldsuch
that H is a Lie group with respect to the induced smooth structure.

Definition 1.3. A Lie group homomorphisns a group homomorphisi : G — H which is also
a smooth map of the underlying manifolds.

Definition 1.4. Let V' be a vector space ovét = R or C, and letG be a Lie group. Then aie
group representation: G — GL(V) is a Lie group homomorphism, i.e(gh) = p(g)p(h).

Zen: We can pretend that every Lie group is a matrix group. Eveeygroup admits a representa-
tion with a0-dimensional kernel.

1.2. Left-invariant vector fields and 1-forms. A Lie groupG has a left action and a right action
onto itself: Letg € G. Then
L,:G—G,¢d — gqg.
R,:G—G,d — 4y
Definition 1.5. A vector fieldX (defined globally) orG is left-invariantif (L,).X = X for all
g € G. Al-formw on G is left-invariantif L;w = w forall g € G.

We denote the vector space of left-invariant vector fieldstyand the vector space of left-
invariant 1-forms by0)..

Proposition 1.6. X, ~ T,G as vector spaces. Hendén X5 = dim G.

Proof. Lete € G be the identity. We propagatec 7.G usingL,, g € G. Recall that a tangent
vectorv € T,G corresponds to an equivalence class of smoothaist € (—¢,¢), v(0) = e.
Then(L,).v corresponds tgv(t). We therefore define the vector field:

Xou(g) = g7(t).
Then clearly((L,).X,)(¢") = g(g~'g'7(t)) = g'7(t). Hence,
dimXgs =dim7,G = dimG.
O

Example: O(n). ThenT;O(n) is the set of skew-symmetric matrices. We wrjtg) € 7;0(n)
as:vy(t) = I + At, where we do all the computations modido Then:
I = =T+ A)I + ATe)
= I+ (A+ AN
Henced = —A7. Sincedim O(n) = @ anddim of the set of skew-symmetric matrices
n(n—1)

=%—,T;O(n) is indeed the set of skew-symmetric matric€s,,) = { Xa|A € skew-symmetric matricgs

whereX,(B) = BA, B € O(n).
Example: SL(n,R). ThenT;SL(n,R) = {traceless matricés
Similarly, we have, ~ T G.
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1.3. Lie algebras.

Definition 1.7. A Lie algebrag over K = R or C is a K -vector space together withlae bracket
[,] : 9 X g — g satisfying the following:

(1) [,]is bilinear,

(2) (skew-symmetrid)X, Y| + [V, X] =0,

(3) (Jacobiidentity)[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

Example: Let M be a manifold and(1/) be theC* vector fields onV/. The Lie bracketX, Y]
makesX (M) into an infinite-dimensional Lie algebra.

We now define the Lie algebggassociated to a Lie group. As a vector spaceg,~ 1.G ~ Xg.
The Lie bracket or¥ is inherited from that of¢(G) (Lie bracket of vector fields). We need to
verify the following:

Lemmal.8.[]: Xg x Xg — Xg,i.e.,if XY € Xg, then[ X, Y] € Xg.
Proof. We use the fact that.[X, Y] = [¢.X, ¢.Y], where¢ : M — M is a diffeomorphism and
X,Y € X(M). (Check this!)

Then,(Ly).[X, Y] = [(L,).X, (Ly).Y] = [X,Y]. 0
Remark: We will often writeg = Lie(G).

For matrix groups, i.e.G7 C GL(V), we haveX; = {X4|A € T.G}, whereX4(g) = gA.
Therefore,

= AB — BA.

(X0, Xp](I) = tim LESATH1B) = T+ LB + 54)

s,t—0 st

Examples: In the following, the Lie bracket is always\, B] = AB — BA.

Lie group | Lie algebra

GL(n,K) | gl(n, K) = End(K"), K =RorC
O(n) o(n)= skew-symmetric matrices
U(n) u(n)= skew-hermitian matrices

SL(n,R) sl(n, R)= traceless matrices

Example: An abelianlie algebrat™ is K with bracket|.X, Y] = 0 forall X,Y € t".

Definition 1.9. A Lie subalgebrd of a Lie algebrag is a vector subspace which is closed under
[,]. ALie algebra homomorphisi: g — b is a bracket-preserving linear map, i.e([X,Y]) =
[6(X), ¢(Y)]. ALie algebra representatiosia Lie algebra homomorphism: g — gl(V).

1.4. Adjoint representation. We define a Lie group representatidid : G — GL(g), where
g = Lie(G), as follows: Think ofg ~ 7.G. Then, fora € G, Ad(a) = (R,-10L,). : T.G — T.G.
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We must show thatid(a) is indeed inGL(g). This is immediate, sincdd(a™") is the inverse
of Ad(a).
Remark: Here we are viewing simply as a vector space.
Example: G = GL(n,R). Ad(A) : T;G — T;G is given by
T+tX — Al +tX)A =T +tAX A
where we are viewing € 7.G as an arc irGG throughl. In other words X +— AX AL,

We can differentiate any Lie group homomorphism at the idetd get a Lie algebra homomor-

phism. Therefore, there is also an infinitesimal versioAéf G — G L(g), that is,ad L Ad,(e).
On the Lie algebra level, we have:

ad : g — gl(g).
Example: Let G be a matrix group. Then we claim that
Ad: G — GL(g),
A [X — AXATY.
If we write A = I +tY, thenAd(A) maps (up to first order ir):
X I+tWXT+tY) ' =T +tY)X(I —tY) =X +t[Y, X].
Taking derivatives, we gét — [Y, X]. Therefore,
ad : g — gl(g),
Y- [X—[Y,X]].
REFERENCES

[1] Fulton-Harris, Representation TheoryGood for the first several lectures on representations!(@f C) and
5((3,C).)
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2. REPRESENTATIONS OKl((2,C)

Today’s goal is to work out the (finite-dimensional) irrethle representations gf = s((2, C).
A representatiop : g — gl(V) isirreducibleif it has no nontrivial & 0 or itself) subrepresenta-
tionsW C V (i.e., subspaces which are invariant unglerWe will be working over the complex

numbers.
1 0 01 00
i=(o 4)E=(00) 7= (Vo)

Take a basis:
Observe that{ is diagonal,F is strictly upper triangular, anff is strictly lower triangular. Then
we have the equations:

) [H,E) =2E,[H,F] = —2F,[E, F] = H.

2.1. The adjoint representation. We first study the adjoint representatios : g — gl(g). ad :
X — ad(X), wheread(X) : Y — [X,Y].

HW: Verify thatad is a Lie algebra representation, i.ed([X,Y]) = [ad(X), ad(Y)]. Hint: this
follows from the Jacobi identity.

In the expressiogl(g), it's best to viewV = gasV_, & V, @ V;, whereV_, = CF, V, = CH,
andV, = CE. The structure equations imply that all thé are eigenspaces afl(H), since
ad(H)(E)=[H,E]=2F,ad(H)(H) = [H,H] =0,andad(H)(F) = [H, F| = —2F.

Also note thatud(E) isomorphically maps’_, = Vg, Vo = V. Similarly, ad(F) isomorphically
mapsV, — Vp, Vo — V.
Lemma 2.1. The adjoint representation is irreducible.

Proof. Letv € V. Then we can write» = aF' + bH + cE. If a # 0, thenad(E)(v) = aH — 20F
and(ad(F))*(v) = —2aE. These three vectors clearly span alllof If « = 0, then we need to
usead(F")’s as well, but the proof is similar. O

2.2. General case.Letp : s[(2,C) — gl(V) be a (finite-dimensional) irreducible representation.
We will extensively use Equation 2. #f€ V and X € g, then we will write X v to meany(X)(v).
This way we’re thinking ofl” as a leftg-module.

Letv € V be an eigenvector aff with eigenvalue\. (Every endomorphism df” has at least
one eigenvector.)

Lemma 2.2.If Hv = \v, thenH (Ev) = (A + 2)(Ev) and H(Fv) = (A — 2)(Fv), i.e., Ev and
Fv are also eigenvectors df with eigenvalues + 2 and XA — 2, respectively.

Proof. By Equation 2,
H(Ev) = EHv+ 2Ev = E(\) 4+ 2Ev = (A + 2)(Ewv).
The expression foff (F'v) is similar. O
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Let v be the eigenvector aff with the largest eigenvalue. Such an eigenvect called the
highest weight vectoiThenEv = 0, sinceEwv, if nonzero, would have a larger eigenvalue. Starting
with 1V, = Cv, we takely_,; = CF. (F'v has eigenvalug — 2i.) Note thatV,_,;, = 0 for some
k. LetW = &f V).

Lemma 2.3. IV is a subrepresentation 6f.

Proof. It suffices to show that’ : W — W, sinceF and H clearly maplV to itself. We have the
following:
Fv =0,
E(Fv) = FEv+ Hv = Mv,
E(F?v) = FE(Fv) + H(Fv) = F(Ov) + (A = 2)Fv = [(\) + (A — 2)] Fv.
In general,
(3) E(Fv)={N)+XA=2)+ -+ A=20—-1)} Flv=\—i+1)iF v

SinceV is irreducible, it follows thal/ = W = @1V, _y,.
Also, observe that/(Fv) = \v implies thatF'v # 0 unless\ = 0; E(F?v) = (A + (A — 2))Fv
implies thatF?v # 0 unless\ = 1; etc. In particular:

(1) A must be a positive integer fof to be finite-dimensional.
(2) Moreover, the only opportunity fdr to be finite-dimensional is #**!v = 0.

Putting these together, we have the following theorem:
Theorem 2.4. The irreducible representations sf(2, R) are parametrized by a positive integer

k € Z. For eachk, the representatiofy’ ~ C* decomposes into 1-dimensional eigenspagesf
H,andV =V, &V, B+ B Vi3 ® Vi_1.

Remark: We still haven’t shown that these representations reallst ex

2.3. Tensor products and duals. Given representations, : g — gl(V') andpw : g — gl(W),
we can construct thetensor products follows:

pvew - g — gl(V @ W),

pvew (X) v @w — (pv(X)(v) @ w+0 & (pw (X)(w)).
Since the tensor product of Lie group representations aat@dally and the Lie algebra represen-
tations are derivatives of those, the Leibniz rule is in@ffe
Given the representation, : g — gl(V), we define thedual representation as follows: Let
V* = Homg(V,C)and(,) : V* x V — C be the natural pairing. IX € g, { € V*,n € V, then
we define a righgy action by(¢ X, n) = (£, Xn). Then we set

§(X)(€) = —€X.
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HW: Verify that this indeed gives a Lie algebra representation.
HW: Prove that the dual representatiorptos((2, C) — gl(V) is isomorphic t itself.

Notation Change: From now on,V, will be the finite-dimensional irreducible representatain
s[(2, C) with highest weight\. Let V' = V}, the standard representatipn s((2,C) — gl(2,C).
This is irreducible. Then
VeaVeV=VoVeWh,
VeaVeVeV=Vo3V,o2V.

HW: Decomposé/®" in general.

In particular, the representatiois for A = 0, 1,2, ... are all constructed as subrepresentations of
yen,
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3. DAy 3

3.1. Clebsch-Gordan rule. Let V, W be g-modules. TherHomy(V, W) denotes they-linear
homomorphism® : V' — W. This means thap is aC-linear map and(Xv) = X¢(v) for all
X eg.

Lemma 3.1(Schur's Lemma) Given finite-dimensional irreducibigmodules/” and W,
Homy(V,W)~C
iff V' ~ W asg-modules. Otherwisé{ omy(V, W) =~ 0.

Proof. Given a nontriviakp : V' — W, bothker ¢ and¢(V') areg-modules. This is not possible
unlessker ¢ = 0 and¢ is onto, sincé/ andW are irreducible. Hence is an isomorphism.

We will now show that there is only onglinear isomorphisng : V' — V', namely a multiple of
the identity. Sincé/ is finite-dimensional, there is a nonzero veator V' satisfyingo(v) = Av.
Now, ¢ — X\ - id has nontrivial kernel, sinceis in it. SinceV is irreducible,V = ker(¢ — \ - id)
and¢ = \ - id. O

Now considefg = s((2,C).

Theorem 3.2(Clebsch-Gordan rule)d omg4(V; ® V; ® Vi, C) ~ C iff the following hold:
(1) i+ j + kis even;
Q) i<j+kj<k+ik<i+].

Observe that, sincg* = V; for s((2, C),
Homy(V, @ V; @ Vi, C) >~ Homy(V; @ V;, V') =~ Homy(V; @ V;, V).

In other words, we are asking whether there is a unique faiftd#, inside the tensor product
Vi@ V.

lllustrative Example: Vs @ V; ~ Vis @& Vip @ Vi ® Vs @ V, & Vs, Hence
Homyg(Vs @ Vs ®V;,C) ~C
iff £ =2,4,6,8,10,12, which is consistent with the Clebsch-Gordan rule.

Suggestive Notation:We draw a trivalent (directed) graph with one vertex anddledges. Two
of the edges (labeledand) are incoming and one edge (labeleds outgoing. It is supposed to
suggest particle interaction.

HW: Do the same foHomy(V; ® V; ® V, ® V;, C).

3.2. SL(3,C). We will now study the finite-dimensional irreducible repgatations ofy = s((3, C).
Let E;; be then x n matrix with 1 in theij-th position and) elsewhere.

We first examine the adjoint representation.
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Decomposel(3,C) intoh @& n, ® n_, where
b = C{Ell - E22> E22 - E33}7
ny = C{E, Eas, E13},
n_ = C{Ey, Esy, E31 }.
Hereh consists of the diagonal matrices, consists of the strictly upper triangular matrices, and
n_ consists of the strictly lower triangular matrices.

Consider the action df onsl(3, C) via the adjoint actionp is killed by ad(h) andh acts (simul-
taneously) diagonally osi(3, C).
We compute that

ad(Eyy — Ex) 1 b0, Eip — 2B, By — —Eas, B3+ Ei3,
and

ad(Ey — Es3) 1 b= 0, E1g — —Eyg, Eog — 2Es3, Ey3 — Ey3.
(The calculations fon_ are similar.)
Now let h* be the dual ofy. If L; maps the diagonal matrikiag(ay, as, a3) to a;, thenh* =
C{Ly, Ly} = C{Ly, Ly, Ls}.
We verify that, onC{ E»},

ad(H)(Elg) = (Ll - L2)<H) : E127

for all H € h*. In other wordsC{F.} is the one-dimensional eigenspace on wHjchcts by
Ly — Ly € h*. We writeg,, 1, for C{E}»}. Thereforeg admits a decomposition

g=bho <@Li—ngLi—Lj>>
where the sum is over all# j andg;, 1, = C{Ej;}.
Diagram for the roots: We can draw a diagram which represents the configurationads rio

h* = R2. Usually, we takeL;, Lo, L; to be at the third roots of unity (iR> ~ C). (See, for
example, Fulton-Harris for pretty diagrams.)

h is called theCartan subalgebraln general, for a semisimplge b is the maximal abelian subal-
gebra consisting of semisimple elementsgemisimple =ud(X) : g — g is diagonalizable). The
elements.; — L; € h* are calledoots g, ., is theroot spacecorresponding to the rodt; — L;.
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4. MORE ONsl(3,C)-REPRESENTATIONS

Let V' be a finite-dimensional, irreducibé& 3, C)-module. Much of what we say will generalize
readily to other semisimple Lie algebrgs

Fact (without proof): V' can be simultaneously diagonalized under the actian of

We write V' = @V, whereV,, is the eigenspace for whiehe V), satisfiesHv = A\(H) - v for all
H € b, and) runs over a finite subset f. The A for which V,, # 0 are called thaveights The
corresponding/, are theweight spaces

Lemma 4.1. g, mapsV, to V) ,.

Proof. If v € V), then for example we have:
HE12U = E12HU + [H, Elg]’U = )\(H)Elg'l} + (Ll — LQ)(H) (Elg’l}) = ()\ -+ (Ll — Lg))(H) (Elg’l}).
O

SinceV is finite-dimensional, by successively applying elemefits,0= C{ 13, Ea3, E13}, we
eventually obtain a nontrividly, which is annihilated by, . (Remark: Ifv is annihilated by the
first two, then it is also annihilated by the last.)

A is then thehighest weighaindv € V), is the highest weight vector.

Fact: A highest weight vector generates an irreducible representation by successigplyiag
elements im_ = C{FEy, E3y, E51 }. (You don’t need elements in, .)

Proof. One needs to generalize the following arguméntv = 0 and
Er9Eyv = Ey Epv + [Eg, EyiJv = 0 + Higv = A(Hi2)v,

whereH, = Eyy — Ey = [E19, E91]. In general, given a wortd” in n_ and 5 € n,, say, we
use the commutation relations to prove tlhat 1 v can be written as$l’v for some wordi?’’ in
n_ by induction. O

Claim. The distribution of\’s in h* corresponding to weights is symmetric about the lines (=hy-
perplanes)ng = {Oé € b*| Oé(ng) = 0}, Qo3 = {Oé € [)*| Oé(HQg) = 0}, andng = {Oé €

b*| Oé(ng) = 0}

Proof. As usual, we will treat a special case. Start with a highesgkevectorv € V, and

successively apply,;. Observe that;,, F»; and Hy, generate arl(2,C) — sl(3,C). Hence,
the string

VA ® Vao(ni—12) ® Vaco(n—1,) ® - ..
must be al(2, C)-representation and the values
{AMHi2), (A= (L1 — L2))(Hi2) = M(Hi2) = 2,... }
must be a set of integers which are symmetric albout
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Also observe that
Ey3Eqyv = Eo Eoygv + [Eag, Eoy|v =0,

since Fy3v = 0 by the highest weight condition. Similarlyyi; >0 = 0. This implies that
v, Ey1v, E2,v, etc. form an edge of a polygdd which delineates the weights of. O

Remark: ;5 is spanned by.; + L,. We can verify that.; + L, is orthogonal tal,; — L, with

respect to the Killing form, described below. Hence, reftett aboutl,; + L., L, + L3, and
L, + L3 are all symmetries of the set of weightsiof These involutions generate tiiéeyl group
of the Lie algebray.

Remark: Also note that\( H;,) and\(H»3) must be integers (using what we know abgig®, C)-
representations). Fai(3,C), the set of allu € h* which are integer-valued o, and Hy; is
spanned by.; andL,. Hence all weights\ lie on theweight latticeAy;, generated by thé;.

Remark: See Fulton-Harris for pictures af.

FS: The multiplicities (= dimension) of th&, on the edge of the polygah are all one. However,
the multiplicities in the interior are not always one, anduiee further study. See Fulton-Harris,
for example.

Define aWeyl chambebV to be the closure of a connected componeritof 215 — Q93 — 243.

Theorem 4.2. There is a 1-1 correspondence between finite-dimensioreucible representa-
tions ofsl(3, C) and pointsw in Ay, N W. The representatiol’ corresponding tay has a highest
weight vector with weight anddim V,, = 1.

4.1. The Killing form. We conclude this lecture by discussing a symmetric bilifean on g,
called theKilling form. The observant student/reader may have already noticed sorhof inner
product lurking inh*.

Definition 4.3. TheKilling form on g is a bilinear form ong given by(X,Y") f Tr(ad(X) o
ad(Y)).

HW: Prove that the Killing form is symmetric.

g is said to besemisimpléf the Killing form is nondegenerate.

HW: Prove that, osl(n, C), (X,Y) = 2nTr(XY). (Observe that this is much easier to calculate
directly. In particular, o, the Killing form is, up to a scaling constant, inheritedfrthe standard
inner product.)

HW: Prove that the Killing form is nondegeneratedn, C).

To do the above HW, it helps to understand the Killing formhaiéspect to the decomposition
g="0h& (®g.). If X € gy andY € gg, anda + 3 # 0, thenad(X) o ad(Y) mapsg, to
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g,+a+8 7# 9. Hence if we take the trace, we get zero! The Killing form ipaténtially) nonzero
pairing only onh x h andg,, x g_.. (If the Killing form is nondegenerate, the above pairings a
also nondegenerate.)

Finally, the nondegenerate pairing gninduces a nondegenerate pairing lpnvia the natural
isomorphism:
h—b",
Xr—a:a)=(X,Y) V.

HW: Verify that L, Ly, L3 in h* have equal lengths and the angle betwéemnd L, is %” with
respect to the Killing form.
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5. AFFINE LIE ALGEBRAS
The following fact will play an important role today:

Theorem 5.1. The Killing form on a semisimple Lie algebgais, up to a scaling constant, the
unique bilinear form which isld-invariant. In particular, this automatically implies th¢he bilin-
ear form issymmetricas well.

The Ad-invariance can be translated into:
(X, 2],Y) = (X,[Z,Y]).
Beginning of proof:SupposeX € g,, Y € gg, andZ € . Then
(—a(2)X,Y) = (X, 8(2)Y).

If (X,Y) # 0, thena = —(. Therefore,(, ) is nonzero only fog, x g_, — Candh x h — C.
(Recall this is also the case for the Killing form.) O

5.1. Central extensions of a Lie algebra.Let g be a complex Lie algebra. We studgntral
extension®f g:

0—=Cc—g —g—0.
As a vector spacey = g @ Cc. Define[,] ong’ so that:

(i) [c,X] =0forall X € ¢’ (i.e.,cis a central element).
(i) [X +acY + 6 = [X,Y] +w(X,Y)e,

if X,Y €g,a,6€C,andw : g x g — C s a bilinear form.

Claim. [,]is a Lie bracket iff

(1) w is skew-symmetric, and
Q) w(X,Y],Z2)+w(]Y,Z],X)+w([Z,X],Y) =0.

(2) is called the2-cocyle condition
We now explain the classification of central extensions w&adlgebra cohomology.
Given a Lie algebra, define thep-th cochain group:
Cp(g’ C) = HomC(/\pgu C)

The coboundaryi, : C?(g,C) — CP*!(g,C) is given by:

dpw (X1, Xp) =) (D)X, X, X0, X, X X)),

1<j

Thep-th Lie algebra cohomology group i#”(g, C) = ker d,/im d,,.
HW: Verify thatd, o d,,_; = 0.
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Remark: The coboundary mag, coincides with the exterior derivative (Cartan’s formylamh

the context of left-invariant forms and vector fields, tewhthe formX;w (X, . .. ,Xi, ooy Xpr1)
vanish.

Theorem 5.2. There is a 1-1 correspondence between isomorphism clagsesial extensions
of g and elements aff*(g, C).

Proof. Any w € C?(g, C) with dw = 0 satisfies (1), (2) above.

If n € C'(g,C), thendn(X,Y) = n([X,Y]).

Consider a Lie algebra isomorphisprof central extensions. As a vector space isomorphism,
¢:g®Cc = g®Ccmaps(0,1) — (0,1) (i.e.,c — ¢), and(X, 0) — (X, n(X)) for some linear
functionaln : g — C.

If [(X,0),(Y,0)] = ([X,Y],w(X,Y)) for the source anf{ X, 0), (Y,0)] = ([X,Y],w'(X,Y))
for the target, then

o([(X,0), (Y,0)]) = [(X,n(X)), (Y,n(Y)] = ([X, Y], (X,Y)),
whereas
o([(X,0), (Y, 0)]) = o(([X, Y], w(X,Y))) = (X, Y],w(X,Y) + n([X,Y])).
Hencew'(X,Y) = w(X,Y) +n([X,Y]). O
5.2. The loop algebra. Let G be a Lie group ang be its (complexified) Lie algebra. We define
theloop groupLG as the space of smooth maps fréihto G, equipped with a group structure as

follows: givenvy, v, : S* — G, define(y172)(t) = 71 (t) - 12(t). (This is not to be confused with
the product/concatenation of paths.) Question: What iscibetity element?

Remark: At this point, we will not be concerned with topologies btr.

Next Lg is the tangent spack (LG). By appealing to Fourier series, we defibg = g @ C((¢)),
i.e., the Laurent series with valuesgnHereC((t)) consists of elements of the forjn;- ~a;t" for
somen € Z. The Lie bracket is

(X ®f,Y®g=[XY]® fg.
Remark: We are thinking ofS' = {|t| = 1} C C, i.e.,t = €. HenceC((t)) is a reasonable

class of meromorphic functions @@ and we are taking the restriction 88, which is effectively
a Fourier series.

Theorem 5.3. Supposé&- is a connected, compact Lie group, with corresponding Lgehtag.
ThenH?(Lg, C) ~ C, and a nontrivial element is given by

wX® f,Y®g) = (X,Y)YResi—o(df - g),
whereRes;—o (> ¢;t!) = c_;.
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Another way of writingw is:
WX @t Y @1t") = mbp,_n(X,Y).
Here,d,, = 1if a = b and0 if a # b.

Let us denote bfLE; the central extension given by Then:
(X @t Y @t"] =[X, Y]t + (X, Y)mb,, _nc.
Proof. .

Step 1: Represent anjw| € H?(Lg, C) by a 2-cocycle which is invariant under conjugation by
G.

Writing ¢ = I + tZ, and takingX, Y € Lg, we compute:

w(gXg,97Vg) —w(X,Y) = w((I—-t2)X(I+t2),I—tZ)Y(I+1tZ)) —w(X,Y)

= Hw([X, Z],Y) +w(X,[Y, Z])) = tw(Z,[X,Y]),

where the last equality uses the 2-cocycle condition. @édhat in the computatiot™ are inde-
pendent ofdd.) If we defineay (V) = w(Z,V), thendaz(X,Y) = az([X,Y]) = w(Z,[X,Y]),
and we see that,(X,Y) = w(g ' Xg,g 'Y g) is cohomologous ta by integrating. Finally, av-
erage by takindgeG wydg. SinceG is assumed to be@mpact_ie group, the resulting 2-cocycle

is invariant undedd(G).

Step 2:Leta : A%g — C be a 2-cocycle which is invariant undéd(G). Definea,,, : gxg — C
by 0 n(X,Y) = a(X ®@t™, X ®t"). Sincew,, , is Ad-invariant, o, ,, is @ multiple of the Killing
form and is symmetric!

We then havey,, ,, = —a,, ,,, (by the anti-symmetry ofr and the symmetry aof,,, ,,), and also
Cmtnp T Ontpm + Qpyman = 0,

by the 2-cocycle condition:

a([X@t" Y @t",Zt")+ (Y @t", Z ], X @t™)+a([Zat', X @t"],Y @t") = 0.

Specializing at various values @) = p = 0, (i) p = —m — n, (iii) p = ¢ — m — n, eventually
gives us thaty,, , = md,, —,o1 1. Finally observe that; _, is the Killing form up to a constant
multiple.

Step 3: (Nontriviality) Letw(X ® t",Y @ t") = (X, Y)mb,, —p. If w = da, then
wHet, Hot ) =a([H®t,H®t'])) =a([H, H]) =0,

whereas
wH®t,Ht™') = (H, H),
and there aréf € b with (H, H) # 0. O
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5.3. The Virasoro algebra. We discussed this material on the next day, but this matesial
probably better placed here. Let Oiff') be the group of diffeomorphisms of the unit circle
St = {]z| = 1} c C. One possible tangent space to Diff) at the identity is the Lie alge-

brad = {f(z)L]| f(z) € Clz, 2~']} of Laurent polynomial vector fields.

Write L,, = —2"+!'4_ Then

d d
Lm Ln — _om+1 7 nt+l
[Em, L) SR S
d
— ((n+1>zm+n+l _ (m_'_l)zm-l-n-l-l)d_
z

d
n)zm+”+1£ = (m —n)Lpin.

= —(m—

Just as in the case of the loop algelbgg we have:

3

Theorem 5.4. H?(A; C) ~ C and a representative of a nonzero classi$’,,, L,,) = mflgmém,_n.

For details of the proof which is very similar to Theorem %8¢ Kohno. Th&firasoro algebraas
a vector space, i8ir = A & Cc, and the Lie bracket is given by:

3

[er Ln] = (m - n)Lm-i-n + oo

5. e
12 Omne

REFERENCES

[1] T. Kohno,Conformal field theory and topologf§We closely followed his presentation in this lecture.)
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6. AFFINE LIE ALGEBRAS, DAY Il
6.1. The affine Lie algebra. Last time we started with the loop algebtg = g ® C((¢)) and
constructed the (essentially unique central extensipe- Lg & Cc with Lie bracket
(X @t Y @t"] =[X,Y] @t + mb,, _.(X,Y)c.
We will (slightly) enlargefé to theaffine Lie algebrgy. Consider the derivatiod on EE; given
by d(X ® t™) = X ® mt™ andd(c) = 0. (In other wordsd = ¢£.)

HW: Show that% is not a derivation ofiﬁ, butt% is. (A derivation by definition, satisfies
d[§, ] = [d&, n] + [€, dn].)

As a vector space, thadfine Lie algebray is given by:
§=Lg®Cd=(g®C((t)) ®Cc® Cd.

The Lie bracket extends] for Lgvialc,d] = 0, and[d, X ® t™] = mX ® t™. (In other wordsg
is thesemidirect producof Lg andCd.)

Remark: TheNdefinition ofg is different from that of Kohno. He caIIEE; the affine Lie algebra.
Observe thaLg is [g, g].

6.2. Root space decomposition An important reason for extending gas the following: Define
h=(h®1)Pd Cc® Cd. Then we have:

Lemma 6.1. h is a maximal abelian Lie subalgebra.

Proof. Take an elemenk ® t™ which commutes witt). Then[d, X ® t"] = X @ mt™ = 0
impliesm = 0, and[X ® 1,h ® 1] = 0 implies X € b. O

We now decomposginto root spaces via the action pf Let A be the set of roots fqr. Define

v,6 : h — C by:

Y(h®1)=0,7(c) =1,7(d) =0,

d(h®1)=0,d(c) =0,6(d) = 1.
Then R

9=hD (Bpecayyds);

where the sef\, C h* of affine rootss:

Agr ={a+ndla e AneZ}.
The corresponding root spacgs. s areC{X, ® t"}, whereX, € g,.
Remark: A good way to picture the root space decompositionsﬁ@,\C) is to placea corre-

sponding toF on thez-axis andj on they-axis. ¢ is in the z-direction.) The roots are all of the
form o + nd, nd, or —a + nd.
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As before, define
ne=n (@)D (@)@ ...
A_=n_o@etHo @t Ha...
Forg = sl(2,C), n, is generated by the rootg = —a + § anda; = a.
6.3. The invariant bilinear form. We now define an invariant bilinear fortn) ong. Let
(Xt™Yot") =(X,Y)0n—n,
(¢,c) = (d,d) =0, (c,d) = 1.

HereX,Y € gand(X,Y) is the Killing form ong. (Observe that the first definition makes sense
because we want to paif,..s With g_._,.5.)

Lemma 6.2. The invariant bilinear form org is invariant.

Proof. We will work out one case.
(X2t Y et'],d = (X,Y]@t"™" + (X, Y)mdn,_nc,d)
(X, Y)mbm, —n,

whereas
(Xt [Yet'd) = (Xat" -Y @nt")
(X, Y)(—n)0m —n = (X, Y)MOp, _p,
O

Remark: Forsl(2,C) ands[(i%Z C), the Killing form onh was positive definite, and the Weyl group
was a subgroup ab(n). Forb, the invariant bilinear form is no longer positive definiéad the
corresponding affine Weyl group is a subgrougif., 1).
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7. COrROOTS WEYL GROUR ETC.

Before we explain the representation theory of affine Lieehtgs, we need to present some
more theory.

7.1. Coroots. Let g be a complex semisimple Lie algebrag, be the Killing form, andg =
h @ (Dacarda) be the root space decomposition.

LetE, € g0, E_, € g_o, andH € h. (Assumel,,, E_, # 0.) Then we have:
<[Ea7 E—a]7 H) = <Ea7 [E—aa H])
= (Ba,a(H)E_,)
= «a(H)(E,, E_.).

Since the root spacesare 1-dimensional (one needs to verify this for general sienpleg) and
the Killing form is nondegenerate ap, x g_., it follows that[E,, E_,] # 0.

Normalizeso that(E,,, E_,) = 1. Then defined,, = [E,, E_,]|. H, then satisfies:
(Ho, H) = a(H),
so the natural map — b* given by the Killing form send#/,, — «.

HW: E,, E_,, H, generate a subalgebra isomorphigit@, C) insideg.

Given a roota, we can define itgoroota = (2;VH§>. Given a set of simple roots,, ..., a, (a
minimal set which generates ), we have the corresponding coroéts. . ., ¢,,. For example, for
5[(3, C) we hada1 =L;— Lg, g = Lo — L3 andd1 = F11 — Eay, G = Fag — Eis3. We can define

the Cartan matrix

(Cij) = (aj(d)).

FS: (1) The Cartan matrix encodes all of the structure of a senplk& Lie algebra. (2) Cartan
matrices can be classified fQr) positive definite or.

7.2. The Weyl group. TheWeyl groupis the group of reflections df* (i.e., elements of)(h*)),
generated by:
Wy A= A= Aa)a.

W, preserves the hyperplada| (&) = 0} and mapsy — —a. Since\(d) = A(2e) = 24

(a,0) (a,0)

we see that the hyperplane is orthogonal (with respect t&illieg form) to «. Also note that
gets mapped te-a.

Recall that if we have a string of weights
MA—a, A —2aq,...,

for ag-moduleV/, then
AMa), A= a)(a), (A —2a)(a),. ..
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is symmetric aboub (since the direct sum of the corresponding weight spaces i€(, C)-
representation). Here we are assuming thata is not a weight, i.e.) is extremal. Hence the set
of weights ofV is invariant under the Weyl group.

—

7.3. The affine Lie algebras((2,C). Letg = s[(2,C). Then the set of simple roots fgrwas
ap = 6 — a, a; = a, Wherea was the simple root fog.

TakeE,, = F®t, E ., = FE®t'. Then
(Feot,Ext')=(F E)=1,

and
Gg=Hy=[Fot,EQt |=-H®1+(F E)c=—-H +c.
Similarly,¢; = H,, = H.

—

HW: Compute the Cartan matrix fet(3, C) andsl(2, C).

The Weyl group forg is called theaffine Weyl groupand is generated byi, = W, andW; =
W,,. If we write zoa + 17 + 226 by (20, 21, x2), then we compute that:

Wo(zg, 21, x2) = (=0 + 1, 21, 29 — 21 + 2),

W1($0,$1,$2) = (_$07$1,$2)-
W1 is just a simple reflection which switcheg and—zx,, while W is harder to understand.

As a symmetry on the set of roots, we have= 0, soWW, maps(z, 0, z2) — (—zo, 0, 2x¢ + 22).
Composing withiVy, we get(zo, 0, z2) — (¢, 0,229 + x2), Which we can visualize on the root
space. It certainly is not an element of finite order, unlileareents of the Weyl group fay finite-
dimensional and semisimple.

7.4. The universal enveloping algebra.Let g be a Lie algebra. Then itsniversal enveloping
algebraU (g) is aC-algebra (with unit), constructed as follows. Take the tersdgebral’(g) =
®2,9%, whereg®' is defined to be. If I is the double-sided ideal generateddayy— yx — [z, ]
forall z,y € g, then

There is a natural inclusion: g — U(g).

Given an associative algebrh denote byLie(A) the Lie algebra which isl as a vector space
and has Lie brackdu, b] = ab — ba. The universal enveloping algebra has the following uni-
versal property: Given a Lie algebra homomorphismg — Lie(A), there is a unique algebra
homomorphismb : U(g) — A so thatp = ¢ o i.

Remark: Previously, when we had expressions suclt@qv), we meant it to be(E)p(F)(v)
for some representatign We can instead think of them a§E'F'), whereE F' is an element of the
universal enveloping algebra.
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7.5. Integrable highest weight representations ofy. A g-moduleV is called ahighest weight
modulewith highest weight\ € h* if there isv # 0 € V such thatn, v = 0, Hv = \(H)v for all
H € h,andV = U(g)v. Itis not hard to see that this implies tHat= U(n_)v. (Note that,. is a
Lie subalgebra o§.)

First we construct &erma modulé\/(\) = U(g)/I, wherel is a left ideal inU(g) generated by
n, andH — A\(H) forall H € h. M(\)is anU(g)-module andl € U(g)/I is the highest weight
vector with weight\, sinceH - 1 = H = \(H) - 1. After modding out by/, every element of
M ()\) can be represented by an element/¢fi_) (and uniquely so)! Hence the Verma module is
a freeU (n_)-module with highest weight vector.

The Verma module is infinite-dimensional, and to obtain érdtmensional representations, we
need to quotient by/(g)-submodules.

Example: Letg = s(2,C). ThenM(\) ~ U(n_) = C{1,F, F? F3 ...}, whereH -1 = X\ - 1,

and1 is the highest weight vector with weight If we recall the formula
EF'v=(\—i+d)iF" o,

we notice thatZ Fiv = 0if i = A+ 1. Therefore, there is ali(g)-submodule generated by"*+*

which isC{F*1 22 1, (This is provided\ is a nonnegative integer.) The quotiédt\) /]
is the irreducible finite-dimensiongtmodule with highest weight.

Remark: Somehow by doing some abstract nonsense, we have managetstouct all the finite
dimensional irreducible representations of a finite dineme semisimple Lie algebra.

REFERENCES

[1] J.-L. Brylinski's Princeton lecture notes from Sprin§9b.
[2] V. Kac, Infinite dimensional Lie algebras
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8. INTEGRABLE HIGHEST WEIGHT REPRESENTATIONS Of

Let g be a finite-dimensional complex semisimple Lie algebra. aRebat the Verma module
M = M(\) is arank 1 free/(n_)-module generated by the highest weight veetoiSuppose
A € b*isin theweight lattice i.e., \(¢;) € Z for all corootsc;. Moreover, assumg(d;) > 0.
Then we have the following:

)\(di)-i-l

Theorem 8.1(Harish-Chandra)The (unique) maximal idedlis generated bys”, """ for all 7.

The quotient modulé//I is an irreduciblg;-module with highest weight. Since the Weyl group
acts onM/I, itis easy to see that//I is finite-dimensional. This way, we have abstractly created
all finite-dimensional irreducible representationgof

Example: Letg = s((3, C). In this case, the maximal ideal is generated by two eleniéﬁf;)“,
1 =1,2,wherea; = L; — L, anday = L, — L3. Then the strings

)\, A— Q;, A— 20(2‘, e oy A — )\(dl)()él,
fori = 1,2, are two edges of the boundary of the Batf weights of an irreducible representation.
(Note that the edges may be degenerate, i.e., a point.) Nsg the Weyl group, we may reflect
these edges and obtain the boundaryofObserve that if: is a weight ofA/(\) which does not
occur in/, then the multiplicity of that weight in the irreducible fieidimensional representation

M(X)/I is simply that of M (). We just have to calculate multiplicities fri(n_). (Here, the
multiplicity of a weighty is the dimension of the weight spatg.)

—

Theorem 8.1 holds for affine Lie algebras as well. kot s((2,C), suppose we have a Verma
moduleM with highest weight vector satisfying:

nv =0, cv=Fkv, dv=pv, Hv = \v.
Sincec is centralcw = kw for all w in the irreducible representatidv /1.
Recall that the affine Weyl group f@ris generated by
Wo(zo, x1, T2) = (=20, T1, 229 — T1 + T2),
Wi (zo, 1, x2) = (—x0, 1, T2),
whereh* = {9« + 17 + 226 }. The highest weight vectaris in the weight spac€s, k. u1). The

factor of two in4 comes from the fact that(H) = 2. Since the second coordinatés invariant
under reflections, we will only write the first and third cowrates.

If 0 < XA < kand)\k € Z, then the maximal ideal of M is generated byF ® 1)**! and
(E @t~ hHk=*1 These give two edges of the weight space configuratiaw pf.

Starting withz = (3, 11), we usel¥, andI¥; to obtain:

Wita) = (~5.0).
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Wo(z) = (k: - % (k=) + u) — 24 (k—\)(1,-1),
W(]Wl(l’) = WQ(.T) + )\(1, —2),

A
W()WlWO(.T) = W(]Wl(l’) + (/{? - 5) (1, —?)),
and so on. Note that the boundary fits inside an upside-dovabpka. (From the point of view of
physics, one might want to use lowest weight vectors inst&éadn the rowr, = p is the ground

state and is precisely the irreducible weighiepresentation of((2, C).)

8.1. The Casimir element. Let g be a finite-dimensional complex semisimple Lie algebra. Let
{I,},{I"'} bedual basedor g with respect to the Killing form(, ), i.e., (I;, I’) = ¢;;. Then we
define theCasimir elemento be an element df (g) given by:

C = Z Ing

HW: Show thatC' is independent of the choice of dual bagds}, {7'}. (Hint: If {J;}, {J7}

is another dual basis, writé = a,;;; andJ* = b;;I7, where the summation is omitted. Then
<Ji, JJ> = 5@'3’ = <CLika, bjlfl> = aikbjk. Henceaikbjk = 523)

If {1;} is anorthonormalbasis, i.e.{I;, ;) = ¢;;, then{/;} is dual to itself, and’ = ) . I, - I,.
Lemma8.2.[C, X|=0forall X € g.

Proof. It is useful to use the (easily verified) identiyh, c| = [a, c|b + alb, ¢]. Then, with respect
to an orthonormal basig/; },

(C,X]=> LX)+ > L[, X].

If we write [I;, I;] = af; I, then([I;, I;], I) = (I;,[I;, I}]) implies thata};, = a,, namelya;; is
invariant under cyclic permutation. Also observe t}m@t: —afi. Now,

S LI =) af I,

i ik
and
SOLL LI =Y ali Ll =Y a I =Y —al LI

O

Since[C, X] = 0forall X € g, it follows thatC' acts by a constant on an irreducible representation
V.
Example: If g = s[(2,C), then we take an orthonormal basis 1, 7= (E + F), o5(E — F).

V2
We compute thatl' = %HQ + FF + FE. (Remark: With respect to this orthonormal basis,
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the identification withso(3, C) is clear.) We could also have taken dual ba«s%H, E,F} and

{%, F, E}.
Next letC act on the irreducible representatignwith highest weight\. Since we can evaluate
C on any vector and get the same answer, let us use the highigit wectorv.

1 1 1 1
Cv= <§H2 + EF + FE) v = <§H2 +[E, F] + 2FE) v = <§H2 + H) v = (5)\2 + /\> v,
noting thatEv = 0. Now, writing j = 3, we haveCv = 2j(j + 1)v.

FS: The CasimirC is used to givecharacter formulasi.e., formulas that give the multiplicities
(i.e., dimensions) of weight spac&s. (Key useful propertyC' has the same eigenvalue for the

highest weight vector as well as anye V,.) There are character formulas such as Freudenthal’s
and Weyl’s.

REFERENCES

[1] F. Malikov, personal communication.
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9. SUGAWARA OPERATOR INTRODUCTION TO SYMPLECTIC GEOMETRY

9.1. The Sugawara operators.As before, letg be a finite-dimensional complex semisimple Lie
algebra (sayl(2, C)) and{I;}, {I'} be dual bases far with respect to the Killing form.

Notation: We will denote element& ® ¢ in the affine Lie algebrg by X ™. (HereX € g.)

Define theSugawara operatoras formal sums:
Lo = Z LI'+2) Z e,
SIPIE

for m # 0. Note thatl, is almost a Casimir foU(g), although, strictly speaking, it is not ii(g)
because the sum is infinite and it is missing the tetiis dc = 2cd, wherec is the central element
andd is the derivation.

L,, are elements of a suitably-defined completioQLg) of U(Lg) consisting of infinite sums that
actfinitely on integral highest weight representatidig, of g. (Herek is the level and\ is the
highest weight, i.eqv = kv and Hv = \v for the highest weight vectar.) By actingfinitely, we
mean that for anw € Hj , we haveX?w = 0 for j >> 0.

Observe that |f We take sungs 7 If ") [i™ then there are only finitely many nonzero terms in
2 anl ; w for anyw € Hy, ,. This is why we don'tusg , _, Z " 1i) instead.

Remark: If m # 0, thenzi[If” , I'm+m)] = 0, so we do not need to worry about the order of
1™ and I+ in the definition ofL,,.

2

Proof: Sincem # 0, 32,[17™, 1imt)] = $.[1;, I')™. To show thafy,[I;, I'] = 0 we claim
that the expression is mdependent of the choice of dualsbasgite J; = a,;;1; andJ* = b;; I’
with a;.b;, = 0,; (see the HW in Section 8.1). Then

ZJwJZ ZCLU i1 k] :Z(;Lk[lhlk]:z{[j»]k]'

1,9,k J:k J

HW: Prove that the definition of the Sugawara operators doeseafrdl on the choice of dual
based I}, {I'}.

The Sugawara operators satisfy the following commutagdations:

Theorem 9.1.
(1) [Lyn, X™] = —2(c + 2)nX M+,
(2) [Lony Ln] = 2(c 4+ 2)((m = 1) Lipin + ™25™6,10.03¢).
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Proof. We will do a sample calculation. For the rest, refer to Kaosk Note that the calculation
requires some care —whenever you use a commutation redaéitm, you must make sure that you
stay withinU,(Lg)!

Take an orthonormal bas{d;}. Using the formuldab, c] = a[b, c] + [a, ¢|b, we compute:

(Lo, IV) = LIL, 1) + [, 13+ 207 [0, 1) 2017 1)1
= LI, 1)+ (1, 1)L 4 210 ([ L) 4 635 (m) g 06)
+2([T5, L] + 835 (=m)d i gnoc) 1™
= —2ncIj(-n)—i—A,
where
A= Z AL L)+ 1, 1)01) + 30 (21 L, 1)+ 4 2[1,, 1) 1o >>.
i m>0

Next, if we let[I;, I;] = aj; I}, then

DL L =D al L,

Z[Ii,[ —mtn) pm) Zawl( men) ),

Switchingi andk in the second equation and usmﬁg = —a}w., we see that

ZI “mL L) +ZL,1 —mtn) ) — ),

Hence we have

A= Y1 33 2

i m=0

We now compute

Z([L,I [ 1) [, L) m>) - Z(afj e 4 b If"‘m))

-y (a;;.f,g”-m)f;m) — b M)
ik
= > L, B = ka1 = (0, 1] 1)
i,k i,k,l 7
Here we are using the fact thal; = —a;;. Now, the term)_,[[[;, X], I;] be interpreted as the

minus the Casimir (fog) acting onX by the adjoint action. Since the Casimir is constant on all
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the vectors of an irreducible representation,

Z[[Ii7X],Ii] = —4X,

7

and
A= —4nI".
Putting the above computation together:
[Lo, X™] = —2(c 4 2)nX ™,

FS: Read Kac for a proof of the theorem (or prove it yourself!)

If we rescaleL,, by multiplying byz(k—ﬂrz) and let the central elemeatact onH, by k, then, as
operators o, , we have:
m? —m 3k
LmaLn = - Lm n 767)7, n,07 o
[ | =(m—n)Lpn+ 19 0
We have a “representation” of the Virasoro algebra to UC(EE;) by sending the central element

. 3k
Of V’LT to Tto"

Finally, we decomposéi; , using Ly. If v € Hj , is the highest weight vector, thefyv =
stz (3 LIw = 2800, wherej = 5. We defineA, = 211 to be theconformal weight By
using the first commutation relation in Theorem 9.1, we have

Lo(X™v) = (Ay — n)(X™y).

Recall the weight space diagram from the previous lectime (pside-down parabola). The top
row is isomorphic to the highest weight representafigrof s{(2, C) and has conformal weight
Ay, the next row down has conformal weighy, + 1, etc.

9.2. Some symplectic geometry Now that we are done with the algebraic “preliminaries”, dve’
like to start from the beginning and explain ideas of quaation.

Definition 9.2. A symplectic manifolds an (even-dimensional) manifol with a closed nonde-
generate 2-formu.

Recall that a formw is closed ifdw = 0, andw is nondegenerate i6(z) : T,M x T,M — R
is a nondegenerate pairing for alle M. A (symmetric/skew-symmetric) nondegenerate pairing
(,) : V xV — R has the property that for any+# 0 € V there existsv € V such thatv, w) # 0.

HW: Show thatv is nondegenerate if§" is nowhere vanishing, dim M = 2n.

Example: (R*,w = Yo, dzdy;). Note thatdw = 0 andw™ = nldzdy; . . . dz,dy,.



28 KO HONDA

Theorem 9.3(Darboux) Every symplectic manifold\/, w) is locally isomorphic to/R*,w =

Example: The cotangent bundiB&* M of M has a natural symplectic structure. bet7*M — M
be the standard projection. Then there aonicall-form6 onT*M given by:

0(x)(v) = x(m.(v)),
wherez € T*M andv € T,(T*M). The symplectic form isv = df. Let ¢; be local coordi-
nates on/ C M. Thenz € n~'(U) can be written a§_ p;dg;, and with respect to coordinates
(@1, Gny D1, - - -, D) We haved = > p;dg;.

The symplectic fornw (and in fact any nondegenerate pairing) induces a 1-1 quretence
X(M) = Q'(M),
X — ’in,

whereX (M) is the set of smooth vector fields dd andQ' (M) is the set of smooth 1-forms on
M. Here the contractioiyw satisfies yw(Y) = w(X,Y).

There exists a special class of vector fielfism (1) C X(M) which correspond to exact 1-forms
dQP(M) c QY(M). Given a smooth functiorf € C>°(M) (often called aHamiltonian function
we define its correspondirtgamiltonian vector field\; as follows:ix w = df.

Example: On (R*",w), df = $Ldx + %L dy (we often omit subscripty, andX; = L2 — 912

C>(M) acquires aPoisson structurevia this correspondence. Define tReisson brackeby
{f,9} = —w(X}, X,). (One easily sees th@lf, g} = —df (X,) = dg(X;) = —X,(f) = X;(9).)
A Poisson brackesatisfies the following conditions:
(1) (Jacobiidentity) f,{g. h}} + {g,{h, f}} +{h.{f.9}} =0
(2) (Skew-symmetry] f, g} = —{g, f}.
(3) (Derivation propertyY fg,h} = f{g,h} + {f, g}h.
In particular, a Poisson bracket is a Lie bracket &@fit| 1/ ) is a Lie algebra via the Poisson bracket.
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10. TOWARDS QUANTIZATION

10.1. Poisson structure. Let (M, w) be a symplectic manifold. Givefi € C*(M), X is the
Hamiltonian vector field corresponding 1o given by:ix,w = df. We then have a map:

C*(M) — Ham(M),
f — Xf7
whereHam(M) is the set of Hamiltonian vector fields 1.
Define the Poisson brackgf, g} = —w(Xy, X,).

Example: For R* with w = dzxdy, {f, g} = 5L 52 — 5152,

Lemma 10.1. [ X, X] = X{; 4.

Proof.
[Xf,Xg]_lw = (,CXfXg)_lw:,CXf(Xg_l u))—Xg_l (»CXfW>
= Lx,(dg) — Xgud(Xsaw)
= d(X;udg) — X,o (dodf)
= dw(Xy, Xy) = —d(w(Xy, X))
= d{f,g} = X{ﬁg}J w.
]

Since a Poisson bracket is a Lie bracket with additionatstine, the above lemma implies that
the mapf — X/ is a Lie algebra homomorphism! We now prove the propertigh®fPoisson
bracket from last time.

Proof. (2). The skew-symmetry is straightforward.
(). By the Cartan formula, we have:

dw( Xy, Xy, Xp) = Xjw(Xy, Xp) — Xgw( Xy, Xp) + Xpw(Xy, X))
—w([Xp, Xg], Xn) + w([ Xy, Xn], Xo] — w([Xy, Xa], X).
If we call the first row of the above equatiohand the second row, then
A=XiXpg— X Xonf +X0o Xy f = =X X;h+ X, Xsh — X Xsg.
Adding the two equivalent expressions and dividing by 2, aeeh

A = (X5, X+ X, Xl + [0 X Jg).

Next,
—w([Xy, Xg], Xn) = dh([ Xy, X,]) = [Xy, X]h,
SOA+ B = 1B,andB = 0. Now,

{frgh by = —w(Xipg Xa) = —w([Xf, Xo], X),
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and we are done.
(3). —W(Xwah) = _d(fg><Xh) = —fdQ(Xh) - gdf(Xh) = f{ga h} + g{fa h}- U

HW: Prove the above properties in local coordinates, i.e (R8F,w = >°. dz;dy;).

Remark: We have aentral extension

0—-R—C*M)— Ham(M) — 0.
Mantra: Central extensions give rise to quantization.

10.2. Connections. Let £ be a rankk vector bundle ovel and lets be a section of. (We may
take E to be a real or complex vector bundle, but we’ll work o@today.) s may be local (i.e., in
I'(E,U)) or global (i.e., in[’(£, M)). (HereU C M andI'(E,U) is the set of smooth sections of
I" over M.) Also let X be a vector field. We want to differentiateat p € M in the direction of
X(p) € T,M.

Definition 10.2. A connectioror covariant derivativey assigns to every vector field € X(M)
a differential operatoiVx : I'(E') — T'(E) which satisfies:

(1) VxsisC-linearins, i.e.,Vx(c181 4+ c282) = 1Vxs1 + 2V sy if ¢1,¢9 € C.
(2) VxsisC>(M)-linearin X, i.e.,Vixi,vs = fVxs+ gVys.
(3) (Leibniz rule)Vx(fs) = (X f)s + fVxs.

Note: The definition of connection is tensorial i (condition (2)), so(Vxs)(p) depends or
nearp but only onX at p.

Flat connections: We will now present the first example of a connection. A vebtiandle £ of
rank’ is said to berivial or parallelizableif there exist sections;, . .., sy € I'(E, M) which span
E, ateveryp € M. (HereE, = 7~ '(p), whererr : E — M is the projection.) Although not every
vector bundle is parallelizable, locally every vector birid trivial sinceE|; ~ U x C*. We will
now construct connections on trivial bundleg, — U.

Write any sectiors € I'(E,U) ass = ), fis;, wheref; € C*>°(U). Then define

Vs =Y (Xfi)si=(Xfi)s1 4+ (Xfi)sp € [(E).
This connection is usually calledflat connection
HW: Check that this satisfies the axioms of a connection.

With respect to the given trivializatios,has coordinateéfi, . .., fi)? andV s has coordinates
(X f1,..., X )T =d(fr,..., fr)T(X). Hence we can writ® = d, the exterior derivative.



NOTES FOR MATH 635: TOPOLOGICAL QUANTUM FIELD THEORY 31

In general, flat connections do not exist globally on a madifd, but one can always globally
construct (not necessarily flat) connections by patchingctf@anections in a manner similar to
constructing a Riemannian metric.

Difference of connections:Next, given two connectiong andV’, we compute their difference:
(Vx = Vi)(fs) = f(Vx — Vi)s.
Therefore, the difference of two connections is tensonal i

Locally, take sections, ..., s, which spanE. Then(Vx — V)s; = Zj a;js;, wherea;; is a
k x k matrix of functions. We can therefore write

V=d+A,
whereA = (A;;) is ak x k matrix of 1-formsA,;, whereA,;(X) = a;;.
Gauge changeSuppose thaV is written asi+ A with respect to the trivializatiofisy, . . ., sy } on
E|y. If {51,...,35} is another trivialization (here thedoes not mean the conjugates)f then we

write 3; = > . gi;5;. (Hereg = (gi;) is ak x k matrix-valued function oi/.) SinceVs; = A;;s;,
we compute that:

Vi = Vgizs; = (dgij)sj + giAjese = (dgis) (97" ) S + 91 Ajw(g™ s,
and A transforms talg - g=! + gAg~!. This is usually calledjauge change
Curvature: Thecurvatureof a connectiorV is given by:

R(X,Y)=VxVy —VyVx — Vixy]
HW: Prove that
R(X,)Y)=(dA+ANA)(X,Y)
in local coordinates. (HereA A A)(X,Y) = A(X) - A(Y) — A(Y) - A(X).)

HW: Prove that the curvatur transforms tgyRg~! under gauge transformation.

REFERENCES

[1] K. Honda, Math 535a notes, available from my webpageefEhnotes were based on R. Bott’s lecture notes at
Harvard.)



32 KO HONDA

11. GEOMETRIC QUANTIZATION

11.1. Line bundles and connections.Suppose. is a complex line bundle oveY/. Let {U,} be
an open cover ol so thatl|y, is trivial. Pick a connectioV on L. OnU, letV = d — 2wiA,,.
(Note the minus sign — apparently this is needed to makke) agree with the usual one.)

Gauge change:Supposegy : U, N Uz — S* = {|z| = 1} C Cis a gauge transformation, i.e., a
change of trivialization. Then we writg(z) = ¢~27/(*), Under gauge change,

—2miAq > dgg ™t + g(—2mi) Agg ™t = —2mi(A, + df).
HenceA, — A, + df.

Curvature: The curvature is given by-2ridA, + (—27i)?A, A A, = —2midA,, since we're
dealing with1 x 1 matrices (and they commute)! Moreovér, transforms taydA,g~! = dA,,
i.e.,dA, is invariant under gauge change. Therefdi&4,} can be patched into a closed 2-form
on M. The cohomology class of the closed 2-fofrhis called thefirst Chern clasof L and is
denoted: (L) € H3,(M;R). Note thatc; (L) = 5= [Fa).

HW: Prove that the first Chern class bfdoes not depend on the specific choice of connection.
Remark: ¢;(L) is actually an element off?(M;Z) Cc H*(M;R).

Theorem 11.1.Letw be a closed 2-form of/ such thatw] € H*(M;Z) C H*(M;R). Then
there exists a complex line bundle— M and a connectioiV such that = 5-F4. (In particular,
this means that, (L) = [w].)

Proof. Choose gyood cove{ U, } of M. A good coveiis a cover for whictU,, ~ R", U, N Uy ~
R" or),U,NUzNU, ~ R" or (), etc. Here~ means “diffeomorphic to”, andim M = n. Such a
good cover exists on any smooth manifold — the usual proaf as@iemannian metric to construct
geodesically convex neighborhoods.

Over U, construct the trivial line bundl&/, x C — U, with connection—27iA, so that
dA, = wonU,. Here we are using the fact thet, ~ R" and the Poincaré lemma to find a
primitive for w.

Next, on overlapg®/, N Us ~ R", A, — A = df,s sincedA, = dAz = w. Again, we are
using the Poincaré lemma. Observe that the choigg ofs unique up to the choice of a constant
function.

We now usey,; = e~ 2"/=s to patch thdJ, x C’s. Namely, we glug€U, N Uz) x C C Uz x C
to (U, NUs) x C C U, x C by sendingz, z) to (z, g(z)z).

In order to make sure that the gluing is consistent, we neegktidy the following on triple
intersectionsg/, N Ug N U,:

9ap9py = Gary,
or, equivalently,

(4) fop + f3y = for, modZ.
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We ask whether it is possible to choose complex numbgyso thatfaﬁ = fap + aqp Satisfies
Equation 8. To answer this, consider the simplicial comptax)/ corresponding to the good
cover{U,}: To eachlU,, assign a vertex (0-simplex),. To each nontrivial/,, N U, assign an
edge (1-simplex) between, andvz. To each nontriviall,, N Us N U,, place a 2-simplex with
verticesv,,, vg, v,. With respect to this simplicial decompositionef, 0 f = {f.s+ f3, — fas} IS
a 2-cocycle with values i€. Now, the question can be rephrased as follows: Is thereachiain
a = {ans} with values inC such thatf — da has values ilZ? This is precisely the same as asking
for [w] to be inH?(M; Z). O

FS: Study the isomorphism between the de Rham cohomologyHnpdA/; R) and simplicial
cohomologyH*(M; R) to verify the last statement.

11.2. Geometric quantization. Given a symplectic manifold),w), construct a complex line
bundleL — M and a connectiolW such that the curvature is2miw. Let C>°(M) be the Poisson
algebra ofC'*-functions on(M,w), and letl’(L) be the smooth sections &f

By (geometric) quantizatiowe mean a Lie algebra representationC6f (M) onT'(L), i.e., a
Lie algebra homomorphism fro@>()/) to End(I'(L)). (Usually the operators are unbounded.)
In the case at hand, assign:

f — va - 27T2f

The assignment is a Lie algebra homomorphism:

{f,9} = [fo —2mif,Vx, — 2mig]
(V[vaxg] - 27Tiw(Xf7 Xg)) - 27Ting — 27T’Lng
= Vx,, +2miw(Xy, X,)
= Vi, —2mi{f 9}

Primordial Example: Consider(R*",w = dpdq) with coordinates(p,q). (Here,p stands for
momentum and for position.) Construct the trivial line bundR?" x C with connectionV =
d — 3+ A. Then quantize by sending

1

We compute thak, = —a% andX, = a%' Hence, upon quantizing:
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This looks a bit different from what we usually learn in quantmechanics (i.ep — a% and
q — q. If we restrict to sections that are functions onlyirthen the above (more or less) reduces
to the familiar quantization rules.
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12. PATH INTEGRALS

12.1. Sigma models.We study maps : X — M between Riemannian manifolds. Letap(X, M)
be the set of smooth maps frato M. Then giveru € Map(X, M) we define theenergy func-
tional:

Sx : Map(X, M) — R,

u»—>/ |du|?dvolx .
X

More precisely, at € X, take an orthonormal basis, . .., e, of T, X. (Heredim X = n.) Then
|du|? meansy_" | (u.e;, u.e;), where(, ) is with respect to the Riemannian metric fuf.

HW: Prove thatdu|? is independent of the choice of orthonormal frame.

By “functional” we mean a function on some space of functioAscritical point of the energy
functional is called a “harmonic map”.

HW: SupposeX = D" (the n-dimensional disk) and/ = R. ConsiderMap(X, M, f) C
Map(X, M), the set of maps satisfying the boundary conditiomsx = f. (This is called a
Dirichlet boundary condition.) Then a critical poiate Map(X, M, f) satisfies (by definition)

lim Sx(u+tv) — Sx(u)
t—0 t

=0,

forallv € T,Map(X, M, f). Show that a critical: is aharmonic functioni.e., Pu — ),

7 8:(:?
The energy functional (the generic term is “action”) hasftilwing obvious properties:

(1) If f: X' — X isanisometry, theSy (uo f) = Sx(u).

(2) If —X is X with reversed orientation, thefy x (u) = —Sx (u).

(3) If X = X, U X, (disjoint union), therSy (u) = Sx, (u]x,) + Sx, (u|x,)-

(4) SupposeX = X, U X_, whereoX, = —0X_ = Y is a codimension 1 submanifold
of X. If uy € Map(Xy, M), u_ € Map(X_, M), andu,|y = u_ly, thenSx(u) =
Sx, (uy) + Sx_(u_). Hereu is defined to be., on X, andu_ on X_.

12.2. Feynman path integral. In classical mechani¢ghe trajectory of a particle between two
points (say: andb) in configuration space minimizes the actisfy).

In quantum mechanigc$o each pathy you assign a “probability function2’*)/" and integrate
over the space of all paths connectingndb:

/ M dp(y).

This is called thé&eynman path integraHeredy is some measure on the space of paths connecting
a andb.
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Remark: The Feynman path integral has been rigorously defined ordpine cases. (Even in
cases where the integral is rigorously defined, I’'m not sutieeire is a measure which satisfies
all the properties you'd expect from a measure in finite disnams.)

When we go from quantum to classical (i.e., in the |didienit), we expect the rapid oscillations of
e"¥0)/h to cancel each other, except near the critical points(ef. Hence the main contributions
are theclassical trajectories

Sigma model: Let us consider the sigma model. L& = Map(X, M). If X does not have
boundary, then the “partition function”

Z(X):/C eSO (u)
X

is expected to be a complex numberoX = Y, then we can define a functigfi X') on Cy as
follows: Givena € Cy, let:

200)@) = [ @S (),
Cx ()
Here we are integrating ovérx («) which is the subset of'y consisting of maps : X — M

which restrict too on9X =Y.

Plan: Although Z(X') may not be rigorously defined, we can write down expectedgutigs of
Z(X) and also ofZy, which is some vector subspace of functiong’gnthatZ (X ') should live in.

Axioms:

(1) (Orientation)Z_y = Z3., whereZ;. is the dual vector space df .

(2) (Multiplication) Zy, .y, = Zy, ® Zy,.

(3) (Gluing)Z(X) = (Z(X4), Z(X-)), whereX = X, UX_,0X, = —-0X_ =Y, and the
pairing is betweer¥y andZ5.

Explanation: We explain the Gluing Axiom. Using the expected propertiethe Feynman path
integral (e.g., Fubini’'s theorem),

Z(X) = /c ey ()
X

_ / ( / SO g (). / eiSX(“’/hdux(u)> dyiy (a)
Cy C’XJr(Oc) Cx_ (o)

_ /C Z(X.)(@) - Z(X_)(a)duy (o)
— (Z(X,), Z(X)).

Here,u, = u|x,,u_ = u|x_, anda = u|y. We are also usingx (u) = Sx, (uy) + Sx_(u_).
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12.3. Topological Quantum Field Theory (TQFT) axioms. We will now formulate the TQFT
axioms in the sense of Atiyah. They are almost the same asittraaderived for the sigma model
above; the only major difference is that we ask the vectocep#o be finite-dimensional.

ATQFT in (d + 1)-dimensions is a functar which:
(1) To ad-dimensional (smooth) manifold without boundary assigns fanite-dimensional
vector spaces.. (These are the objects.)

(2) To a(d + 1)-dimensional manifold” with 0Y = ¥ assigns a vectaf (Y') € Zx. (These
are the morphisms.)

The functorZ satisfies:

Al. Z_ 5y = Z5.

A2. Zs.us, = Zs, ® Is,.

From Al and A2 ifoY = —3; U 3, then

Z(Y) € Z—Z1 & ZZ2 = Z;:l & ZZ2 = HOmc(Zzl, Z22)~

A3. Given a composition of cobordismd; = —%; L 3, 9Y, = —3, L X3, we haveZ(Y; U
Yz) = Z(Ya) 0 Z(V1).

Ad. Z(D) = C.

A5. Z(X x [0,1)) = id : Zs — Zs.
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13. LOOP GROUPS
13.1. Maurer-Cartan form.

Definition 13.1. Let G be a Lie group. Then th®laurer-Cartarform . is a left-invariant 1-form
on G with values in the Lie algebrg which satisfies.(e)(A) = A, whereA € T.G = g. (More
generally,u(g)(g(I +tA)) =1+ tA, if we writeAas] + tA.)

Notation: Often we writed € T,G asI +tA or ¢4 and think ofA as an equivalence class of arcs.

For matrix Lie groups (i.e., subgroups 6fL(n, C)), the Maurer-Cartan form is = X 1dX,
whereX is ann x n matrix whose(ij)-th entry is the coordinate functior};. One verifies that
p(D(I+tA) =dX (I +tA)=T+tAandu(g)(g(I +tA)) =g tg(I +tA) =1T1+tA.

a b

Now letG = SU(2). We recall thatSU (2) is diffeomorphic taS?: If A = (C d) € SU(2), then

a, b determined and{|a|? + |b|? = 1} is the unit sphere i€,

Consider the 3-form

1
= —Tr(pApA
0= grmTruAphp),

wherey is the Maurer-Cartan form.
Lemma 13.2. [¢] generates the integral cohomology grolp(SU (2); Z) ~ H3(S3,Z) ~ Z.

Proof. Let us perform the calculation ate G and rely on the left-invarianceu(2) is the set of
traceless skew-Hermitian matrices, and ha&arasis:

[ 2= (e )

1 1 -1 0 1
= ! = -
a(e)(A, B,C) Y (B3HTr(ABC) 2 Tr ( 0 _1) 53
The 3! comes from observing that we are taking alternating sumswvelraluating three tangent
vectorsA, B, C, and each sum is the same. Siike€ is the volume of the unis-sphere inR*
(HW: verify this!), [, 0 = —1 and[c] generated?®(SU(2); Z). O

We compute that:

13.2. The loop group. Supposes = SU(2) still. Let LG be the loop group, i.e., the group of
smooth maps* — G.

Lemma 13.3. H*(LG;Z) = Z.

Proof. First observe thal GG ~ G x QG, whereQG is the set obasedoops, namely smooth maps
St — G which mapl — e. (Here we are viewing' = {|z| = 1} C C ande is the identity ofG.)
In fact, we can send € LG to (v(1), (v(1))~'y).
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Now, we haver;(QG, e) ~ 7;,1(G, e). (Heree € QG refers to the map! — G which maps to
e € G.) For the isomorphism, we think of a mé&g‘, pt) — (G, e) as a mag S, pt) — (G, e).

We then have:

7T1(G) = 7T1(SS) = O,WQ(G) = O,Wg(G) = Z,
7T1(LG) = 7T1(G) X Wl(QG) = 7T1(G> X 7T2(G) = O,WQ(LG) = WQ(G) X 7T3(G) =Z.
By the Hurewicz isomorphism theorem, the first nontriviahnd /; agree, and we have
Hy(LG) ~ m3(G) ~ Z.
O

Lemma 13.4. A generator ford*(LG; Z) is given bywy = [, ¢*o, whereg : LG x S* — G'is
the evaluation map (v, 6) = ~(0).

We need to explain the integration operation. First,

#"(0)(7.6) (f,n, %) = o (1(0))(€(0),(6).7'(6)).
where{,n € T,LG. Then

aten = ([ o@)men
- / "o (1(0)) (E(6). n(0), +'(6)) db

1 2T B B S
= 1z | TrOEO) - n(0) - (6)) db.
™ Jo
The composition
BY(G) & HY(LG x §Y) 2 B2 (L@
is calledtransgression It is not hard to see that the composition sends generaiaysrierators.
(Compare with the isomorphism(G) ~ my(LG).) See Bott-Tu for more details on transgression.

Now letw be the left-invariant 2-form oi.GG given by extending the Lie algebra 2-cocycle
(with [w] € H?*(Lg; C)), where

w(e)(§n) = ﬁ /0 W<g’(9),n(e)> do.

Here (,) is the Killing form for su(2), which is a multiple of(A, B) — Tr(AB). If we set

E=X@t"andny =Y ®t", anditt = e'?, then%eime = ime™ and

5) (@)X @Y @) = (X, ¥)minsno.

Observe thatX, Y)md,,+. 0 is the Lie algebra 2-cocycle. The 2-cocycle property tratesl into
dw being closed.
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Lemma 13.5.w = wqy + d, where

B(v)(E) = # /0 WTr(v—W(e) -y7LE(9)) df.

Hencew is also a generator foH?(LG; Z).

Proof. We compare

© O = g5 [ Ty 60) 37 n(6) 27 (60) a9
and

1 o —1e&V/ -1
@ CONEM =35 | T 0) 2 0(6)) .

Let ¢ and 7 be left-invariant extensions d@f and# to all of LG. Then we can use the Cartan

formula: 3 3 3
dp(y)(€,n) = €(B(1)) = 1(B(€)) = B(E, 7).
We haved () ([€,7]) = wo(7) (€, 1), and sincey'£(0), v~ 17(6) are constant for alf, we have

_ 1 2T
0 =55 [ Tr(OE ) o
B 27
—7(B(§)) = —# i Tr((y'n) -y 1) db.
This provesv = wqy + dg. O

Symplectic form: Observe that given by Equation 5 is degenerate on elementsgdf the form
X ® 1 (but nondegenerate otherwise). If we take the quotigntG ~ QG, then we quotient out
the degeneracy. Henceis a symplectic form of2G. (In factQ2G is a Kahler manifold.) For more
information, consult Pressley-Segal [2].

HW: Theenergy functional' : QG — R is given by

2w
EO) = [t 0)7(6) db.
0
Prove that the Hamiltonian vector field corresponding’tmtates the loops.

REFERENCES

[1] R. Bott and L. Tu Differential Forms in Algebraic Topology.
[2] A. Pressley and G. Segdlpop Groups
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14. THE WESSZUMINO-WITTEN MODEL
Today we discuss the Wess-Zumino-Witten (WZW) model.

14.1. Definitions. Let > be a compact Riemann surface, i.e., a 1-dimensional commdexfold,
without boundary (sometimes called a closed Riemann sjfdetG be the Lie groupSU(2).
ConsiderM ap(%, G), the space of smooth mags ¥ — G.

We first define thenergy functional

Be(f) = —i / Te(f0f A f1).

Interpretation: First recall that the Killing form oty = SU(2) is a constant multiple ¢fX, V') —
Tr(XY). If we use local holomorphic coordinate= x + iy for 3, then

0 .0
B 8f 8f 8f ,

If f(z) = e (which we may assume becauﬁé&f and f~10f are left-invariant), then:

—iTr(f'of A f71Of) = 1 ((gi) - (gi) )da:dy

Hence,Ex(f) is, up to constant multiple, equal to the eneyfgydf |*dvol defined previously. Note

that there is no metric defined far. A complex structure o defines a metric up to a conformal
factor, i.e.,g ~ fg, wheref is a positive function ort:. HenceFEs(f) only depends on the

conformal clas®of the metric, corresponding to the complex structureZon

WZW action Sy: Let k be a nonnegative integer, called the level. Then define:
k

Ss(f) = EEE f) - 2Wik[3f*07

where B is a 3-manifold withdB = %, f : B — G is an extension off : ¥ — G, and

o= 241 sTr(p A p A ) wherep is the Maurer-Cartan form. (Recallwas treated in the previous
lecture.)

HW: Prove thatf : © — G always admits and extensign B — G.

Remark: The second, topological term2mik [, f*o is called the Wess-Zumino term. This is
apparently needed for conformal invariance. (I don’t knolmat this point.)

Remark: Ss(f) is, strictly speakingSs(f). To remove the dependence on the extengiowe
exponentiate it.
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Lemma 14.1. exp(—Sx(f)) does not depend on the choicefof B — G.

Proof. Take two extensiong : B — G and f’ : B’ — G. We can glue them together to obtain
F:M=BU(-B')— G.Then

Ss(f) — —2mk</fa—//f )sz’k/MF*a.

Now, fMF* o is an integer sincdo] € H*(G;Z). If we exponentiate, theazp(—Ss(f)) =
exp(—Ss(f")). [

14.2. The Polyakov-Wiegmann formula.

Proposition 14.2 (Polyakov-Wiegmann formula)Let > be a closed Riemann surface. Given
f,g: X — G, we have:

exp(—Sx(fg)) = exp(=S=(f) — Sx(9) + I's(f, 9)),
wherel's(f,g) = —2& [ Tr(f~'0f Adgg™).
Proof. We will often use the identity
Tr(wAn) =(=1)PTr(nAw),
wherew is ap-form with values ing andn is ag-form with values ing.

We compute
~Bs(f) = o [ Trl(fo) o) A (1) B f)
_ ffr Tr((g™" f ) (f0g+0f - 9) A (g™ f ) (fDg +Df - 9))
_ % [ Tr((g 09+ 9770 ) A (6™ + 97 1D )
- % | Tr(g™'9g Ag™'0g+ [71Of N f710f + 0997t N[0S +/7IOf NOg - g7)
— B+ Bsto) + - [ Tr(-17'0F nogg + 70f nBg-g7)
Next,

Tr(f~'df Ndgg™) = Tr(f~(0f +0f) A (99 +dg)g™")
= Tr(f~'0f Ndgg™") +Tr(f~'0f Ndgg™),
since terms of the formMf A 9g anddf A dg are zero. Hence we conclude that:
k 1k 1k

(8) () = - (=En(f) = Ex(9) + Tu(f,9) + = /Z Tr(f~df Adgg™).
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Next consider the Wess-Zumino terms. Omitting tildes fan@mience, we have:

it [ (foy'e = 515 [ Trl(foy i) A (o) i) A (o) dl 1)
= % B(A1 + 34y + 345 + Ay),
ik
= 2m’k/B(f*a+g*a) + i—ﬂ /B(Az + Aj)
where
Ay = Tr(fldffdf fdf)
Ay = Tr(dgg™"f~'df f~'df)
Ay = Tr(dgg 'dgg~" f~'df)
Ay = Tr(g 'dgg~'dgg~"dg)
Now,

d(Tr(dgg™'f~'df)) = dgg™'dgg™"df + dgg™" fHdf f~'df = Ay + As,
usingd(f=1) = —f~tdf f~. Finally,

ik ik e
© i [ ek a0 = [ Trtdeg ™),
using Stokes’ Theorem. Combining Equations 8 and 9 givesstht. O

14.3. Line bundles over LGc. Let us use the complexificatidrc instead ofG.

ConsiderCP' = CU {cc}. Let Dy = {|z] <1} C C, Dy = {|2| > 1} U {00}, andS* = {|z| =
We define a complex line bundigover LG as follows: LetM apy(D.., G) be the set of smooth
Mapsf. : Do — Gc With f.(c0) = e. Then letlL = Mapy(Ds,Gc)/ ~, where(fu, u) ~
(goo, v) if:

(1) f00|51 = 900|Sl-

(2) If goo = foohoo, then

V=" exp(_SCPl (h) + FDOQ(fOO? hoo))
Hereh is an extension ok, to Dy by e. (Note thath.,|s1 = €.)

The equivalence class ¢f .., «) will be denoted f.,, u]. The projectionC — LG is given by

[fomu] = foo|51'

We can viewf, : Dy — Gc as an element of as follows: Letf., be a smooth extension g§,
i.e., foolst = folst. Then assignfy — [foo, exp(—Scp (f))]-

Lemma 14.3. [f.., exp(—Scp (f))] does not depend on the extensjgn
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Proof.
[foor €xp(=Scpi (f))] = [goo, exp(=Scpr (f))exp(—Scpr (h) + T (foos Poo))];

= [goo, €xP(—Scpt (fo U go0))l,

using the Polyakov-Wiegmann formula. Herg = f..h, andh is the extension ofi, to CP!
by settingh(Dy) = e. O
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15. WZW, CONTINUED

We use the notation from last time. In particul@r= SU(2) still.

15.1. Line bundles. Last time we defined the complex line bundle= Map(Dx, Gc) x C/ ~,
where(fu, 1) ~ (g0, v) if the following hold:

(1) feolst = goolsr.
(2) If Joo = foohooy thenv = w - €l’p(—Scp1 (h) + FDoo (fom hoo))
Hereh is h,, extended td), by h(D,) = e.

We can also define the dual line bundle' = Mapy(Dy, Gc) x C/ ~, where( fo, u) ~ (go,v) if:
(1) folsr = golst-
(2) If go = foho, thenv = u - emp(—SCFn (h) + FDO (fo, ho))

Again, h is hg extended td), by h(D,) = e.

Lety € Gc. Then the fiber of over+ is denotedC,. Then there is a pairing, x E;l — C,
given by

(10) <[f007u]7 [907 U]) = uv- 6xp(SCP1 (foo U 90))'

We use the notatiorfi,, U g, to mean the magP' — G¢ which restricts tof,, on D, andg, on
D,. Observe that there is no minus sign in frontgf:.

HW: Verify that the pairing does not depend on the choice of gmtative of f., u] and|go, v].

Lemma 15.1.

(1) fo : Dy — Gc determines an elemeff.., exp(—Scp: (fo U fx))] in £ which does not
depend on the choice ¢f..

(2) foo : Do — Gc determines an elemeffy, exp(—Scp (fo U foo))] in £~ which does not
depend on the choice d¢f.

The pairing in Equation 10 can be reinterpreted as follows:
(exp(=Spy(fo)), exp(=Sp.. (f))) = exp(—Scp(fo U f))-

More generally, let: be a compact Riemann surface with (oriented) boundary casme(0Y);,
i =1,...,n. LetY be a closed Riemann surface obtained frenby capping off(d%);, i =
1,...,n, by disksD;. (We need to put complex structures bpn) Givenf : > — G¢, extendf to
f:% — Gevia f; - D; — Ge. Then defineap(—Ss(f)) € @, L, wherey;, = f|x),, by the
following relation:

(eap(=Sx(f)), ®iseap(—Sp,(f;)) = exp(=S5(f)).
Observe thatxp(—Sp,(fi)) are elements irL.,.
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15.2. Holonomy. A connectionV on a rankk vector bundleE — M gives rise toparallel
transportalong arcs inV/. In local coordinate¥ = d + A, whereA is ak x k matrix of 1-forms.

Model situation: Let M = [0, 1]. ThenE = [0, 1] x R*. We are looking for solutions(t) (i.e.,
sections of the bundle) which satisfy

z(t) + A(t)z(t) = 0.
Heret € [0,1] andz(t) € R,
HW: Prove that there is a unique solution, given an initial cdadiz(0) = x.

Given a connectio¥, there is a well-defined linear map called ttedonomy majol which sends
Eyto Ey: Givenz, € Ey, find a solutionz(t) with 2(0) = x,. Then Holzy) = z(1).

More generally, if we fiXV, then to each arg : [0, 1] — M, we have the corresponditglonomy
mapHol, : £,y — £,(1) obtained by pulling back to the model situation[0n1].

HW: Prove that, for line bundlesfol, : L. — L. is given by multiplication by /o« if
~ is a closed curve which bounds a diBkandw is i times the curvature form, i.eu, represents
the first Chern class.

We now explain the following fact:

Proposition 15.2. The line bundleC is the kth tensor power of the line bundle ovér7c which
corresponds td[, ¢*o] € H*(LG;Z) given in Lemma 13.4. In other words(L) = k[ [, ¢*o].

Proof. Think of f., : D, — Gc with f(c0) = e as a pathy in LG¢c based at. Heree €
LGc mapsS' — e. More precisely,y(0) = e and~(t), t € [0,1], iS fwlfs=1/4 With the
counterclockwise orientation d@.

Given fuo, goo : Doo — G With foo|s1 = goo|st @nd foo(00) = goo(00) = €, we have correspond-
ing pathsy;, v, of LG based at, and the holonomy arounglvl is:

exp(—Scpi(h) + T'p, (foo, o)) = exp(=Scpi (fo U goo) + Scpi (fo U foo))

k k : .
= exp(—EEDoo (goo) + EEDoo(foo) + 2mik /B, G*o).

Here f, is an extension of,, andg., t0 Dy, andg,, = foohoo. If F': B — G extendsfy U fo tO
a 3-manifoldB with boundaryCP! andG : BU B’ — G¢ extendsf, U g, then— fo, U g is the
restriction ofG to 0B’. (Here— f., meansf,, with the opposite orientation.)

Moreover, we can tak&’ to be the 3-ballB? = {(z,y,2) € R*|2? + y? + 22 < 1} andG to map
the axisz = y = 0 to e. (Prove this using properties of the homotopy groupé&Hf By fibering
B3 — {z = y = 0} by circles of typex? + y*> = 72, 2 = const, we can viewG : B’ — Gc¢
as a map from the 2-dimensional disk £67c. We then conclude thatep(27ik [, G*o) =
exp(2mik [, [ ¢*0), where we are thinking of, ¢*o as the curvature form of a connection on
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the line bundleZ’ whose first Chern class generafé$(LG;Z). Modulo the energy terms, we
would conclude that = (L£')®*.

One way to get rid of the energy terms is to deflh@sM apy (D, Gc) X C/ ~, where we replace
condition (2) in the definition of by:

(2) If goo = fochoo, thenv = u - exp(—tﬁ(EDw (90) — Epo(foo)) + 2mik [, G*0).
Ly = L and L, is the desired line bundle which is homotopic4and does not have the energy
terms. (Verify that the definition of, is consistent!) O
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16. MORE ONWZW

16.1. Group central extensions. In the previous lectures we constructed the line burtile»
LGc by takingL = Mapo (D, Gc) x C/ ~. Today we investigate the group structurelofic,
which is £ minus the zero section.

Giveng,; : D — Gc, i = 1,2, we haveezp(—Sp(g:)) € Ly,
Define the product:

(When we writeD we meanD,.)

|sl'

exp(—Sp(g1)) *x exp(—Sp(g2)) = exp(=L'p(g1, g2))exp(—Sp(9192)),
and extend linearly.

Unit: exp(—Sp(e)), wheree : D — Gc mapsD — e. ThenI'p(e,g) = 0 implies that
exp(—=Sp(e)) * exp(—Sp(g)) = exp(=Sp(g))-

Associativity: Let us use the shorthamg * g, for the above product. Then:
(91 % 92) x 93 = exp(—=I'p (91, 92)) 9192 * 93 = exp(—L'p(g1, 92) — I'n(9192, 93)) 919293,

91 % (92 % g3) = g1 * exp(—T'p(g2, 93)) 9293 = exp(=T'n(92, 93) — T'n(g1, 9293)) 919295
Therefore, associativity is equivalent to:

(11) I'p(g1,92) + I'n(g192, 93) — I'n92,93) — (g1, 9293) = 0.

HW: Verify Equation 11!

Alternate definition: Fori = 1,2, chooseh; on D, so thath;|s1 = g;|s:. Then
exp(—Sp(9:)) = [hi, exp(—Scp (g: U hs))l;
and the equation defining the product is equivalent to:
[hl, ea?p(—Scpl (91 U hl))] * [hg, 6![’p(—SCp1 (g2 U hg))]
= [h1hy, exp(—Scpr (9192 U hiha) — (g1, g2))],
or
(12) [hl, 1] * [hg, ]_] = [hlhg, 6[[’p(FDOO (hl, hg))]

Well-definition: We prove the well-definition using the alternate definitialti{ough it is possible
to prove directly). Let : D, — G¢ satisfyh|s: = e. Then

[hl, 1] * [hg, 1] = [hlhg, €l’p(FDoo (hl, hg))]
= [hhlhg, 6![’p(—SCp1 (6 U h) + FDw(h, hlhg) + FDoo(hla hg))]
We also have:
[h, 1] % [ha, 1] = [hhy,exp(—Scp(e Uh) + T p_(h, hy))] * [ho, 1]
[hhlhg, 6![’p(—SCp1 (6 U h) + FDw(h, hl) + FDw(hhl, hg))]
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Equation 11 shows that they are equal.
We now have the following group central extension

1—>C*—i>L/G\Cl>LGC—>1.

Herei mapsl — exp(—Sp(e)) andm mapsezp(—Sp(g)) — g¢|s:. This central extension is the
analog of the Lie algebra central extension

O—>C—>Z§—>Lg—>0.

16.2. Left and right actions. Suppose: is a Riemann surface with only one boundary compo-
nent. ThenM ap(X, G¢) acts onLG¢ as follows: givenf : ¥ — G, we set:

[()exp(=5Ss(9)) = exp(=Ss(f)) * exp(=5x(9)).

HW: Prove thatzp(—Ss(f))xexp(—Sx(g)) = exp(—=Sx(fg))exp(—Is(f, g)). (Hint: use Equa-
tion 12.)

Similarly, we can define

r(f)exp(=5s(g)) = exp(=5x(g)) » exp(=Ss(f))-

Representations ofMap(X, Gc) onT'(L£). Let (L) be the space of sections 6f The left and
right actions above give rise to:

p: Map(3,Gc) — Aut(T'(L)).
If s € I'(£) andy € LG, then:
p(f)s)(7) = 1()s((flas) ™).
Also we havep* : Map(3, Gc) — Aut(I'(L£)) given by:
[0*(F)s](v) = r(F*)s(v(flas) ).
wheref*(z) = f(2) .
Lemma 16.1.1f » : ¥ — G is holomorphic and; : ¥ — Gc is smooth, then
[(h)exp(=Ss(g)) = exp(—=Ss(hg)).
Similarly, if b : ¥ — G is antiholomorphic, then
r(h)exp(—Sx(g)) = exp(—Ss(gh)).
Proof. Sincedh = 0, I's(h, g) = C [, Tr(h™'0h A dgg~") = 0. (HereC is some constant.) O
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16.3. RepreserltJation of affine Lie algebras.We now explain how(£) is a representation of
the Lie algebra.g.

LetX = D and X € g. At the infinitesimal level, defineX,, .(z) = e***" for nonnegative
integersn andes** " for negative integers. Herez € D ande¢ is a small real number. Then
define the infinitesimal action

d
Xn = S le= Xne
5= —lemop(Xno)s
fors e I'(L).
Proposition 16.2. [X,,,, Y,] = [X, Y] + Mk n0(X,Y), as actions of’(L).
Therefore X ® t™ — X, gives a representation d% onl'(L).

Proof. Supposen,n > 0. First note thal',(f,g) = 0 if f is holomorphic by Lemma 16.1. We
compute that

[Xom, Yals = lim L(l(Xma)Z(Yn@)l((_)()m,al)l((_y)n,az)s —3)

e1—0
0 €1&2

. 1 m n m n
— hm (l(eele eEQYZ e e1Xz e e2Y z )8 . 8)
€1—0 £1€9

g9—0

1
= lim —(I(1 4+ 16o[X, Y]z 4+ ... )s — s)

e1—0 6152
€9 —0
1
S T e[X,Y]zmtmy
ll_)r%g(l(e )s —s)
= [X7Y]m+ns'
Next, supposen > 0 andn < 0. We compute
>—n m _k
Tp(eY* " e %2y = % [ Tp((—n)eV 2" dZ A mey X 2™ d2)
2 Jp
ik
_ 6182;—(m)(—n)<X, Y) / Szl g g,
m D

Now using polar coordinates= re? and writingdzdz = —2idxdy = —2irdrdf, we have:

. - k 2w ) 1
Dp(e2¥® " e X)) = gie9—(m)(—n)(X, Y)/ e(m+")’9d9/ gy
m 0 0

1

m-—-n

k
= c1e2—(m)(=n)(X,Y) 20 sno)
= 8182]€77’L<X,Y>5m+n’0.

A similar calculation of X,,, Y, ]s as in the case:, n > 0 gives the desired result. O
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Recall the Feynman path integral philosophy. In order tceusind
| em-sstryor
Map(%,Gc)

whereY. is a closed surface, we instead calculate:

s(7) = / exp(—Ss(f))DF.
Map~(2,Gc)

wherey € LGc, ¥ has one boundary component, ahthp, means maps that restrict toon
03. Sinceexp(—Sx(f)) can be interpreted as an elementfof so iss(y). We therefore obtain
a sections € I'(£). Moreover, the section is invariant under left multiplicatby holomorphic
maps and right multiplication by antiholomorphic maps.
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17. CONFORMAL BLOCKS

Let X be a closed Riemann surface and. . ., p,, ben distinct points ort. Let M, . bethe

.....

space of meromorphic functions @hwith poles of arbitrary order at mostayt, . . . , p,. (Note that
our setting is slightly different from last time — last time&wad a Riemann surface with boundary
and this time we have a Riemann surface with punctures.)

Defineg(pi1,...,pn) = g ®c M,, ... Thisis a Lie algebra with brackéX @ f,Y ® g] =
[X,Y] ® fg. Note thatg(p,, . . ., p,) is supposed to correspond to the infinitesimal version of the
Lie group M ap(surface with boundaryzc).

For eachi = 1,...,n there is a linear map; : g(p1,...,p,) — Lg (not a Lie algebra ho-
momorphism), defined as follows: Choose local holomorploiordinatest; aboutp;. Given
X® fe€galp,-..,pn), write f as a Laurent serie§(t;) in t; and mapX ® f — X ® f(;). ¢; is
the composition of this map with the natural inclusip® C((¢;)) — (g ® C((t;))) ® Cc = Lg.

Fix a levelk and letH,, be an integral highest weight representatiorféfwith highest weight
A; (i.e., if v is the highest weight vector, thedilv = \;v). We define the diagonal actiah of
a(p1,...,pa) ONHy, ® --- @ H,, as follows:

AX®G®  ®E) = Zél @ Gi(X ® )& ® n.

Lemma17.1.5 : g(p1,...,pn) — End(H,, ® ---® H,,) is a representation of(p1, - . ., pn)-

Proof. We show that\ ([X ® f,Y ® g]) = A([X,Y] ® fg) is equal tdA(X ® f), A(Y ® g)].
AXONAY ©@9)a®-0&) = Y @ @%6(X®NG®6;(Y 99)§ @ - @&
i#]

Taking commutators, what remains is:

AX @ ),AY @96 ® - ©&) = Z&@ R [X @ f(H:),Y @gt:)l6i ® - ®&n.

Now,

(X @ f(t), Y ®@g(t)]& = (X, Y] @ f(t:)g(t:) + (X, Y) Resy, (df - 9)k)&;,
whereRes,, is the residue at;. The lemma follows once we show that the sum of the residues of
df - g is zero. O

Residues:A meromorphic 1-fornw is a 1-form which can be written locally as &%z, wherez
is the holomorphic coordinate arfd is a meromorphic function. The residue of a meromorphic
1-form at a pointa is: ;- J,w, wherey is a sufficiently small closed curve which encircles
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counterclockwise exactly once. The residue is a purelylagpcal quantity, since the integral only
depends on the homology classof

Lemma 17.2. The sum of residues of a meromorphic 1-forms zero on a closed Riemann surface
Y.

Proof. A meromorphic 1-formw is closed: Ifw = Fdz locally, thendw = (OF + 0F)dz =
OF Ndz = %dz ANdz =0.Now if D C X is a disk that contains all the poles, then the sum of the
residues is;— [,,w. However, itis alsa- [ w, Which is zero by Stokes’ theorem (since

(5-D)
there are no poles in — D). O
Conformal blocks: The space ofonformal blocksH(p1, ..., p,; A1, - .., Ay) is the space of mul-
tilinear maps

\I/ZH)\1®"'®H)\n—>C
which are invariant under the diagonal actitsrof g(py, . . ., p,). By invariancewe mean

Z%@ (X @ f(t:)&® - ©E&) =0

forall X ® f. (Thisis also often called “coinvariance”.) We can alsotevri
H(pla < ey Pns )\17 ceey )\n) = Homg(m pn)(®?:1H>\m C)a
where the action of(p1, ..., p,) onC is the trivial action.

.....

The definition of the space of conformal blocks is consistétit our discussion of (£) from last
time (although not exactly on the nose). Each pgleorresponds to a boundary component of
a Riemann surface and a line bundles attached to it. Invariance under left multiplication by
holomorphic mapg : ¥ — G¢ (hereX has boundary) correspondsg@;, . . ., p,)-invariance.

The space of conformal blocks seems like a daunting infoliteensional object. The next lemma
shows thatH (p1, ..., pn; A1, - - -, Ay) IS finite-dimensiondl Recall first the weight space diagram
of Hy. Hy = &2 H\(d), whereH,(0) = V, is the top row of the weight space diagram (with
conformal weightA,, defined before), (1) is the next row down, etc.

Lemma 17.3. Suppose& = CP'. Then the ma@i(pi, ..., pn; M, .-, An) — Homg(®1,V),,C)
is injective.
Proof. Supposel = 0 on®;V,,. We show thatl = 0 on all of ®; H,.

Let » be the usual coordinate @P' = C U {oo}. Considerf(z) = (z — )" onCP*, wherez;
is theith pole and- < 0. If we expand about the other poles and wtite= = — z;, then we have
f(t) =32 atr, and

m=0

U, (X QG &) == Y aQU(&,..., (X @M, ... &)

j#i m>0
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Note thatr < 0 but them'’s are> 0.

We argue inductively, starting with &} € V), = H,,(0). Then(X ® t7")¢; for m > 0 are zero
since they raisg; further up (and there’s nothing above it). Alsb,= 0 on®;V),, so the RHS of
the equation vanishes. Hence so does the LHS. Now applytioduc O
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18. MORE ON CONFORMAL BLOCKS
Recall from last time that the space of conformal blocks
Hp1, - P A, -y An) = Homyg, pn)(HM ®---® H,,,C)

injects intoHomgy(Vy, ® - -- ® V), C). Today we determine its image.

18.1. Quantum Clebsch-Gordan rule.
Theorem 18.1.dimc H(p1, p2, p3; A1, A2, A3) = 1 if (x) holds and= 0 otherwise.

Here,(x) is:

(1) )\1"‘)\2"‘)\3622;
(2) M+ A2 > A3, Ao+ A3 > A, A+ A5 > Ao
(3) M+ Ao + A3 < 2k

Conditions (1) and (2) were called the Clebsch-Gordan rlilteese were the conditions fgr=
s[(2,C). (3) is the quantum condition, and (1), (2), and (3) togetlrer called thequantum
Clebsch-Gordan rule

Step 1:
Lemma 18.2.1f ¥ € H(p1, ps, p3; A1, A2, A3), then
U(vy, E™2&y, E™E) = 0
if v, € V), of highestweight{; € V), j # 1,andmy + m3 =d; =k — A\ + 1.

Proof. We use they(p1, p2, p3)-invariance withE @ f, wheref(z) = (z — z;)~'. Let us use the
standard complex coordinatec CP' = C U {cc}. Also writep; asz;, and lett; = » — z; be the
local coordinate centered aboit

HW: Prove that the power series expansionf¢f) = (= — z;)~" aboutz; is > 0" (—1)"(z; —
21) 7" 1(z — z;)". (Hint: use the binomial theorem.)

The invariance gives:

V(E®ti Y, 6,8) = — Z "2 = 21) " (v, (B @ 15')€2, &)
m>0

- Z Mz — 21) "0, &, (B @ 15)Es)
m>0

= —(20—21) 7" U(v1, B&, &) — (23 — 21) "W (v1, &, EBE).

Note that( X @ t™)(£) = 0if £ € V, andm > 0, since the are on the top row of the weight space
diagram and™ raises it.
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By repeated application of the invariance, we have:
(13)

di! —-m —m: m m:
(Bt )Moy, &, 83) = (—1) Z m(zz—zl) *(z3—21) "W (v, E™ &, M) = 0.
mo+ma=di ) )

Here Kohno immediately concludes the lemma by arguing that,, z; are arbitrary. Sincer
depends on the particular choicezf 25, z3, the argument seems incomplete. Instead, we use the
following trick: Using the fact tha® is g-invariant, it follows that:

V(B(v® & @ BEM71E)) = 0.
We therefore have:
U(v, B, BEM71E) + U (v, &, ETE) = 0

(v, E"&, &) + (v, B 6, BSG) = 0

HW: Verify that thesel, equations and Equation 13 are linearly independent.

The proof of the lemma is complete. U

Remark: Equation 13 is the only relation that only involves elements), ® V), ® V,,, besides
those that come from thginvariance. We should think of Equation 13 as #éxéra conditionghat
need to be satisfied in addition to tigenvariance.

Step 2. Suppose\; + Ay + A3 < 2k. Write Huy = Mwy, HE = (—Xg + 2n9)&, and HEs =
(—A3+2n3)&3, whereny, ng > 0. Thenv; ® E™26,® E™3 &3 is an eigenvector off with eigenvalue
A= A +2(me+mg) — Ay — A3 + 2(ng + ng)
= (2k—XM —A2—A3) +2+2(n2+n3) > 0.
Hence,
U(H (v @ E™& @ E™E)) =X V(v @ E™E @ E™E3) =0,
and\ # 0 implies:
U(v, E™ &, E™3¢3) = 0.
In other words, the only extra conditions — those of EqualiBr— are automatically satisfied by
g-invariance. ThereforelimcH (p1, p2, ps; A1, Ao, Az) = 1.

Step 3.Suppose\; + A; + A3 > 2k. Observe that if); € V), are eigenvectors off andH (n; ®

ns ®n3) # 0, thenW (ny, 72, m3) = 0.
We inductively show tha?’ = 0 on all of V), ® V,, ® V).
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Takevl,£2,£3 SO thatHUl = M\, Hgg = —)\252, anngg = ()\2 — )\1)53. We claim that
\I/(’Ul,gg,&;) = 0. Indeed,

Ao — A1 > —A3+2dy =3+ 2(k— A+ 1).
Therefore, we can writ§; = E94¢ for somes € V,,, and

U(v1,&,&) = U(vy, &, B =0
by Equation 13. Moreover, Equation 13 tells us that
\II(UM Em2£27 Emgé:) =0

wheneverm, + m3 = d;. HenceV (v, &, &) = 0 if vy is the highest weight vector and the
eigenvalues off add up to zero.
We continue by taking

U(F(v1 ® & @ EE3)) = V(Foy, xig, BE3) + V(v1, Fé&, EE) + W (v, &, FEE).
The last two terms on the right-hand side are zero by the pue\paragraph, so
U(Fuv ® & ® EE3).
Now continue in like manner....

18.2. The general case.We will now describe a basis for the space of conformal blaxkihe
form

HP1s s Py Pt Ay -5 Any Apy) = Homg o po oy (H, @ Hy,  Hy ).
As before, this injects inté/ omgy(Vy, @ --- @ Vi, Vi, )-

Fix a directed grap with n incoming edges and one outgoing edge. The incoming edges are
labeled)q, . .., A\, and the outgoing one is labelegd. ;. The interior vertices are all trivalent, with
two incoming edges and one outgoing.

Then a basis for{omy(Vy, ® --- ® Vi, V),.,) is given by all labelings of" (subject to the
above conditions) so that the Clebsch-Gordan rule is sdisti every trivalent vertex.

Theorem 18.3.A basis for the space of conformal blocks is given by all ledgsl of " so that the
guantumClebsch-Gordan rule is satisfied at every trivalent vertex.

Remark: | do not know how to prove this theorem. If someone could poietto a proof, I'd
appreciate it!

If we take a different directed gragi (also satisfying the above conditions), then we obtain a
different basis for eitheflomy(Vy, @ --- @ Vi, Va,,1) OV H(D1, - - o, Py Pt Ay - o5 Ay Al py)-

In the classical case, when = 3, the transformation between the two bases corresponding to
the two possibld™ is encoded in thelassical6j-symbol The quantum version is thgguantum
67-symbol
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19. BUNDLE OF CONFORMAL BLOCKS

Today we try to understand what happens to the conformakblas we vary, , .. ., p, € CP.
Let us fix the levek and highest weights;, ..., \,.

Let Conf,(CP') = {(p1,...,pn) | pi € CP',p; # p; if i # j} be the configuration space of
distinct ordered points i€P".

19.1. Conformal block bundle. The goal is to try to put a vector bundle structure on

de
Exnrn = U Hp1, - Pri M- An).
(p1,....pn)eCoONE, (cP1)

Once the vector bundle property is verified, it will be calledconformal block bundle(We won't
quite succeed — see the remarks at the end of the lecture.)

First we spend some time discussing the family version ottrestructions done in the last two
lectures.

1. Consider the projection : (CP')"*! — (CP")" onto the firstn factors. In other words,
coordinateg zi, . . ., z,, z,41) Map down to(zy, ..., z,). (We will equivalently writep,, ..., p,
or z1,...,2,.) At this point, (CP")"*! is a bundle ofCP"'s over the base. Next restrict to
Conf,(CP') c (CP")". Then we haver—!(Conf,(CP")) — Conf,(CP'). Define the divisors
D; = {z,41 = 2;}. The D; are disjoint onr—!(Conf,(CP")). On7n~!(zy,..., z,) the divisors
restricttozy, . . ., z,.

-----

functions onr—!(U) with poles of any order at most alorg;, . .., D,,. We then consideg ®c
p,(U). An elementf € g ®c Mp, . p,(U) can be written locally alon@; as:

----------

fp,(t;) = Z am<217---,2m)t§n.

m=—N

Heret; = 2,41 — z;. We will also writer; (f) for fp, (¢;).

.....

.....

sectionsV : U — FE such thatV(py,...,p,) isg® Mp,
U. In other words:

.....

Z\I](plv7pn)(§1777j(f)§j77§n) =0
j=1

forall (py,...,p,) € U.

At this point, we do not know whethél,, , (U) has any nontrivial elements.

.....
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19.2. Main proposition. GivenV : H, ®---® H,, — C andX € U(Lg), define the multilinear
map

XYV H, ® --®H,, —C,

&y &n) = U6, XE, 6.

In other words, we insetX in the jth spot.
Also we recall theSugawara operator

1 . _
L_1:7§ § I, @t 1 I, et
2(k +2) — = " "

where{I,} is an orthonormal basis f@rwith respect to the Killing form.

7777 —

Proposition 19.1.1f ¥ is a smooth section &f,, _,, overU, then so is% — L(j{\If.
J

Proof. Givenf € g ® Mp,  p,(U), we show that

.....

— \ 0z
First observe that if;(f) = > am(21, . .., 2,)t]", wheret; = 2,1 — z;, then
aam m m—1
Tj(fzj) = 8—zjtj — ammty .
If 0, = a% with respect to the variablds,, . . ., z,.t;) (which we view as independent), then we
write

0
Tj(fz]») = ajTj(f)_ﬁ—thj(f)a

Ti(ij) = ajTZ(f>
Since the Sugawara operatbr; satisfie§L_;, X ® t"] = —nX ® t"!, it follows that:

L) = )
Also observe that:
0 v oV v 9
a—Z]( (517---,Ti(f)§ia---7§n))—a—zj(&’---,ﬁ(f)&,---’gn)+ (&1, 0 )2 &),

by the product rule.
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Now,

Z(gi L(J )(fl,,n(f)fz,,ﬁn) = Z%(\P(&,,Tl(f)@,,fn))
—S U BT )

%

= U T L6
_\Il<§17"' 1T](f)£j?"'7£n>

The second term on the RHS equals

(Zw (&, fzj>s,,...,sn>> SV 0T () En).

i#]
The fourth term on the RHS can be written as

(&, (T () Lor +75(f2) = 0575 (F))&50 -5 En)-
Finally, ). (8‘1’ — LQ{\IJ) (&1, ..., ()&, - - -, &) isthe sum of the following three terms, each
of which is zero by invariance.

% (Z \11(61,---,Tz‘(f)&,---vfn)) ’

=2 V(& Tl -5 6,

_Z\I,(f(gl®...®L_1§j®"‘®£n))'
0

19.3. Flatness. A connectionV on a vector bundl& = M is flatif it has zero curvature, i.e., if
Ais the connection 1-form, thetd + A A A = 0. By the Frobenius integrability theorem, through
any point in £ there is a local section : U — 7~ !(U) which passes through it and satisfies
Vs = 0. (Let us call these sectiom®variant constansections.)

In our case, lev = 37, L(_j{dzj be the connection 1-form on the bundledefined previously.
Then
VU =d¥ -y LYWz,
j=1
and we have a covariant derivative
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\\ .
v oy,
3zj
(The restriction tcf,, ..., (U) follows from the previous proposition.)

Lemma 19.2.w is a flat connection.

Proof. SinceL_, does notdependon, ..., z,, dw = 0. Also,wAw =}, ; [L@l, L(_j{]dzi/\dzj =
0 since[L”}, LY)] = 0 for all 4, j. We then havelw + w A w = 0. O

Remark: Lemma 19.2 implies the existence of local covariant corisactions that pass through
any point onE. Together with Proposition 19.1 one would like to conclubattthrough each
s(0) € &, there is a covariant constant sectiowhich is a section of,, . ,,. (Hence this
would show that,, ., is a vector bundle.) To first order neg0) that is true, but | do not know
how to do this to higher orders.

Instead, one can use the following strategy to showd&at ,, is a vector bundle. Restrict to
Vi, ® - -~ ® V), , which is finite-dimensional. Thg-invariance does not depend en.. ., 2z, and
conditions analogous to Equation 13 gives extra linear itmmd which depend holomorphically
onzi,...,z,. Thedimensionof,, ., (pi,...,p,) (the fiber overp,, ..., p,))is an upper semi-
continuous function ofp, ..., p,). If we accept that the dimension of ea€ly . (p1,--.,Dn)
is the same (from the previous lecture), it follows that », is a vector bundle.
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20. THE KZ EQUATION

20.1. The KZ equation. KZ = Knizhhnik-Zamolodchikov. Last time we constructed ttn-
_____ A, — Conf,(C) and a flat connection on it. Horizontal (=covariant
constant) sectiong of £,, ,, satisfied:

ov
02,-

Let us now restrict this equationig, ® --- ® V), .

— Vv

Theorem 20.1.Let ¥ be a horizontal section df),,
(call it ¥,) satisfies:

A,- ThenV restricted toVy, ® --- ® V),

7777 n

0¥y 1 QD

(14) = .

Equation 14 is called thKZ equation

HereQt = > I, ® I, where{I,} is an orthonormal basis fgr = sl(2, C) with respect to the
Killing form. 2 is not quite a Casimir (we’ll have more to say about theirtrefanext time). Also,
fori # j, we set

\110517---7 Z\IIO517"'7Iu€i7"'7]u§j7"'7€n)7

where§;, e Vy,i=1,...,n. Ifi =7, then we set

Q(“ oy, 6n) = Z\yo &, LG 6.
Proof. Recall that
1 . .
L §f=— S [tV ' [,@t77
i€ 2(k+2)§“® p OIS

and if¢ € V), then the only nonzero terms in the sum &fg- I, ® t~ )¢ and (I, ® t7! - 1,,)¢,
which are equal. Hence,

LEV(E - &) = HQZ\PO&,...,( L&t L&, - &)

— ]HQZZ i 2) (€, Ly LG )

B J,J#i

Here we are using the fact that

(X @t )OW)o(&r, &) = D (2= 2) V(& X, )
J.J#
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by theg(p, . . ., p,)-invariance. O

20.2. Conformal invariance.

Lemma 20.2.1f ¥ is a horizontal section of,,
satisfies:

(1) Zz 182\110_0
(2) Zizl <Z’8_zz + AAL> \I]O = 0;
@) T (2 +250,) Wo =0.

Here A, = ,5:21 is theconformal weightwherej = 3.

s then its restrictiondy to V), ® --- ®@ Vy,

~~~~~ n

Proof.

Ay 1 QUENw, . Gj) — O3 QN Y, - SRR
(D)X 52 = 5 gy 5t = 0sinceQ® = QUY. The term*_—¢ is canceled byQZJT

(2) SinceVY, is g-invariant,

> QW (¢, Z\Ifo oo Liy o &G, 60) = 0.

j=1

Here j is summed froml to » in the RHS. Ifj = i, then we havel (&, ..., 1, 1.&, ..., &).
Hence,

SO, 6) =~ 6

JJ#i
Wy (&,...,C&, ..., &)
=277+ DWo(&r, .-y &y, 6n)
JJF

HereC' = }_ 1, - I, is the Casimir and has eigenval2g(j + 1) on all of V). Also thej in the
third line is 2 i

D> Q0w = —(k+2)> A
J

1<J
Finally, since_ 2~ + -2~ =1,
ov, 2 - 1
_ Ly, — N Uy AU
> = ]{;—i—ZZzz—zJ 0=1752.0 Z o

1<j
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Zj;iz - Zi %_ Zj’
ov 1 g
220 = —Z(zljtz-)ﬁ(”)‘lf
z ) 9 0
p 8zi k + 2 i<j
- = P
{ J,JF#i
1
= _2ZZiA>\i\I]O-
Here we are using Equation 15 to go from the second line taihe t O

Theorem 20.3(Conformal Invariance)Let ¥ be a horizontal section &, . ,,. Under the frac-

.....

tional linear transformationw = ijfg with ad — bc = 1, applied to each, ..., z,, we have:

Wo(wy, ..., wy) = [[(ez; + d)*P 9 Wo(z1, ..., 20).
j
Proof. We verify the equation on generatorsi®f L (2, C).

1. Consider the translatiofy(z) = z + as, wheres € R anda € C. Then

d _ 8\IIO . 8‘1’0 .
Wo(fs(21),-- -, fs(zn)) = 0z ds 2 + as) az 0,
where the last equality follows from Lemma 20.2. Henggis invariant under translation.

as/2

2. Consider the dilatatiofi,(z) = e**z. (In this case, we rewritg,(2) = = 5. Hencecz + d =
e~*%/2)) Then

d vy d ov
75 Yol fs(z), .o folzn)) = azo Toea) = aZO zi(ae®™) = —ae™ Z Ay Vo,
by Lemma 20.2. Hence
Wo(e®2,...,e%2,) = e LifIWg (2, ... 2,) = (e7/2) X220 (2, .. ., 2,).

3. If fs(z) = =2, then

a4 Uo(fs(z1), ..., folzn)) = %‘I’O 22((—sz +1)” )|8:0:—(ZZziA)\i)\Ifo(zl,...,zn).

ds

s=0
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This is the infinitesimal version of the equation:
‘IIO(fs(zl)a sy fs(zn)) = H(_Szj + 1)2A)\j \110(217 ceey Zn)
j
Since the above three fractional linear transformatiofigitesimally generate?SL(2,C), the

theorem follows. (The first two fractional linear transf@tions are much more satisfactory, since
we do not need to specialize at= 0.) O

What is truly conformally invariant is:
Wo(dz )™ .. (dzy) P,
wheredz“ are weighted differentials with weighte R.

HW: Check that ifw = ijfg thendw = mdz.

20.3. The KZ equationin general. Letg be afinite-dimensional complex semisimple Lie algebra
andV;, i =1,...,n, be finite-dimensional irreducible representationg.acBiven a map

¢ : Conf,(C) - Homc(V1 ® ---®V,,C),
we have the KZ equation:

0p 1 Q)P
)

9
,ZZ'—Z]‘

0z kK
‘ Jhi#i

wherex is some complex parameter.
H d i_d i 1
Let us writew;; = dlog(z; — z;) = ==~ andw = + >

S Q)w,;. Then the KZ equation is
dd = wd.

i<j

As before, we have:

Theorem 20.4.The KZ connection is flat connection on the trividbmc(V; ® - -+ ®@ V)
bundle over Conf(C).

C)-

n )
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21. BRAID GROUPS AND THE MONODROMY REPRESENTATION

21.1. Braid groups. Let Conf,(C) be the configuration space nfordered distinct points oG,
i.e., {(Zl, ey Zn) | Zi € C, Zi 7é Zj for 7& ]}

The pure braid groupF,, is m (Conf,(C)). Think of the motion ofn distinct pointszy, ..., z,
which begin and end at the same location. If we t@ke [0, 1], wheret € [0, 1] represents the
time direction, then we can represent an elemet, dfy n strands starting & x {0} and ending
atC x {1}. (Picture needed here!)

There is also a configuration spacenofinordereddistinct points. That is given by Cop(C)/.S,,,
wheresS,, is the symmetric group on elements. Théraid groupB,, is 71 (Conf,(C)/S,,).

Fact: B, has generators,, . .., 0,_; and relations
0;0; = 004, |'l—]| >1,
0i0i+10; = 0i4+10i0i41-

Hereo; switches theth andi + 1st stands in a particular way — if we think of strands as going
from bottom to top inC x [0, 1], then the strand from; to z;,, is in front of the strand from,
to z;. (Picture needed here!)

HW: Verify that 0;0,,10; = 0;.10;0;11 by drawing a picture of the two braids. (Note they are
equivalent by a type Ill Reidemeister move.)

HW: Verify that we have an exact sequence:
0—P,— B,— S, —0.

21.2. Monodromy representation of the KZ equation. Recall that givend : Conf,(C) —
Homc (V) ® V,,, C), the KZ equation is the differential equation:

dd = wd,
andw is a flat connection, i.edw + w A w = 0.

Holonomy: The holonomy of a flat connection on a vector bunBle— M only depends on the
homotopy class of paths relative to the endpoints (i.endithe endpoints). H is a path fronu
to b in M, then the holonomy

Hol, : E, 5 E,
only depends on the homotopy cldss
Hence, the flat connectianon the trivial bundle
Conf,(C) x Homc(V1 ® --- ® V,,C) — Conf,(C)
(or the conformal block bundlg,, . »,) gives rise to a representation:
p: P, =m(Cont,(C)) - GL(V®---@V>").
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For the braid grougB,,, takeV; = --- =V, = V.. ThensS,, acts diagonally on CopfC) x (V*)®",
whereo € S, permutegz;, ..., z,) ando - ¢(v1, ..., v,) = ¢(Vs(1), - - -, Vo(n)). The quotientis a
vector bundle over CopfC)/S,,. The corresponding representation is:

p: B, — GL(V*)®").
21.3. Comultiplication. Thecomultiplicationfor U(g) is analgebra homomorphism
A:U(g) = Ulg) ®U(g),
whereA(X) = X ® 1+ 1® X if X € g. SinceA is an algebra homomorphism, we extend the
definition by writing A(X - Y) = A(X) - A(Y).

The topologist’'s way of expressing a comultiplication igdtaw a pair-of-pants with one bound-
ary component on the left and two boundary components onighé rThe left-hand boundary
corresponds tdX and the right-hand ones correspond¥o® 1 + 1 ® X. Thencoassociativity
(A®1)A = A(A ® 1) can be interpreted as in the following diagram.

FIGURE 1. Coassociativity.

We denotg A ® 1)A by A®). For our purposes) is important because the tensor product repre-
sentation/; ® 5 is a representation gfvia the diagonal action which sends{ to X ® 1 +1® X.
The same holds true fak® and the highen ™, defined analogously.

Calculation: Q = $(A(C)-C®1-1®C), whereC'is the Casimiy_, 1, - I,. Indeed, omitting
summations,
AC) = A()-Al)=U,@1+1®1,) - [,®1+1®1,)
= [, [,®1+1®1, -1, +2I,®1,
= CR1+1C+20Q.

Similarly, one calculates that

AYC) = (L,e1e1+10,®1+1@1®1,)(same
= CR11+101+11C
—|—2(Q(12)—|—Ql3—|—9(23))
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21.4. Computation of the holonomy with respect to a preferred bass. Let us useH omc(V; ®

- @V, V1) instead. Suppose = 3 andg = sl(2, C). Use the basis of conformal blocks which
corresponds to the tré¢12)3), which meand and2 are merged together first, and the resulting
outgoing edge witl3. The edge obtained by mergin@nd2 is labeled\. Let ® be a basis element
corresponding to.

Setting(; = 25 — z; and(, = 23 — 2, we write
W = 1 <Q(12) le — dZQ i 9(13) le — ng 4 9(23) dZQ — ng)

E 21 — k9 Z1 — 23 Z9 — Z3
1 dG Gy d(¢2 — C1)

= (WL L) 2 L @) 2 > )
K < G G2 G —CG

Effectively we are setting; = 0.

We calculate the holonomy/monodromygasircles once about. Here we assume thigb| > |(i|
and(; is fixed. Then the second and third terms of the sum do notiboibdy;, and the monodromy
is given by:

1
res, —ow = EQ(H)'
(Note that the2(¥) do not depend on the or ¢;.)

Computation of 2Q(!2)®. @ is the composition
V)q X V)\Q X V>\3 - V\® VAB — V)\4.

Here the first map is given by taking the direct sum of irretlecfactorsV,, ® V,, and projecting
down to the factor//,, and the second map is the projection to the faéfgr Hence we are
interested inb((>_ v, ® vg) ® v3), whered vy ® vy is in V). We easily verify that:

(CR1I®1) (v ®@uyus) =2(k+ 1)A) (1 ® v ® v3),
(1RC®1)(v @y ®@u3) =2(k+ 1)A), (V] ® v ® v3).
Using our interpretation o\ as giving the tensor product representation, we have:
(AC) @ () @) ®@vs) =2(k+ DA 11 @ v2) @v3).
Via the formula = 1(A(C) — C ® 1 — 1 ® C), we compute that:
(re%lzow)q) = (A)\ — A)\l — A)a)q).
Next we calculate the monodromy éscircles once aboui and(, circles once aboui and(;.

(They both happen at the same time, &3¢l > |(;| again!) Hence we are adding up the residues
to getd (Q(12) + QU3) 4 Q).

HW: Verify that 2(Q(12 + QU3 4 Q2 ) = (A, — Ay, — Ay, — Ay,)®. (Hint: use the formula
for A®)(C) above.)
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22. LINK INVARIANTS (PRELIMINARIES)

22.1. Monodromy representation. Let us summarize our findings about the monodromy repre-
sentation from last time.

Letg = s[(2,C). Fix alevelk and let)q, ..., A, be highest weights & < 2; < 25 < -+ < z,.
The n-tuple (21, ..., z,) will be our basepoint in the configuration space Go@f). We will
also take weights\) = 0O atz, = 0 and\,,; = 0 atz,,; = oo. (These additional points
correspond to the triviag-representatiorC.) Let V,, ., be the space of conformal blocks
H(20, .- Znt1; Aoy - - -, Ans Any ). The KZ equation gives rise to a representation:

Take a basis foV), . ,, corresponding to a trdeof form ((((12)3)4) ...n). By this we mean the
edges 1 and 2 come together first, then the outgoing edge genheith edge 3, and the outgoing
edge is merged with edge 4, etc. Last time we computedvthd) is diagonal with respect to the
basis corresponding o and that:

/0(0'%) (v) = BB _A/\2)U/r

Here,v, is any basis element whose labeling of the third edge at awerhere\; and\, come
together is:. Also, we use the standard generaters. . ., 0, of B, and viewP,, C B,,. Then one
full twist of strands 1 and 2 is?.

For the braid grou@,,, we letA = A\; = --- = \,,. Thenp is a representation:

With respect to thé-basis, we have:

plo)(1) = e Bn =8

Notice the loss of the facta@rin front of 2.

Uy

Example: Suppose\ = 1, i.e., all the representatiori§ are the standard 2-dimensional rep-
resentation o&((2,C). Then a basis of/; _; is given by orderedv + 1-tuples(po, - - -, fini1)s
where:

(1) po = pn1 =0;

B)0<u <kforl <i<n.
They; are labelings of the edges of graphs of typ€01)2)3) ... n+1). (2) holds because we are
always fusingu; with \;,; = 1. (3) is the quantum Clebsch-Gordan condition.

-----

Remark: | have been told that this has something to do with@lagalan numberif we disregard
the quantum condition.
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22.2. lwahori-Hecke algebra representations. The lwahori-Hecke algebras an associative al-
gebra oveC with unit, generated by, ..., 0,,_; and relations:

(1) 0,05 = 004, if |Z —]| > 1,

(2) 0i0i110; = 0511040441;

(3) (0i —q"*) (0 —q7V?) =0,
whereq is some nonzero complex number. Conditions (1) and (2) atelpe braid relations, and
condition (3) tells us that a representation of the Iwalitetke algebra is a representation of the
braid group, where each has at most two eigenvalues. See Jones’ fundamental pgdper [1

Again letg = s[(2,C) and\ = 1 (corresponding to the 2-dimensional irrep). We defjhé =
em’/k-i—Z and,r] — e7ri/2(k’+2)'

Theorem 22.1.Given the monodromy representatipn B, — GL(V;
the modified representatigh: B, — GL(V;
representation.

-----

77777

Remark: Note that the modificatiop is also a representation &%,. This is the multiplicative ver-
sion of the fact that thenking numberlk : B, — Z given byo; = 1 for all 7 is a homomorphism.
This follows from observing that the braid relations alwaysservevord length

Proof. Without loss of generality, we show the theoremdor With respecttd’ = (((01)2)...n+
3 _mi

1), p1 is either0 or 2. Hencep(o:) has eigenvalues™(®o~21=41) — ¢72 %57 or gmilA2—A1=41)
ezi+2 . Multiplying with 7 givesg*/2.

oo

Remark: In Kohno’s book, the Iwahori-Hecke algebra is supposed tisfya(o; — ¢/2)(o; +
¢~'/?) = 0. | do not see where the plus sign comes from, and would aggiecainy suggestions!

22.3. Knots and links. A link is an embedding : S' U --- 1 S' — S3 (or the image of the
embedding). Herel represents disjoint union. The image will be denoted- L; LI --- U L,,.
We will also blur the distinction between knots aisdtopy classes of knotélso, we will switch
back and forth betweesi* andR? with impunity. We will usually project the knot frorR® to R?
so that the projection has only transverse intersectiorsganote the knot by the crossing data.

A Seifert surfacez of an oriented knot. is an embedded oriented surfagec S® such that
0% = L (and the boundary orientation &f agrees with the orientation d@f). The Seifert surface
is not unique.

There is an algorithm, called tt®eifert algorithnfor finding a Seifert surface. We locally resolve
each crossing so that the orientations (arrows) are wélekbafter each resolution. See Figure 2.
The result is a union of circles, and the Seifert surface taiobd from the disjoint union of disks
that bound these circles, by banding in a manner dictatetdygrossing data.

Thelinking numberik(L,, L,) between two linkd.; and L, is the (oriented) intersection number
of L, with the Seifert surface fok;.
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S NS
/ SN

FIGURE 2. Resolving crossings.

HW: Prove thatk(Ly, Ly) = lk(Ls, L1).

We can assign a sign to each crossing in the knot projectiea F&jure 3.

N\
<

FIGURE 3. Crossing signs.

HW: Prove thatk(L, Ls) is the number of positive crossings bf and L, minus the number of
negative crossings df; and L,.

Framings: A framingof L is a homotopy class of trivializations of the normal buneleof L (in
S% or R®). In other words, it is a homotopy class of nowhere zero sastofv L. For example, a
Seifert surfacé&: of L induces a framing@’> N v L along L, which is usually called the-framing.
In general, take a pushoff of L in the direction dictated by the sectionwf. Then the framing
is given bylk(L, L’).

REFERENCES
[1] V. JonesHecke algebra representations of braid groups and link poiyials Ann. of Math.126(1987), 335-388.
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23. LINK INVARIANTS

Today'’s goal is to define an invariant of oriented, framed#din

Blackboard framing: Given a planar diagram of a link, the blackboard framings given as
the normal to the tangent spaéd. of the link insideR?. (We need to exercise some care at the
crossings....) Figure 4 gives the blackboard framing ofitjiet-handed trefoil.

w)

FIGURE 4. Blackboard framing.

Decomposition into elementary tangles:Suppose the link is in planar form, with coordinates
x,t for the plane. After perturbing the link if necessary, we decompose the link into slices
t; <t < tiy1, wherei = 0,...,s — 1, so that on each slice there is only one of the following
(1) crossing, (2) maximum (with respect £ or (3) minimum. (Such a slice is called ate-
mentary tanglg See Figure 5 for an elementary tangle with a crossingétlseeanother with the
overcrossing/undercrossing switched).

\

FIGURE 5. An elementary tangle with a crossing.

Write L as a disjoint uniorL; U - - - U L,,, of knotsL;. We will keep track of the order of the;,
and such a link is often called@lored link Fix a levelk. Label eachl; by the highest weight

115

We will use the TQFT philosophy to assign a vector specg) to each levet = ¢; and a mor-
phismZ; : V(t;) — V(t;;1) to each[t;, ¢;11]. We setV/ (ty) = C andV (t;) = C. Once theV/ (t;)
andZ; are defined, we define:

Z(Lipay .oy pbm) = Zs10Zs 90070 Zy(1).
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Definition of V'(¢;): If t = ¢; intersectsL atn points (. is even), then we assigs; if the inter-
sectionisinL; N {t = t;} and L, is oriented downwards; we assighif ; is oriented upwards.
(By 1 we mean the dual t&),..) Then we seV'(t;) = Vi, ..,, Where each\,, [ = 1,...,n, is
one of they;, p5, j = 1,...,m. We will also writeV'(t;) = Vo x,,...x,.0- IN this way, we see that
V(to) = V(ts) = Vo0, and its basis can be denoted by a tree with one edge whicheket.

Definition of Z; for a crossing: We will give Z; : V (t;) — V(t;;1) if the elementary tangle is a
crossing given in Figure 5. Write, for the corresponding braid iB,,, whereo, switches theith
and(a + 1)st strands. It is convenient to defitg with respect to the basis corresponding to some
treel’ = (...(a,a+1)...). In other words, we have an edgeand),.; come together at a triva-
lent vertex and an edgeemanating from the vertex. Let be any basis element corresponding to
such a labeling. Then

Zi(vu) — 67ri(Au—A>\a—AA(LJrl)Pa’a_’_l,UV’
where P, .1 permutes theith and(a + 1)st factors. If the overcrossing and undercrossing are
reversed, then the multiplicative factor changes8®»~**~2x.41), See Figure 6.

FIGURE 6. Z; for a crossing.

Definition of Z; for a minimum: Supposd. N {t = ¢;} hasn intersection points. Then
ZZ : ‘/07>\17~~~7>\n70 - ‘/07>‘17"'7>‘0«7)u'j7#;'(7)‘a+17"'})‘7170

is given as follows. (Here the minimum lies @n, corresponding te;.) First embed/ , . 1.0
INtO VoA, 2 0,041,000 DY @dding an edge with labélonto somd” for V4, »,,..x..0- Then add
two edges labeled; and:; onto the univalent vertex of the edge labeledThis corresponds to
the embeddindt x, ... x..00011,....00,0 INtO le7,.,%%M;,AGHMMO. See Figure 7.

Hj I

FIGURE 7. Z; for a maximum.

Definition of Z; for a maximum:

Zi Vot edasmty ot Aattsedn 0 = VO A0 0
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is given by starting with a basis correspondingtas in the right-hand side of Figure 7, but the
labelings areu;, 1 andv instead o). Then all the basis elements with~ 0 are mapped to zero
and the basis elements with= 0 are mapped to itself. (In other words, we have a projectian to
subspace consisting of= 0.) Now we can (haturally) map to the basis in the center of Fegy
and hence to the basis on the left.

Lemma 23.1. Z(L; u1, - - ., 14 IS invariant under the moves given below.

N /

FIGURE 8

The top three moves are the “horizontal moves”. The invaeaof Z under the top two moves
follows from the flatness of the KZ connection, since the nsaepresent homotopic paths in the
configuration space ConfC) (relative to the endpoints). | have not been able to figuretioeit
proof for the third move. The fourth move represents moviraxima and minima above one
another, and is straightforward to verify.

It turns out thatZ (L; pu4, . . ., i) IS NOt yet an invariant of the oriented framed colored linkder
the move below which increases the number of maxima and raiblynone each?Z (L) satisfies
the following:
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Fact: Z(L'; pua, ..., pom) = Z(Ko; i) Z(L; pta, - - -, ftm), Where K is an unknot with two maxima
and two minima and no crossings. Algg,is the labeling on the componehf of the link L which
has its number of maxima/minima increased. (This is not tod ko verify.)

FIGURE 9

Write d(u) = Z(Ko; u)~'. Also let max be the number of maxima ih;. Then define:
J(Li g, - s i) = d(p2) " d ()" Z(Ls s ).
Theorem 23.2.J(L; py, . .., i) IS @n invariant of the colored oriented framed link.

Proof. Two colored oriented framed links and L’ are isotopic iff L’ is obtained fromL’ by a
sequence of moves already considered, namely: local mtakzmoves, moves that shift max-
ima/minima above one another, and cancellations of ctipioants. O
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24. THE JONES POLYNOMIAL

24.1. Link invariants. Last time we defined? (L; i1, .. ., ptm), WhereL = Ly U --- U Ly, is
an oriented colored linkg is the level, and.; is the highest weight foL;. Z was obtained by
decomposing a link diagram into elementary tangles andidgfmapsZ; : V(t;) — V (ti+1).

To get an invariant of an oriented colored link, we need twalifications:

1. Z is not invariant under the modification given in Figure 9. téasl, Z(L’; p1, . . ., o) =
Z(Ko; ;) Z(L; pa, - - -, ), Where Ky is an unknot with two maxima and two minima and no
crossings, ang; is the labeling of the component; involved. Hence, we modify:

J(Ls s - ) = () () T Z (L o, i)
Hered(u;) = Z(Ko; pj) ™"
2. Now J is an oriented framed link invariant, but not an oriented limvariant.

Fact: If L’ is the link obtained fronL by increasing the framing df, by 1, then

J(L gy i) = €205 J(Ls i, fm).
(I do not know how to prove this.)

For example, the (blackboard) framing can be increased @edsed as follows: Take a vertical
line in one of the elementary tanglgs ¢;..;] and add an extra loop (do a Reidemeister | move).

To keep track of the number of Reidemeister | moves perforweduse thevrithe w(L), which
is the number of positive crossings minus the number of megatossings. If we modify

T(Ls iy - -y ) > € 77 S B T(L iy ),
then the new polynomial is an invariant of the oriented cadidink.
24.2. The Jones polynomial. To define the Jones polynomial, we specializgte=--- = u,, =
1. Write J(L;1,...,1) = J.. Let L, be a (planar diagram of) a link, and jebe a positive cross-
ing of L. Let L_ be obtained froni, by replacing the positive crossinpgoy a negative crossing

(without changingl, away fromp), andL, be obtained froni., by resolving the crossing(in a
way which preserves the orientation).

Lemma 24.1(Skein relation) If ¢ = ef_fz, then
ql/4JL+ . q_1/4JL, — (q1/2 - q_l/z)JLo-
We also writex = k + 2.

Proof. | seem to get
q1/4JL+ 4 q_1/4JL, _ (q1/2 4 q—l/z)JLO
instead....
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At any rate, consider an elementary tangle which contaiasctbssingp. Consider the basis
corresponding to the trefe.. (a,a + 1) ...), where the crossing involves th¢h and(a + 1)st
strands. The eigenvalues pfo,,) aree™(Ao=241) — ¢=3/1 or ¢mi(A2=281) — (/4 HenceZ;(L) :
V(t;) — V(tiy1) are given by:

Zi(L-) = diagg®*, ..., ¢*/* g7V g,
Here diag means the diagonal matrix with the given entriesign have:
¢ Zi(Le) + q 1 Zi(L2) = (0" + ¢ V) Zi( o).
All the other elementary tangles are the samelfoy L._, andLL,, implying the lemma. O

Jones polynomial normalization: Let P, = d(1)'e~?m41w(L) J; - Then the skein relation be-
comes

¢Pr, —q ' P = (¢"? = ¢ Py,
Note thatd(1)~! is a constant which is thrown in to mak® of the unknot equal ta. Finally, if
we sett'/? = —¢~'/2, then we obtain the originalones polynomial;, which satisfies the skein
relation

WV, — V= (12— 7)Y,

FS: The way we defined the Jones polynomial is not the most stfaigbard way. There is a
straightforward combinatorial way due to Kauffman, usinguiéman brackets.

FS: There is a homology theory, calléhovanov homologywhose (graded) Euler characteristic
gives the coefficients of the Jones polynomial.

24.3. Calculations. The skein relation, together with the normlizatibifunknoy = 1, com-
pletely determines the Jones polynomial for all knots anklsli The proof is by induction on the
number of crossings. To give plausibility to this assertaa compute the Jones polynomial for
several knots and links, with an increasing number of cnossi

1. Let Ly be the union of two unknot&’;, K5, where thek; are contained in disjoint 3-balls.
Applying the skein relation to the links in Figure 10, we dbta
= —t

V(Lo) = /2 _ 4-1/2

2. If L is the Hopf link given on the LHS of Figure 11, th&(L) = —t°/2 — t'/2, If L is the Hopf
link given on the RHS, theW (L) = —¢75/2 — t71/2,

3. If L is the right-handed trefoil, theWi(L) = —¢* + ¢* + ¢. If L is the left-handed trefoil, then
V(L) = -t +t3 +¢ L.
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OO OO0 OO

FIGURE 10

(O Q5

FIGURE 11

Properties of the Jones polynomial:

A.If L, andL, are contained in disjoint 3-balls, then

B. If L is the mirror image of. (the mirror image is obtained by reflecting the planar diagra

across a line in the plane), theiL) = J(L), where the latter refers to the complex conjugate of
J(L). In terms oft, J-(t) = Jr(t~'). This property explains why the mirror images in 2 and 3
above differ by substitutingby ¢ .
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25. TOWARDS THEWITTEN INVARIANT OF 3-MANIFOLDS

25.1. Invariants of embedded trivalent graphs. Although it is not explicitly stated in Kohno's
book, it appears that there are invariants of embeddingsséd (finite) trivalent graphs. (Trivalent
means all the vertices have three edges.)

Given an elementary tangle as in Figure 22; V' (t;) — V (t;41) is defined as in Figure 7, where
the labels), 15, 11} are changed to, y11, s, respectively.

M1 H2

FIGURE 12

Similarly, if we have an elementary tangle given by the uggidwn version of Figure 12, thg
is given by the projection on the right-hand diagram of Fegidr(with labelsv, 11, 12) onto the
middle diagram of Figure 7 (with labelinstead o).

Let NV, be the dimension of the space of conformal blogk®:, p2, p2; A, 11, v), which is either
0 or 1, depending on whether the quantum Clebsch-Gordatsra&isfied or not.

Lemma 25.1. Z;(A) = >, N0 Zi(B), whereA and B are elementary tangles given in Fig-
ure 13.

H1 H2

FIGURE 13

Proof. This is straightforward to verify, by taking a basis corm@sging to the right-hand diagram
of Figure 7. O

Remark: We must check that (defined similarly as before) of a trivalent graph is indegesmt of
the slicing into elementary tangles and Reidemeister lllAmdoves. | have some trouble showing
this.
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25.2. J(L; 1, - .., ). The goal of this section is to give a recursive formula whigpresses
J(L; pay - .-y o) interms of J(L; 1, ..., 1), i.e., the Jones polynomial.

Surgery convention: Given a knotkK, take its tubular neighborhool (K). Take an oriented
identification of —ON(K) with T? ~ R?/Z?* so that the meridian oV (K) (i.e., the nontrivial
curve ondN (K) that bounds a disk itV (K)) corresponds te:(0, 1) and the longitude (given as
the boundary of the Seifert surface of K) corresponds:{d, 0). We observe that the longitude
is independent of the choice of Seifert surface, provideds a knot. (More precisely, we are
choosing the longitude to be the intersection of the Se#fertace and N (K).) With respect to
the identification withR? /Z?, the meridian has slop and the longitude has slope

A (p, q)-cable ofK is a knot on0 N (K') which represents &, p)-curve with respect to the above
coordinates o™, Alternatively, it windsp times around the meridian andtimes around the
longitude. For example, am, 1)-cable is a pushoff oi in then-framing direction.

Computation of d(\): Let us apply this to thé0, 1)-cable of the unknot. See Figure 14.

FIGURE 14

J of the leftmost diagrani. equals the sum, over all, of N,,, times.J of any of the other three
diagrams. Rephrasing in terms ©f we have:

dN)d(p) Z(L; p, A ZNW Z(unknot v).
SinceZ(L; u, A) = Z(unknotv) = 1, it follows that:

(16) d(N)d(p) = Z Ny d(v)

27

Lemma 25.2.d(1) = (1/‘1‘7,1/2 whereq = e#+2.

n/2

We will often call[n] = m‘iq’fm thequantum integer. Henced(1) = [2].
Proof. Apply the skein relation of’ to Figure 10. Then we have
g-1—q " 1=(¢""=¢"*)d(1)-1,
sinceP(L) = d(1)~te~2mAww(D) J(L) andJ(L, U Ly) = J(L,)J(L2) by the previous lecture.]
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Equation 16, together with Lemma 25.2, can be used to realysiomputei(\). One checks that
d(0) = 1. By Equation 16, using the quantum Clebsch-Gordan rule we\cée

d(1)d(1) = d(0) + d(2),
providedk > 2. This allows us to compute thd{2) = [3]. In general, we obtain (with more
work):

Lemma 25.3.d(\) = [A + 1].

Reduction to J(L): Using the same technique of fusing together strands, werathia following:

Theorem 25.4.1f K is the cable of, with respect to the blackboard framing, then
J(Ko, Ki; A i) = Y Ny J (Ko, v).

If we take\, 1 = 1, then we can find/(Ky; 2), etc., using the above formula.

25.3. Dehn surgery. Let K be a knot inS3. Theg-surgery onk is the closed (= compact without

boundary) 3-manifold obtained by first removiNg K') ~ (S* x D?) from S? and gluing it back so
that the new meridian has slogewith respect to the coordinates introduced earlier. Ouatiar

for the resulting 3-manifold i§f;/q(K). If § € Z, then the surgery is called amteger surgery If
K is a framed knot, then the framing gives rise to an integegjesyrcoefﬁcientg = n, and we
often write S*(K).

Similarly, given a linkL = L, U ---U L,,, eachL; is a knot and has a framing coming from its
Seifert surface. We Writé"f’m/q1 pm/qm)(Ll, ..., L) for the result otfl’—{-surgery along.;, done

simultaneously on alL;.

Theorem 25.5. Any oriented, closed 3-manifold is obtained by integer stygpn a link inS3.
(The coefficients may be different for different componeftise link Z.)

Theorem 25.6(Kirby, improved by Fenn-Rourke)Let L and L’ be framed links inS®. Then
S3(L), S*(L') are diffeomorphic iff.’ is obtained fronY. by applying the following moves, called
blowing up/blowing down

In Figure 15, from the left to the right we aldowing downand from the right to the left we
areblowing up Let L, be the unknot with Dehn surgery coefficieat which links with strand’,
with surgery coefficient;. Then blowing down entails removing, and replacing it withy1 full
twists, and further changing the framing bf from n; ton; F (Ik(Lo, L;))*.

REFERENCES
[1] R. Gompfand A. Stipsicz-Manifolds and Kirby Calculus
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nin2 | ng

FIGURE 15. Blowing up/blowing down

26. THE WITTEN INVARIANT OF 3-MANIFOLDS

Today we define th@Vitten invariantof a closed oriented 3-manifoltd . It is obtained by taking
a suitable linear combination of(L; ¢, ..., \,,), whereLL = L, U L,, is a framed link such that
M ~ S3(L).

26.1. Some preparation.

Modularity: Let

B 2 A+1D)(p+1)
Shy = k+2sm(7r 12 ,
CAA+2)
Ar= 4(k+2)
Also letc = 25 andC' = e~™/*, Then consider thék + 1) x (k 4 1)-matricesS = (S),), where

A, i range from0 to k, andT = diag e?™(Qo=¢/24) | 2milAx=c/24)),

Proposition 26.1.There is a representatioRSL(2,Z) — GL(k+1, C) which send< 0 1) —

-1 0
1 1
Sand(0 1)D—>T.

In particular,S? = (ST)? = I and hencd'ST'ST = S. This gives us the following equation:

k
(17) ¢ Z SAMSMV62Wi(AA+A”+AV) = S)\V~

=0

FS: Apparently the representation arises from the modulasfoamation properties of characters
of representations of affine Lie algebras.

Signature: Let L = L, U --- U L,, be a framed link. Note that we need the link to be framed in
order to definék(L;, L;). The linking number is symmetric, i.€k(L;, L;) = lk(L;, L;). Given
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the symmetrien x m matrix A = (Ik(L;, L;)) (called theSeifert matri¥, we define theignature
of L to be

o(L) = #(positive eigenvalues) #(negative eigenvalues)
26.2. The Witten invariant. Let M be a closed oriented 3-manifold. M = S3(L), then set
(18) Zp(M) = SpoC* Z Sox -+ Soam J(Ls A1y oo Am).

Here the sumisoveraN: {1,...,m} — P,(k) ={0,...,k}, and); = \(i).

Theorem 26.2. Z, (M) is a topological invariant, i.e., does not depend on the chaf L such
that M ~ S3(L).

A formulation similar to Equation 18 was first given by Reski@n-Turaev.

We need to show that the RHS expression in Equation 18 doeshaage under blowing up and
blowing down. Let us writd, = Lo U L; U - - - U L,,,, whereL, is an unknot witht+1 framing.

Case 1.Supposd., andL, U- - -U L,,, are contained in disjoiri-balls, i.e.,L is not linked to the
rest.

HW: Show directly thatS®(Lo U -+ - U L,,) ~ S3(L; U - -~ U Ly,).
Recall that by Property A in Section 24.3,
J(L7)\077)\m) = ']<L1UULmJ)\177)\m) J(LO7)\0)7

sinceL, and theL, U - -- U L,, are contained in disjoirt-balls. Supposd,, is the +1-framed
unknot. Then

J(Lo; Ag) = €*™®%0 J(0-framed unknot\y) = ™ d()g) = >0 5;0_;) .

HW: Verify thatd()\) = 32

Next we compare signatures. Lét= (lk(L;, L;)) wherei, j = 1, ..., m. Then the Seifert matrix
for LyU---U L, isdiag1, A). Hence

o(LoU---ULp)=0(LyU---ULy)+ 1.
Hence,
SooC7E N ™ S -+ Soam T (Li Ao -+ Am)
A

AL S
= SOOCU(LlU---ULm)-‘rl Z S(])\l e SO)\m J(L7 )\1, e Am) Z SO)\0€27”A)\0 SO_)‘O.

ALreoAm Ao 00
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Hence, to show the invariance we need:

S
CZ SO)\O 2o 27”A>\0 = ]-7

Ao

which follows from Equation 17 by setting= 0, v = 0, u = \o.

Case 2.Suppose the Seifert surfacelaf (a disk) has nontrivial intersection with only; and they
intersect in only one point.

Llu...ULm\ LU UL m
\Q/ N LQ/

FIGURE 16. Chopping and rearranging

As shown in Figure 16, we divide the link, U - - - U L,,, on the left-hand side into two tangles,
and complete the two tangles by attaching half of an unknah@/framing) to each.
We have

J(L1UULm,)\1,,)\ ) J(H )\0,)\1)

L UL =
J(Lo U+ -U Lini Xy -+ Am) J(0-framed unknath;)

Here H' is the Hopf link with framingst-1 and0. (Prove the above relation!)

Fact: If H is the Hopf link with framingd), 0, thenJ (H; A\, u) = igg

This can be verified by viewing the Hopf link as a cable of thknet. Hence,

J(H'; Aoy M) = T80 J(H; M, Ar) = €275 Sgﬁ*l.
00

Since

J(0-framed unknat,) = %Al,
00

it follows that:

J<LOUULm7)\07’)\m):J<L1UULm;)\h,)\m) 27r2A>\ S)\o)\l SOO
Soo Soxn
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Also observe that, after blowing down, the new linkisU L, U - - - U L,,,, where if L, has framing
+1 andZ, has framingn,, thenL/ is L, with framingn, — (Ik(Lo, L1))?> = n; — 1. Hence

JLLU - ULy A, An) = € B J(LyU U L Ay A

Next we consider Seifert matrices. L&t= (a;;) be the Seifert matrix fof, U- - - U L,,. Then the
Seifert matrices fol.; U---U L,, andLy U - - - U L,, are (respectively):

ain—1 a 1 1

11 12

4/ = 21 22 A” = ! 1 12
B 0 o1 Q22

HW: Verify thato(A”) = o(A’) + 1. (Hint: A change of coordinates fot” is helpful.)
Finally, the following equality (a special case of Equatiif) gives the result.

C § SO)\Q S)\o)q 627rzA>\0 — SO)q e—27rzA>\1 )

Ao

Case 3. Suppose there the Seifert surface Iof has multiple intersections with,; U --- U
L,,. In that case, we fuse together two strands. Refer to FigdreThenJ(LHS) is equal to
>, Noaia J(RHS), wherev is the label of the new edge which intersects the SeiferasarbfL,
and\, \, are the labels of the strands that are fused together. Byiimih) we reduce to Case 2.

A

FIGURE 17. Fusing together strands

26.3. Properties of Z(M).
(1) Z.(S?) = Sy, sinceS? is given by the empty knot.
(2) SinceS! x S3 is given by0-surgery on the unknot if?,

S
Zk(Sl X SS) = SOQZSOMS—(;Z = Z(SOM)Z =L
I I

(The last equality follows fron$? = I, whereS is the matrix given earlier.)
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(3) If M,# M, is theconnected surof M; andM,, then

1
Zy(My#My) = S—Zk(Ml) - Zy,(Ma).
00
Here M, #M, = (M, — B3)U (M, — B?) whered B3 from M; is identified witho B® from
M, via a diffeomorphism.
(4) If —M is M with reversed orientation, then

Zp(—=M) = Zy,(M).
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27. REPRESENTATIONS OF MAPPING CLASS GROUPS

27.1. Mapping class groups. Let X be a closed oriented surface of gegu®enote by Diff (%)
the group of orientation-preserving diffeomorphismssbf We now put an equivalence relation
on Difft(X). Two h,h' € Diff *(X) are equivalenti{ ~ 1’) iff there exists a smooth maf :
¥ x [0,1] — X such thatH;(z) = H(t,z), H; : ¥ — X is a diffeomorphism, andi, = h,

H, = I'. We say that. andh’ areisotopic

Define themapping class groupo be Map(X) = Diff " (X)/ ~. We usually blur the distinction
between diffeomorphisms and equivalence classes of diibephisms.

Fundamental Example: Lety be a homotopically nontrivial simple closed curveXnA positive
Dehn twistis an element of Diff () which is the identity outside an annular neighborhdédy)
of v. OnN(v), cut N() alongy and reglue after doing one full twist along one of the (cuemp
copies ofy, as given in Figure 18. We denote the positive Dehn twistgtpby R,. (If you are
looking towardsy on 3, then an arc will be sent “to the right” after the positive Detvist.)

FIGURE 18. A positive Dehn twist

Theorem 27.1(Lickorish-Humphreys) Map(X) is generated by (positive) Dehn twists abaut
0;, 0 given in Figure 19.

FIGURE 19. Generators of the mapping class group
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27.2. Heegaard splittings. Any closed oriented 3-manifold/ admits a decomposition/ =
H, U H,, whereH; are handlebodies. AandlebodyH of genusg is a compact 3-manifold with
boundary which is bounded by a closed surfacef genusg insideR?. Equivalently,Z can be
given as a tubular neighborhood (insi@d) of a bouquet of; circles.

If H, = H, H, = —H (by this we mean take two copies &f with opposite orientations), then
we can identifyoH, = 0H with —0H, = OH via the diffeomorphisnh : 0H = 0H. The
diffeomorphism type of\/ only depends of| € Map(X), whereX = 0H.

HW: Show that ifh = id, thenM is the connected sum gfcopies ofS! x S2.

h = id corresponds to the following link diagram:

\/(\/(\/
N N N

FIGURE 20. 3-manifold corresponding td € Map(X)

™\

The top and bottom graphs aré andI’, respectively. H; is the thickening ofl' and H, is the
thickening ofl". We are surgering along three unknots with framinghich lie in disjoint3-balls.
One can check that the complementaf I” in S3, after surgery, i& x [0, 1], whereX. is a closed
surface of genus.

\/\/(\/
i
N N

n /S DT/
FIGURE 21. 3-manifolds corresponding #,,, R..,, Rg, € Map(X).

51

&

2
| \ |




NOTES FOR MATH 635: TOPOLOGICAL QUANTUM FIELD THEORY 89

Each link diagram is obtained from the link in Figure 20 by iadda (—1)-framed unknot, labeled
a1, (s, a3, respectively, in Figure 21.

HW: What aboutR;?
27.3. The TQFT representations of Map(X%).

The vector space:Define the complex vector spabg to be the vector space generated by label-
ings of the uni/trivalent graph given below. The edges on the left and on the right have lageli
0, and at each trivalent vertex the lewetjuantum Clebsch-Gordan rule must be satisfied.

M1 H2 Hg
0 0

FIGURE 22. The graph'.

We can alternatively writés; as a direct sum, over,, i, ..., ug, i1 € Py (k) = {0, ..., k}, of
the space of conformal blocks

def * *
V,mu’f...,ugu; = H(07p17 vy P2g, OO 07 iy gy -5 Hg, :ugu O)

(We can think of cutting” along the edges with labelings, . . . , i, SO it becomes a tree.)

' 2g—2
Fact: dim Vy, = erm(k) (S%») '

The morphisms: If & is one of the generatot8,,,, Rg,, Rs of Map(X), then consider the corre-
sponding tangl€’(h) given in Figure 21. If" has labels, ..., u, andI” has labels, ..., v,
(these are the labels on the semicircular edges), thendmnsi

J(T<h>7 )‘)MV : Vulu’f...uguz - vmu{...ugy*-

Then define
p(h) : VZ — VE
by p(h) = ®,.p(h),., Where

p(h) = \/Som . Sop, \/SO,,l e Sou, CTED ST S0 Son, (T (R); M)y
A

where) is the set of all labelings (with values i, (k)) of the link components.
Theorem 27.2.p : Map(X) — GL(Vs) is a projective representation.

For aprojective representatiop, p(hihs) # p(h1)p(hs) but instead

p(hihs) = &(hy, ho)p(ha)p(hs),
whereé (hy, hy) = Coh)=o(h)=o(hz),
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Let us consider what happens when you stack two tariglés) and7'(hs) (T'(hq) belowT'(hs)).

It is easy to see thatis a projective representation. (HW: verify this!) What sesea little strange,
however, is that if we stack two “elementary” tangles cqueexling to one of the Dehn twist
generators, then the lower semicircles frdith, ) and the upper semicircles 6 ) glue to give
0-framed unknots. All of a sudden new unknots appears intetingery picture! Upon further
inspection, this turns out to be quite natural:

Fact: T'(hihs) represents\ = H Uy, (—H). (Hint: there is a way to cancel certain chains of
0-framed unknots.)

We end this lecture with an important fact:

Fact: Suppose, is an element o, corresponding to a labeling @fin Figure 22. Let be an
edge ofl andC/(e) be a curve which is the meridian corresponding for the thickening ofl".
Then:

p(Roe))(02) = 2wy,
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28. CHERN-SIMONS THEORY

In this lecture, we briefly describe the original way Witteivariant for 3-manifolds was de-
fined (using path integrals).

28.1. Connections on principal bundles. Let M be a compact oriented 3-manifold. L@&tbe a
Lie group andg be its Lie algebra. For simplicity we sét = SU(2). Some of the discussion
below will be valid for arbitraryG, and others will depend oi = SU(2).

Let P be a principalG-bundle overM. A principal G-bundle admits aight G-action and a
local trivializationt=!(U) = U x G, where the identification commutes with tGeaction. Here
7 : P — M is the projection. One can show thatif= SU(2), thenP is trivial, i.e., P ~ M x G.

Next, a connectiow is a 1-form onP with values ing which satisfies the following:

(1) w(p)((ip)£) = &, if p € Pand¢ € g;

(2) Ryw = Ad(g™Hw.
Here R, : P — P is right multiplication byg, i.e.,p — pg, andi, : G — P is the inclusion
p — pg. If condition (1) reminds you of the Maurer-Cartan form, yane right: if P = M x G,
then, with respect to the second projectign: M x G — G, the Maurer-Cartan form on G gets
pulled back to a connection 1-form§, (1) on P.

It is possible to puskvy down to M by taking the difference with a fixed connection, say =
75 (). ThenA = w —wo € QY (M; g). We write Ay, = Q' (M; g) for the space of7-connections
onP =M x@G.

Now, we define thgauge grou,, to be the set of mapg: M — G. Hereg acts onP by right
multiplication. If g € Gy, then

(19) g A=g T Ag+gdy.
(Observe that this is similar to the gauge change for affimanections, discussed earlier.)

FS: For more information on principak-bundles and their connections, refer to my second se-
mester differential geometry (Math 535b) notes, availdtdm my website.

28.2. The Chern-Simons functional. The Chern-Simons function# a function:
CS: Ay — R,

1 2
AH_/ Tr(ANdA+ZANANA),
M

872

FS: We briefly mention Chern-Weil theory. Given a connectibon P, one can construct charac-
teristic classes out of the curvaturg = dA+ A A A by takingw,, = Tr(F%). It can be shown that
dwy, = 0 andw,] € H*(M;R) does not depend on the choice of connectioThe integrand of
the Chern-Simons functional is supposed to be a primitivEr@f'y A Fa).
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Lemma 28.1. Suppos&M = (). Then the critical points of''S are flat connections, i.e., connec-
tions A such thatf’y = 0.

Proof. At a critical point A € A all directional derivatives

[ CS(A + ta) - CS(4)

t—0 t

=0,

wherea € Ty A = Q'(M;g). (Note that what we are trying to do is an analog, in infiniteein-
sions, of exploring the topology of the space by looking atdtitical points of a Morse function.)

Using the invariance of the trace under cyclic permutafiotia;asas) = Tr(asaias), wherea;
aren x n matrices, and ignoring terms which are quadratic or highérnive compute that:

limCS(A+ta)_CS(A) = L/Tr(a/\dA+AAda+2a/\A/\A)
t—0 t 87‘(‘2 M
L 2-Tr(aN(dA+ AN A)).
87T2 M

Here,d(Tr(ANa)) =Tr(dANa) —Tr(AAda)andf, d(Tr(AAa)) = 0 (sinceM is closed),
so [, Tr(ANnda) = [,, Tr(aNdA).

Sincea was arbitraryF4 must equal zero at a critical poidt O

One can similarly compute:

Lemma 28.2. Suppos@ )M is not necessarily empty. Then

CS(g*A) = CS(A) + 1 /E’M Tr(Andgg™") — / g'o.

872 M
Hereo is the 3-form orG = SU(2) given by, Tr(u A 1w A i), andy is the Maurer-Cartan form
onG. (Recall[o] € H*(SU(2); Z) is the generator.)
HW: Prove the lemma!
Observe that the last term is the Wess-Zumino term.

If OM = (), then the boundary term drops out, and

CS(g"A) =CS(A) —/ g'o.

M

Notice [,, g*o € Z since it is the pullback of an integral class@f HenceC'S is a function

It also makes sense to writg™ 514D where[A] € Ay /G
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28.3. The path integral. Just as for the WZW model, consider the Feynman path integral

Zk(M) _ / eZm'kCS(A)dlu.
An/Gur

(Herek is the level.) Cut a closed oriented 3-manifald along an oriented surfaceé so that
M = M, U My, OM, = X3, OMy = —X..

We construct a line bundle ovety/Gs, in much the same way as before. Extend Ay to
A € Ay, and considee? %) Also, giveng € G, extend toj € Gy, . If we define

C(a, g) = Zri(CS(FA)-CS(A) — 62’”'[871@ Js aAdggfl—fMl !7*0]7

thec(a, g) does not depend on the extensiehandg to M;. Now take the trivial bundledy, xC —
Ay, and quotient out by the equivalence relati¢m:1) ~ (g*a, c(a, g)).

Now, A, /Gy is still infinite, so we further restrict to the space of flahoections on. The
guotient of the space of flat connections ¥y Gy, will be denotedMy.;, and will be called the
moduli spaceof flat connections or. It is equivalent toHom(w(X), G)/G, and can be given
the structure of a complex manifold. Also, the restrictidnhe above line bundle td1y, will be
written Ly;, and is a holomorphic line bundle. Thefold tensor power oLy, will be written E%k.

The space of holomorphic sectioR6£$") is called thequantum Hilbert spacef level .

FS: The quantum Hilbert space of levielis isomorphic to the space of conformal blocks of level
k. (See Beauville-Lasla@zonformal blocks and theta functiaips

If L =L,U---UL,isalnkin a 3-manifold}, then assign a representativhof G to each
componentZ;. Let Wy, g (A) be the trace of the holonomy of aroundL;. Then Witten’s
invariant is given by:

Zk(M§ Ly,. .., Lm) = /ezkaS(A) H WLijj (A) dp.

Jj=1



