
Homework sheet, version 10/30/11

Each problem is worth 10 points unless stated otherwise.

(1) Show that the induced topology and the quotient topologysatisfy the axioms of a topolog-
ical space.

(2) Prove thatS1 = {x2 + y2 = 1} with the induced topology (fromR2) is homeomorphic to
S1 = [0, 1]/ ∼ with the quotient topology.

(3) Letφ : V → W be a linear map between vector spaces (over a fixed ground fieldk). Prove
the following:
(a) Ker(φ) is a vector subspace ofV .
(b) Im(φ) is a vector subspace ofW .

(4) LetV ⊂ W be a vector subspace. Prove that the quotientW/V is a vector space.
(5) Let V ∗ (called thedual of V ) be the set of linear maps fromV to the base fieldk. Prove

thatV ∗ is a vector space overk. AssumingV is finite-dimensional, exhibit a basis forV ∗

in terms of a basis forV .
(6) Read pp. 15–34 of Spivak,Calculus on Manifolds.
(7) Show that iff : Rn → Rm is differentiable atx ∈ Rn, then there is a uniqueL which

satisfies

lim
h→0

|f(x+ h)− f(x)− L(h)|
|h| = 0.

(8) Letf : R2 → R be given by:

f(x, y) =

{
x|y|√
x2+y2

, (x, y) 6= 0,

0, (x, y) = 0.

Show thatf is not differentiable at(0, 0).
(9) Letf : R2 → R be given by:

f(x, y) =

{
xy x

2−y2

x2+y2
, (x, y) 6= 0,

0, (x, y) = 0.

Show that∂f
∂y
(x, 0) = x for all x and∂f

∂x
(0, y) = −y for all y. Then show that∂x∂yf(0, 0) 6=

∂y∂xf(0, 0).
(10) Prove thatS1 (with either topology in Problem (2)) is a topological manifold.
(11) Give an example of a Hausdorff, second countable topological space which is not a topo-

logical manifold.
(12) Prove thatSn = {x2

0 + · · · + x2
n = 1} ⊂ Rn+1 is a smoothn-dimensional manifold, by

taking stereographic projections.
(13) Complete the proof thatRPn is a smoothn-dimensional manifold.
(14) DefineCPn = (Cn+1−{(0, . . . , 0)})/ ∼, where(z0, . . . , zn) ∼ (tz0, . . . , tzn), t ∈ C−{0}.

Prove thatCPn is a smooth2n-dimensional manifold. (Recall thatC
∼→ R2, wherez =

x+ iy 7→ (x, y).)
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(15) Complete the proof thatT 2 = R2/Z2 is a smooth manifold of dimension 2.
(16) Prove thatSn = {x2

0+· · ·+x2
n = 1} ⊂ Rn+1 can be given the structure of ann-dimensional

manifold by showing it is a regular value of some map.
(17) Prove that ifM , N are manifolds,f : M → N is a submersion, andU ⊂ M is open, then

f(U) is open inN .
(18) Show that ifM is compact andN is connected, then every submersionf : M → N is

surjective. Also show that there is no submersion from a compact manifold toRn.
(19) DefineSL(n,R) = {A ∈ Mn(R) | det(A) = 1}, whereMn(R) is the set ofn×n matrices

with real entries. Prove thatSL(n,R) is a submanifold ofMn(R). What is the dimension
of SL(n,R)?

(20) LetN be ann-dimensional submanifold of a manifoldM of dimensionm and letx ∈ N .
Prove that there exists an open setU of M containingx and a local coordinate system
{x1, . . . , xm} onU such thatU ∩N = {xn+1 = 0, . . . , xm = 0}.

(21) LetO(n) = {A ∈ Mn(R) |AAT = I}, be theorthogonal group, whereAT is the transpose
of A. Consider the map

φ : Mn(R) → Sym(n), A 7→ AAT ,

where Sym(n) is the set of symmetricn× n matrices (i.e.,BT = B).
(a) Show that Sym(n) is a manifold. Compute its dimension.
(b) Compute the derivative ofφ and show thatφ is a submersion.
(c) Prove thatO(n) is a submanifold ofMn(R). What is the dimension ofO(n)?
(d) Prove thatO(n) is compact.

(22) LetF (x1, . . . , xn) be ahomogeneous function of degreed in n real variables, i.e.,

F (tx1, . . . , txn) = td · F (x1, . . . , xn).

(a) Prove Euler’s identity:
n∑

i=1

xi ·
∂F

∂xi
= d · F.

(b) Prove that the setF−1(a), a 6= 0, is a submanifold ofRn.
(23) (30 points) Give a detailed proof of the equivalence of the three definitions ofTpM given

in class. Pay special attention to good exposition.
(24) (20 points) Recall thatFp is the set of germs of functions on a manifoldM which vanish at

p ∈ M . LetFk
p be the ideal ofC∞(p) generated byf1 · · · fk, wherefi ∈ Fp. (This means

that every element ofFk
p is a sum

∑
i gifi1 · · · fik, gi ∈ C∞(p), fij ∈ Fp.)

(a) Prove that, in every coordinate system(x1, . . . , xn), an elementf ∈ Fk
p has a Taylor

expansion which vanishes up to orderk.
(b) Compute the dimension ofFk

p /Fk+1
p .

(c) Construct a smooth manifoldE
π→ M whose fiber atp ∈ M isF1

p/F3
p . (This involves

writing down coordinate charts and computing transition functions.)



3

(25) Consider the cotangent bundleπ : T ∗M → M . In class we gave an atlas forT ∗M in terms
of π−1(Uα), where{Uα} was an atlas forM . Compute the Jacobian for the transition
functions on the overlapsπ−1(Uα) ∩ π−1(Uβ).

(26) Prove thatd(fg) = fdg + gdf .
(27) Consider the mapi : S1 = [0, 2π]/(0 ∼ 2π) → R

2, θ 7→ (cos θ, sin θ). Computei∗((x2 +
y)dx+ (3 + xy2)dy).

(28) In class we defined thederivative map as follows: Letφ : M → N be a smooth map
between manifolds. Then the derivativeφ∗ : TpM → Tφ(p)N is given byX 7→ X ◦ φ∗,
whereX : C∞(p) → R is a derivation andφ∗ is the pullbackC∞(φ(p)) → C∞(p). Give
an equivalent definition forφ∗ in terms of Definition 1 of a tangent space.

(29) Letφ : M → N be a smooth map between manifolds. Prove that the following diagram
commutes:

Ω0(N)
φ∗→ Ω0(M)

d ↓ 	 ↓ d

Ω1(N)
φ∗→ Ω1(M)

(30) Letφ : [a, b] → [c, d] be a diffeomorphism with coordinatess for [a, b] andt for [c, d]. A
global 1-formω on [c, d] can be written asf(t)dt, for some smooth functionf(t).
(a) Writeφ∗ω in terms of coordinatess on [a, b].
(b) Now define theintegral of ω on [c, d] to be

∫
[c,d]

ω =
∫ d
c
f(t)dt. Similarly define∫

[a,b]
φ∗ω. Prove that

∫

[c,d]

ω =

∫

[a,b]

φ∗ω.

(31) Prove thatSO(2) consists of the2 × 2 matrices

(
cos θ sin θ
− sin θ cos θ

)
, whereθ ∈ R. Show

thatSO(2) is diffeomorphic toS1.
(32) Explain whySO(n) is a Lie group. Explain whyGL(n,C) is a Lie group.
(33) Show thatGL(n,C) ⊂ GL+(2n,R).
(34) Letf : M → N andg : L → M be smooth maps between smooth manifolds, and letω be

a 1-form onN . Then prove that(f ◦ g)∗ω = g∗ ◦ (f ∗ω).
(35) LetV , W be finite-dimensionalR-vector spaces.

(a) Prove thatHom(V,W ) is anR-vector space.
(b) Show thatdim(Hom(V,W )) = dimV · dimW .
(c) Find a natural linear mapV ∗⊗W → Hom(V,W ) and prove that it is an isomorphism.

It follows thatV ⊗W has dimensiondimV · dimW . (Here, anatural isomorphism
is an isomorphism which does not depend on a choice of basis.)

(36) LetV , W , andU beR-vector spaces. Prove thatV ⊗W is naturally isomorphic toW ⊗V
and that(V ⊗W )⊗ U is naturally isomorphic toV ⊗ (W ⊗ U).



4

(37) LetV be a 2-dimensional vector space with basis{v1, v2} andA : V → V be a linear map
given byv1 7→ 5v1+6v2, v2 7→ 3v1+2v2. Then write a matrix forA⊗A : V ⊗V → V ⊗V
in terms of the basis{v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2}.

(38) LetV be a vector space of dimensionn. Show that
∧n V ' R as follows:

(a) Find an alternating multilinear formφ : V × · · · × V → R, (n copies ofV ). (Prove
it’s alternating.)

(b) Explain how to use the universal property to show
∧n V ' R.

Note thatφ is the determinant map, up to a normalization.
(39) LetV be a vector space. Show there exists a (well-defined) linear map

∧k V ⊗
∧l V →∧k+l V which sends(v1 ∧ · · · ∧ vk)⊗ (w1 ∧ · · · ∧ wl) 7→ v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wl.

(40) If V is a finite-dimensional vector space of dimensionn, then show there exists a natural
isomorphism

∧n−k V ' (
∧k V )∗.

(41) LetM be a manifold. Prove thatd satisfies the formulad(α∧β) = (dα)∧β+(−1)kα∧dβ,
whereα ∈ Ωk(M) andβ ∈ Ωl(M).

(42) Letφ : M → N be a smooth map between manifolds andω ∈ Ωk(N). With respect to
local coordinatesx1, . . . , xm for M andy1, . . . , yn for N , we defined

φ∗ω =
∑

i1,...,ik

fi1,...,ik(y(x))dyi1(x) . . . dyik(x)

given

ω =
∑

i1,...,ik

fi1,...,ik(y)dyi1 . . . dyik .

Show thatφ∗ω is well-defined.
(43) Compute all the de Rham cohomology groups ofS2. Then inductively compute all the

de Rham cohomology groups ofSn.
(44) Suppose the manifoldM is the disjoint union of manifoldsM1 andM2. Then prove that

Hk
dR(M) = Hk

dR(M1)⊕Hk
dR(M2).

(45) Letφ : M → N be a smooth map between manifolds. Ifω ∈ Ωk(N), then prove that
d(φ∗ω) = φ∗(dω).

(46) (30 points) Complete the proof that the short exact sequence of cochain maps

0 → A φ→ B ψ→ C → 0

gives rise to a long exact sequence on cohomology. (This problem should be done carefully
and completely — it’s worth 30 points.)

(47) LetM be an oriented manifold of dimensionn andω ∈ Ωn(M). Let {φα : Uα → Rn} be
an oriented atlas and{fα} be a partition of unity subordinate to{Uα}. We defined

∫

M

ω =
∑

α

∫

φα(Uα)

(φ−1
α )∗(fαω).

Prove that this definition does not depend on the choice of oriented atlas as well as on the
choice partition of unity.
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(48) Using the version of Stokes’ Theorem given in class, prove the classical Stokes’ Theorem:
Let S be a compact, oriented 2-manifold (i.e., a surface) with boundary inR3 and let
F = (F1, F2, F3) be a smooth vector field defined on a neighborhood ofS. Then:

∫

S

〈curlF, n〉dA =

∫

∂S

F1dx+ F2dy + F3dz,

wheren is a unit normal toS, 〈·〉 is the standard inner product,dA = n1dydz + n2dzdx+

n3dxdy, curlF =
(
∂F3

∂y
− ∂F2

∂z
, ∂F1

∂z
− ∂F3

∂x
, ∂F2

∂x
− ∂F1

∂y

)
.

The Cauchy Integral Formula. We will now define complex-valued forms on a complex
manifoldM . Complex-valued differential forms are simply sumsω = ω1 + iω2, whereω1

andω1 are real. The wedge product extends in the obvious way, and

dω
def
= dω1 + idω2,

∫

M

ω
def
=

∫

M

ω1 + i

∫

M

ω2.

Note that Stokes’ Theorem is valid for complex-valued formssince it is valid separately
for the real part and the complex part.

On C = R2, let z = x + iy be the complex coordinate andz = x − iy be its complex
conjugate. Thendz = dx+ idy anddz = dx− idy.

(49) Consider the functionf : C → C, z 7→ f(z). Show thatω = f(z)dz is closed (dω = 0)
if and only if f(z) = f(x, y) (f is viewed asR2 → R

2) satisfies the Cauchy-Riemann
equation

∂f

∂y
= i

∂f

∂x
.

Recall that a smooth functionf satisfies the Cauchy-Riemann equation if and only iff is
holomorphic. Also recall that rational functions inz are holomorphic where defined. For
example,f(z) = 1

z−a
is holomorphic onC− {a}.

(50) Supposef is a holomorphic function on a domainΩ ⊂ C. Prove that ifγ0 andγ1 are
homotopic curves inΩ, then

∫

γ0

f(z)dz =

∫

γ1

f(z)dz.

Two curvesγ0, γ1 : S1 → Ω are said to behomotopic if there exists a smoothΓ : S1 ×
[0, 1] → Ω with Γ(θ, t) = γt(θ).

(51) LetC be a circle of radiusR arounda ∈ C. Then prove that
∫

C

1

z − a
dz = 2πi.
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(52) Letf(z) be a holomorphic function onΩ, letC ⊂ Ω be a circle of radiusR arounda ∈ Ω,
and letγ be a smooth closed curve which is homotopic toC insideΩ − {a}. Then prove
that

∫

γ

f(z)

z − a
dz = 2πif(a).

[Hint: By Exercise (46), the integral only depends on the curve up to homotopy. Therefore,
we may assumeγ = C. Shrink the radiusR and take the limit.]

(53) The vector field( −y
x2+y2

, x
x2+y2

) (defined almost everywhere) onR2 has curl zero, but it
cannot be written as the gradient of any function. Explain what this means in terms of de
Rham cohomology.

(54) LetV be anR-vector space. Prove that the interior productiv :
∧k V ∗ → ∧k−1 V ∗, v ∈ V ,

wheref1 ∧ · · · ∧ fk 7→
∑

l(−1)l+1f1 ∧ . . . fl(v) · · · ∧ fk, is well-defined.
(55) LetM be a manifold andX a global vector field onM . Show thatL = d ◦ iX + iX ◦ d :

Ωk(M) → Ωk(M) is a derivation, i.e., it satisfiesL(α ∧ β) = L(α) ∧ β + α ∧ L(β). Here
iX denotes the interior product withX.

(56) Compute the de Rham cohomology of a compact 2-dimensional manifold (surface) of
genusg without boundary. [For this problem, you may feel free to draw pictures of the
surface of genusg and its decomposition into pieces. You will probably need touse the
Mayer-Vietoris sequence a couple of times, as well as the homotopy properties.] Hint:
remove a disk from the surface and see what you are left with.

(57) For each integern, exhibit a smooth mapS1 → S1 of degreen. (You must prove that your
map has degreen.)

(58) LetM be a manifold. Consider the map∧ : Hk(M) ×H l(M) → Hk+l(M), ([ω], [η]) 7→
[ω ∧ η]. Prove that∧ is well-defined (on the level of cohomology). [HenceH∗(M)

def
=

⊕dimM
i=0 H i(M) has the structure of analgebra.]

(59) LetT 2 be the 2-dimensional torus. Compute the map∧ : H1(T 2) × H1(T 2) → H2(T 2).
(Give a basis{ω1, . . . , ωk} for H1(T 2) and compute[ωi ∧ ωj].) In particular, prove that∧
is surjective.

(60) Prove that every smooth mapf : S2 → T 2 has degree zero. (Hint: Use the previous
exercise and the fact thatH1(S2) = 0.)

(61) LetM be a compact orientable manifold of dimension2n without boundary, and letω be
a symplectic form onM , i.e., a closed 2-form such thatωn = ω ∧ · · · ∧ ω is nowhere zero.
Prove thatH2(M) 6= 0.

(62) Prove that if0 → C1 → C2 → · · · → Ck → 0 is an exact sequence, then

k∑

i=1

(−1)i dimCi = 0.

(63) Verify that Lie brackets satisfy anticommutativity and the Jacobi identity.
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(64) Prove that ifX,X1, . . . , Xk are vector fields onM andω ∈ Ωk(M), then

LX(ω(X1, . . . , Xk)) = (LXω)(X1, . . . , Xk) +
∑

i

ω(X1, . . . , [X,Xi], . . . , Xk).

(65) Prove that ifω ∈ Ωk(M), andX1, . . . , Xk+1 are vector fields onM , then

dω(X1, . . . , Xk+1) =
∑

i

(−1)i+1Xi(ω(X1, . . . , X̂i, . . . , Xk+1))

+
∑

i<j

(−1)i+jω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1).

HereX̂i means omit the term withXi.
(66) Consider the vector fieldX = x2 d

dx
on R. Compute its integral curves. Explain whyX

does not admit a global flowΦ : R× (−ε, ε) → R.
(67) Find a piecewise smooth curve connecting(0, 0, 0) to any point(x, y, z), where each

smooth piece an integral curve of the 2-plane field distribution ξ = ker(xdy − ydx+ dz).
(Such curves are far from unique.)

(68) (20 points) Write out the proof of Frobenius’ Theorem inthe general case.
(69) LetE be a rankk vector bundle overM which is parallelizable. Ifs1, . . . , sk are global

sections which spanEp at every pointp ∈ M , then we can write anys ∈ Γ(E,M) as
s =

∑
i fisi, wherefi ∈ C∞(M). Show∇Xs =

∑
i(Xfi)si is a connection.

(70) LetU ⊂ M be an open subset and letE be a rankk vector bundle overM . Consider two
connections∇′ and∇′′ onE|U . If λ1, λ2 ∈ C∞(U) satisfyλ1 + λ2 = 1, then prove that
λ1∇′ + λ2∇′′ is a connection onE|U .

(71) Prove thatR(X, Y )s is tensorial inX andY . HereR is the curvature of a connection∇
andX, Y are vector fields.

(72) Complete the proof (started in class) thatR = dA+ A ∧A.
(73) If ∇ is the Levi-Civita connection on a Riemannian manifold(M, g) andR = R∇ is its

curvature, then show thatR satisfies the following properties:
(a) 〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉.
(b) 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉.
(c) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

(74) LetΣ = {x2 + y2 + z2 = R2} ⊂ R3, and letg be the metric induced from the standard
Euclidean metric onR3 toΣ. Compute:
(a) the induced metricg and
(b) the Levi-Civita connection of(Σ, g),

locally near(0, 0, R) using the coordinates(x, y), given by projecting onto the first two
coordinates ofR3.


