
NOTES FOR MATH 520: COMPLEX ANALYSIS

KO HONDA

1. Complex numbers

1.1. Definition of C. As a set, C = R2 = {(x, y)| x, y ∈ R}. In other words, elements of
C are pairs of real numbers.

C as a field: C can be made into a field, by introducing addition and multiplication as
follows:

(1) (Addition) (a, b) + (c, d) = (a + c, b+ d).
(2) (Multiplication) (a, b) · (c, d) = (ac− bd, ad+ bc).

C is an Abelian (commutative) group under +:

(1) (Associativity) ((a, b) + (c, d)) + (e, f) = (a, b) + ((c, d) + (e, f)).
(2) (Identity) (0, 0) satisfies (0, 0) + (a, b) = (a, b) + (0, 0) = (a, b).
(3) (Inverse) Given (a, b), (−a,−b) satisfies (a, b) + (−a,−b) = (−a,−b) + (a, b).
(4) (Commutativity) (a, b) + (c, d) = (c, d) + (a, b).

C−{(0, 0)} is also an Abelian group under multiplication. It is easy to verify the properties
above. Note that (1, 0) is the identity and (a, b)−1 = ( a

a2+b2
, −b
a2+b2

).

(Distributivity) If z1, z2, z3 ∈ C, then z1(z2 + z3) = (z1z2) + (z1z3).

Also, we require that (1, 0) 6= (0, 0), i.e., the additive identity is not the same as the multi-
plicative identity.

1.2. Basic properties of C. From now on, we will denote an element of C by z = x + iy
(the standard notation) instead of (x, y). Hence (a + ib) + (c + id) = (a + c) + i(b + d) and
(a+ ib)(c + id) = (ac− bd) + i(ad + bc).

C has a subfield {(x, 0)|x ∈ R} which is isomorphic to R. Although the polynomial x2 + 1
has no zeros over R, it does over C: i2 = −1.

Alternate descriptions of C:

1. R[x]/(x2 + 1), the quotient of the ring of polynomials with coefficients in R by the ideal
generated by x2 + 1.

1
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2. The set of matrices of the form

(
a b
−b a

)
, a, b ∈ R, where the operations are standard

matrix addition and multiplication.

HW 1. Prove that the alternate descriptions of C are actually isomorphic to C.

Fundamental Theorem of Algebra: C is algebraically closed, i.e., any polynomial anx
n+

an−1x
n−1 . . . a0 with coefficients in C has a root in C.

This will be proved later, but at any rate the fact that C is algebraically closed is one of the
most attractive features of working over C.

Example: Find a square root of a + ib, i.e., z = x + iy such that z2 = a + ib. Expanding,
we get x2 − y2 = a and 2xy = b. Now, (x2 + y2)2 = (x2 − y2)2 + (2xy)2 = a2 + b2, so taking
square roots (over R), x2 + y2 =

√
a2 + b2. (Here we take the positive square root.) Then

x2 =
a+

√
a2 + b2

2
, y2 =

−a +
√
a2 + b2

2
.

Now just take square roots.

1.3. C as a vector space over R. We will now view C as a vector space over R. An
R-vector space is equipped with addition and scalar multiplication so that it is an Abelian
group under addition and satisfies:

(1) 1z = z,
(2) a(bz) = (ab)z,
(3) (a+ b)z = az + bz,
(4) a(z + w) = az + aw.

Here a, b ∈ R and z, w ∈ C. The addition for C is as before, and the scalar multiplication
is inherited from multiplication, namely a(x + iy) = (ax) + i(ay).

C is geometrically represented by identifying it with R2. (This is sometimes called the
Argand diagram.)

1.4. Complex conjugation and absolute values. Define complex conjugation as an R-
linear map C → C which sends z = x + iy to z = x− iy.

Properties of complex conjugation:

(1) z = z.
(2) z + w = z + w.
(3) z · w = z · w.

Given z = x + iy ∈ C, x is called the real part of C and y the imaginary part. We often
denote them by Re z and Im z.
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Re z =
z + z

2
, Im z =

z − z

2i
.

Define |z| =
√
x2 + y2. Observe that, under the identification z = x + iy ↔ (x, y), |z| is

simply the (Euclidean) norm of (x, y).

Properties of absolute values:

(1) |z|2 = zz.
(2) |zw| = |z||w|.
(3) (Triangle Inequality) |z + w| ≤ |z| + |w|.

The first two are staightforward. The last follows from computing

|z + w|2 = (z + w)(z + w) = |z|2 + |w|2 + 2Re zw ≤ |z|2 + |w|2 + 2|zw| = (|z| + |w|)2.
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2. Day 2

2.1. Some point-set topology.

Definition 2.1. A topological space (X, T ) consists of a set X, together with a collection
T = {Uα} of subsets of X, satisfying the following:

(1) ∅, X ∈ T ,
(2) if Uα, Uβ ∈ T , then Uα ∩ Uβ ∈ T ,
(3) if Uα ∈ T for all α ∈ I, then ∪α∈IUα ∈ T . (Here I is an indexing set, and is not

necessarily finite.)

T is called a topology for X, and Uα ∈ T is called an open set of X.

Example: Rn = R × R × · · · × R (n times). If x = (x1, . . . , xn), we write |x| =√
x2

1 + · · ·+ x2
n. U ⊂ Rn is open iff ∀x ∈ U ∃ δ > 0 and B(x, δ) = {y ∈ Rn||y−x| < δ} ⊂ U .

In particular, the topology on C is the topology on R2.

The complement of an open set is said to be closed.

Definition 2.2. A map φ : X → Y between topological spaces is continuous if U ⊂ Y open
⇒ φ−1(U) = {x ∈ X|f(x) ∈ U} open.

Restricting to the case of Rn, we say that f(x) has limit A as x tends to a and write
limx→a f(x) = A if for all ε > 0 there exists δ > 0 so that 0 < |x− a| < δ ⇒ |f(x)−A| < ε.

Let Ω ⊂ C be an open set and f : Ω → C be a (complex-valued) function. Then f is
continuous at a if limx→a = f(a).

HW 2. Prove that f is a continuous function iff f is continuous at all a ∈ Ω.

HW 3. Prove that if f, g : Ω → C are continuous, then so are f + g, fg and f
g

(where the

last one is defined over Ω − {x|g(x) = 0}).

2.2. Analytic functions.

Definition 2.3. A function f : Ω → C (here Ω is open) is differentiable at a ∈ Ω if the
derivative

f ′(a)
def
= lim

x→a

f(x) − f(a)

x− a
exists. If f is differentiable at all a ∈ Ω, then f is said to be analytic or holomorphic on Ω.

Suppose f, g : Ω → C are analytic. Then so are f + g, fg, f
g

(where the last one is defined

over Ω − {x|g(x) = 0}.
Example: f(z) = 1 and f(z) = z are analytic functions from C to C, with derivatives
f ′(z) = 0 and f ′(z) = 1. Therefore, all polynomials f(z) = anz

n+ · · ·+a1z+a0 are analytic,
with f ′(z) = nanz

n−1 + · · ·+ a1.
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Fact: An analytic function is continuous.

Proof. Suppose f : Ω → C is analytic with derivative f ′(z) = limh→0
f(z+h)−f(z)

h
. Then

limh→0(f(z + h) − f(z)) = f ′(z) limh→0 h = 0. �

2.3. The Cauchy-Riemann equations. Write f(z) = u(z) + iv(z), where u, v : Ω → R

are real-valued functions. Suppose f is analytic. We compare two ways of taking the limit
f ′(z):

First take h to be a real number approaching 0. Then

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
.

Next take h to be purely imaginary, i.e., let h = ik with k ∈ R. Then

f ′(z) = lim k → 0
f(z + ik) − f(z)

ik
= −i∂f

∂y
= −i∂u

∂y
+
∂v

∂y
.

We obtain:
∂f

∂x
= −i∂f

∂y
,

or, equivalently,
∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

The equations above are called the Cauchy-Riemann equations.

Assuming for the time being that u, v have continuous partial derivatives of all orders (and
in particular the mixed partials are equal), we can show that:

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0, ∆v =

∂2v

∂x2
+
∂2v

∂y2
= 0.

Such an equation ∆u = 0 is called Laplace’s equation and its solution is said to be a harmonic
function.
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3. Day 3

3.1. Geometric interpretation of the Cauchy-Riemann equations. Let f : Ω ⊂ C →
C be a holomorphic function, i.e., it has a complex derivative f ′(z) = limh→0

f(z+h)−f(z)
h

at all

z ∈ Ω. If we write z = x + iy and view f(z) as a function (u(x, y), v(x, y)) : Ω ⊂ R2 → R2,
then u, v satisfy the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
,
∂v

∂x
= −∂u

∂y
.

Recall from multivariable calculus that the Jacobian J(x, y) is a linear map R2 → R2 given

by the matrix

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
. Using the Cauchy-Riemann equations, we can write

J(x, y) =

(
∂u
∂x

−∂v
∂x

∂v
∂x

∂u
∂x

)
.

Namely, J(x, y) is of the form

(
a b
−b a

)
, which looks suspiciouly like the second alternative

description of C from Day 1.

The Jacobian J(x, y) maps the tangent vector (1, 0) based at (x, y) to the vector ( ∂u
∂x
, ∂v
∂x

)

based at (u(x, y), v(x, y)). Likewise it maps (0, 1) to ( ∂u
∂y
, ∂v
∂y

) = (− ∂v
∂x
, ∂u
∂x

). The thing to notice

is that J(x, y) maps the pair (1, 0), (0, 1) of orthogonal vectors to the pair ( ∂u
∂x
, ∂v
∂x

), (− ∂v
∂x
, ∂u
∂x

)
of orthogonal vectors. Moreover, we can show the following:

HW 4. Prove that every linear transformation φ : R2 → R2 given by a matrix of the form(
a b
−b a

)
(a, b not both zero) is conformal, namely it the angle between any two vectors

v, w ∈ R2 is the same as the angle between vectors φ(v), φ(w). (Hint: First show that
〈v, w〉 = C〈φ(v), φ(w)〉, where 〈·, ·〉 is the standard Euclidean inner product and C is a
constant which does not depend on v, w.)

Thus, f : Ω → C is often called a conformal mapping.

Example: Consider f(z) = z2. Then u(x, y) = x2 − y2, v(x, y) = 2xy. First we look
at the level curves u = u0 and v = v0. x2 − y2 = u0 and 2xy = v0 are both mutually
orthogonal families of hyperbolas. (Notice that since f is conformal, f−1, where defined and
differentiable, is also conformal.) Next, consider x = x0. Then u = x2

0 − y2, v = 2x0y, and
we obtain v2 = 4x2

0(x
2
0 − u). If y = y0, then v2 = 4y2

0(y
2
0 + u). They give orthogonal families

of parabolas.

Theorem 3.1. f(z) = u(z) + iv(z) is analytic with continuous derivative f ′(z) iff u, v have
continuous first-order partial derivatives which satisfy the Cauchy-Riemann equations.
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Proof. We already proved one direction. Suppose u, v have continuous first-order partials
satisfying the Cauchy-Riemann equations. Then

u(x+ h, y + k) − u(x, y) =
∂u

∂x
h+

∂u

∂y
k + ε1,

v(x+ h, y + k) − v(x, y) =
∂v

∂x
h +

∂v

∂y
k + ε2,

where ε1
h+ik

→ 0 and ε2
h+ik

→ 0 as (h, k) → 0. Now,

f(x+ h, y + k) − f(x, y) =

(
∂u

∂x
+ i

∂v

∂x

)
(h+ ik) + ε1 + iε2.

Therefore,

lim
h+ik→0

f(x+ h, y + k) − f(x, y)

h + ik
=
∂u

∂x
+ i

∂v

∂x
.

�

3.2. Harmonic functions. Recall that if f = u + iv is analytic, then ∆u = ∆v = 0, i.e.,
u, v are harmonic. If u, v satisfy the Cauchy-Riemann equations, then v is said to be the
conjugate harmonic function of u.

Remark: If v is the conjugate harmonic function of u, then −u is the conjugate harmonic
function of v.

Example: Compute the conjugate of u = 2xy. Then ∂u
∂x

= 2y and ∂u
∂y

= 2x and we verify

that δu = 0. Next, ∂v
∂x

= −2x and ∂v
∂y

= 2y. Then v(x, y) = −x2 + φ(y) and φ′(y) = 2y.

Therefore, φ(y) = y2 + c, and v(x, y) = −x2 + y2 + c. u+ iv = −iz2.
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4. Day 4

4.1. More on analytic and harmonic functions. Continuing our discussion from last
time:

Proposition 4.1. If u : R2 → R is a harmonic function and u is of class C∞, then there
is a harmonic function v : R2 → R satisfying ∂v

∂x
= −∂u

∂y
and ∂v

∂y
= ∂u

∂x
.

This follows immediately from the following lemma:

Lemma 4.2. Suppose ∂v
∂x

= f , ∂v
∂y

= g, and ∂f
∂y

= ∂g
∂x

, then v exists.

Proof. Define v(x) =
∫ x

0
f(t, y)dt+ φ(y). Then clearly ∂v

∂x
= f . Now,

∂v

∂y
=

∫ x

0

∂f

∂y
(t, y)dt+ φ′(y) =

∫ x

0

∂g

∂x
(t, y)dt+ φ′(y) = g(x, y) − g(0, y) + φ′(y).

If we set φ(y) =
∫ y

0
g(0, t)dt, then we’re done. �

Example: Consider f(z) = z = x − iy. This is not analytic, as we can check the Cauchy-
Riemann equations: ∂u

∂x
= 1, ∂v

∂y
= −1, and they are not identical!!

One formal way of checking is to write:

∂f

∂z

def
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,
∂f

∂z

def
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Claim. f is analytic iff ∂f
∂z

= 0.

The proof is immediate from the Cauchy-Riemann equations.

Observe: ∂z(z) = 1 and ∂z(z) = 0, whereas ∂z(z) = 0 and ∂z(z) = 1.

Claim. If p(z, z) is a polynomial in two variables z, z, then p(z, z) is analytic iff there are
no terms involving z.

HW 5. Prove the claim!

4.2. Geometric representation of complex numbers. View C as R2.

Addition: Since z1 + z2 corresponds to (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), the addition
is standard vector addition.

Multiplication: Write z in polar form r cos θ + ir sin θ = r(cos θ + i sin θ), where r > 0
(hence |z| = r). Then:

z1z2 = r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

(1) The norm (r) of a product is the product of the lengths of the factors.
(2) The argument (θ) of a product is the sum of the arguments of the factors.
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We will often write z = r(cos θ+ i sin θ) = reiθ, whatever this means. This will be explained
later when we actually define ez, but for the time being it’s not unreasonable because you
expect:

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2),

using rules of exponentiation.

Remark: Notice that we’re using properties of trigonometric functions when they haven’t
been defined yet.

Ignoring such rigorous considerations for the time being, we will compute powers and roots
of complex numbers.

1. If z = aeiθ, then zn = aneinθ. This is often called de Moivre’s formula, and can be used
for computing cos nθ and sin nθ in terms of sin θ and cos θ.

2. If z = aeiθ, then its nth roots are

a
1

n ei(
θ
n

+k 2π
n ),

for k = 0, 1, . . . , n−1. Also, when a = 1, the solutions to zn = 1 are called nth roots of unity.
If we write ω = cos θ

n
+ i sin θ

n
, then the other roots of unity are given by 1, ω, ω2, . . . , ωn.

Example: Consider the analytic function f(z) = z2. f maps rays θ = θ0 to θ = 2θ0. Hence
f is a 2:1 map away from the origin. The unit circle |z| = 1 winds twice around itself under
the map f . [Describe how the lines y = const get mapped to parabolas under f .]



10 KO HONDA

5. Polynomials and rational functions

5.1. Polynomials. Let P (z) = a0 + a1z + · · ·+ anz
n be a polynomial in z with coefficients

in C. By the Fundamental Theorem of Algebra (which we will prove later), P (z) admits
a factorization (z − α1)P1(z). By repeated application of the Fundamental Theorem, we
obtain a complete factorization:

P (z) = an(z − α1)(z − α2) . . . (z − αn),

where α1, . . . , αn are not necessarily distinct. The factorization is unique except for the order
of the factors. (Why?)

If exactly h of the αi’s coincide, then their common value is a zero of order or multiplicity
h. We write P (z) = an(z − α)hPh(z) with Ph(α) 6= 0.

Observe: P ′(α) = · · · = P (h−1)(α) = 0 but P (h)(α) 6= 0.

5.2. Rational functions. Consider the rational function R(z) = P (z)
Q(z)

which is the quotient

of two polynomials. We assume that P (z) and Q(z) have no common factors. Then the
zeros of Q(z) will be called the poles of R(z). The order of the pole α is the multiplicity of
z − α in Q(z).

We will now explain how to extend

R : C − {poles} → C

to

R : C ∪ {∞} → C ∪ {∞}.
C ∪ {∞} is called the extended complex plane, obtained by adding the point at ∞ to C.
At this point C ∪ {∞} is not even a topological space, but later when we discuss Riemann
surfaces, we’ll explain how R is a holomorphic map S2 → S2 between Riemann surfaces.

First define R(pole) = ∞. (The reason for this is that as z → pole, |R(z)| → ∞.)

Next, R(∞) is defined as follows: if

R(z) =
a0 + a1z + · · · + anz

n

b0 + b1z + · · ·+ bmzm
,

then

R

(
1

z

)
= zm−n

(
a0z

n + a1z
n−1 + . . .

b0zm + b1zm−1 + . . .

)
.

(The reason for doing is that as 1
z
→ ∞, z → 0.) If m > n, then R has a zero of order m−n

at ∞; if m < n, then R has a pole of order n−m at ∞; if m = n, then R(∞) = an

bm
.

Let p = max(m,n); this is called the order of the rational function.
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Observe: A rational function R(z) of order p has exactly p zeros and p poles. Indeed, if
m ≥ n, then there are m poles in C and no pole at ∞; also there are n zeros in C and
(m− n) zeros at ∞.

Example: The simplest rational functions are the fractional linear transformations S(z) =

αz+β
γz+δ

with det

(
α β
γ δ

)
6= 0. Special cases are S(z) = 1

z
(inversion), and S(z) = z+1 (parallel

translation).

5.3. Partial fractions. We will explain how to write any rational function R(z) as

R(z) = G(z) +
∑

j

Gj

(
1

z − βj

)
,

where G,Gj are polynomials and βj are the poles of R.

Example: 1
z2−1

= 1
(z−1)(z+1)

= 1/2
z−1

+ −1/2
z+1

.

First write R(z) = G(z) + H(z), where G(z) is a polynomial without a constant term and
H(z) has degree of denominaor ≥ degree of numerator, i.e., H(z) is finite at ∞.

If βj is a pole of R(z), then substituting z = βj + 1
ζ

(⇔ ζ = 1
z−βj

), we obtain:

R

(
βj +

1

ζ

)
= Gj(ζ) +Hj(ζ),

where Gj is a polynomial and Hj(ζ) is finite at ζ = ∞.

Then take R(z) − (G(z) +
∑
Gj(

1
z−βj

)). There are no poles besides ∞ and βj. At each

z = βj, the only infinite terms cancel out, and the difference is finite. Hence the difference
must be a constant. By placing the constant inside G(z) (for example), we have shown that
R(z) admits a partial fraction expansion as above.
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6. Riemann surfaces and holomorphic maps

6.1. The extended complex plane. Today we try to make sense of the “extended complex
plane” C ∪ {∞}, which is also called the Riemann sphere. As a topological space, we take
S2 = {x2

1 + x2
2 + x2

3 = 1} ⊂ R3. (Its topology is the induced topology from R3, namely the
topology is T = {W ∩ S2| W is open in R3}.) Then consider the stereographic projection
from the “north pole” (0, 0, 1) to the x1x2-plane, which we think of as C. The straight line
passing through (0, 0, 1) and (x1, x2, x3) ∈ S2 intersects the x1x2-plane at ( x1

1−x3
, x2

1−x3
, 0).

(Check this!) This gives us a continuous map

φ : S2 − {(0, 0, 1)} → C,

(x1, x2, x3) 7→ z =
x1 + ix2

1 − x3

.

It is not hard to see that φ is 1-1, onto, and inverse is also continuous.

HW 6. Prove that φ : S2 − {(0, 0, 1)} → C is a homeomorphism, i.e., φ is invertible and
φ, φ−1 are both continuous.

The above stereographic projection misses (0, 0, 1). If we want a map which misses the
“south pole” (0, 0,−1), we could also do a stereographic projection from (0, 0,−1) to the
x1x2-plane.

HW 7. Compute the stereographic projection from (0, 0,−1) to the x1x2-plane.

For our purposes, we want to do something slightly different: First rotate S2 by π along the
x1-axis, and then do stereographic projection from (0, 0, 1). This has the effect of mapping

(x1, x2, x3) 7→ (x1,−x2,−x3) 7→
x1 − ix2

1 + x3

.

6.2. Riemann surfaces.

Definition 6.1. A Riemann surface Σ, also called a 1-dimensional complex manifold, is a
topological space (Σ, T ) together with a collection A = {Uα} of open sets (called an atlas of
Σ) such that:

(1) ∪Uα = Σ, i.e., A is an open cover of Σ.
(2) For each Uα there exist a coordinate chart φα : Uα → C, which is a homeomorphism

onto its image.
(3) For every Uα ∩Uβ 6= ∅, φβ ◦φ−1

α : φα(Uα ∩Uβ) → φβ(Uα ∩Uβ) is a holomorphic map.
(These are called transition functions.)

(4) (Technical condition 1) Σ is Hausdorff, i.e., for any x 6= y ∈ Σ there exist open sets
Ux and Uy containing x, y respectively and Ux ∩ Uy = ∅.

(5) (Technical condition 2) Σ is second countable, i.e., there exists a countable subcollec-
tion T0 of T and any open set U ∈ T is a union (not necessarily finite) of open sets
in T0.
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Example: The extended complex plane S2 = C ∪ {∞} is a Riemann surface. We have two
open sets U = S2 − {(0, 0, 1)} and V = S2 − {(0, 0,−1)}, and U ∪ V = S2. We defined
homeomorphisms

φ : U → C, (x1, x2, x3) 7→
x1 + ix2

1 − x3
,

and

ψ : V → C, (x1, x2, x3) 7→
x1 − ix2

1 + x3
.

U∩V = S2−{(0, 0, 1), (0, 0,−1)}. The transition function is then given by ψ◦φ−1 : C−{0} →
C − {0}, z = x1+ix2

1−x3
7→ w = x1−ix2

1+x3
. We compute that 1

z
= 1−x3

x1+ix2

x1−ix2

x1−ix2
= x1−ix2

1+x3
= w, using

x2
1 + x2

2 + x2
3 = 1. Therefore, the transition function is z 7→ 1

z
, which is indeed holomorphic!

HW 8. Prove that taking the stereographic projection φ from (0, 0, 1) and the stereographic
projection ψ0 from (0, 0,−1) would not have given us a holomorphic transition function!

6.3. Holomorphic maps between Riemann surfaces. Having defined Riemann sur-
faces, we now describe the appropriate class of maps between Riemann surfaces.

Definition 6.2. A map f : Σ1 → Σ2 between Riemann surfaces is holomorphic if for all
x ∈ Σ1 there exist coordinate charts U 3 x and V 3 f(x) s.t. composition

φ(U)
φ−1

→ U
f→ V

ψ→ ψ(V )

is holomorphic.

Example: Given a rational function R(z), we described it as a function from S2 → S2 last
time.

HW 9. Prove that the extension of R(z) to the extended complex plane S2 = C ∪ {∞} is a
holomorphic map S2 → S2.

Although the general case is left for HW, I’ll explain some simpler cases:

Case 1: R(z) = z2. Use coordinates z1, w1 = 1
z1

for the source and z2, w2 = 1
z2

for the target.

“R(z) = z2” means with respect to coordinates z1 and z2, z1 7→ z2 = z2
1 . This is a perfectly

holomorphic function! Now, with respect to w1 and z2, we have: w1 7→ 1
w2

1

, which is not

defined for w1 = 0. Therefore, we switch to coordinates w1, w2, and write: w1 7→ w2 = w2
1,

which is holomorphic.

Case 2: R(z) = z−a
z−b , a 6= b. z1 7→ z2 = z1−a

z1−b and is holomorphic for z1 6= b. Near z1 = b

we use coordinates z1, w2 and write z1 7→ w2 = z1−b
z1−a . This is holomorphic for z1 6= a. Now,

w1 7→ 1/w1−a
1/w1−b = 1−aw1

1−bw1
, which is holomorphic near w1 = 0. Moreover, R(∞) = R(w1 = 0) = 1.

Hopefully in the framework of Riemann surfaces and maps between Riemann surfaces, the
ad hoc definitions for extending rational functions to C ∪ {∞} now make more sense!
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7. Fractional linear transformations

7.1. Group properties. Recall that a fractional linear transformation is a rational function
of the form S(z) = az+b

cz+d
. From the discussion on Riemann surfaces, S is a holomorphic map

of the Riemann sphere S2 to itself.

Let GL(2,C) be the group of 2×2 complex matrices with nonzero determinant (= invertible
2 × 2 complex matrices). GL(2,C) is called the general linear group over C. (Verify that
GL(2,C) is indeed a group!)

GL(2,C) acts on S2 as follows: Given

(
a b
c d

)
∈ GL(2,C), it maps z 7→ az+b

cz+d
. It is not hard

to see directly that id(z) = z and (S1S2)(z) = S1(S2(z)).

However, we’ll use homogeneous coordinates in order to see that we have a group action.
Write z = z1

z2
and w = w1

w2
, then w = S(z) can be written as:

w1 = az1 + bz2,

w2 = cz1 + cz2.

Equivalently, (
w1

w2

)
=

(
a b
c d

) (
z1
z2

)
.

With this notation, it is clear that the composition S1(S2(z)) corresponds to the product of
the two matrices corresponding to S1 and S2.

Observe that there is some redundancy, namely S and λS give rise to the same transformation
on S2, if λ ∈ C∗ = C − {0}. Hence we define the projectivized general linear group to
be PGL(2,C) = GL(2,C)/C∗, where the equivalence relation is given by S ∼ λS for all
S ∈ GL(2,C) and λ ∈ C∗. Another way of describing PGL(2,C) is to take the special linear
group SL(2,C) consisting of 2× 2 complex matrices with determinant 1, and quotienting by
the subgroup {±id}. [PGL(2,C) is also called PSL(2,C).]

CP1: We will now describe 1-dimensional complex projective space CP1. As a set, it is
C2−{(0, 0)}/ ∼, where (z1, z2) ∼ (λz1, λz2) for λ ∈ C∗ = C−{0}. We have local coordinate
charts φ1 : U1 = {z1 6= 0} → C which maps (z1, z2) ∼ (1, z2

z1
) 7→ z2

z1
and φ2 : U2 = {z2 6= 0} →

C which maps (z1, z2) ∼ ( z1
z2
, 1) 7→ z1

z2
.

HW 10. Prove that CP1 can be given the structure of a Riemann surface and that CP1 is
biholomorphic to S2. Here two Riemann surfaces X, Y are biholomorphic if there is a map
φ : X → Y such that both φ and φ−1 are holomorphic.

In view of the above HW, it is clear that the natural setting for PGL(2,C) to act on S2 is
by viewing S2 as CP1!
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Examples:

(
1 b
0 1

)
is called a parallel translation;

(
k 0
0 1

)
is called a homothety, with

special case |k| = 1 a rotation;

(
0 1
1 0

)
is called an inversion.

7.2. The cross ratio. We consider fractional linear transformations (FLT’s) S which take
z2, z3, z4 into 1, 0,∞ in that order. (We assume that z2, z3, z4 are distinct and are not ∞.)
One such FLT is:

S(z) =
z2 − z4
z2 − z3

· z − z3

z − z4

.

Claim: There is a unique FLT (the one above) which takes z2, z3, z4 to 1, 0,∞, in that order.

Proof. It suffices to prove that there is a unique FLT S which takes 1, 0,∞ to 1, 0,∞, in that
order; the FLT is the identity map S(z) = z. If there are two FLTs S1, S2 sending z2, z3, z4
to 1, 0,∞, then S2S

−1
1 sends 1, 0,∞ to itself, and S1 = S2.

Let S(z) = az+b
cz+d

. Then S(0) = 0 implies that b
d

= 0, and hence b = 0. Likewise, S(∞) = ∞
implies that c = 0. Now S(z) = a

d
z and S(1) = 1 implies that S(z) = z. �

We can generalize the above claim:

Claim: There is a unique FLT which takes z2, z3, z4 to z′2, z
′
3, z

′
4. (Assume both triples are

distinct.)

Definition 7.1. The cross ratio of a 4-tuple of distinct complex numbers (z1, z2, z3, z4) is
S(z1), where S is the FLT which maps z2, z3, z4 to 1, 0,∞.

In other words, (z1, z2, z3, z4) = z2−z4
z2−z3 ·

z1−z3
z1−z4 .

Fact: If z1, z2, z3, z4 are distinct points on the Riemann sphere S2 and T is any FLT, then
(Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4).

Proof. Suppose S maps z2, z3, z4 to 1, 0,∞. Then ST−1 maps Tz2, T z3, T z4 to 1, 0,∞. The
fact follows from observing that Sz1 = (ST−1)Tz1. �

Now we come to the key property of FLTs. First we define a “circle” to be either a circle in
C or a line in C. A line passes through ∞, so is a circle in the Riemann sphere S2.

Theorem 7.2. FLTs take “circles” to “circles”.

Proof. We will prove that an FLT S maps the real axis to a “circle”. (Why does this
quickly imply the theorem?) The image of the real axis satisfies the equation Im S−1z = 0.
Equivalently, S−1z = S−1z. Writing S−1(z) = az+b

cz+d
, we have:

az + b

cz + d
=
a z + b

c z + d
.
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Cross multiplying gives:

(ac− ac)|z|2 + (ad− bc)z + (bc− ad)z + (bd− bd) = 0.

If ac − ac = 0, then we have Im ((ad − bc)z − bd) = 0, which is the equation of a line.
Otherwise, we can divide by r = ac− ac and complete the square as follows:

zz +
ad− bc

r
z +

bc− ad

r
z = −bd− bd

r
,

(
z +

bc− ad

r

) (
z +

ad− bc

r

)
= −bd− bd

r
+
bc− ad

r

ad− bc

r
,

∣∣∣∣z +
ad− bc

r

∣∣∣∣ = −(ad− bc)(ad− bc)

r2
=

∣∣∣∣
ad− bc

r

∣∣∣∣ .

Here we note that r is purely imaginary. The equation is the equation of a circle. �

Corollary 7.3. The cross ratio (z1, z2, z3, z4) is real iff the four points lie on a “circle”.
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8. Power series

Today we study the convergence of power series

a0 + a1z + a2z
2 + · · ·+ ana

n + . . .

where ai are complex and z is complex.

8.1. Review of series.

Definition 8.1. A sequence {an}∞n=1 has limit A if for all ε > 0 there is an integer N > 0
such that n ≥ N implies that |an−A| < ε. If {an} has a limit, then the sequence is convergent
and we write limn→∞ an = A.

Fact: A sequence {an} is convergent iff {an} is Cauchy, i.e., for all ε > 0 there is N s.t.
m,n ≥ N implies |am − an| < ε.

limn→∞ sup an: Let An = sup{an, an+1, . . . }. An is a nonincreasing sequence and its limit is
limn→∞ sup an. It may be a finite number or ±∞. limn→∞ inf an is defined similarly. Note
that if limn→∞ an exists, then it is the same as lim sup and lim inf.

An infinite series a1 + a2 + · · · + an + . . . converges if the sequence of partial sums Sn =
a1 + · · ·+ an converges.

Absolute convergence: If |a1| + |a2| + . . . converges, then so does a1 + a2 + . . . , and the
sequence is said to be absolutely convergent.

8.2. Uniform convergence. Consider a sequence of functions fn(x), all defined on the
same set E.

Definition 8.2. fn converges to f uniformly on E if ∀ε > 0 ∃N s.t. n ≥ N ⇒ |fn(x) −
f(x)| < ε for all x ∈ E.

Proposition 8.3. The limit f of a uniformly convergent sequence of continuous functions
is continuous.

Proof. Given ε > 0, ∃N s.t. n ≥ N ⇒ |fn(x) − f(x)| < ε
3

for all x ∈ E. Also, since fn is
continuous at x0, ∃δ s.t. |x− x0| < δ ⇒ |fn(x) − fn(x0)| < ε

3
. Adding them up, we have:

|f(x) − f(x0)| ≤ |f(x) − fn(x)| + |fn(x) − fn(x0)| + |fn(x0) − f(x0)| <
ε

3
+
ε

3
+
ε

3
= ε.

�

Cauchy criterion: fn converges uniformly on E iff ∀ε > 0 ∃N s.t. m,n ≥ N implies
|fm(x) − fn(x)| < ε for all x ∈ E.
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8.3. Power series. The convergence of a0 + a1z+ a2z
2 + . . . is modeled on the convergence

of the geometric series

1 + z + z2 + z3 + . . . .

Take partial sums

Sn(z) = 1 + z + . . . zn−1 =
1 − zn

1 − z
.

Then if |z| < 1, then zn → 0 and the series converges to 1
1−z . If |z| > 1, then |z|n → ∞, so

diverges. Finally, |z| = 1 is the hardest. If z = 1, then 1 + 1 + . . . diverges. If z 6= 1, then

we have einθ−1
eiθ−1

, and einθ wanders around the unit sphere and does not approach any single
point.

HW 11. Carefully treat the case |z| = 1.

Radius of convergence: In general, define the radius of convergence R as follows:

1

R
= lim

n→∞
sup n

√
|an|.

Example: For the geometric series 1 + z + z2 + . . . , limn→∞ sup n
√

1 = 1.

Example: For the “derivative”
∑∞

n=1 nz
n−1 of the geometric series, we have limn→∞ sup n−1

√
n =

limn→∞ n
√
n. (Why can we do this?)

Claim: limn→∞ n
√
n = 1.

Proof. Indeed, if n
√
n = 1 + δ, then n = (1 + δ)n = 1 + nδ + n(n−1)

2
δ2 + · · · > 1 + n(n−1)

2
δ2.

Hence n− 1 > n(n−1)
2

δ2 and
√

2
n
> δ. As n goes to ∞, δ goes to zero. �

Now we describe our main theorem:

Theorem 8.4 (Abel). Consider the series a0 + a1z + a2z
2 + . . . .

(1) The series converges absolutely for every z with |z| < R. If 0 < ρ < R, then the
convergence is uniform on E = {|z| ≤ ρ}.

(2) The series diverges for |z| > R.

Proof. The proof is by comparison with the geometric series.
(1) If |z| < R, then there is ρ > 0 so that |z| < ρ < R. Hence 1

ρ
> 1

R
. By definition of

lim sup, n
√

|an| < 1
ρ

for all sufficiently large n. This means that |an| < 1
ρn ⇒ |anzn| < |zn|

ρn ,
and

|anzn| + |an+1z
n+1| + · · · < |z|n

ρn
+

|z|n+1

ρn+1
+ . . . .

The RHS is a geometric series which converges, so the LHS is convergent; hence the original
series is absolutely convergent. For uniform convergence, take ρ < ρ′ < R. By repeating the
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above with ρ′ instead of ρ, we obtain

|anzn| + |an+1z
n+1| + · · · <

(
ρ

ρ′

)n

+

(
ρ

ρ′

)n+1

+ . . . ,

and the RHS is finite and independent of z.
(2) If |z| > R, then ∃ρ > 0 s.t. R < ρ < |z| ⇒ 1

R
> 1

ρ
. Hence there exist arbitrarily large

n s.t. n
√

|an| > 1
ρ
⇒ |anzn| > |z|n

ρn . The RH term goes to ∞, hence the series diverges. �

Remark: We are not making any statements about |z| = R.
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9. More Series

9.1. Analyticity. Let f(z) = a0 + a1z + a2z
2 + · · · =

∑
anz

n, with a radius of convergence

R > 0 defined by 1
R

= limn→∞ sup n
√

|an|.
Theorem 9.1. f(z) is analytic for |z| < R with derivative f ′(z) =

∑
nanz

n−1. The deriva-
tive also has the same radius of convergence R.

Proof. We prove the theorem in two steps.

Step 1:
∑
nanz

n−1 has the same radius of convergence R as
∑
anz

n.

Indeed, limn→∞ sup n
√
nan = limn→∞ n

√
n · 1

R
, and we’ve already shown that limn→∞ n

√
n = 1.

(Note we’ve also shifted terms by one....)

Step 2: Write f(z) = Sn(z) +Rn(z), where Sn(z) =
∑n−1

i=0 aiz
i is the nth partial sum. For

the time being, write g(z) =
∑
nanz

n−1. Then
∣∣∣∣
f(z) − f(z0)

z − z0

− g(z0)

∣∣∣∣ ≤
∣∣∣∣
Sn(z) − Sn(z0)

z − z0

− S ′
n(z0)

∣∣∣∣+
∣∣∣∣
Rn(z) −Rn(z0)

z − z0

∣∣∣∣+ |(S ′
n(z0) − g(z0))| .

For any ε > 0, ∃δ s.t. the first term on the right is < ε
3
, since Sn is a polynomial, hence

analytic. The second term is bounded as follows:
∣∣∣∣
∑∞

k=n ak(z
k − zk0 )

z − z0

∣∣∣∣ ≤
∞∑

k=n

|ak(zk−1 + zk−2z0 + · · ·+ zk−1
0 )| ≤

∞∑

k=n

akkρ
k−1,

where |z|, |z0| < ρ < R. Since the series converges, by taking n sufficiently large we may
bound the second term by ε

3
. Finally, the third term is |∑∞

k=n akkz
k−1
0 |, which is bounded

by ε
3

in the same way taking n sufficiently large. �

Corollary 9.2. If f(z) =
∑
anz

n with radius of convergence R > 0, then it has derivatives
f ′, f ′′, f ′′′, etc., and their radius of convergence is also R.

It is also not hard to see (by repeated differentiation) that

f(z) = f(0) + f ′(0)z +
f ′′(0)

2!
z2 +

f ′′′(0)

3!
z3 + . . . ,

namely we have the familiar Taylor series, provided we assume that f(z) admits a power
series expansion!

9.2. Abel’s Limit Theorem.

Theorem 9.3 (Abel’s Limit Theorem). Consider the power series f(z) =
∑
anz

n. Assume
WLOG (without loss of generality) that the radius of convergence R = 1. If

∑
an converges

(i.e., f(1) exists), then f(z) approaches f(1), provided z approaches 1 while keeping |1−z|
1−|z|

bounded.
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One way of interpreting |1−z|
1−|z| is as follows: Let z be on a circle of radius r, where r is very

close to but smaller than 1. Then |1 − z| is the distance from z to 1, and 1 − |z| = 1 − r

is the distance from the circle of radius r to 1. When z is close to 1, the ratio |1−z|
1−|z| is very

close to 1
cos

of the angle made by z − 1 and r − 1. Hence there exists ε > 0 such that if we

write z = 1 + ρeiθ with 0 ≤ θ ≤ 2π, then θ ∈ (π
2

+ ε, 3π
2
− ε).

Proof. WLOG
∑
an = 0. Write sn = a0 + a1 + · · ·+ an. Rewrite Sn(z) = a0 + a1z + a2z

2 +
· · ·+ anz

n as:

Sn(z) = (1 − z)(a0 + (a0 + a1)z + (a0 + a1 + a2)z
2 + · · ·+ (a0 + · · · + an−1)z

n−1) + (a0 + · · ·+ an)z
n

= (1 − z)(s0 + s1z + · · · + sn−1z
n−1) + snz

n.

Here, we are taking |z| < 1, and sn → 0, so snz
n → 0. Therefore,

f(z) = (1 − z)
∑

snz
n.

Now, we write

|f(z)| ≤ |1 − z|
∣∣∣∣∣

m−1∑

k=0

skz
k

∣∣∣∣∣ + |1 − z|
∣∣∣∣∣

∞∑

k=m

skz
k

∣∣∣∣∣ .

Given ε > 0, there exists k sufficiently large (for example, k ≥ m) such that |sk| ≤ ε. Hence
the second term on the RHS is dominated by the sum |1 − z| ε

1−|z| of the geometric series.

Using our assumption, this in turn is dominated by Kε for some predetermined constant K.
Now the first term on the RHS is a product of a finite number of terms, so can be made
arbitrarily close to 0 by taking z → 0. This proves the theorem. �

9.3. Exponential functions. Define the exponential function

ez = 1 +
z

1!
+
z2

2!
+ · · · + zn

n!
+ . . . .

The radius of convergence of ez is ∞, i.e., ez converges on the whole plane, since n

√
1
n!

→ 0.

HW 12. Prove that n
√
n! → ∞. [Hint: given any real number x, show that xn < n! for n

sufficiently large.]

The exponential function is the unique function which is a power series in z and is a solution
of the differential equation

f ′(z) = f(z),

with initial condition f(0) = 1. In fact, if we differentiate f(z) = a0 + a1z+ · · ·+ anz
n + . . . ,

we obtain f ′(z) = a1 + 2a2z + · · · + nanz
n−1 + . . . , and equating the coefficients we obtain

a0 = 1, a1 = 1, a2 = 1
2
, and so on. [Why is it legitimate to equate the coefficients?]
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10. Exponential and trigonometric functions; Arcs, curves, etc.

10.1. Exponential functions. Last time we defined ez = 1 + z + z2

2!
+ · · · + zn

n!
+ . . . .

f(z) = ez is the unique function such that f ′(z) = f(z) and f(0) = 1.

Lemma 10.1. ea+b = eaeb

Proof. ∂
∂z

(ezec−z) = ezec−z − ezec−z = 0, and hence ezec−z is a constant. By setting z = 0,
we find that ezec−z = ec. Finally, if we write c = a+ b and z = a, then we’re done. �

Remark: When restricted to R, ez is the standard exponential function on R. Hence we
can think of ez : C → C as the extension of ex : R → R.

10.2. Trigonometric functions. We define:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Then we compute that

cos z = 1 − z2

2!
+
z4

4!
− . . . ,

sin z = z − z3

3!
+
z5

5!
− . . . .

It is easy to prove the following properties:

(1) cos z + i sin z = eiz.
(2) cos2 + sin2 = 1.
(3) ∂

∂z
(cos z) = − sin z.

(4) ∂
∂z

(sin z) = cos z.

If z = x+ iy, then we can write ez = exeiy = ex(cos y + i sin y), where ex, cos y, sin y are all
functions of one real variable.

f(z) has period c if f(z + c) = f(z) for all z. By writing in polar form as above, it is clear
that the smallest period of f(z) = ez is 2πi.

We view ez geometrically: ez maps the infinite strip 0 ≤ y ≤ 2π to C−{0}. (Notice that ez

is never zero.) When y = 0, ez = ex, and the image is {x > 0} ∩ R. The line y = θ maps to
the ray which makes an angle θ with the positive x-axis. Since ez+2πi = ez, the lines y = θ
and y = θ + 2π map to the same ray.

10.3. The logarithm. We want to define the logarithm log z as the inverse function of ez.
The problem is that each w ∈ C − {0} has infinitely many preimages z such that ez = w;
they are all given by exp−1({w}) = {log |w|+ i(argw+2πn), n ∈ Z}. Here log |w| is the real
logarithm, and 0 ≤ argw ≤ 2π. We will define one branch as follows:

logw := log |w|+ i argw.
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The important thing to remember is that, although we chose 0 ≤ argw < 2π, there is
nothing canonical (natural) about this choice.

Also define ab = eb log a, when a, b ∈ C.

10.4. Arcs and curves. We now change topics and give the basics of arcs, curves, etc.

Definition 10.2. An arc or a path in C is a continuous map γ : [a, b] → C. (Here a < b.)
γ(a) is called the initial point of the arc and γ(b) is the terminal point of the arc.

Remark: Two arcs are the same iff they agree as maps. It is not sufficient for them to have
the same image in C.

γ : [a, b] → C is:

(1) of class C1 (called differentiable in the book), if dγ
dt

= γ′(t) = x′(t) + iy′(t) exists and
is continuous. (Here differentiability at a point means differentiability on some open
set containing that point.)

(2) simple if γ(t1) = γ(t2) ⇒ t1 = t2.
(3) a closed curve if γ(a) = γ(b).
(4) a simple closed curve if γ is a closed curve and γ(t1) = γ(t2) ⇒ t1 = t2 away from

the endpoints.

Define −γ : [−b,−a] → C by −γ(t) = γ(−t). This traces the image of γ in the opposite
direction, and is called the opposite arc of γ.

10.5. Conformality revisited. Suppose γ : [a, b] → C is an arc and f : Ω ⊂ C → C is an
analytic function. Let w = f(γ(t)). If γ ′(t) exists, then w′(t) exists, and:

w′(t) = f ′(γ(t))γ′(t).

Suppose z0 = γ(t0) and w0 = f(z0). If γ′(t0) 6= 0 and f ′(z0) 6= 0, then w′(t0) 6= 0. We also
have

argw′(t0) = arg f ′(z0) + arg γ′(t0).

Here, we are considering the argument to be mod 2π. This implies that the angle between
γ′(t0) and w′(t0) is equal to f ′(z0). If γ0(t0) = γ1(t0) = z0, then the angle made by γ ′0(t0) and
γ′1(t0) is preserved under composition with f . Recall we called this property conformality.
Also observe that

|w′(t0)| = |f ′(z0)| · |γ′(t0)|,
in other words, the scaling factor is also constant.
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11. Inverse functions and their derivatives

Let Ω ⊂ C be an open set and f : Ω → C be an analytic function. Suppose f is 1-1,
f ′(z) 6= 0 at all z ∈ Ω, and f is an open mapping, i.e., sends open sets to open sets. If z0 ∈ Ω
and w0 = f(z0), then:

Claim. f−1 is analytic and (f−1)′(w0) = 1
f ′(z0)

.

Observe that f is an open mapping ⇔ f−1 is defined on an open set and f−1 is continuous.
Hence, given ε > 0, there exists δ > 0 such that |w−w0| < δ implies |f−1(w)−f−1(w0)| < ε.

Proof.

lim
w→w0

f−1(w) − f−1(w0)

w − w0
= lim

f−1(w)→f−1(w0)

f−1(w) − f−1(w0)

w − w0
= lim

z→z0

z − z0

w − w0
=

1

f ′(z0)
.

Here, by the above discussion, w → w0 implies f−1(w) → f−1(w0). �

Fact: The condition that f be an open mapping is redundant.

The Open Mapping Theorem (used in the proof of the inverse/implicit function theorems)
states that if f ′(z0) 6= 0 and f is in class C1 (differentiable with continuous derivative), then
there is an open neighborhood U 3 z0 on which f is an open mapping. [It will turn out that
if f is analytic, then f has derivatives of all orders.]

We will not use this fact for the time being – its proof will be given when we discuss
integration.

Example: Consider w =
√
z. This is naturally a “multiple-valued function”, since there is

usually more than one point w such that w2 = z. To make it a single-valued function (what
we usually call “function”), there are choices that must be made. The choices are usually
arbitrary. (The procedure of making these choices is often called “choosing a single-valued
branch”.)

Let the domain Ω be C − {x + iy|x ≤ 0, y = 0}, i.e., the complement of the negative
real axis (and the origin). We think of Ω as obtained from C by cutting along the negative
real axis, hence the name “branch cut”. Write z = reiθ, where −π < θ < π. Then define
w =

√
reiθ/2. Geometrically, Ω gets mapped onto the right half-plane Ω′ = {x > 0}.

We verify that w =
√
z is continuous: Write w = u+ iv and w0 = u0 + iv0. If |z− z0| < δ,

then |w−w0||w+w0| < δ. Now w,w0 are in the right half-plane, so |w+w0| ≥ u+ u0 ≥ u0.
Hence |w − w0| < ε if δ = u0ε.

Now that we know w =
√
z is continuous, it is analytic with derivative

∂w

∂z
=

1

∂z/∂w
=

1

2w
=

1

2
√
z
.
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Example: Consider w = log z. Again, take the domain to be Ω = C−{x+ iy|x ≤ 0, y = 0}.
Then choose a branch as follows: Write z = reiθ, with −π < θ < π. Then map z 7→ w =
log |r| + iθ. The image is the infinite strip Ω′ = {−iπ < y < iπ}.

If w = log z is continuous, then

∂w

∂z
=

1

∂z/∂w
=

1

ew
=

1

z
,

as expected from calculus.
It remains to prove the continuity of w = log z. Write w = u+iv and w0 = u0+iv0. Define

a closed set A to be a box in the range which is bounded to the left by u = u0 − log 2, to the
right by u = u0 + log 2, below by v = −π and above by v = π, with the disk |w − w0| < ε
(with ε small) removed. The continuous function |ew − ew0 | attains a minimum ρ on A (it’s
a minimum, not an infimum, since A is closed). Moreover, ρ > 0, since the only times when
the minimum is zero are when w = w0 + 2πin, which are not in A.

Define δ = min(ρ, 1
2
eu0).

We claim that no point of |z − z0| < δ maps into A: if |z − z0| < δ maps into A, then
|ew − ew0 | ≥ ρ ≥ δ, a contradiction.

We also claim that no point of |z−z0| < δ maps into u < u0−log 2 (to the left of A) or into
u > u0+log 2 (to the right of A). If z is mapped to the right of A, then |ew−ew0 | ≥ eu−eu0 ≥
2eu0 − eu0 = eu0 . If mapped to the left, then |ew − ew0 | ≥ eu0 − eu ≥ eu0 − 1

2
eu0 = 1

2
eu0 . In

either case, we obtain a contradiction.
This implies that |z− z0| < δ has nowhere to go but |w−w0| < ε, proving the continuity.

Example: w =
√

1 − z2. Define Ω to be the complement in C of two half-lines y = 0, x ≤ −1
and y = 0, x ≥ 1. Consider Ω+ = Ω ∩ {y ≥ 0}. This is mapped to C − {y = 0 and x ≥ 1}
under z2. Multiplying by −1 rotates this region by π about the origin to C−{y = 0, x ≤ −1}.
Adding 1 shifts to C − {y = 0, x ≤ 0}, and squaring gives {x > 0}. The map

√
1 − z2 on

Ω+ with the exception of points on the x-axis which map to y = 0, 0 ≤ x ≤ 1 in the image.
Now Ω− = Ω ∩ {y ≤ 0} is also mapped to the same right half-plane. Observe that the map
from Ω is a 2-1 map everywhere except for z = 0 which corresponds to w = 1.

Example: w = cos−1 z. If we write z = cosw = eiw+e−iw

2
and solve for eiw in terms of z, we

get a quadratic equation

e2iw − 2zeiw + 1 = 0

with solution eiw = z ±
√
z2 − 1. Hence w = −i log(z ±

√
z2 − 1). Since z ±

√
z2 − 1 are

reciprocals, we can write

w = ±i log(z +
√
z2 − 1).

We take the following branch: w = i log(z + i
√

1 − z2). Take the domain to be the same Ω
as in the previous example. One can check that z + i

√
1 − z2 maps to the upper half-plane

(minus the x-axis): Since z± i
√

1 − z2 are reciprocals, if one of them is real, then z, i
√

1 − z2



26 KO HONDA

are both real. But if z is on the real axis with −1 < x < 1, then i
√

1 − z2 is not real. Hence
we can map using log as defined above to the infinite strip 0 < y < iπ.
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12. Line integrals

12.1. Line integrals. If f = (u, v) : [a, b] → C is a continuous function, then
∫ b

a

f(t)dt
def
=

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt,

where the right-hand side terms are the standard Riemann integrals on R.

Properties:

(1)
∫ b

a
c · f(t)dt = c

∫ b

a
f(t)dt, c ∈ C.

(2)
∫ b

a
(f(t) + g(t))dt =

∫ b

a
f(t)dt+

∫ b

a
g(t)dt.

(3) |
∫ b
a
f(t)dt| ≤

∫ b

a
|f(t)|dt.

Let γ : [a, b] → Ω ⊂ C be a piecewise differentiable arc. Given f : Ω → C continuous, define:
∫

γ

f(z)dz
def
=

∫ b

a

f(γ(t))γ′(t)dt.

This is not so unreasonable on a formal level. Indeed, if z = γ(t), then dz = γ ′(t)dt.

Key Property: If φ is an increasing, piecewise differentiable function [α, β] → [a, b], then
∫

γ

f(z)dz =

∫

γ◦φ
f(z)dz.

Assuming everything in sight is differentiable (not just piecewise), we have:
∫ b

a

f(γ(t))γ′(t)dt =

∫ β

α

f(γ(φ(τ)))γ′(φ(τ))φ′(τ)dτ =

∫ β

α

f(γ ◦ φ(τ))(γ ◦ φ)′(τ)dτ.

The first equality follows from the change of variables formula in integration, and the latter
follows from the chain rule. Here we write t = φ(τ).

Orientation Change: We have

−
∫

γ

f(z)dz =

∫

−γ
f(z)dz.

Indeed, writing τ = −t, we have:
∫

−γ
f(z)dz =

∫ −a

−b
f(γ(−t))(−γ′(−t))dt

=

∫ −b

−a
−f(γ(−t))(−γ ′(−t))dt

=

∫ b

a

f(γ(τ))γ′(τ)(−dτ) = −
∫

γ

f(z)dz.
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The integral
∫
f(z)dz over γ does not depend on the actual parametrization – it only depends

on the direction/orientation of the arc. If we change the direction/orientation, then
∫
f(z)dz

acquires a negative sign.

Notation: We often write dz = dx+ idy and dz = dx− idy. Then
∫
γ
fdx =

∫
γ
f(γ(t))dx

dt
dt,∫

γ
fdy =

∫
γ
f(γ(t))dy

dt
dt, and

∫
γ
f(z)dz =

∫
γ
(u(z) + iv(z))(dx + idy) =

∫
γ
(udx − vdy) +

i
∫

(vdx+ udy).

More Notation: A subdivision of γ can be written as γ1 + · · · + γn, and
∫
γ1+···+γn

fdz
def
=∫

γ1
fdz + · · ·+

∫
γn
fdz.

Path Integrals: Define
∫
γ
f |dz| def

=
∫ b

a
f(γ(t))|γ′(t)|dt, with γ : [a, b] → Ω. Then the

following are easy to see: ∫

−γ
f |dz| =

∫

γ

f |dz|,
∣∣∣∣
∫

γ

fdz

∣∣∣∣ ≤
∫

γ

|f ||dz|.

12.2. Exact differentials. A differential α = pdx+qdy, where p, q : Ω → C are continuous,
is called an exact differential if there exists U : Ω → C such that ∂U

∂x
= p and ∂U

∂y
= q. [It

turns out (but we will not make use of the fact) that if U has continuous partials, then it is
differentiable and of class C1.]

Independence of path:
∫
γ
α depends only on the endpoints of γ if we have

∫
γ1
α =

∫
γ2
α,

whenever γ1 and γ2 have the same initial and terminal points.

Claim.
∫
γ
α depends only on the endpoints iff

∫
γ
α = 0 for all closed curves γ.

Proof. If γ is a closed curve, then γ, −γ have the same endpoints. Hence
∫
γ
α =

∫
−γ α =

−
∫
γ
α, which implies that

∫
γ
α = 0. If γ1, γ2 have the same endpoints, then

∫
γ1
α =

∫
γ2
α,

and
∫
γ1−γ2 α = 0. �

Theorem 12.1. α = pdx + pdy, with p, q continuous, is exact iff
∫
γ
α only depends on the

endpoints of γ.

Proof. Suppose pdx+ qdy is exact. Then
∫

γ

pdx + qdy =

∫

γ

(
∂U

∂x
dx+

∂U

∂y
dy

)
=

∫ b

a

d

dt
U(x(t), y(t))dt = U(b) − U(a).

Suppose
∫
γ
α only depends on the endpoints of γ. We assume WLOG that Ω is connected,

i.e., if Ω = A tB (disjoint union) with A,B open, then A or B is ∅.
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HW 13. Prove that an open set Ω ⊂ C is connected iff it is path-connected, i.e., for any
p, q ∈ C there exists a continuous path γ from p to q. Moreover, we may take γ to be a path
which is piecewise parallel either to the x-axis or the y-axis.

Pick z0 ∈ Ω. Let γ be a path from z0 to z ∈ Ω which is piecewise of the form x = a or
y = b. Then define U(z) =

∫
γ
pdx + qdy. Since the integral only depends on the endpoints,

U(z) is well-defined. If we extend γ horizontally to a path from z0 to z + h, h ∈ R, then

U(z + h) − U(z) =
∫ z+h

z
pdx+ qdy, and ∂U

∂x
= p. Similarly, ∂U

∂y
= q. �

12.3. Complex differentials. Given a differentiable function F : Ω → C, we write dF =
∂F
∂x
dx+ ∂F

∂y
dy; in other words, an exact differential is always of the form dF for some function

F .
An alternative way of writing dF is dF = ∂F

∂z
dz + ∂F

∂z
dz.

HW 14. Verify this!

The latter term vanishes if F is analytic. Hence we have the following:

Fact: If F is analytic, then F ′(z)dz = ∂F
∂z
dz is exact.

Example:
∫
γ
(z − a)ndz = 0 for n ≥ 0, if γ is closed. This follows from the fact that

F (z) = (z−a)n+1

n+1
is analytic with derivative (z − a)n.

Example:
∫
C

1
z−adz = 2πi, where C is the circle parametrized by z = a + ρeiθ, θ ∈ [0, 2π].

This proves that there is no analytic function F (z) on C − {a} such that F ′(z) = 1
z−a . (In

other words, it is not possible to define log(z − a) on all of C − {a}.)
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13. Cauchy’s theorem

Let R be the rectangle [a, b]× [c, d]. Define its boundary ∂R to be the simple closed curve
γ1 + γ2 + γ3 + γ4, where γ1 : [a, b] → C maps t 7→ t + ic, γ2 : [c, d] → C maps t 7→ b + it,
γ3 : [−b,−a] → C maps t 7→ −t+ id, and γ4 : [−d,−c] → C maps t 7→ a− it. In other words,
∂R is oriented so that it goes around the boundary of R in a counterclockwise manner.

We prove the following fundamental theorem:

Theorem 13.1 (Cauchy’s theorem for a rectangle). If f(z) is analytic on R, then
∫
∂R
dz = 0.

Later, a more general version of the theorem will be given – it will be valid for more
general regions.

Proof. Define η(R)
def
=

∫
∂R
f(z)dz. Subdivide R into 4 congruent rectangles R(1), R(2),

R(3), and R(4). [Draw a line segment from the midpoint of γ1 to the midpoint of γ3 and
a segment from the midpoint of γ2 to the midpoint of γ4.] Then it is easy to verify that
∂R = ∂R(1) + ∂R(2) + ∂R(3) + ∂R(4) and

η(R) = η(R(1)) + . . . η(R(4)).

Taking R(i) with the largest |η(R(i))|, we have |η(R(i))| ≥ 1
4
|η(R)|. By continuing the subdi-

vision, there exist rectangles R ⊃ R1 ⊃ R2 ⊃ . . . such that |η(Rn)| ≥ 1
4n |η(R)|.

Now, we can take a sequence of points zn ∈ Rn; by the Cauchy criterion, this sequence
converges to some point z∗. (Why?) Hence we have Rn ⊂ {|z − z∗| < δ} for sufficiently
large n. If f is analytic, then for any ε > 0 there exists δ > 0 such that |z − z∗| < δ ⇒∣∣∣f(z)−f(z∗)

z−z∗ − f ′(z∗)
∣∣∣ < ε, or |f(z) − f(z∗) − f ′(z∗)(z − z∗)| < ε|z − z∗|.

Recall from last time that
∫
∂Rn

dz = 0 and
∫
∂Rn

zdz = 0, since 1 and z have antiderivatives

z and z2

2
, and hence dz and zdz are exact. Now,

η(Rn) =

∫

∂Rn

f(z)dz =

∫

∂Rn

(f(z) − f(z∗) − f ′(z∗)(z − z∗)) dz.

Therefore, |η(Rn)| ≤ ε
∫
∂Rn

|z − z∗||dz|. If we write d for the diagonal of R, then an upper

bound for |z − z∗| is 1
2nd, the diagonal of Rn. Next, if L is the perimeter of R, then 1

2nL is

the perimeter of Rn. We obtain |η(Rn)| ≤ ε( 1
2nd)(

1
2nL) = εdL 1

4n .. Since we may take ε to
be arbitrarily small, we must have η(Rn) = 0 and hence η(R) = 0. �

A Useful Generalization: If f is analytic on R − {finite number of interior points}, and
limz→ζ(z − ζ)f(z) = 0 for any singular point ζ, then

∫
∂R
f(z)dz = 0.

Proof. By subdividing and using Cauchy’s theorem for a rectangle, we may consider a small R
with one singular point ζ at the center. We may shrink R if necessary so that |(z−ζ)f(z)| < ε
for z ∈ R ⇒ |f(z)| < ε

|z−ζ| for z 6= ζ ∈ R.
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Therefore, |η(R)| ≤
∫
∂R

ε
|z−ζ| |dz|. It remains to estimate the right-hand term. If R is a

square whose sides have length r, then |z − ζ| is bounded below by 1
2
r on ∂R. Hence an

upper bound for the right-hand term is ε 4r
1/2r

= 8ε. Since ε was arbitrary, we are done. �

Cauchy’s theorem on a rectangle can be used to prove a stronger version of the theorem,
valid for any closed curve on an open disk, not just the boundary of a rectangle.

Theorem 13.2 (Cauchy’s theorem for a disk). If f(z) is analytic on an open disk D =
{|z − a| < ρ}, then

∫
γ
f(z)dz = 0 for every closed curve γ in D.

Proof. Let γ0 be a path from a to z = x + iy, consisting of a horizontal line segment,
followed by a vertical line segment. Then define F (z) =

∫
γ0
f(z)dz. By Cauchy’s theorem

on a rectangle, F (z) =
∫
γ1
f(z)dz, where γ1 is a path from a to z, consisting of a vertical line

segment, followed by a horizontal one. Using one of the two types of paths, we compute:

∂F

∂x
=

d

dh

∫ x+h

x

f(z)dx = f(z),

∂F

∂y
=

d

dk

∫ y+k

y

f(z)idy = if(z).

Hence F satisfies the Cauchy-Riemann equations. Therefore, f(z)dz = F ′(z)dz is exact,
and

∫
γ
f(z)dz = 0 for all closed curves γ (by Theorem 12.1). [Observe that the fact that F

satisfies the CR equations and that it has continuous partials implies that F itself is analytic.
This follows from Theorem 3.1.] �
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14. The winding number and Cauchy’s integral formula

14.1. The winding number. Let γ : [α, β] → C be a piecewise differentiable closed curve.
Assume γ does not pass through a, i.e., a 6∈ Im γ, where the image of γ is written as Im γ.

Definition 14.1. The winding number of γ about a is n(γ, a)
def
=

1

2πi

∫

γ

dz

z − a
.

Properties of the winding number:

1. n(−γ, a) = −n(γ, a). Proof. Follows from Orientation Change property from Day 12.

2. If C is a circle centered at a and oriented in the counterclockwise direction, then n(C, a) =
1

2πi

∫
C

dz
z−a = 1. Proof. Direct computation.

3. n(γ, a) is always an integer.

Proof. (See the book for a slightly different proof.) Subdivide γ : [α, β] → C into γ1+· · ·+γn,
where each γj : [αj−1, αj] → C is contained in a sector C ≤ arg(z − a) ≤ C + ε for small ε.
Here α = α0 < α1 < · · · < αn = β. (Give proof!)

Now define a single-valued branch of log(z − a) on each sector so that arg(γj−1(αj−1)) =
arg(γj(αj−1)). Then

∫

γj

dz

z − a
=

∫

γj

d log(z − a) =

∫

γj

d log |z − a| + i

∫

γj

d arg(z − a).

Therefore,
∫

γ

dz

z − a
=

∫

γ

d log |z − a| + i

n∑

j=1

d arg(z − a).

Since the initial and terminal points of γ are the same, the first term on the right is zero
and the second is a multiple of 2πi. �

4. If Im γ ⊂ D2 = {|z − b| < ρ}, then n(γ, a) = 0 if a 6∈ D2.

Proof. If a 6∈ D2, then 1
z−a is holomorphic on D2. Therefore, by Cauchy’s Theorem,

∫
γ

dz
z−a =

0. �

5. As a function of a, n(γ, a) is constant on each connected component Ω of C − Im γ.

Proof. Any two points a, b ∈ Ω can be joined by a polygonal path in Ω. We may reduce to
the case where a, b are connected by a straight line segment in Ω. (The general case follows
by inducting on the number of edges of the polygon.) Observe that the function z−a

z−b is real

and negative iff z is on the line segment from a to b. (Check this!) Therefore, there is a
single-valued branch of log z−a

z−b which can be defined on the complement of the line segment.
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Hence, ∫

γ

(
1

z − a
− 1

z − b

)
dz =

∫

γ

d log
z − a

z − b
= 0.

This proves that n(γ, a) = n(γ, b). �

14.2. Cauchy Integral Formula.

Theorem 14.2. Suppose f(z) is analytic on the open disk D and let γ be a closed curve in
D. If a 6∈ Im γ, then

n(γ, a) · f(a) =
1

2πi

∫

γ

f(z)dz

z − a
.

Proof. Consider F (z) = f(z)−f(a)
z−a . Suppose first that a ∈ D. Then F is analytic on D − {a}

and satisfies limz→a(z − a)F (z) = 0. Hence Cauchy’s Theorem holds:
∫

γ

f(z) − f(a)

z − a
dz = 0.

Rewriting this equation, we get:

f(a) · n(γ, a) = f(a)

∫

γ

dz

z − a
=

∫

γ

f(z)dz

z − a
.

On the other hand, if a 6∈ D, then F is analytic on all of D, and we can also apply Cauchy’s
Theorem. (In this case, both sides of the equation are zero.) �

Application: When n(γ, a) = 1, e.g., γ is a circle oriented in the clockwise direction, we
have

f(a) =
1

2πi

∫

γ

f(z)dz

z − a
.

We can rewrite this as:

f(z) =
1

2πi

∫

γ

f(ζ)dζ

ζ − z
.

(Here we’re thinking of z as the variable.)

Key Observation: The point of the Cauchy Integral Formula is that the value of f at z ∈ D
can be determined from the values of f on ∂D, using some averaging process. (Assume f is
analytic in a neighborhood of D.)
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15. Higher derivatives, including Liouville’s theorem

15.1. Higher Derivatives. Let f : Ω → C be an analytic function, and let D = {|z− a| <
ρ} ⊂ Ω. Let ∂D be the boundary circle, oriented counterclockwise. Then

f(z) =
1

2πi

∫

∂D

f(ζ)dζ

ζ − z

for all z ∈ D, by the Cauchy Integral Formula.
The Cauchy Integral Formula allows us to differentiate inside the integral sign, as follows:

Theorem 15.1.

f ′(z) =
1

2πi

∫

∂D

f(ζ)dζ

(ζ − z)2
, f (n)(z) =

n!

2πi

∫

∂D

f(ζ)dζ

(ζ − z)n+1
.

In particular, an analytic function has (complex) derivatives of all orders.

The theorem follows from the following lemma:

Lemma 15.2. Let γ : [α, β] → C be a piecewise differentiable arc and φ : Im γ → C be a

continuous map. Then Fn(z) =

∫

γ

φ(ζ)dζ

(ζ − z)n
is holomorphic on C − Im γ and its derivative

is F ′
n(z) = nFn+1(z).

We will only prove the continuity and differentiability of F1(z). The rest is similar and is
left as an exercise.

Continuity of F1(z): Suppose z0 ∈ C − Im γ. Since C − Im γ is open, there is a δ′ > 0

such that Dδ′(z0)
def
= {|z − z0| < δ′} ⊂ C − Im γ. Let z ∈ Dδ′/2(z0). We write

F1(z) − F1(z0) =

∫

γ

(
φ(ζ)

ζ − z
− φ(ζ)

ζ − z0

)
dζ = (z − z0)

∫

γ

φ(ζ)dζ

(ζ − z)(ζ − z0)
.

We estimate that |ζ − z| > δ′

2
and |ζ − z0| > δ′

2
, and

|F1(z) − F1(z0)| ≤ |z − z0|
4

|δ′|2
∫

γ

|φ(ζ)||dζ|.

If we further shrink Dδ′/2(z0), we can make |F1(z) − F1(z0)| arbitrarily small.

Differentiability of F1(z): We write

(1)
F1(z) − F1(z0)

z − z0
=

∫

γ

φ(ζ)dζ

(ζ − z)(ζ − z0)
.

Now, use the above step with φ(ζ)
ζ−z0 instead of φ(ζ). [Note that φ(ζ)

ζ−z0 is continuous on Im γ

since z0 avoids Im γ.] By the above step, Equation 1 is continuous on C − γ. Hence as
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z → z0 we have ∫

γ

φ(ζ)dζ

(ζ − z)(ζ − z0)
→

∫

γ

φ(ζ)dζ

(ζ − z0)2
.

Therefore F ′
1 is holomorphic and F ′

1(z) = F2(z).

15.2. Corollaries of Theorem 15.1.

15.2.1. Morera’s Theorem.

Theorem 15.3. If f : Ω → C is continuous and
∫
γ
fdz = 0 for all closed curves γ : [α, β] →

Ω, then f is analytic on Ω.

Proof. We already showed that f = F ′ for some analytic function F . f is then itself analytic
by Theorem 15.1. �

15.2.2. Liouville’s Theorem.

Theorem 15.4. Any analytic function f : C → C which is bounded is constant.

Proof. Let D = {|z − a| < r}. Suppose |f(z)| ≤ M for all z ∈ C. If we apply the integral
formula to ∂D, then

f (n)(a) ≤ n!

2π

M · 2πr
rn+1

=
n!M

rn
.

But r is arbitrary, so (taking n = 1) f ′(a) = 0 for all a. Hence f is constant. �

15.2.3. Fundamental Theorem of Algebra.

Theorem 15.5. Any polynomial P (z) of degree > 0 has a root.

Proof. Suppose not. Then 1
P (z)

is analytic on the whole plane. As z → ∞, 1
P (z)

→ 0, so 1
P (z)

is bounded. By Liouville, 1
P (z)

is constant, which is a contradiction. �
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16. Removable singularities, Taylor’s theorem, zeros and poles

16.1. Removable singularities.

Theorem 16.1. Let a ∈ Ω. If f : Ω − {a} → C is analytic, then f can be extended to an
analytic function Ω → C iff limz→a(z − a)f(z) = 0.

Proof. If f is analytic on Ω, then it is continuous on Ω. Hence limz→a(z−a)f(z) = limz→a(z−
a) · limz→a f(z) = 0 · f(a) = 0.

Suppose limz→a(z − a)f(z) = 0. Take a small disk D ⊂ Ω centered at a. Consider the

function g(z) = 1
2πi

∫
∂D

f(ζ)dζ
ζ−z . This is an analytic function on all of the interior of D. We

claim that, away from z = a, f(z) = g(z). Indeed, in the proof of the Cauchy Integral

Formula, we used G(ζ) = f(ζ)−f(z)
ζ−z . There are two points b = z and b = a, where we need

to check that limζ→b(ζ − b)G(ζ) = 0 (in order to use Cauchy’s Theorem). If b = z, then
we have limζ→z(f(ζ) − f(z)) = 0 by the continuity of f at z. If b = a, then we have

limζ→a
f(ζ)−f(z)

a−z (ζ − a) = 0 by the condition limz→a(z − a)f(z) = 0. �

For example, we can use the removable singularities theorem if f(z) is bounded in a neigh-
borhood of z = a.

16.2. Taylor’s Theorem. Consider the function F (z) = f(z)−f(a)
z−a . If f is analytic on Ω, then

F is analytic on Ω − {a}. By the removable singularities theorem, F extends to an analytic
function on all of Ω. By continuity of F at a, we must have F (a) = limz→a F (z) = f ′(a).

We can therefore write

f(z) = f(a) + (z − a)f1(z),

where f1 = F . Recursively we let f1(z) = f1(a) + (z − a)f2(z), and so on, to obtain

f(z) = f(a) + f1(a)(z − a) + f2(a)(z − a)2 + · · ·+ fn−1(a)(z − a)n−1 + (z − a)nfn(z).

We can differentiate f(z) and set z = a to obtain:

Theorem 16.2 (Taylor’s theorem). Suppose f : Ω → C is an analytic function. Then there
is an analytic function fn : Ω → C such that

f(z) = f(a) + f ′(a)(z − a) +
f ′′(a)

2!
(z − a)2 + · · · + f (n−1)(a)

(n− 1)!
(z − a)n−1 + (z − a)nfn(z).

The remainder term fn(z) can be written as:

fn(z) =
1

2πi

∫

∂D

f(ζ)dζ

(ζ − a)n(ζ − z)
,

where D ⊂ Ω is a small disk centered at a.
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Proof. We only need to prove the expression for the remainder. We prove the statement for
n = 1, leaving the general case as an exercise.

f1(z) =
1

2πi

∫

∂D

f1(ζ)dζ

ζ − z
=

1

2πi

∫

∂D

(f(ζ) − f(a))dζ

(ζ − a)(ζ − z)

=
1

2πi

∫

∂D

f(ζ)dζ

(ζ − a)(ζ − z)
− f(a)

2πi

∫

∂D

dζ

(ζ − a)(ζ − z)

Now, we can write 1
(ζ−a)(ζ−z) = 1

a−z

(
1

ζ−a − 1
ζ−z

)
. Since

∫
∂D

dζ
ζ−a =

∫
∂D

dζ
ζ−z = 2πi (a and z

are in the same connected component of C−∂D), the second term in the equation vanishes.
�

Remark: We will discuss Taylor series next time.

16.3. Zeros.

Proposition 16.3. Let f : Ω → C be an analytic function, a ∈ Ω, and Ω be connected. If
f(a) = f ′(a) = · · · = f (n)(a) = 0 for all n, then f is identically zero.

Proof. Suppose f (n)(z) = 0 for all n. Then f(z) = fn(z)(z − a)n for all n. Using the above
expression for fn(z), we write:

|fn(z)| ≤
1

2π

∫

∂D

M |dζ|
Rn(R− |z − a|) =

1

2π

M

Rn

2πR

(R− |z − a|) =
M

Rn−1(R− |z − a|) .

Here D is a disk of radius R centered at a, |f(ζ)| ≤ M for ζ on ∂D, and z ∈ int(D). This
implies:

|f(z)| ≤
( |z − a|

R

)n
MR

R − |z − a| .

As n→ ∞,
(

|z−a|
R

)n
→ 0, and we’re done. �

By Proposition 16.3, all the zeros of an analytic function have finite order, i.e., there exist
an integer h > 0 and an analytic function fh such that f(z) = (z − a)hfh(z) and fh(a) 6= 0.
We say that z = a is a zero of order h.

Corollary 16.4.

(1) The zeros of an analytic function f 6≡ 0 are isolated.
(2) If f, g are analytic on Ω and if f(z) = g(z) on a set which has an accumulation point

in Ω, then f ≡ g. (Here, f ≡ g means f(z) = g(z) for all z ∈ Ω.)

Proof. Follows from observing that fh(a) 6= 0 and fh is continuous ⇒ f(z) 6= 0 in a neigh-
borhood of a, provided z 6= a. �
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In other words, an analytic function f : Ω → C is uniquely determined by f |X (f restricted
to X), where X ⊂ Ω is any set with an accumulation point. For example, if f, g agree on
a nontrivial subregion of Ω or agree on a nontrivial (= does not map to a point) arc, then
f ≡ g.
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17. Analysis of isolated singularities

Definition 17.1. An analytic function f has an isolated singularity at a if f is analytic on
0 < |z − a| < δ for some δ > 0.

We already discussed removable singularities, i.e., isolated singularities where limz→a(z −
a)f(z) = 0. In such a case f can be extended across a. (The isolated singularity was a
singularity only because of lack of information.)

17.1. Poles. Suppose a ∈ Ω and f is analytic on Ω − {a}. If limz→a f(z) = ∞, then z = a
is a pole of f(z).

Claim. A holomorphic function f : Ω − {a} → C with a pole at z = a can be extended to a
holomorphic function f : Ω → S2.

Proof. Change coordinates on S2 from z-coordinates (about 0) to w = 1
z
-coordinates (about

∞). To distinguish these coordinates from the z-coordinates on Ω, we write them as z2

and w2. Then z2 = f(z) ⇔ w2 = g(z) = 1
f(z)

. Since limz→a f(z) = ∞, it follows that

limz→a g(z) = 0. Hence, by the removable singularities theorem, we can extend g(z) holo-
morphically across z = a. �

The order of the pole z = a is h if g(z) = (z − a)hgh(z), gh(a) 6= 0. Note that, from the
perspective of the claim, zeros and poles are completely analogous: one counts the order of a
preimage under f of 0 ∈ S2 and the other counts the order of a preimage under f of ∞ ∈ S2.

If the pole z = a of f is of order h, then we can write

(z − a)hf(z) = ah + ah−1(z − a) + · · ·+ a1(z − a)h−1 + φ(z)(z − a)h,

where we have expanded (z− a)hf(z) using Taylor’s theorem. Here the ai are constants and
φ is an analytic function. This implies that

f(z) =
ah

(z − a)h
+

ah−1

(z − a)h−1
+ · · ·+ a1

(z − a)
+ φ(z).

Definition 17.2. A holomorphic function f : Ω → S2 is said to be meromorphic on Ω.

17.2. Essential singularities. In order to analyze isolated singularities, consider the fol-
lowing conditions:

(1) limz→a |z − a|α|f(z)| = 0. Here α ∈ R.
(2) limz→a |z − a|α|f(z)| = ∞.

Proposition 17.3. Given an isolated singularity z = a there are three possibilities:

A. f ≡ 0 and (1) holds for all α.
B. There is an integer h such that (1) holds for α > h and (2) holds for α < h.
C. Neither (1) nor (2) holds for any α.
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Proof. Suppose (1) holds for some α. If (1) holds for some α, it holds for larger α. Therefore,
take α to be a sufficiently large integer m. We may assume (z − a)mf(z) has a removable
singularity and vanishes at z = a. Therefore, we can write (z−a)mf(z) = (z−a)kg(z), with
g(a) 6= 0, provided f is not identically zero. Therefore, f(z) = (z− a)k−mg(z), and (1) holds
for α > m− k and (2) holds for α < m− k.

The case where (2) holds for some α is similar. �

In case B, h is called the algebraic order of f at z = a. If case C holds, then z = a is
called an essential singularity.

At first glance, essential singularities are not easy to understand or visualize – they have
rather peculiar properties.

Theorem 17.4 (Casorati-Weierstrass). An analytic function f comes arbitrarily close to
any complex value in every neighborhood of an essential singularity.

Proof. We argue by contradiction. Suppose there exists A such that |f(z) − A| > δ > 0 for
all z in a neighborhood of a. Then it follows that

lim
z→a

|z − a|α|f(z) − A| = ∞

for α < 0. Therefore, a is not an essential singularity for f(z) − A. Using Proposition 17.3,
it follows that there is β >> 0 so that

lim
z→a

|z − a|β|f(z) − A| = 0.

Now, |z − a|β|A| → 0, so |z − a|β|f(z)| → 0 as well, a contradiction. �

Remark: The converse is also true. If z = a is an isolated singularity, and, for any disk
|z−a| < δ about a, f(z) comes arbitrarily close to any complex value A, then a is an essential
singularity. (It is easy to verify that B cannot hold under the above conditions.)

Example: f(z) = ez has an essential singularity at ∞. (Equivalently, by changing to w = 1
z

coordinates, g(w) = e1/w has an essential singularity at w = 0.) Indeed, given any small
open disk about z = ∞, i.e., D = {|z| > R} ∪ {∞} for R large, if we take C >> R, then
the infinite annulus {C ≤ Im z ≤ C + 2π} ⊂ D maps onto C − {0} via f . In this case, the
essential singularity misses all but one point, namely the origin.

Remark: According to the “big” Picard theorem, near an essential singularity z = a, f
takes every complex value A, with at most one exception! (Moreover, the set {f(z) = A} is
infinite.) We will not prove this fact in this course.
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18. Local mapping properties

Let f be an analytic function on an open disk D. Suppose f 6≡ 0.

Theorem 18.1. Let zj be the zeros of f . If γ is a closed curve in D which does not pass
through any zj, then

∑

j

n(γ, zj) =
1

2πi

∫

γ

f ′(z)

f(z)
dz.

Proof. Suppose f has a finite number of zeros z1, . . . , zn on D. We assume that a zero is
repeated as many times as its order. Then we can write

f(z) = (z − z1) · · · (z − zn)g(z),

where g(z) is analytic and 6= 0 on D. We compute that

f ′(z) =
∑

j

(z − z1) · · · ̂(z − zj) · · · (z − zn)g(z) + (z − z1) · · · (z − zn)g
′(z),

where a hat ̂ indicates the term is omitted. Hence we obtain

f ′(z)

f(z)
=

1

z − z1
+ · · · + 1

z − zn
+
g′(z)

g(z)
.

Remark: This is what we would get if log f(z) was a well-defined single-valued function. If

so, we could write (log f(z))′ = f ′(z)
f(z)

and log f(z) = log(z− z1) + · · ·+ log(z− zn) + log g(z),

so we would have the above equation.

Now,

1

2πi

∫

γ

f ′(z)

f(z)
dz =

1

2πi

(∫

γ

dz

z − z1
+ · · ·+

∫

γ

dz

z − zn
+

∫

γ

g′(z)

g(z)
dz

)
= n(γ, z1)+ · · ·+n(γ, zn),

observing that
∫
γ
g′(z)
g(z)

dz = 0 by Cauchy’s Theorem, since g(z) 6= 0 on D

Now suppose there are infinitely many zeros of f on D. Since f is not identically zero, the
zeros do not accumulate inside D. Take a smaller disk D′ ⊂ D which contains Im γ. Then
there exist finitely many zeros of f on D′, and the previous considerations apply. �

Interpretation: If f maps from the z-plane to the w-plane, i.e., w = f(z), then we can
write

n(f ◦ γ, 0) =

∫

f◦γ

dw

w
=

∫

γ

f ′(z)

f(z)
dz.

Hence we can interpret Theorem 18.1 as follows:

n(f ◦ γ, 0) =
∑

f(zi)=0

n(γ, zi).
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More generally, we can write

n(f ◦ γ, a) =
∑

f(zi)=a

n(γ, zi),

provided a 6∈ Im γ.

Theorem 18.2. Suppose f(z) is analytic near z0, f(z0) = w0, and f(z) − w0 has a zero of
order n at z0. For a sufficiently small ε > 0, there exists δ > 0 such that for all w 6= w0 in
Dδ(w0), f(z) = w has n distinct roots on Dε(z0).

Remark: If f(z0) = w0, then z0 is a zero of f(z) − w0 of order 1 iff f ′(z0) 6= 0. (Why?)

Proof. Consider a small disk Dε(z0) centered at z0 which does not contain any other zeros
of f(z) − w0. By taking ε > 0 sufficiently small, we may assume that f ′(z) 6= 0 for z 6= z0

in Dε(z0). [If f ′(z0) 6= 0, then it is clear such a disk exists; if f ′(z0) = 0, then such a disk
exists since the zeros of f ′ are isolated.] By the above remark, all the zeros of f(z) − A are
of order 1, if z 6= z0 ∈ Dε(z0). Let γ = ∂Dε(z0).

Now take a small disk Dδ(w0) about w0 = f(z0) which misses Im f ◦ γ. Then for w ∈
Dδ(w0) ∑

f(zi)=w

n(γ, zi) = n(f ◦ γ, w) = n(f ◦ γ, w0) = n,

and the preimages zi of w are distinct by the previous paragraph. �

Corollary 18.3 (Open Mapping Theorem). An analytic function f 6≡ 0 maps open sets to
open sets, i.e., is an open mapping.

Corollary 18.4. If f is analytic at z0 and f ′(z0) 6= 0, then f is 1-1 near z0 and its local
inverse f−1 is analytic.

Proof. By Theorem 18.2, f is 1-1 near z0 if f ′(z0) 6= 0; by the previous corollary, f is an
open mapping. It follows from the Claim from Day 11 that the local inverse f−1 is analytic.
�

Factorization of maps: Suppose f(z)−w0 has a zero of order n at z0, i.e., f(z)−w0 = (z−
z0)

ng(z) with g(z0) 6= 0. Provided |g(z) − g(z0)| < |g(z0)|, i.e., g(z) is contained in a disk of

radius |g(z0)| about g(z0), h(z)
def
= n

√
g(z) exists, and we can write f(z)−w0 = ((z−z0)h(z))

n.
We can then factor w = f(z) into maps z 7→ ζ = (z− z0)h(z), followed by ζ 7→ w = w0 + ζn.
The first map is locally 1-1 and the second is a standard nth power.
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19. Maximum principle, Schwarz lemma, and conformal mappings

19.1. Maximum Principle. A corollary of the Open Mapping Theorem is the following:

Theorem 19.1 (Maximum Principle). If f(z) is analytic and nonconstant on an open set
Ω, then |f(z)| has no maximum on Ω.

Proof. Suppose |f(z)| attains a maximum at z0 ∈ Ω. Then there is an open disk Dδ(z0) ⊂ Ω
which maps to an open set about f(z0). In particular, |f(z0)| is not maximal. �

A reformulation of the Maximum Principle is the following:

Theorem 19.2. If f is defined and continuous on an closed bounded set E and analytic on

int(E), then max |f(z)| occurs on the boundary of E. (Here bdry(E)
def
= E − int(E).)

Proof. Since E is compact, max |f(z)| is attained on E. It cannot occur on int(E), so must
occur on bdry(E). �

19.2. Schwarz Lemma.

Theorem 19.3 (Schwarz Lemma). Suppose f is analytic on |z| < 1 and satisfies |f(z)| ≤ 1
and f(0) = 0. Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1. If |f(z)| = |z| for some z 6= 0, or if
|f ′(0)| = 1, then f(z) = cz for |c| = 1.

We can view the Schwarz Lemma as a “Contraction Mapping Principle”, namely either
the distance from z to 0 is contracted under f for all z ∈ D, or else f is a rotation.

Proof. By comparison with g(z) = z. Take f1(z) = f(z)
g(z)

= f(z)
z

. Since f(0) = 0, f1(z) is

analytic and f1(0) = f ′(0). On |z| = r ≤ 1, |f1(z)| ≤ 1
r
, so |f1(z)| ≤ 1

r
on |z| ≤ r by the

Maximum Principle. By taking the limit r → 1, we have |f1(z)| ≤ 1 on |z| < 1. Hence
|f(z)| ≤ |z| and |f ′(0)| ≤ 1.

If |f1(z)| = 1 on |z| < 1, then f1 is constant. Hence f(z) = cz with |c| = 1. �

19.3. Automorphisms of the open disk and the half plane.

Terminology: A holomorphic map f : Σ1 → Σ2 between two Riemann surfaces is biholo-
morphism if it has a holomorphic inverse. Σ1 an Σ2 are then biholomorphic. If Σ1 = Σ2 = Σ,
then f is often called an automorphism. We denote by Aut(Σ) the group of automorphisms
of Σ.

As an application of the Schwarz Lemma, we determine all automorphisms f of the open
unit disk D. By the results from last time, if f is analytic and f : D → D is 1-1 and onto,
then f−1 is also analytic.

Theorem 19.4. Let f : D → D be an automorphism satisfying f(0) = 0. Then f(z) = eiθz
for some θ ∈ R.

HW 15. Use the Schwarz Lemma to prove Theorem 19.4.
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To understand the general case, i.e., f(α) = β, we need an automorphism gα : D → D which
maps α to 0. Consider gα(z) = α−z

1−αz , where α ∈ D.

HW 16. Verify that gα is a fractional linear transformation which takes D to itself.

If f : D → D is an automorphism which takes α to β, then gβ ◦ f ◦ g−1
α maps 0 to 0,

hence is eiθz. This implies that the group Aut(D) of automorphisms of D consists of f(z) =
g−1
β (eiθgα(z)). In particular, automorphisms of the open unit disk are all fractional linear

transformations.

We now consider automorphisms of the upper half plane H = {Im z > 0}. Let g : C → C

be the fractional linear transformation z 7→ z−i
z+i

.

HW 17. Prove that g maps H biholomorphically onto D.

Observe that f is an automorphism of H iff g ◦ f ◦ g−1 is an automorphism of D. (We say f
is conjugated by g.) Hence, Aut(H) = g−1Aut(D)g. Alternatively, we can use the following
HW to show that Aut(H) = PSL(2,R).

HW 18. The fractional linear transformations that preserve H are given by PSL(2,R).

19.4. Conformal mappings. Towards the end of this course, we will prove the following
fundamental result:

Theorem 19.5 (Riemann Mapping Theorem). Any simply connected (connected) region
Ω ( C is biholomorphic to the open unit disk D.

Remark: If Ω = C, then any analytic function f : C → D is bounded, and hence constant.
Hence, C and D are not biholomorphic!

We will define simple connectivity in due course, but for the time being, it roughly means
that there are no holes in Ω. It turns out that the only simply connected Riemann surfaces
are D, S2, and C, and we have the following theorem:

Theorem 19.6.

(1) Aut(D) ' Aut(H) ' PSL(2,R).
(2) Aut(S2) ' PSL(2,C).
(3) Aut(C) ' {az + b | a, b ∈ C}.

The second and third assertions are left for HW. Also observe that Aut(Ω) in the Riemann
Mapping Theorem is conjugate to (and hence isomorphic to) Aut(D).

Examples: We now give examples of simply connected regions Ω that are biholomorphic
to D. We emphasize that all the regions are open! By a succession of biholomorphisms, all
the regions that appear here are biholomorphic to D.

1. H ' D by z 7→ z−i
z+i

as before.

2. (First quadrant) {x > 0, y > 0} ' H by sending z 7→ z2.

3. (Quarter disk) {x > 0, y > 0, |z| < 1} ' (half disk) {|z| < 1, y > 0} via z 7→ z2.
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4. (Half disk) {|z| < 1, y > 0} ' (first quadrant) {x > 0, y > 0} via z 7→ 1+z
1−z .

5. (Half disk) {|z| < 1, y > 0} ' (semi-infinite strip) {0 < y < π, x < 0} via z 7→ log z.

6. H ' (infinite strip) {0 < y < π} via z 7→ log z.

7. (Half plane with slit) {x > 0} − {y = 0, 0 < x ≤ 1} ' {x > 0} by a succession of maps
z 7→ z2, z 7→ z − 1, z 7→ √

z, whose composition is z 7→
√
z2 − 1.

8. H − {eiθ|0 < θ < a < π} ' {x > 0} − {y = 0, 0 < x ≤ b} via z 7→ z−1
z+1

.

9. {0 < y < π} − {x = 0, 0 < y < a} ' H − {eiθ|0 < θ < a < π} via z 7→ ez.
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20. Weierstrass’ theorem and Taylor series

20.1. Weierstrass’ theorem. Consider the sequence {fn}, where fn is analytic on the open
set Ωn. Suppose in addition that Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ . . . and Ω = ∪nΩn.

Theorem 20.1. Suppose {fn} converges to f on Ω, uniformly on every compact subset of
Ω. Then f is analytic on Ω. Moreover, f ′

n converges uniformly to f ′ on every compact subset
of Ω.

We will often write UCOCS to mean “uniform convergence on compact sets”.

Remark: Every compact set E ⊂ Ω is covered by {Ωn}, so must be contained in some Ωn

and hence all Ωn′ for n′ ≥ n.

Proof. Suppose D = {|z− a| ≤ r} ⊂ Ω. (Here D will denote the open disk.) By the Cauchy
integral formula,

fn(z) =
1

2πi

∫

∂D

fn(ζ)dζ

ζ − z
,

for all z ∈ D. As n→ ∞,

f(z) =
1

2πi

∫

∂D

f(ζ)dζ

ζ − z
,

so f is analytic on D. [Since fn(z) → f(z) uniformly on D,
∫
∂D

fn(ζ)dζ
ζ−z →

∫
∂D

f(ζ)dζ
ζ−z as

n→ ∞; this is a standard property of Riemann integrals under uniform convergence.]

Similarly, f ′
n(z) = 1

2πi

∫
∂D

fn(ζ)dζ
(ζ−z)2 , so f ′

n(z) → f ′(z) UOCS. �

Corollary 20.2. If a series f(z) = f1(z) + f2(z) + . . . , with fi analytic on Ω, has UCOCS
of Ω, then f is analytic on Ω, and its derivative can be differentiated term-by-term.

Remark: It suffices to prove uniform convergence on the boundary of compact sets E, by
the maximum principle. |fn(z) − fm(z)| ≤ ε on ∂E iff |fn(z) − fm(z)| ≤ ε on E.

Theorem 20.3. If fn is analytic and nowhere zero on Ω, and fn → f UOCS, then f(z) is
either identically 0 or never zero on Ω.

Proof. Suppose f is not identically zero. If f(z0) = 0, then there exists δ > 0 such that
f(z) 6= 0 on Dδ(z0) − {z0} ⊂ Ω. Then fn → f uniformly on ∂Dδ(z0) and also f ′

n → f ′

uniformly on ∂Dδ(z0). Hence we have

lim
n→∞

1

2πi

∫

∂Dδ(z0)

f ′
n(z)

fn(z)
dz =

1

2πi

∫

∂Dδ(z0)

f ′(z)

f(z)
dz.

For sufficiently large n, fn(z) 6= 0 on ∂D since f 6= 0 on ∂D; therefore the left-hand side
makes sense. Now, the LHS is zero, but the RHS is nonzero, a contradiction. �
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20.2. Taylor series.

Theorem 20.4. Let f be an analytic function on Ω and a ∈ Ω. Then

f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (n)(a)

n!
(z − a)n + . . . .

The power series converges in the largest open disk D ⊂ Ω centered at a.

Proof. Recall that f(z) has a Taylor expansion:

f(z) = f(a) + f ′(a)(z − a) +
f ′′(a)

2!
(z − a)2 + · · · + f (n−1)(a)

(n− 1)!
(z − a)n−1 + (z − a)nfn(z),

with remainder term:

fn(z) =
1

2πi

∫

∂D

f(ζ)dζ

(ζ − a)n(ζ − z)
.

As before, we estimate

|(z − a)nfn(z)| ≤
( |z − a|

R

)n
MR

R − |z − a| ,

where R is the radius of D. On a slightly smaller disk Dρ(a) = {|z − a| ≤ ρ}, where ρ < R,
the remainder term |(z − a)nfn(z)| → 0 uniformly. This proves the theorem. �

One often refers to this theorem as “a holomorphic function (one that has a complex deriv-
ative) is analytic (can be written as a power series).”
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21. Plane topology

21.1. Chains and cycles. Let Ω ⊂ C be an open region.

Definition 21.1. A chain is a formal sum γ = a1γ1 + · · · + anγn, where ai ∈ Z and
γi : [αi, βi] → Ω is piecewise differentiable. In other words, a chain is an element of the free
abelian group generated by piecewise differentiable arcs in Ω.

Write C0(Ω) for the free abelian group generated by points in Ω, and C1(Ω) for the free
abelian group generated by piecewise differentiable arcs in Ω.

Consider the map ∂ : C1(Ω) → C0(Ω), which maps an arc γ : [a, b] → Ω to γ(b)− γ(a). It is
extended linearly to elements of C1(Ω), i.e., formal linear combinations of arcs. Elements of
ker ∂ are called cycles of Ω.

Let ω be a differential pdx+qdy or f(z)dz. Consider the integration map C1(Ω)
∫
ω→ C, which

sends an arc γ to
∫
γ
ω, and is extended linearly to C1(Ω). We observe the following:

(1) If γ : [a, b] → Ω and γ1 = γ|[a,c], γ2 = γ|[c,b], where a < c < b, then
∫
γ
ω =

∫
γ1
ω+

∫
γ2
ω.

(2) If γ′ is an orientation-preserving reparametrization of γ, then
∫
γ
ω =

∫
γ′
ω.

(3) If −γ is the opposite arc of γ, then
∫
−γ ω = −

∫
γ
ω.

Therefore, as far as integration is concerned, we may take equivalence relations γ1 + γ2 ∼ γ,
γ ∼ γ′, and (−γ) ∼ −1(γ).

Remark: Given a cycle γ =
∑
aiγi, it is equivalent to a sum γ ′ = γ′1 + · · ·+ γ′k, where each

γ′i is a closed curve. First, by reversing orientations if necessary, we can write γ ∼ ∑
γi,

where γi may not be closed. Since ∂γ =
∑
∂γi = 0, given some γi : [αi, βi] → Ω, there exists

γj : [αj, βj] → Ω such that γi(βi) = γj(αj). We can then concatenate γi and γj to obtain a
shorter chain. Repeat until all the γi are closed curves.

21.2. Simple connectivity. We give three alternate definitions for a connected open set
Ω ⊂ C to be simply connected, and prove their equivalence.

Definition 21.2. A connected open region Ω ⊂ C is simply connected if one of the following
equivalent conditions holds:

(1) C − Ω is connected.
(2) n(γ, a) = 0 for all cycles γ in Ω and a 6∈ Ω.
(3) Every continuous closed curve γ in Ω is contractible.

Definition (3) is the usual definition of simple connectivity.

Roughly speaking, a simply connected region is a region without holes. Examples of simply
connected Ω are C, the open unit disk, the upper half plane, and {0 < y < 2π}.
Two continuous closed curves γ0, γ1 : [a, b] → Ω are homotopic in Ω if there is a continuous
function Γ : [a, b]× [0, 1] → Ω such that Γ(s, 0) = γ0(s) and Γ(s, 1) = γ1(s). Γ is a homotopy
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from γ0 to γ1. A continuous closed curve γ : [a, b] → Ω is contractible if γ is homotopic to a
closed curve that maps to a point in Ω.

(1)⇒(2). Suppose C − Ω is connected. C − Im γ is open and n(γ, a) is constant for all a
in a given component of C − Im γ. Since C − Ω is connected, the component of C − Im γ
containing ∞ must also contain C − Ω. Now n(γ, a) = 0 for all a in the component of
C − Im γ containing ∞.

(2)⇒(1). Suppose C − Ω is not connected. We can write C − Ω = A t B, where A and B
are open sets (and hence closed sets), and ∞ ∈ B. A and B are both closed and bounded
in C, hence compact. Hence d(A,B) = min

x∈A,y∈B
d(x, y) exists and is positive.

HW 19. Given compact subsets A,B of a complete metric space X, prove that d(A,B) =
min

x∈A,y∈B
d(x, y) exists and is positive if A and B are disjoint.

Now cover C with a net of squares whose side is < d(A,B)√
2

. Let {Qi}∞i=1 be the set of (closed)

squares. Observe that each Qi intersects at most one of A or B. Then take γ =
∑

Qi∩A6=∅
∂Qi.

We claim that if we simplify γ by canceling pairs of edges, then γ does not meet A and B,
hence γ ⊂ Ω. Not meeting B is immediate, since Qi ∩A 6= ∅ implies Qi ∩B = ∅. If a ∈ A is
contained in an edge of γ, then a is in adjacent Qi and Qj whose common edge is subjected
to a cancellation, a contradiction. [A similar argument holds in case a is a corner of Qi.]

Now, n(∂Qi, a) = 1 and n(∂Qj, a) = 1 if i 6= j, for a ∈ int(Qi). Hence n(γ, a) = 1 for all
a ∈ int(∪Qi), where the union is over all Qi ∩ A 6= ∅. We could have taken the net so that
a ∈ A is at the center of one of the squares, so we have obtained γ on Ω and a ∈ A so that
n(γ, a) = 1, a contradiction.
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22. The general form of Cauchy’s theorem

22.1. Simple connectivity, cont’d. We continue the proof of the equivalence of the three
definitions of simple connectivity.

(3)⇒(2). We first define n(γ, a), a ∈ Im γ, for a continuous closed curve γ as follows: Divide
γ into subarcs γ1, . . . , γn so that Im γi is contained in a disk ⊂ Ω which does not intersect a.
(This is possible by compactness.) Replace γi by a line segment σi with the same endpoints
as γi. Then σ = σ1 + · · ·+ σn, and define n(γ, a) = n(σ, a).

HW 20. Prove that this definition of n(γ, a) does not depend on the choice of σj, and agrees
with the standard definition of n(γ, a) for piecewise smooth closed curves.

HW 21. Prove that if two closed curves γ0 and γ1 are homotopic through a homotopy that
does not intersect a, then n(γ0, a) = n(γ1, a).

Given a piecewise differentiable closed curve γ, n(γ, a) = n(pt, a) = 0, by the above HW, if
a 6∈ Ω. Hence n(γ, a) = 0 for all γ on Ω and a 6∈ Ω.

(1),(2)⇒(3). We will cheat slightly and appeal to the Riemann Mapping Theorem, i.e., a
simply connected, connected region Ω ( C is biholomorphic to the open disk. (We will
prove the Riemann Mapping Theorem later, using only definitions (1) and (2) of simple
connectivity.) Any closed curve γ on D can easily be contracted to a point and any closed
curve γ on C can also be contracted to a point.

22.2. General form of Cauchy’s Theorem. A cycle γ on Ω is homologous to zero (or
nullhomologous) in Ω if n(γ, a) = 0 for all a ∈ C − Ω. Two cycles γ1 and γ2 are homologous
if γ1 − γ2 is nullhomologous. We will write [γ] to denote the equivalence class of cycles
homologous to γ. In particular, [γ] = 0 means γ is nullhomologous.

Remark: This is not the usual definition of a nullhomologous γ.

Theorem 22.1. If f(z) is analytic on Ω, then
∫
γ
f(z)dz = 0 for all cycles γ which are

nullhomologous in Ω.

Corollary 22.2. If f(z) is analytic on a simply connected Ω, then
∫
γ
f(z)dz = 0 for all

cycles γ on Ω.

Proof of Corollary. If Ω is simply connected, then any cycle γ on Ω is nullhomologous by
condition (2). �

Suppose Ω is simply connected and f is analytic on Ω. Since
∫
f(z)dz is independent of the

choice of path, f(z) is the complex derivative of an analytic function F (z) which is defined
on all of Ω.

Corollary 22.3. If f(z) is analytic and nowhere zero on a simply connected Ω, then log f
and n

√
f admit single-valued branches on Ω.
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Proof. Let F (z) be the analytic function on Ω whose derivative is f ′(z)
f(z)

. This is basically

log f(z), but we need to check that it satisfies eF (z) = f(z). First we verify that f(z)e−F (z) has
derivative 0, hence f(z)e−F (z) is constant. Choosing z0 ∈ Ω, we set f(z)e−F (z) = f(z0)e

−F (z0),
and hence

eF (z)−F (z0)−log f(z0) = f(z).

We take F (z) − F (z0) − log f(z0) to be log f . We also take n
√
f = e

1

n
log f . �

Remark: This corollary will become crucial in the proof of the Riemann Mapping Theorem.

We will prove the following more general result:

Theorem 22.4. Let ω = pdx + qdy be a locally exact differential on Ω, i.e., it is exact in
some neighborhood of each point of Ω. Then

∫
γ
ω = 0 for all nullhomologous cycles γ in Ω.

Proof.

Step 1: Let [γ] = 0. We may assume that the cycle γ is a finite sum of closed curves by
the Remark from last time. We now replace γ by a piecewise linear one σ with each piece
a horizontal or vertical line segment: Subdivide γ (which we assume WLOG to be a single
closed curve) into subarcs γi as above, so that each Im γi lies in a small disk ⊂ Ω. Replace
γi by a horizontal arc, followed by a vertical one, which we call σi. γi and σi have the same
endpoints. Since ω is exact on this disk (if sufficiently small),

∫
γi
ω =

∫
σi
ω. Also one can

easily verify that [γ] = [σ].

Step 2: Extend the horizontal and vertical line segments of σ to lines in C. The lines cut
up C into rectangles Ri and unbounded regions. Pick ai ∈ int(Ri) and form

σ0 =
∑

n(σ, ai)∂Ri.

We claim that σ and σ0 become equivalent after cancelling pairs of edges. Indeed, if a ∈
int(Ri), then n(σ0, a) =

∑
n(σ, ai)n(∂Ri, a) = n(σ, ai) = n(σ, a). Moreover n(σ0, a) =

n(σ, a) = 0 for a in the unbounded regions. Suppose the reduced expression of σ − σ0

contains the multiple cσij, where σij is a common side of rectangles Ri and Rj. Then
n(σ−σ0 − c∂Ri, ai) = n(σ−σ0 − c∂Ri, aj), but then the LHS is −c and the RHS is 0, hence
implying c = 0. Now σ ∼ ∑

n(σ, ai)∂Ri as far as integration is concerned.

Step 3: If n(σ, ai) 6= 0, then we claim that Ri ⊂ Ω. First, int(Ri) ⊂ Ω, since a ∈ int(Ri) ⇒
n(σ, a) = n(σ, ai) 6= 0. Next, if a lies on an edge of Ri, then either that edge is in Im σ (and
hence in Ω), or else the edge is not contained in Im σ, in which case n(σ, a) 6= 0 and a ∈ Ω.
Hence, if n(σ, ai) 6= 0, then

∫
∂Ri

ω = 0. This proves the theorem. �
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23. Multiply connected regions and residues

23.1. Multiply connected regions. A (connected) region Ω which is not simply connected
is said to be multiply connected. Ω has connectivity n if C−Ω has n connected components
and infinite connectivity if C − Ω has infinitely many connected components.

We consider the case of finite connectivity. Then there are n connected components of
C − Ω, which we write as A1, . . . , An, with ∞ ∈ An.

Lemma 23.1. There exist closed curves γ1, . . . , γn−1 such that n(γi, aj) = δij, if aj ∈ Aj.

Proof. Use the proof of (2)⇒(1) from Day 21. In other words, take a sufficiently fine net of
squares Qk that covers Ai (and Ai only), and let γi =

∑
Qk∩Ai 6=∅ ∂Qk. �

Lemma 23.2. Every cycle γ on Ω is homologous to a (unique) linear combination c1γ1 +
· · ·+ cn−1γn−1.

Proof. If ci = n(γ, ai) for ai ∈ Ai, then n(γ−∑
ciγi, aj) = 0 for all aj ∈ Aj, i = 1, . . . , n− 1.

An contains ∞, so n(γ − ∑
ciγi, an) = 0 as well. Hence [γ] = [

∑
ciγi].

Next to prove uniqueness, if [
∑
aiγi] = [

∑
biγi], then [

∑
(ai − bi)γi] = 0, and evaluation

on the γj gives ai = bi. �

We say that γ1, . . . , γn−1 form a homology basis for Ω.

By Cauchy’s Theorem, we have∫

γ

f(z)dz = c1

∫

γ1

f(z)dz + · · ·+ cn−1

∫

γn−1

f(z)dz.

We call
∫
γi
f(z)dz the periods of the differential fdz.

Example: Let Ω be the annulus {r1 < |z| < r2}. Ω has connectivity 2, and has a homology
basis consisting of one element, the circle C of radius r, r1 < r < r2. Then any cycle γ is
homologous to nC for some n ∈ Z, and

∫
γ
f(z)dz = n

∫
C
f(z)dz.

23.2. Residues. Let f(z) be an analytic function on the region Ω, with the exception of iso-
lated singularities. Suppose for the moment that there are finitely many isolated singularities
a1, . . . , an ∈ Ω. We assume that they are either poles or essential singularities.

Let Cj ⊂ Ω be a small circle about aj which contains no other singularities in the interior.

If we let Rj = 1
2πi

∫
Cj
f(z)dz, then f(z) − Rj

z−aj
has vanishing period about aj. Rj is said to

be the residue of f(z) at z = aj, and is written Resz=aj
f(z).

Theorem 23.3 (Residue Formula). If f(z) is analytic on Ω with the exception of isolated
singularities, then

1

2πi

∫

γ

f(z)dz =
∑

j

n(γ, aj)Resz=aj
f(z)

for any cycle γ on Ω which is nullhomologous on Ω and avoids the singular points.
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Proof. Since [γ] = 0 on Ω, n(γ, a) = 0 for all a 6∈ Ω. Hence n(γ − ∑
j n(γ, aj)Cj, a) = 0 for

all a 6∈ Ω′ = Ω−{a1, . . . , an}. In other words, [γ−∑
j n(γ, aj)Cj] = 0 in Ω′. Hence we have:

1

2πi

∫

γ

f(z)dz =
∑

j

n(γ, aj)Resz=aj
f(z).

Observe that there are only finitely many isolated singularities in the bounded connected
components of C − Im γ. �

23.3. Computations of residues. In principle, the isolated singularities can be essential
singularities, but in practice we will only treat poles.

Lemma 23.4. If a meromorphic function f is written as Bk

(z−a)k + · · ·+ B1

z−a+g(z) near z = a,

where g(z) is analytic, then Resz=af(z) = B1.

Proof. Observe that all the other terms besides B1

z−a admit antiderivatives. (g(z) by Cauchy’s

theorem on the disk, and the others explicitly.) Hence 1
2πi

∫
C
f(z)dz only leaves 1

2πi

∫
C
B1dz
z−a ,

where C is a small circle about z = a. �

In particular, if f has a simple pole at z = a, then f(z) = B1

z−a + g(z) and (z − a)f(z) =
B1 + (z − a)g(z). Evaluating (z − a)f(z) at z = a gives the residue B1.

Example: f(z) = cos z
(z−1)(z−2)

. Since z = 1, 2 are not zeros of cos z, they are simple zeros of

f(z). Resz=1f(z) = − cos 1 and Resz=2f(z) = cos 2. If γ is a closed curve which winds once
around z = 1 and z = 2 (for example, if γ is the circle |z| = 3, oriented counterclockwise),
then

∫
γ
f(z)dz = n(γ, 1)Resz=1f(z)+n(γ, 2)Resz=2f(z) = − cos 1+cos 2. If γ winds around

z = 1 only, say γ is the circle |z| = 3
2
, oriented counterclockwise, then

∫
γ
f(z)dz = − cos 1.

Example: f(z) = sin z
z4

. The only possible pole is z = 0. Expand sin z using Taylor’s

theorem: sin z = z − z3

3!
+ z5g(z). Then f(z) = 1

z3
− 1

6
1
z

+ zg(z), and Resz=0f(z) = −1
6
.

Similarly, f(z) = sin z
z5

has Resz=0f(z) = 0.
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24. Residues

24.1. Application: The argument principle. Suppose f is meromorphic on Ω, with

zeros ai and poles bi. We will compute n(f ◦ γ, 0) =
∫
γ
f ′(z)
f(z)

dz, using the Residue Formula

from last time. (This is a generalization of Theorem 18.1 from Day 18.)

Theorem 24.1. n(f ◦ γ, 0) =
∑

j n(γ, aj) −
∑

j n(γ, bj), where aj and bj are repeated as
many times as their orders.

Proof. Near a zero z = a of order h, we have f(z) = (z − a)hg(z), where g(z) is a nonzero
analytic function. Therefore,

f ′(z)

f(z)
=

h

z − a
+
g′(z)

g(z)
,

and Resz=a
f ′(z)
f(z)

= h, which is the order of the zero. Similarly, near a pole z = b of order k,

f(z) = (z − a)−kg(z), and Resz=b
f ′(z)
f(z)

= −k, which is minus the order of the pole. �

A corollary of the Argument Principle is the following theorem:

Theorem 24.2 (Rouché’s Theorem). Suppose [γ] = 0 on Ω and n(γ, z) = 0 or 1 for all
z ∈ Ω−Im γ. Also suppose that f(z), g(z) are analytic on Ω and satisfy |f(z)−g(z)| < |f(z)|
on γ. Then f(z) and g(z) have the same number of zeros enclosed by γ.

Proof. Take g(z)
f(z)

. Then on γ we have | g(z)
f(z)

− 1| < 1. Therefore, Im g
f
◦ γ is contained in the

disk of radius 1 about z = 1, and hence n( g
f
◦ γ, 0) = 0. This implies that

∑
j n(γ, aj) =∑

k n(γ, bk), where aj are the zeros of g
f

and bk are the poles of g
f
. Upon some thought,

one concludes that f and g must have the same number of zeros enclosed by γ. [Here “z is
enclosed by γ” means n(γ, z) 6= 0.] �

Example: Consider g(z) = z8 − 5z3 + z − 2. Find the number of roots of g(z) inside the
unit disk |z| ≤ 1.

Let γ be |z| = 1, oriented counterclockwise. Also let f(z) = −5z3. Then on γ we have
|f(z)−g(z)| = |z8+z−2| ≤ |z3|+|z|+|2| ≤ 4, whereas |g(z)| = 5. Hence |f(z)−g(z)| < |g(z)|,
and the number of zeros of g in |z| < 1 is equal to the number of zeros of f in |z| < 1, which
in turn is 3 (after counting multiplicities).

24.2. Evaluation of definite integrals.

A.
∫ 2π

0
R(cos θ, sin θ)dθ, where R is a rational function of two variables.

Example:
∫ 2π

0
1

a+sin θ
dθ, where a is real and > 1. We change coordinates z = eiθ and

integrate over the closed curve γ = {|z| = 1}, oriented counterclockwise. Then dz = ieiθdθ,
and dθ = −idz

z
. Also we have 1

2
(z + 1

z
) = 1

2
(eiθ + e−iθ) = cos θ and 1

2i
(z − 1

z
) = sin θ.
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We substitute ∫ 2π

0

dθ

a+ sin θ
= 2

∫

γ

dz

z2 + 2iaz − 1
.

If we write z2+2iaz−1 = (z−α)(z−β), then α = −i(a−
√
a2 − 1) and β = −i(a+

√
a2 − 1).

Observe that α is in the unit disk, while β is not. The residue of 1
(z−α)(z−β)

at z = α is 1
α−β ,

and

2

∫

γ

dz

z2 + 2iaz − 1
= 2(2πi)Resz=α

1

(z − α)(z − β)
=

2π√
a2 − 1

.

B.
∫ ∞
−∞ f(x)dx, where f(z) is meromorphic, has a finite number of poles, has no poles on

R, and satisfies |f(z)| ≤ B
|z|2 for |z| >> 0. If f is a rational function, then the last condition

means that the degree of the denominator is at least two larger than the degree of the
numerator.

Example:
∫ ∞
−∞

1
x4+1

dx. First consider the integral of 1
z4+1

over the closed curve γ consisting
of an arc C1 from −R to R on R, followed by a counterclockwise semicircle C2 = {|z| =
R, Im z ≥ 0}.

We first observe that∣∣∣∣
∫

C2

1

z4 + 1
dz

∣∣∣∣ ≤
∫

C2

1

|z|4 |dz| ≤
πR

R4
=

π

R3
→ 0

as R → ∞.
Hence, ∫ ∞

−∞

1

x4 + 1
dz =

∫

γ

dz

z4 + 1
.

The fourth roots of −1 are ±eπi/4, ±e3πi/4 (and are simple, in particular). Only two of them
– eπi/4 and e3πi/4 – are contained in the region bounded by γ. Therefore,∫

γ

dz

z4 + 1
= 2πi(Resz=eπi/4 +Resz=e3πi/4).

A convenient way of computing the residues is:

HW 22. Prove that the residue of 1
f(z)

at z = a is 1
f ′(a)

if a is a simple pole.

Hence ∫

γ

dz

z4 + 1
= 2πi

(
1

4e3πi/4
+

1

4e9πi/4

)
.

[Of course, this can be further simplified to give a real expression....]
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25. Day 25

25.1. Evaluation of definite integrals, Day 2.

C. (Fourier Transforms) Integrals of the form
∫ ∞
−∞ f(x)eiaxdx, where f(z) is meromorphic,

has a finite number of poles (none of them on the x-axis), and |f(z)| ≤ B
|z| for |z| >> 0.

[Observe that we only need f(z) to have a zero of order at least 1 at ∞. Compare with B,
where f(z) was required to have a zero of order at least 2 at ∞.]

Example:
∫ ∞
−∞

eiax

x2+1
dx, a > 0. Integrate on the contour γ which is the counterclockwise

boundary of the rectangle with vertices −X1, X2, X2 + iY,−X1 + iY , where X1, X2, Y >> 0.
Call the edges of the rectangle C1, C2, C3, C4 in counterclockwise order, where C1 is the edge
on the x-axis from −X1 to X2. Using the bound | 1

z2+1
| ≤ B

|z| , we obtain:
∣∣∣∣
∫

C2

eiaz

z2 + 1
dz

∣∣∣∣ ≤
B

X2

∫ Y

0

e−aydy =
B

X2

(
1

a

)
(1 − e−aY ),

∣∣∣∣
∫

C4

eiaz

z2 + 1
dz

∣∣∣∣ ≤
B

X1

(
1

a

)
(1 − e−aY ),

∣∣∣∣
∫

C3

eiaz

z2 + 1
dz

∣∣∣∣ ≤
B

Y

∫ X2

−X1

e−aY |dx| =
B

Y
e−aY (X1 +X2).

If we take X1, X2 to be large, and then let Y → ∞, then all three integrals go to zero. Hence,
∫ ∞

−∞

eiax

x2 + 1
dx =

∫

γ

eiaz

z2 + 1
dz = 2πi Resz=i

(
eiaz

z2 + 1

)
= 2πi

eiaz

z + i

∣∣∣∣
z=i

= πe−a.

Example:
∫ ∞
−∞

sinx
x
dx. In this problem, we want to compute

∫ ∞
−∞

eix

x
dx, which has a pole

at x = 0. Instead, we take the Cauchy principal value p.v.
∫ ∞
−∞

def
= limε→0(

∫ −ε
−∞ +

∫ ∞
ε

).
Strangely enough,

p.v.

∫ ∞

−∞

eix

x
dx =

(
p.v.

∫ ∞

−∞

cos x

x
dx

)
+ i

(∫ ∞

−∞

sin x

x
dx

)
,

since sinx
x

is actually continuous at x = 0 and there’s no need for p.v.’s.
Take γ to be the boundary of R∪D, where R is the rectangle as in the previous example,

and D is the disk of radius ε about z = 0. There is one pole inside R ∪ D, which gives
2πi Resz=0

eiz

z
= 2πi. Now,

2πi =

∫

γ

eiz

z
dz = p.v.

∫ ∞

−∞

eiz

z
dz + lim

ε→0

∫

C

eiz

z
dz,

where C is the lower semicircle of ∂D. Writing eiz = 1
z

+ g(z), where g(z) is analytic (and

hence continuous) near z = 0, we find that
∫
C
eiz

z
dz →

∫
C

1
z
dz = πi as ε → 0. We therefore
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obtain

p.v.

∫ ∞

−∞

eiz

z
dz = πi,

∫ ∞

−∞

sin x

x
dx = π.

D. (Mellin Transforms) Integrals of the form
∫ ∞
0
f(x)xαdx, where 0 < α < 1. Here f(z) is

meromorphic, has a finite of poles (none of them on the x-axis), and |f(z)| ≤ B
|z|2 for |z| >> 0

and |f(z)| ≤ B
|z| for |z| near 0.

We take the contour γ = C1 + C2 + C3 + C4, where C1 = {|z| = R1}, oriented clockwise,
C3 = {|z| = R2}, oriented counterclockwise, C2 is the line segment from z = R1 to z = R2,
and C4 is the line segment from z = R2 to z = R1. Here R1 < R2. [More rigorously, we’re
interested in the boundary of the region {R1 < r < R2, ε < θ < 2π−ε} (in polar coordinates)
and we’re letting ε→ 0.]

Then ∣∣∣∣
∫

C1

f(z)zαdz

∣∣∣∣ ≤
B

R1−α
1

2πR1 = 2πBRα
1 → 0, as R1 → 0;

∣∣∣∣
∫

C3

f(z)zαdz

∣∣∣∣ ≤
B

R2−α
2

2πR2 =
2πB

R1−α
2

→ 0, as R2 → ∞.

On the other hand, since zα = eα log z, the values of log z on C2 and C4 differ by 2πi and
those of zα differ by e2πiα. Hence,∫

C4

f(z)zαdz = −
∫

C2

f(z)e2πiαzαdz,

(1 − e2πiα)

∫

C2

f(z)zαdz = 2πi
∑

Resz=aj
(f(z)zα),

∫ ∞

0

f(x)xαdx = 2πi
∑

Resz=aj
(f(z)zα),

where the sum is over all residues in the plane.
This technique can be used to compute integrals such as

∫ ∞
0

xα

x2+1
dx.

25.2. Harmonic functions. A function u : Ω → R is harmonic if ∆u = ∂2u
∂x2 + ∂2u

∂y2
= 0. For

the time being, assume u has continuous partials up to second order.

Recall: If f = u+ iv and f is analytic, then u and v are harmonic.

Example: The simplest harmonic functions are u(x, y) = ax + by.

Example: If f(z) = log z, then f(z) = log r + iθ, where z = reiθ. (Suppose we are
restricting attention to a domain Ω where θ is single-valued and continuous.) u(x, y) =

log r = log
√
x2 + y2 and v(x, y) = θ are harmonic.

Question: Given a harmonic form u on Ω, is there a harmonic conjugate v : Ω → R, such
that f = u+ iv is analytic on Ω?
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Let du = ∂u
∂x
dx+ ∂u

∂y
dy. Then we define

∗du =
∂u

∂x
dy − ∂u

∂y
dx.

(∗ is called the Hodge ∗-operator.)
Lemma 25.1. If u is harmonic, then g(z) = ∂u

∂x
− i∂u

∂y
is analytic.

This g(z) is the (complex) derivative of the function f(z) we are looking for.

Proof. We compute that g(z) satisfies the Cauchy-Riemann equations ∂g
∂x

= −i ∂g
∂y

:

∂g

∂x
=
∂2u

∂x2
− i

∂2u

∂x∂y
,

∂g

∂y
=

∂2u

∂x∂y
+ i

∂2u

∂x2
.

�



NOTES FOR MATH 520: COMPLEX ANALYSIS 59

26. More on harmonic functions

26.1. Existence of harmonic conjugate. Let u : Ω → R be a harmonic function. We are
looking for its harmonic conjugate.

Lemma 26.1.
∫
γ
∗du = 0 if [γ] = 0 (i.e., γ is nullhomologous).

Proof. Define g(z) = ∂u
∂x

− i∂u
∂y

. Since

g(z)dz =

(
∂u

∂x
− i

∂u

∂y

)
(dx+ idy) = du+ i ∗ du,

we have ∫

γ

g(z)dz =

∫

γ

du+ i

∫

γ

∗du.

The integral over g(z)dz is zero by Cauchy’s Theorem, if [γ] = 0. The integral over du is
always zero, since du is exact. Hence,

∫
γ
∗du = 0 whenever [γ] = 0. �

Remark: This also follows from remarking that ω = ∗du is a closed differential 1-form.
A closed 1-form ω = pdx + qdy satisfies dω = ( ∂q

∂x
− ∂p

∂y
)dxdy = 0. It is known (Poincaré

Lemma) that closed forms are locally exact.

Theorem 26.2. There is a single-valued harmonic conjugate v : Ω → R if Ω is simply
connected. Moreover, v is uniquely determined up to a constant.

Proof. By the above lemma,
∫
γ
∗du = 0 for all cycles γ on a simply-connected Ω. Hence ∗u

is exact on Ω. To show uniqueness, if f1 = u+ iv1 and f2 = u+ iv2 are both analytic, then
f1 − f2 = i(v1 − v2) is also analytic. Recall that a nonconstant analytic function is an open
mapping. Therefore, v1 − v2, which has image on the y-axis, must be constant. �

In general, the obstacles to the existence of a single-valued harmonic conjugate v are the
periods

∫
γi
∗du where γi are basis elements of the homology of Ω.

26.2. Mean value property.

Theorem 26.3. Let u : Ω → R be a harmonic function and Dr(z0) ⊂ Ω be a closed disk.

Then u(z0) = 1
2π

∫ 2π

0
u(z0 + reiθ)dθ.

This is called the mean value property, since the value of u at the center of a disk is the
average of the values on the boundary of the disk.

Proof. On the disk Dr(z0) the harmonic function u has a harmonic conjugate v. Hence
f = u+ iv is analytic and by the Cauchy integral formula we have:

f(z0) =
1

2πi

∫

∂Dr(z0)

f(z)dz

z − z0
=

1

2π

∫ 2π

0

f(z0 + reiθ)dθ.

Taking the real part of the equation yields the theorem. �
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Corollary 26.4. u does not attain its maximum or minimum in the interior of Ω.

Theorem 26.5. Let u be a harmonic function defined on the annulus A = {r1 < |z| < r2}.
Then 1

2π

∫
|z|=r udθ = α log r + β, where α, β are constant. Here r1 < r < r2.

In view of the mean value property, if u is defined on D = {|z| < r2}, then α = 0 and
β = u(0).

Proof. The proof we give has elements of analytic continuation, which we will discuss in more
detail later. Consider subsets U1 = {0 < θ < π}, U2 = {π

2
< θ < 3π

2
}, U3 = {π < θ < 2π},

and U4 = {3π
2
< θ < 5π

2
} (of A). Since each Uj is simply-connected, on each Uj there exists

a harmonic conjugate vj of u. Having picked v1, pick v2 so that v1 = v2 on U1 ∩ U2. (Recall
they initially differ by a constant. Then modify v2 so it agrees with v1.) Likewise, pick v3 so
that v2 = v3 on U2 ∩ U3, and pick v4.... Write fj = u+ vj.

Suppose f4 − f1 = iC, where C is a constant. Consider the functions Fj = fj − C
2π

log z,

where branches of log z are chosen so that fj − C
2π

log z agrees with fj+1 − C
2π

log z. Now,

log z for F4 and log z for F1 differ by 2πi and F4 − F1 = iC − C
2π

2πi = 0. Therefore, the Fj
glue to give a globally defined analytic function F . Thus,

1

2πi

∫

|z|=r

F (z)

z
dz =

1

2π

∫ 2π

0

F (reiθ)dθ

is constant and its real part is:

1

2π

∫

|z|=r
udθ +

1

2π

∫

|z|=r

−C
2π

log rdθ =
1

2π

∫

|z|=r
udθ +

−C
2π

log r.

�

26.3. Poisson’s formula. We now give an explicit formula for which expresses the values
of a harmonic function u on a disk in terms of the values of u on the boundary of the disk.
This is analogous to the Cauchy integral formula (and is indeed a consequence of it).

Theorem 26.6. Suppose u(z) is harmonic on |z| < R and continuous for |z| ≤ R. Then

u(a) =
1

2π

∫

|z|=R

R2 − |a|2
|z − a|2 u(z)dθ =

1

2π

∫

|z|=R
Re

z + a

z − a
u(z)dθ,

if |a| < R.

Sometimes we will use the center expression and at other times we will use the RH ex-
pression.

Proof. For simplicity, we’ll assume that R = 1 and u is harmonic on all of |z| ≤ R. The
Poisson formula is just a restatement of the mean value property.

First observe that the fractional linear transformation S(z) = z+a
az+1

sends the unit disk
D = {|z| < 1} to itself and 0 to a. (Recall our discussion of automorphisms of D.) Then
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u ◦ S is a harmonic function on D and by the mean value property we have:

(2) u(a) = u ◦ S(0) =
1

2π

∫ 2π

0

u(S(z))d arg z.

We now rewrite the RH integral in terms of w = S(z). Inverting, we obtain z = S−1(w) =
w−a

−aw+1
and

d arg z = −idz
z

= −i
(

1

w − a
+

a

−aw + 1

)
dw =

(
w

w − a
+

aw

−aw + 1

)
dθ.

By using w = 1
w

on the unit circle, we can rewrite the RHS as:
(

w

w − a
+

a

w − a

)
dθ =

1 − |a|2
|w − a|2dθ,

or alternatively as
1

2

(
w + a

w − a
+
w + a

w − a

)
dθ = Re

w + a

w − a
dθ.

�

By using the RH expression in the Poisson integral formula (in Theorem 26.6), it follows
that u(z) is the real part of the analytic function

f(z) =
1

2πi

∫

|z|=R

ζ + z

ζ − z
u(ζ)

dζ

ζ
+ iC.

(f is analytic by Lemma 15.2 from Day 15.)
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27. Schwarz reflection principle

27.1. Schwarz’s Theorem.

Theorem 27.1. Given a piecewise continuous function U(θ) on 0 ≤ θ ≤ 2π, the Poisson
integral

PU(z) =
1

2π

∫ 2π

0

Re
eiθ + z

eiθ − z
U(θ)dθ

is harmonic for |z| < 1 and limz→eiθ0 PU(z) = U(θ0), provided U is continuous at θ0.

Proof. By Lemma 15.2, f(z) = 1
2πi

∫
|ζ|=1

ζ+z
ζ−zU(ζ)dζ

ζ
is analytic on |z| < 1, and hence PU(z)

is harmonic for |z| < 1.
P is a linear operator which maps piecewise continuous functions U on the unit circle to

harmonic functions PU on the open unit disk. It satisfies PU1+U2
= PU1

+PU2
and PcU = cPU

for c constant. We can easily deduce that Pc = c and thatm ≤ U ≤M implies m ≤ PU ≤M .
(You can verify this using Equation 2.)

WLOG assume that U(θ0) = 0; otherwise we can take U − U(θ0) instead (and still call it
U). (Observe that we can do this because Pc = c.) Take a short arc C2 ⊂ ∂D (here D is the
unit disk) containing θ0 in its interior, such that |U(θ)| < ε on C2. (This is possible by the
continuity of U at θ0.) Let C1 be its complement in ∂D. Let Ui, i = 1, 2, equal U on Ci and
zero elsewhere. Then U = U1 + U2.
PU1

is harmonic away from C1; in particular it is harmonic (and continuous) in a neigh-
borhood of eiθ0 . Moreover, by the center expression in Theorem 26.6, we can verify that PU1

is zero on C2. On the other hand, PU2
satisfies |PU2

| < ε since |U2| < ε. Adding up PU1
and

PU2
we see that |PU | can be made arbitrarily small in a neighborhood of eiθ0 . �

Therefore, there is a 1-1 correspondence between continuous functions on the unit circle and
continuous functions on the closed unit disk that are harmonic on the open unit disk. The
correspondence is given by U 7→ PU , and its inverse map is just the restriction PU |∂D.

27.2. Schwarz reflection principle.

Goal: Extend/continue an analytic function f : Ω → C to a larger domain. The ultimate
goal is to find the maximal domain on which f can be defined.

Observation: If f(z) is analytic on Ω, then f(z) is analytic on Ω′ = {z|z ∈ Ω}.
If f(z) is an analytic function, defined on a region Ω which is symmetric about the x-axis,

and f(z) = f(z), then f(z) is real on the x-axis. We have the following converse:

Theorem 27.2. Let Ω be a symmetric region about the x-axis and let Ω+ = Ω∩{Im z > 0},
σ = Ω∩{Im z = 0}. If f(z) is continuous on Ω+∪σ, analytic on Ω+, and real for all z ∈ σ,

then f(z) has an analytic extension to all of Ω such that f(z) = f(z).

Theorem 27.2 follows from the following result for harmonic functions:
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Theorem 27.3. Suppose v(z) is continuous on Ω+ ∪ σ, harmonic on Ω+, and zero on σ.
Then v has a harmonic extension to Ω satisfying v(z) = −v(z).
Proof. Define V (z) to be v(z) for z ∈ Ω+, 0 for z ∈ σ, and −v(z) for z ∈ Ω− = Ω∩{Im z < 0}.
We want to prove that V (z) is harmonic. For each z0 ∈ σ, take an open disk Dδ(z0) ⊂ Ω.
Then define PV to be the Poisson integral of V with respect to the boundary ∂Dδ(z0). By
Theorem 27.1 above, PV is harmonic on Dδ(z0) and continuous on Dδ(z0). It will be shown
that V = PV .

On the upper half disk, V and PV are both harmonic, so V −PV is harmonic. V −PV = 0
on the upper semicircle, since V (z) = v(z) by definition and PV (z) = v(z) by the continuity
of PV (here z is on the semicircle). Also, V − PV = 0 on σ ∩ Dδ(z0), since v(z) = 0 by

definition and PV (z) = 1
2π

∫
|ζ|=δ

δ2−|z|2
|ζ−z|2 V (ζ)dθ, and we note that the contributions from the

upper semicircle cancel those from the lower semicircle.
Summarizing, V − PV is harmonic on the upper half disk Dδ(z0) ∩ Ω+, continuous on its

closure, and zero on its boundary. Therefore, V = PV on the upper half disk. �

Proof of Theorem 27.2. Given f(z) = u(z) + iv(z) on Ω+, extend f(z) to Ω− by defining

f(z) = f(z) = u(z)− iv(z) for z ∈ Ω−. From above, v(z) is extended to a harmonic function
V (z) on all of Ω as above. Since −u(z) is the harmonic conjugate of v(z) on Ω+, we define
U(z) to be a harmonic conjugate of −V (z) (at least in a neighborhood Dδ(z0) of z0 ∈ σ).
Adjust U(z) (by adding a constant) so that U(z) = u(z) on the upper half disk.

We prove that g(z) = U(z) − U(z) = 0 on Dδ(z0). Indeed, U(z) = U(z) on σ, so ∂g
∂x

= 0

on σ. Also, ∂g
∂y

= 2∂u
∂y

= −2 ∂v
∂x

= 0 on σ. Therefore, the analytic function ∂g
∂x

− i ∂g
∂y

vanishes

on the real axis, and hence is constant. Since g(z) = 0 on σ, g(z) is identically zero. This
implies that U(z) = U(z) on all of Dδ(z0), hence proving the theorem. �

I want to emphasize that the symmetry about the x-axis is simply a normalization, and that
the reflection principle is applicable in far greater generality.
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28. Normal families, Arzela-Ascoli

28.1. Normal families. Let F be a collection (called “family”) of functions f : Ω → C.
(Much of what we discuss hold for functions f : Ω → X, where X is a metric space, but
we’ll keep things simple.)

Definition 28.1. F is equicontinuous on E ⊂ Ω if ∀ε > 0 ∃δ > 0 such that |z − z ′| < δ,
z, z′ ∈ E ⇒ |f(z) − f(z′)| < ε for any f ∈ F .

Basically we are asking for all f ∈ F to be simultaneously uniformly continuous with the
same constants.

Definition 28.2. F is normal if every sequence f1, f2, . . . in F has a subsequence which
converges uniformly on compact subsets.

Remark: The limit f of a convergent sequence in F does not need to be in F . (In other
words, the closure F must be compact.)

28.2. Arzela-Ascoli Theorem.

Theorem 28.3 (Arzela-Ascoli). A family F of continuous functions f : Ω → C is normal iff
(i) F is equicontinuous on each compact E ⊂ Ω and (ii) for any z ∈ Ω the set {f(z)|f ∈ F}
is compact.

Roughly speaking, if the functions are f : R → R with usual coordinates y = f(x) and we’re
imagining the graph of f , then (i) controls the vertical spread in values of a single function
f |E (the vertical spread is uniform for all f ∈ F) and (ii) controls the vertical spread at a
single point z ∈ E as we vary f .

Proof. Suppose F is normal. We prove (i). If F is not equicontinuous on a compact subset E,
then there are sequences zn, z

′
n ∈ E and fn ∈ F such that |zn−z′n| → 0 but |fn(zn)−fn(z′n)| ≥

ε. Since E is compact, there is a subsequence (we abuse notation and also call it zn) such that
zn → z ∈ E. Also, since zn and z′n are close, z′n → z ∈ E. (We still have |fn(zn)−fn(z′n)| ≥ ε.)

On the other hand, since F is normal, there is a subsequence (still called fn) fn ∈ F which
converges to a continuous function f on E. (Why is f continuous?) But then

|fn(zn) − fn(z
′
n)| ≤ |fn(zn) − f(zn)| + |f(zn) − f(z′n)| + |f(z′n) − fn(z

′
n)|,

and the first and third terms on the RHS → 0 by uniform convergence, and the second term
→ 0 as zn and z′n get arbitrarily close (by continuity of f). This contradicts |fn(zn)−fn(z′n)| ≥
ε.

Next we prove (ii). Any sequence {fn} has a convergent subsequence (which we still call
fn), so given any z ∈ Ω, fn(z) → f(z). Since any sequence in {f(z)|f ∈ F} has a convergent
subsequence, the set is compact.

Now suppose (i) and (ii) hold. Given f1, . . . , fn, · · · ∈ F , take a sequence {ζ1, ζ2, . . . }
which is everywhere dense in Ω (e.g., the set of points with rational coordinates). Take a
subsequence of {fn} which converges at ζ1. Denote it by indices n11 < n12 < · · · < n1j < . . . .
Next, take a subsequence of it which converges at ζ2. Denote it by indices n21 < n22 < · · · <
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n2j < . . . . Continuing in this manner, we then take the diagonal n11 < n22 < n33 < . . . .
Then fnjj

converges at all the points ζi.
We now claim that {fnjj

} converges uniformly on any compact E ⊂ Ω. Indeed, given any
z ∈ E,

|fnii
(z) − fnjj

(z)| ≤ |fnii
(z) − fnii

(ζk)| + |fnii
(ζk) − fnjj

(ζk)| + |fnjj
(ζk) − fnjj

(z)|,
where ζk is within a distance δ of z. Since fnii

and fnjj
are equicontinuous, given ε > 0,

there is δ > 0 so that the first and last terms on the RHS are < ε
3
. Since fnii

(ζk) converges,
there is an N such that nii > N implies that the middle term is < ε

3
. �

28.3. Montel’s theorem. We now apply the Arzela-Ascoli theorem in the setting of a
family F of analytic functions.

Theorem 28.4 (Montel). A family F of analytic functions f : Ω → C is normal iff functions
f ∈ F are uniformly bounded on each compact set E ⊂ Ω, i.e., there exists a constant M
such that |f(z)| < M for all z ∈ E and f ∈ F .

Proof. Suppose F is normal. Cover E with a finite number of disks Di of radius δ (this is
possible by compactness). On each disk Di centered at zi, if fα, fβ ∈ F and z ∈ Di we have:

|fα(z) − fβ(zi)| ≤ |fα(z) − fα(zi)| + |fα(zi) − fβ(zi)|,
and first term on the RHS is bounded above by equicontinuity and the second term is
bounded since {f(zi)|f ∈ F} is compact. Since there are only finitely many balls, we have
uniform boundedness.

Now suppose F is uniformly bounded on E. It is sufficient to prove equicontinuity, in
view of Arzela-Ascoli. If Dr(z0) is a disk of radius r about z0 and z, z′ ∈ E ∩Dr/2(z0), then

f(z) − f(z′) =
1

2πi

∫

∂Di

(
f(ζ)

ζ − z
− f(ζ)

ζ − z′

)
dζ =

z − z′

2πi

∫

∂D

1

(ζ − z)(ζ − z′)
f(ζ)dζ,

and

|f(z) − f(z′)| ≤ |z − z′|
2π

2πr

(r/2)(r/2)
M ≤ 4M

r
|z − z0|.

This proves equicontinuity on Dr/2(z0).
Now, cover E with finitely many disks of radius r

2
. If z, z′ ∈ E and |z− z′| < r

4
, then there

is some disk Dr/2(z0) which contains both z and z′. Given ε > 0, pick δ = min( r
4
, r

4M
ε).

Then |z − z′| < δ ⇒ |f(z) − f(z′)| < ε. �
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29. Riemann mapping theorem

Theorem 29.1. A simply connected, connected, open Ω ( C is biholomorphic to the open
unit disk D.

Step 1: Let a ∈ C − Ω. Since Ω simply connected, there is a single-valued branch of
f(z) =

√
z − a on Ω. (Recall that f(z) = e

1

2
log(z−a) and log(z − a) can be defined as an

antiderivative of 1
z−a . This is because, according to Cauchy’s Theorem,

∫
γ

dz
z−a = 0 for all

closed curves γ in a simply connected Ω.) f gives a biholomorphism of Ω onto its image. For

simplicity take a = 0. Then consider Dδ(b) ⊂ Im f . We have Dδ(−b) ∩ Im f = ∅. (Observe

that Dδ(−b) is Dδ(b) which has been reflected across the origin. This means that they would

have the same image under the map w 7→ w2.) Now take an FLT which maps Dδ(−b) to the
complement of the open unit disk. From now on we assume that Ω is a subset of D, and also
that 0 ∈ Ω. (Recall there is an FLT which is an automorphism of D and takes any interior
point of D to 0.)

Step 2: Consider a holomorphic map f : Ω → D which satisfies:

(1) f is 1-1,
(2) f(0) = 0,
(3) f ′(0) > 0 (this means f ′(0) is real and positive).

Let F be the family of all such holomorphic maps. In particular, id is one such map, so F
is nonempty.

If f is not onto, then we find h ∈ F with larger h′(0). Let a ∈ D− f(Ω). We take g to be
the composition g3g2g1 of the following maps:

(1) FLT g1, an automorphism of D which sends a to 0,
(2) g2(z) =

√
z, which is single-valued on g1f(Ω) (since it is simply connected),

(3) FLT g3, an automorphism of D which sends g2g1(0) to 0 and satisfies (g3g2g1)
′(0) > 0.

(The latter condition can be achieved by composition with an appropriate rotation
about the origin.)

We claim that (g ◦ f)′(0) > f ′(0). Indeed g−1 can be viewed as a map from D to itself which
sends 0 7→ 0 such that (g−1)′(0) > 0. By the Schwarz lemma, (g−1)′(0) < 1 since g−1 is not
a rotation. This means that g′(0) > 1, and hence (g ◦ f)′(0) > f ′(0).

Step 3: Now consider F . F is uniformly bounded (since all f map to D), so take a sequence
f1, . . . , fn, . . . in F for which f ′

i(0) → M = supf∈F f
′(0). Then there is a subsequence of

{fn} converging UCOCS to a holomorphic map f : Ω → D by Montel’s theorem. (This in
particular implies that M <∞.)

It remains to show that f is 1-1. We argue using the argument principle. By uniform
convergence,

∫

γ

f ′
i(z)

fi(z)
dz →

∫

γ

f ′(z)

f(z)
dz,
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for closed curves γ that avoid the zeros of f . But these represent winding numbers – this
implies that the winding numbers do not change in the limit, and that f is 1-1. Hence f ∈ F .
By Step 2, f must be onto D. This completes the proof of the Riemann Mapping Theorem.

Enhancements:

1. Let Ω and Ω′ be open regions. If f : Ω
∼→ Ω′ is a homeomorphism and {zn} is a sequence

that tends to ∂Ω, then {f(zn)} tends to ∂Ω′. (Proof left as exercise.)

We define ∂Ω = Ω − int(Ω) (the closure of Ω minus (the interior of) Ω). We also say that
zn tends to ∂Ω if for all z ∈ Ω, ∃ Dε(z) ⊂ Ω and N > 0 such that zn 6∈ Dε(z) if n > N .
Observe that if K ⊂ Ω is compact, then by covering K with open disks, there exists N > 0
such that zn 6∈ K if n > N .

2. The Uniformization Theorem is a generalization of the Riemann Mapping Theorem which
says that a simply connected (=any closed curve can be contracted to a point), connected
Riemann surface (without boundary) is biholomorphic to one of C, S2, or D.

3. A multiply connected region Ω ⊂ C of connectivity n + 1 (recall that this means that
C − Ω has n + 1 connected components) is biholomorphic to the annulus 1 < |z| < λ (for
some λ > 1) with n − 1 arcs, each of which is a subarc of |z| = λi for some 1 < λi < λ,
removed.
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30. Analytic continuation

30.1. Riemann mapping theorem and boundary behavior. Recall that last time we
proved that a simply connected Ω ( C is biholomorphic to the open unit disk D. We give
more enhancements:

4. If ∂Ω contains a free one-sided analytic arc γ, then the biholomorphism f : Ω
∼→ D has

an analytic extension to Ω ∪ γ, and γ is mapped onto an arc of ∂D.

An analytic arc γ : [a, b] → Ω is an arc which, in a neighborhood of each t0 ∈ [a, b], is given
by a Taylor series

γ(t) = a0 + a1(t− t0) + a2(t− t0)
2 + . . . ,

with a nonzero radius of convergence.

A free one-sided boundary arc γ is a regular (i.e., γ ′(t) 6= 0 on [a, b]), simple (i.e., 1-1) arc
such that there are neighborhoods ∆ ⊂ C of t0 ∈ [a, b] and Ω′ ⊂ C of γ(t0) such that
∆ ∩ {Im z > 0} gets mapped onto Ω ∩ Ω′ and ∆ ∩ {Im z < 0} gets mapped to C − Ω.

Proof. Use the Schwarz reflection principle, after changing coordinates so that f looks like
a map from a subset of the upper half plane to itself. �

5. If Ω is simply connected and ∂D is given by a simple (continuous) closed curve, then the
biholomorphism f : Ω → D extends to a homeomorphism f : Ω → D.

The proof is omitted.

30.2. Analytic continuation. Denote by (f,Ω) an analytic function f defined on an open
region Ω. (We assume, as usual, that Ω is connected.)

Definition 30.1. (f1,Ω1) and (f2,Ω2) are direct analytic continuations of each other, if
Ω1 ∩ Ω2 6= ∅ and f1 = f2 on Ω1 ∩ Ω2.

Observe that if (f2,Ω2) and (g2,Ω2) are direct analytic continuations of (f1,Ω1) to Ω2, then
f2 = g2, since f2|Ω1∩Ω2

= g2|Ω1∩Ω2
. (Recall that if two analytic functions with the same

domain agree on a set with an accumulation point, then they are identical.)

Definition 30.2. If there exists a sequence (f1,Ω1), . . . , (fn,Ωn) such that (fi+1,Ωi+1) is a
direct analytic continuation of (fi,Ωi), then (fn,Ωn) is an analytic continuation of (f1,Ω1).

Remark: It is possible that Ω1 = Ωn but f1 6= fn.

Example: Consider f(z) = log z. Define Ωj = {πj
2
< θ < πj

2
+ π}. Then on Ωj, we define

fj(z) = log |z| + i arg(z), where πj
2
< arg(z) < πj

2
+ π. We have Ω0 = Ω4, but f4 = f0 + 2πi.

30.3. Germs and sheaves. Now consider a pair (f, ζ), where ζ ∈ C and f is analytic in
a neighborhood of ζ. We view (f1, ζ1) and (f2, ζ2) as equivalent iff ζ1 = ζ2 and f1 = f2 on
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some neighborhood of ζ1 = ζ2. Such an equivalence class is called a germ of a holomorphic
function. Notice that (f,Ω) gives rise to a germ (f, ζ) at each ζ ∈ Ω.

If D is an open set in C, then the set of all germs of holomorphic functions (f, ζ) with
ζ ∈ D is called the sheaf of germs of holomorphic functions over D, and will be denoted FD

or F , if D is understood. There is a projection map π : F → D, which sends (f, ζ) 7→ ζ.
π−1(ζ) is called the stalk at ζ, and is also denoted Fζ .

Theorem 30.3. The set F can be given the structure of a Hausdorff topological space such
that π : F → D becomes a local homeomorphism (i.e., for each (f, ζ) ∈ F there is an open
neighborhood U whose image π(U) is open and homeomorphic to U).

Proof. A set V ⊂ F is open iff for every (f, ζ) ∈ V there exists a function element (f,Ω)
with ζ ∈ Ω (which restricts to (f, ζ)) such that all (f, ζ ′) ∈ V for ζ ′ ∈ Ω. (Verify that this
satisfies the axioms of a topology!)

Now, given (f, ζ) ∈ F , take some function element (f,Ω) which restricts to (f, ζ). (Here
we’re assuming that ζ ∈ Ω.) Then take V to be the set {(f, ζ ′)| ζ ′ ∈ Ω} of restrictions of f
to all points in Ω. It is clear that π maps V homeomorphically onto Ω.

It remains to show that F is Hausdorff. Given (f1, ζ1) and (f2, ζ2), if ζ1 6= ζ2, then that’s
easy. (Take open sets Ω1 and Ω2 about ζ1 and ζ2, respectively, on which f1 and f2 can be
defined, and (f1,Ω1) and (f2,Ω2) give rise to disjoint open sets, as in the previous paragraph.)
Now suppose ζ1 = ζ2. Let Ω be an open set containing ζ1 = ζ2 on which f1 and f2 are both
defined. If (f1, ζ

′) = (f2, ζ
′) for any ζ ′ ∈ Ω, then f1 = f2 on all of Ω. Therefore the open sets

V1 and V2 corresponding to (f1,Ω) and (f2,Ω) do not intersect. �

Remark: π : F → D is not quite a covering space, if you know what that means. This
is because not every component of π−1U (for an open set U ⊂ D) is homeomorphic to U .
(Why?)
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31. Analytic continuation

Last time we defined F , the sheaf of germs of holomorphic functions, and showed that
it can be given the structure of a Hausdorff topological space such that the projection
π : F → C (today, the base space is C instead of D) is a local homeomorphism. A basis for
the topology of F is the set of U(f,Ω) = {(f, ζ)|ζ ∈ Ω}, where f is an analytic function on an
open set Ω ⊂ C.

31.1. Riemann surface of a function. Given a function element (f,Ω), take its corre-
sponding open set U(f,Ω) in F , and the connected component of F which contains U(f,Ω).
Call this Σ(f,Ω), or simply Σ, if (f,Ω) is understood.

Claim. Σ can be given the structure of a Riemann surface, where the holomorphic coordinate
charts are given by the local homeomorphism π : Σ → C.

Σ will be called the Riemann surface of (f,Ω). Note that Σ is the set of all (g, ζ ′) for which
there is an analytic continuation from (f,Ω) to (g,Ω′) with ζ ′ ∈ Ω′. (Effectively, we have
pasted together such (g,Ω′) to obtain Σ.)

There also is a holomorphic map (often called a global analytic function) f : Σ → C obtained
by setting (f, ζ) 7→ f(ζ). (Verify that this is holomorphic!) We refer to Σ as the Riemann
surface of f and write Σ = Σf .

Remark: Σf is Hausdorff since F is. Observe that we haven’t shown that Σf is second
countable. (See the definition of a Riemann surface.) The verification is not trivial but
won’t be done here.

Example: Riemann surface of f(z) = log z. Above each point of C−{0}, there are infinitely
many sheets, corresponding to fi(z) = log |z| + i arg(z), where πj

2
< arg(z) < πj

2
+ π. As we

move around the origin, we can move from one sheet to another. Observe that an alternate
way of obtaining Σf is to start with Ωj given above, and glue Ωj to Ωj+1 along the region
where fj and fj+1 agree.

Example: Riemann surface of f(z) =
√
z. Above each point of C−{0} there are two sheets

corresponding to reiθ 7→ ±√
reiθ/2. Notice that as we continue one choice of

√
z around the

origin, we reach the other choice, and circling twice around the origin gives the original
function element.

Remark: We haven’t dealt with the branch points, e.g., z = 0 for f(z) =
√
z. There is a

reasonable way to fill in the point z = 0 to give a genuine Riemann surface (one without any
singularities). Note that the usual picture of a “Riemann surface of f(z) =

√
z” is rather

misleading, since it exhibits what looks like a singular point at the origin.

31.2. Analytic continuation along arcs and the monodromy theorem. Let γ : [a, b] →
C be a continuous arc. Consider a connected component Σf of F . An arc γ̃ : [a, b] → Σf
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is an analytic continuation of the global analytic function f along γ, if π ◦ γ̃ = γ. (This is
called a lift of γ to Σf in topological jargon.)

Lemma 31.1. Two analytic continuations γ̃0 and γ̃1 of a global analytic function f along γ
are either identical, or γ̃0(t) 6= γ̃1(t) for all t.

Proof. It follows from the Hausdorff/local homeomorphism property that the set of t for
which γ̃0(t) = γ̃1(t) is open and the set for which γ̃0(t) 6= γ̃1(t) is also open. �

Let Ω be a region in C. Suppose f is a global analytic function which can be continued
along all continuous arcs γ in Ω and starting at any (f, ζ) ∈ Σf . Let γ0 and γ1 be two
continuous arcs in Ω which are homotopic in Ω relative to their endpoints, i.e., there is a
continuous map Γ : [a, b] × [0, 1] → Ω so that:

(1) Γ(x, 0) = γ0(x) and Γ(x, 1) = γ1(x),
(2) Γ(a, t) and Γ(b, t) do not depend on t.

Then we have the following:

Theorem 31.2 (Monodromy theorem). Suppose γ0 and γ1 are homotopic relative to their
endpoints and f is as in the preceding paragraph. Given a germ of f at the common initial
point of γ0 and γ1, their continuations along γ0 and γ1 lead to the same germ at the common
terminal point.

Proof. It suffices to prove this theorem when the homotopy γt(x)
def
= Γ(x, t) ranges over a

small subinterval t ∈ [t0, t0 + ε] ⊂ [0, 1]. We can therefore subdivide [a, b] into a = x0 < x1 <
x2 < · · · < b = xk so that the germ of f at each γt0(xi) is defined in a neighborhood Ui, and
γt(x) ∈ Ui for all t ∈ [t0, t0 + ε] and x ∈ [xi, xi+1]. By using an argument similar to that of
Lemma 31.1, we’re done. �

Corollary 31.3. If f is a global analytic function which can be continued along all arcs in
a simply connected Ω, then f is a single-valued analytic function.

This gives another proof of the fact that f(z) =
√
z − a admits a single-valued analytic

branch on a simply-connected Ω, if a 6∈ Ω.
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32. Universal covers and the little Picard theorem

32.1. Universal cover of C − {0, 1}.
Definition 32.1. A covering space of X is a topological space X̃ and a map π : X̃ → X such
that the following holds: there is an open cover {Uα} of X such that π−1(Uα) is a disjoint
union of open sets, each of which is homeomorphic to Uα via π.

Definition 32.2. A universal cover π : X̃ → X is a covering space of X which is simply
connected.

Theorem 32.3. Any “reasonable” space X has a universal cover X̃. Moreover, the universal
cover is unique, in the sense that given any other π ′ : X̃ ′ → X there exists a homeomorphism
φ : X̃ → X̃ ′ such that π′ ◦ φ = π.

As a set, “the” universal cover X̃ is given as follows: Pick a basepoint x0 ∈ X. Then X̃ is
the quotient of the set of paths γ with initial point x0, by the equivalence relation ∼ which
identifies γ and γ′ if they have the same endpoints and are homotopic arcs relative to their
endpoints.

We’ll presently construct the universal cover of C−{0, 1}. Let Ω = {0 < Re z < 1, |z− 1
2
| >

1
2
, Im z > 0} be a region of the upper half plane H. Ω has three boundary components
C1 = {Re z = 0, Im z > 0}, C2 = {|z − 1

2
| = 1

2
, Im z > 0}, and C3 = {Re z = 1, Im z > 0}

(together with points 0, 1). Using the Riemann mapping theorem (and its enhancements),
there exists a biholomorphic map π : Ω → H, which extends to a map from C1 to {Im z =
0,Re z < 0}, C2 to {Im z = 0, 0 < Re z < 1}, and C3 to {Im z = 0, 1 < Re z}. Using the
Schwarz reflection principle, we can reflect along each of the Cj. For example, if we reflect
across C1, Ω goes to Ω′ = {−1 < Re z < 0, |z + 1

2
| > 1

2
, Im z > 0}, and π extends to a

holomorphic map on Ω ∪ Ω′ ∪ C1, where Ω′ is mapped to the lower half plane. Continuing
in this manner, we define a map π : H → C − {0, 1}. It is not hard to verify that this is a
covering map. Since H ' D is simply-connected, π is the universal covering map.

32.2. Little Picard Theorem.

Theorem 32.4. Let f(z) be a nonconstant entire function. Then C − Im f consists of at
most one point.

Proof. Suppose f : C → C misses at least two points. By composing with some fractional
linear transformation, we may assume that f misses 0 and 1.

We now construct a lift f̃ : C → H of f to the universal cover, i.e., find a holomorphic
map f̃ satisfying π ◦ f̃ = f . [This is called the homotopy lifting property, and is always
satisfied if the domain is a “reasonable” simply connected topological space X.]

Given z0 ∈ C, there is a neighborhood V ⊃ f(z0) and W ⊂ H so that W
π→ V is a

biholomorphism. By composing with π−1, we can define f̃ : U → W ⊂ H, where U is a
sufficiently small neighborhood of z0. Take some lift f̃ in a neighborhood of a reference point
z = 0. Let γ : [0, 1] → C be a continuous arc in C with γ(0) = 0, γ(1) = z. There exist
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0 = t0 < t1 < · · · < tn = 1 such that each [ti−1, ti] is mapped into Vi ⊂ C − {0, 1}, where
π−1(Vi) is the disjoint union of biholomorphic copies of Vi (by the covering space property).

Suppose we have extended f̃ along γ up to ti. The pick the component W of π−1(Vi+1) which

contains f̃(γ(ti)). Continue the lift to [ti, ti+1] by composing f with π−1 : Vi+1
∼→W .

Since C is simply connected, the monodromy theorem tells us that the value of f̃(z) does

not depend on the choice of path γ. This gives a holomorphic map f̃ : C → H. Now,
composing with the biholomorphism H

∼→ D, we obtain a bounded entire function. Since
we know that a bounded entire function is a constant function, it follows that f̃ is constant.
�

Enhancements:

1. (Montel) Let Ω ⊂ C be an open set and F be a family of analytic maps Ω → C. If each
f ∈ F misses the same two points a, b, then F is normal.

2. (Big Picard) Suppose f is holomorphic on Ω − {z0} and has an essential singularity at
z0. If U ⊂ Ω is any (small) neighborhood of z0, then f assumes all points of C infinitely
many times in U −{z0}, with the possible exception of one point. [Big Picard implies Little
Picard.]


