Homework 5

Due Wednesday, May 8.

- (1) Hatcher, Section 2.1, Exercise 3.
- (2) (40 pts) Compute $H_i^{\Delta}(X)$ for all $i \geq 0$, where X is: (a) S^n , (b) \mathbf{RP}^n , (c) a Klein bottle, (d) a compact surface of genus g = 2, and (e) the real line \mathbf{R} . (You may pick your favorite Δ -complex structure on each.)
- (3) Let $C_* = \{\ldots \xrightarrow{\partial} C_n \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots\}$ and $D_* = \{\ldots \xrightarrow{\partial} D_n \xrightarrow{\partial} D_{n-1} \xrightarrow{\partial} \cdots\}$ be chain complexes and $f: C_* \to D_*$ be a *chain map*, i.e., $f \partial = \partial f$. Then prove that f induces a homomorphism between the homology groups $H_n(C_*)$ and $H_n(D_*)$ of the two complexes.
- (4) Using the same notation as in the previous problem, prove that if $f, g: C_* \to D_*$ are chain homotopic chain maps, then f and g induce the same homomorphism on homology.
- (5) Hatcher, Section 2.1, Exercises 7,11,12,13 (see p. 110 for the definition of the reduced homology groups).