Homework 2

- (1) Prove that $S^n = \{x_0^2 + \dots + x_n^2 = 1\} \subset \mathbb{R}^{n+1}$ is a smooth *n*-dimensional manifold, by taking stereographic projections.
- (2) Define $\mathbb{CP}^n = (\mathbb{C}^{n+1} \{(0, \dots, 0)\}) / \sim$, where $(z_0, \dots, z_n) \sim (tz_0, \dots, tz_n), t \in \mathbb{C} \{0\}$. Prove that \mathbb{CP}^n is a smooth 2n-dimensional manifold. (Recall that $\mathbb{C} \stackrel{\sim}{\to} \mathbb{R}^2$, where $z = x + iy \mapsto (x, y)$.)
- (3) Prove that $T^n = \mathbb{R}^n/\mathbb{Z}^n$ is a smooth manifold of dimension n.
- (4) (30 points) Let Gr(k, n) be the set of all k-dimensional planes in \mathbb{R}^n that pass through the origin. (This is called the *Grassmannian* of k-planes in \mathbb{R}^n .) Prove that Gr(k, n) can be given the structure of a smooth manifold of dimension k(n-k).
- (5) (20 points) (Existence of bump functions) Consider the function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = 0 for $x \le 0$ and $f(x) = e^{-1/x}$ for x > 0.
 - (a) Show that f is smooth and $f \ge 0$.
 - (b) Find a smooth function $g: \mathbb{R} \to \mathbb{R}$ such that $g \geq 0$, g > 0 on (a, b), and g = 0 on $\mathbb{R} (a, b)$. Here a < b.
 - (c) Find a smooth function $h: \mathbb{R} \to \mathbb{R}$ such that $h \ge 0$, h = 1 on [a, b], and h = 0 on $\mathbb{R} (c, d)$. Here c < a < b < d.
- (6) Prove that $S^n = \{x_0^2 + \dots + x_n^2 = 1\} \subset \mathbb{R}^{n+1}$ can be given the structure of an n-dimensional manifold by showing it is a regular value of some map.
- (7) Prove that if M, N are manifolds, $f: M \to N$ is a submersion, and $U \subset M$ is open, then f(U) is open in N.