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Let M be a closed, oriented 3-manifold, and X a nonsingular (= nowhere zero) vector
field on M. The main question we address in this paper is: what are the necessary and
sufficient conditions on X for there to be a positive confoliation £ transverse to X7 Recall
a positive confoliation £ is a 2-plane field distribution given locally as the kernel of a 1-form
a satisfying a A da > 0. Since we are only interested in confoliations transverse to a vector
field, we may assume that £ is orientable, and « is a globally defined 1-form.

One of the principal motifs in the theory of contact 3-manifolds is the study of dynamical
properties of vector fields transverse to a contact £. For example, Hofer has extensively
studied the dynamics of Reeb vector fields X of the contact 1-form «, and in particular, has
obtained existence results for closed orbits of Reeb vector fields (c.f. [11]). In this paper we
will examine two classes of vector fields, namely the Morse-Smale vector fields and the vector
fields whose orbits are the circle fibers of Seifert fibered spaces, and determine necessary and
sufficient dynamical conditions on X for the existence of a transverse positive confoliation
(or contact structure) £.

The theorems will be stated for contact structures, and the full statements for confolia-
tions will be deferred until later. But first let us introduce some terminology. Let D* C M
be an embedded disk with the following properties: (i) dD? is tangent to X, i.e., 9D* is a
closed orbit of X, and (ii) X is transverse to D* —dD?. Orient D* so that X is the oriented
normal on D? — dD?%. If the induced boundary orientation on dD? is the same as the orien-
tation given by restricting X to dD?%, then we call D?* a righl-handed disk. Otherwise, D? is
left-handed. (See Figure 1.)

A left-handed or right-handed disk D? is said to link a periodic orbit ~ if v intersects the
interior of D?. A left- or right-handed disk D} shadows another left- or right-handed disk
D3 if int(D3) C ¢(R x D7), where int(D3) is the interior of D3, and ¢ : R x D — M maps
(t,2) € R x Di to the time-t flow of z under X. We now state our result:

Theorem 1 Let X be a nonsingular Morse-Smale vector field. Then there exists a positive
contact structure & transverse to X if and only if (i) every 2-sphere transverse to X inler-
sects an atlracting or repelling periodic orbit, and (ii) every left-handed disk either links an
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Figure 1: Left-handed vs. right-handed

attracting or repelling periodic orbit or shadows a right-handed disk of an untwisted index 1

(saddle) orbit.

There always exist overtwisted contact structures transverse to Morse-Smale flows which
satisfy the conditions of Theorem 1. It is still not understood which Morse-Smale flows
admit transverse tight contact structures.

We now state our theorem for contact structures transverse to the circle fibers of Seifert
fibered spaces. An n-tuple (g1, -+, pn) € (0,1)" is realizable if there exists a permutation
(71, ) of (a/m,(m —a)/m,1/m,---,1/m) with 0 < a < m and (a,m) = 1 such that
pi < ; for all 1.

Theorem 2 Let m: M — X be a Seifert fibered space with Seifert invariants (g(X);b, (o,
1), (g, B2), -, (an, ), where b € Z and 0 < B;/a; < 1. Then there exists a positive
contact structure & transverse to the fibers if and only if one of the following holds:

1. g>0and b <2g — 2.
2. g=0 and

(a) b< =2, or

(b) b=—1,n >3, and (B1/a1, -+, Bu/ay) is realizable, or
(¢c) b=—1,n=2, and Bi/as + B2z < 1, or

(d) b=—1andn =0 orn=1.

The key ingredient in the proof of Theorem 2 is an analysis of commutators of homeo-
morphisms of R which descend to R/Z = S'. The transverse contact structures are always
tight for Seifert fibered spaces.

After this work was completed, we noticed that our motivating question above was asked
by Thurston in [20]. This paper is intended to be a first step towards answering this question
regarding tight contact structures.



1 Holonomy

This section is devoted to the study of holonomy on flow cylinders and the relationship to
overtwisted disks. For related ideas and inspiration, the reader is referred to Section 1.3 of
[5]

In what follows, M will be a closed, oriented 3-manifold and X a nonsingular flow. Let
do : ¥ — M be an immersion transverse to X. A flow cylinder of ¢y is an immersion
¢: R x Y — M, so that ¢(¢, z) is the time-t flow of X, starting at ¢o(z) at £ = 0. We will
slightly abuse notation and refer to the map ¢ and the space R x X both as flow cylinders.

Consider the flow cylinder Z = R x D? with cylindrical coordinates (z,r,#8), such that
D? = {r < 1}. Let us pull X and ¢ back to R x D? via ¢ (we will still call them X and
). We then have X = 33—2 and £ is given by a contact 1-form a = dz — fdr — gdf, for some
functions f, g on R x D?. On 9Z there is an induced characteristic foliation 37 N &. 1t has
no singularities (i.e., the characteristic foliation is a genuine foliation), since X is tangent to
7.

Consider a maximal integral curve v : R — 07, v(t) = (2(t),r(t),0(t)), with (9(1‘) > 0, of
the characteristic foliation. 7 is then immersed in 07, and either gives an isomorphism to a
leaf of 07, or will Z-cover the leaf. Therefore, we will not distinguish between the integral
curve v and the corresponding leaf.

For the following classification of integral curves on 07, the reader is referred to Figure
2. We say v has finite holonomy if for each {5 € R there exist times ¢; > {5 and t_; < 1y
for which 8(ty) = 0(t1) = 0(t_1) mod 27. A finite holonomy curve has positive holonomy
(resp. negative holonomy), if there exists a time ¢; > to for which 6(ty) = 0(¢1) mod 27, and
z(to) < z(t1) (resp. z(to) > z(t1)). 7 is said to have zero holonomy if for some time ¢; > 1o,
0(to) = 0(t1) mod 27w and z(to) = z(t1).

We also need to classify curves which do not have finite holonomy. ~ has semi-infinite
positive holonomy if either (i) lim; 10 2(t) = 400, 0(t) is bounded above, and 6(t) is un-
bounded below, or (ii) lim;_., 2(t) = —o0, 0(t) is bounded below, and 6(¢) is unbounded
above. v has infinite positive holonomy if lim; 1 2(t) = 400, limy_ o 2(t) = —o0, and 6(¢)
is bounded from above and below. We can similarly define semi-infinite negative holonomy,
and infinite negative holonomy. Finally, if lim;_+ z(¢) are both +oo or both —oo, then we
say v 1s an infinite curve with zero holonomy.

If a cylinder 07 has a curve « of positive holonomy (finite, semi-infinite or infinite), we
say that 07 (or simply Z, in a slight abuse of language) has positive holonomy along v, or
that Z or 07 has (a region of) positive holonomy.

Example: Consider R® with coordinates (z,y,z) and a cylinder Zgp = {z? +y? = R?*}. If
a = dz 4+ xdy — ydx, i.e., a is positive, then for any R, all the integral curves on Zp have
negative holonomy. On the other hand, if & = dz — zdy + ydz, i.e., a is negative, then all
the curves on Zi have positive holonomy.
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Figure 2: Integral curves on the flow cylinder



It often is the case that if £ is a positive contact structure, then all the integral curves
on the boundary of flow cylinders have negative holonomy. However, the following example
shows that this is not always the case:

Example: Consider a positive overtwisted structure on R® with coordinates (r, 0, z), given
by a = cosrdz + rsinrdf. Take any disk (usually called an overtwisted disk) satisfying the
following: (i) its characteristic foliation has one elliptic point and one limit cycle in the
interior, and (ii) the disk is transverse to £ away from the elliptic point. One such disk is
D?* = {(r,0, f(r,0))|r <7+e, f(r,0) = r*}. To obtain a vector field transverse to D? and ¢,
start with a vector field Y on D?%, nonsingular away from the elliptic point, and transverse to
£N D% Then either Y +cN or —Y + &N, where N is an oriented normal, can be extended

to a vector field transverse to D? and ¢ near the elliptic point as well.

In fact, the existence of finite or semi-infinite curves with positive holonomy on 97 forces
the contact structure to be overtwisted. This can be seen from the Thurston-Bennequin
inequality (c.f. p.49 of [5]).

We will also need the following additivity lemma:

Lemma 1 (Additivity of holonomy) Lel £ be a positive contact structure on Z = R x D?,

lransverse to X = %.

1. Let D* = J; A; be a subdivision into 2-simplices A; so thal the I(R x A;) have negative
holonomy (finite, semi-infinite, or infinite) along every integral curve. Then every

integral curve on 0Z has negative holonomy.

2. Let D* = A{UA; be a subdivision so thal each integral curve on (R X A;) has negative
holonomy or is infinite with zero holonomy. Assume, in addition, that (i) none of the
infinite curves with zero holonomy on (R x A;) which intersect J(R x D?*) have
both positive and negative ends lie on R x (A1 N Ay), and (i) two infinite curves
vi with zero holonomy on (R x A;), 1 = 1,2, satisfying lim; 1 21(1) = 400 and
limis 400 22(t) = —o0 (or vice versa), do not intersect along R x (Ay N Ag). Then
every integral curve of 0Z has negative holonomy or is infinite with zero holonomy.

Notice that Part 2 of Lemma 1 is a slight strengthening of Part 1 to include certain types of
infinite curves with zero holonomy. The additivity lemma would not be true if we allowed all
possible curves with zero holonomy, and this is the primary difficulty of dealing with infinite
cylinders R x D? instead of S x D? or infinite cylinders with ends which are standard at
+o0.

Proof: (1) It suffices to consider the subdivision D* = A; U A,. We sum together integral
curves y; of (R x A;) which are adjacent (i.e., share a common edge along R X pg, where
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we write Ay N Ay = pq). Note that there cannot be any vertical asymptotes for curves
with semi-infinite or infinite negative holonomy, along R x pqg. This is because a curve v
with semi-infinite or infinite negative holonomy on d(R x A;) must be summed with ~; on
J(R x Ajy) with semi-infinite or infinite positive holonomy.

Hence the intersection of v; and 7, is a curve with finite holonomy along R x pg. This
ensures that the sum is always negative.

(2) Let v be an integral curve on (R x D?), which intersects R X pq. If it does not, it is
clearly an infinite curve with negative or zero holonomy, since it sits on one of the d(R x A;).
Therefore, we only consider 4 which are obtained by summing v; on (R x Ay) and 2 on
J(R x Ay). If 41 and 72 both have negative holonomy, then we are in the situation of (1).

Suppose now that 7y is infinite with zero holonomy. We have the following cases: (i) The
positive end of 47 has an asymptote on R X pg, and lim; 4, 2(t) = —oo. Since the negative
end of 7, has an asymptote on R X pg and z — —oo, the positive end of v, must have an
asymptote away from R X pg and z — —oo. Hence, in this case, the sum is infinite with
zero holonomy. (ii) The positive end of 4; has an asymptote on R X pg, and z — +o0. The
negative end of 7, must then have an asymptote on R x pg and z — 4o0. Therefore, v,
can be semi-infinite or infinite negative, or infinite with zero holonomy, all of which will give
negative holonomy curves or infinite curves with zero holonomy, when summed with ~;. (iii)
The negative end of 4; has an asymptote on R X pg, and 2z — —oo. The positive end of v,
has z —+ —oc on R X pg, which means that v, can be semi-infinite or infinite negative, or
infinite with zero holonomy. The sum will again be negative or an infinite curve with zero
holonomy. (iv) The negative end of 4; has an asymptote on R X pg, and z — +o00. The
positive end of 7, satisfies z — 400 on R X pg, so ¥, 1s infinite with zero holonomy, as is
the sum. (v) Both ends of v; have asymptotes away from R x pq. If v, is negative, then
the sum is negative or infinite with zero holonomy. If ~; is infinite with zero holonomy, the
sum is infinite with zero holonomy, if both 7; and 7, have their z coordinates go to +oc or
both go to —oo. Otherwise, the summation will create a pair of infinite curves - one positive
and one negative. Our conditions allow us to avoid this possibility. The situation where v,
is infinite with zero holonomy is identical. O

2 Criterion for Morse-Smale flows

We will now present a necessary and sufficient condition for a Morse-Smale vector field X
to have a transverse confoliation. The following is the confoliation version of Theorem 1 (a
description of the type of orbits for a Morse-Smale flow will follow later):

Theorem 3 Let X be a nonsingular Morse-Smale vector field on a closed, oriented 3-
manifold M. Then X is transverse lto a positive confoliation £ if and only if (i) every
2-sphere transverse to X intersects an atlracting or repelling periodic orbit, and (ii) every



left-handed disk either links an attracting or repelling periodic orbit or shadows a right-handed
disk of a standard (untwisted) index 1 orbit.

We can apply a theorem of Eliashberg and Thurston to restate the result in terms of
contact structures:

Theorem 4 (FEliashberg-Thurston) Any smooth confoliation not equal to the foliation by
{pt.} x §* of S* x 5% can be C°-approximated by a smooth contact structure.

Theorems 3 and 4 together imply Theorem 1.

We will say that X satisfies the linking property for confoliations if every left-handed disk
D? links an attracting or repelling periodic orbit. Note that there is a linking property for
foliations which is similar - see [9] and [10].

The proof for the existence of a transverse positive confoliation is based on the construc-
tion of Sue Goodman [9] on vector fields transverse to foliations, supplemented in places by
the extra maneuvering room for the contact part, although the situation for confoliations is
more complicated. This will be done in the next section.

In this section we shall prove that if X is transverse to a confoliation &, then (i) and (ii)
hold in Theorem 3. Unlike Sue Goodman’s proof of the necessity of the linking property for
foliations, which holds for any nonsingular vector field X, the proof of our version is rather
dependent on the following description of the Morse-Smale vector field X:

M has a round handle decomposition - a filtration of codimension 0 submanifolds ) = My C
My C---CM, =M, where My, My— M, ... , M, — M, _; are round handles homeomorphic
to ST x D? - with the following properties:

1. X is transverse to dM;, and is an inward normal for M; on OM;.
2. Each M; — M;_; is a tubular neighborhood of a periodic orbit ~;, 1 > 1.

3. If ®; is the time-t flow of X, then v; = N, ®:(M; — M;_1), 1 > 1.

By analogy with Morse theory, we consider the eigenvalues Ay, Ay of the derivative of the
Poincaré return map along a periodic orbit 7, and say that the corresponding handle has
index k if there are k eigenvalues > 1. (See [16] for a careful discussion. Also see [1].) Index 0
handles are attracting, and index 2 handles are repelling, while index 1 handles are saddles.
It is important to note that, although there is only one type of index 0 handle or index 2
handle each, there are two kinds of index 1 handles - the standard one and the twisted one,
corresponding to the two different splittings of the rank 2 bundle S' x R* — S into rank 1
bundles.



Proof: (Necessity of conditions (i) and (ii)) If £ is the foliation by {pt.} x 5% of S' x 5%
then a transverse X cannot have nullhomotopic periodic orbits, and our linking property is
vacuously true. (i) is also immediate. Without loss of generality, we may then assume ¢ is
contact by Theorem 4.

Let D? be a left-handed disk. Choose a slightly smaller subdisk of D? C 52, whose
boundary is still transverse to £. Consider the flow cylinder ¢ : R x D* — M, so that
R x D? has cylindrical coordinates (z,r,8). As before, we pull £ and X back to Z = R x D?,
and let o = dz — fdr — gdf be a contact 1-form. Notice that D2 being left-handed implies
that ¢ > 0 along z = 0, r = 1. (To see this, observe that kera is the span of % + faa—z
and % + gaa—z.) This implies that we have positive holonomy along any integral curve v on
J(R x D?) and passing through z = 0.

Assume that the left-handed disk does not link an attracting or periodic orbit of the
Morse-Smale flow. Then the flow cylinder Z = R x D* — M is 1-1. The existence of a curve
with positive holonomy on 97 will give us a contradiction, as long as the left-handed disk
does not shadow a right-handed disk of a standard index 1 orbit.

Since X is Morse-Smale, most of D* (D? minus a 1-dimensional set K, possibly empty)
will flow towards attracting periodic orbits, and will have come from repelling periodic orbits.
Take a fine subdivision of D? into 2-simplices A;. The flow cylinders R x A; — M for which
all of A; flows towards an attracting periodic orbit must have positive ends which are tight,
and their boundaries must have finite negative holonomy at the positive end. This is because
¢ must be tight on a small enough tubular neighborhood of a periodic orbit. The same holds
for flow cylinders which originated from one repelling periodic orbit. Hence, if R x A; does
not intersect stable or unstable manifolds of index 1 orbits, then d(R x A;) will have integral
curves, all of which have finite negative holonomy at the ends. Moreover, by subdividing
A; if necessary, we can get [—R, R] X A; to be contained inside a standard tight contact
structure for R?, for fixed large R. This implies that all the integral curves of d(R x A;)
for small enough A,;’s have finite negative holonomy. Now, by the additivity lemma, any A;
whose flow cylinders do not intersect stable or unstable manifolds of periodic 1 orbits will
have all integral curves with finite negative holonomy on d(R x A;).

We must now proceed with care in dealing with the portion of D? which intersect stable
manifolds W,(v) or unstable manifolds W,(v) of index 1 orbits v - we shall take small
neighborhoods of K, which we will subdivide into small simplices A;. Denote K, = D? N
(UW,(v)) and K, = D* N (UW.(v)), where the union is over all the index 1 orbits v. K|

and K, will meet transversely because X is Morse-Smale.

Lemma 2 Letp € K. Then there exists a small enough A > p, such that O(R x A) will not
have any integral curves with positive holonomy.

Proof of Lemma: Let us consider the the following simplification first: AN K, = 4§, which
is a (connected) arc on JA. (In particular, the intersection has only one component.) Let v



6

Figure 3: Integral curves on R x A

be the index 1 orbit corresponding to §. For the time being, we will concern ourselves with
the positive end of the flow cylinder. Note that if o is an arc in D? which avoids K, then all
the integral curves on R X « are finite, i.e., do not have asymptotes on R x . This implies
that any kind of infinite (asymptotic) behavior must occur as the integral curves approach
vertical lines on R x §. Moreover, since § flows into an index 1 orbit v, we know that all the
integral curves on R x § are finite as well. Hence, the only type of infinite behavior at the
positive end would be as in Figure 3.

We can rule out positive holonomy curves by arguing as follows: Shrink A sufficiently
(still keeping AN K, # 0), so that [0, R] x A sits inside a standard contact structure on R,
for large R. Then there must exist a zero holonomy curve between the positive holonomy
curves and the negative holonomy curves. We will modify the flow cylinder for A to obtain a
time-dependent flow cylinder which has both ends which are tight. Since both ends are tight,
there exists a subdivision of A for which all the flow cylinders of the 2-simplices have finite
negative holonomy, and, by the additivity lemma, the time-dependent flow cylinder of A
cannot have zero holonomy. In order to obtain a time-dependent flow cylinder, it suffices to
define a time-dependent vector field. First define a small perturbation X’ of X near v, which
is still Morse-Smale but whose index 1 orbit 4’ has been slightly pushed away from v so that
the flow cylinder of A (for X) no longer intersects W(X"’). Pick any zg so that 9([0, zg] x A)
for X contains the zero holonomy curve. Now define the time-dependent vector field X,
by setting X, = X for z < 29, X, = X' for z > 2z + 1, and interpolating inbetween. By
construction, this flow cylinder is still transverse to ¢ and has positive end which is contained
in a neighborhood of an index 0 orbit. Since we may also attach a standard negative end,
we have shown that there can be no positive holonomy curves on d(R x A)N{z > 0}, for
our original X.



Next consider the situation where AN K is an arc §, which subdivides A into A; and A,
of the type treated above. The D; satisfy the conditions of Part 2 of the additivity lemma,
and hence cannot have any integral curves with positive holonomy on d(R x D;).

Finally, assume AN K consists of infinitely many parallel arcs. Let § be a limit arc which
corresponds to v1, the first index 1 orbit encountered by A. Subdivide along § into A;. As
in the simpler case above, we replace the flow cylinder with a time-dependent flow cylinder
if there exist integral curves with positive holonomy on d(R x A;). This new flow cylinder
does not meet 1, so we can proceed inductively. Subdivide A; into small enough simplices
A;j so that A;; (i) does not intersect any stable manifolds, (ii) intersects W(X’) in one arc,
or (iii) intersects W (X’) in infinitely many arcs. If A;; are of type (i) or (ii), then their
(again modified time-dependent) flow cylinders do not have any positive holonomy curves.
Since A N K consisted of parallel arcs to begin with, the additivity lemma guarantees us
that the (R x A;) do not have any positive holonomy curves. If there are type (iii) A;;, we
must once again subdivide and continue until we exhaust all the index 1 orbits.

The situation at the negative end is identical. This proves the lemma. O

Now, given p € K, there exists A 5 p which has a flow cylinder without positive holon-
omy. Also notice we may shrink A without loss of generality. Since K is compact, we cover
K with simplices A and shrink them, obtaining a subdivision of a neighborhood of K by A;
for which none of the R x A; have positive holonomy. We also throw in A; which do not
meet K.

Notice that K, (resp. K,) is a lamination on D?. If it has a closed leaf, then D2
shadows another left- or right-handed disk. If the former happens, we will take a minimal
left-handed disk which does not shadow another left-handed disk. The latter is excluded
by our conditions, except when the right-handed disk arises from a twisted index 1 orbit.
Hence, we have two possibilities: (1) K, (resp. K,) is a union of arcs, or (2) there exist
circular components of K (resp. K,), all of which arise from a twisted index 1 orbit.

Case 1: (K and K, are unions of arcs.) In this case we can inductively use the additivity
lemma and show that Rx D? does not have a curve with positive holonomy. Since X is Morse-
Smale, K, and K, intersect transversely in D?. Hence we normalize A; = [—1,1] x [—1,1]
with coordinates (x,y) (we now think of it as a 2-cell), so that K are of the form z = ¢ and
K, are of the form y = d, and the constants satisfy —1 < ¢,d < 1. Let us add adjacent Ay,
Ay. Assume without loss of generality that their common edge pg intersects K, (but not
K,).

Criterion (i) for Part 2 of the additivity lemma is met; otherwise we would have a infinite
curve with zero holonomy which begins and ends on R X pg, wraps around A;, and has
z — 4oo (without loss of generality). Let pg be x = 1 and (1,1/2),(1,—1/2) be the
asymptotes for the infinite curve with zero holonomy. If we split Ay along y = 0, then the
region A; N {y > 0} will have flow cylinder with infinite positive holonomy, contradicting
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our construction from the previous lemma.

Criterion (ii) also follows by noting that all the infinite curves with zero holonomy sat-
isfying z — +o0o0 must have asymptotes along pg, whereas all the infinite curves with zero
holonomy satisfying z — —oo cannot have asymptotes along pq, and hence the infinite curves
of the two types can never overlap.

Thus we may add A; and A, to get 2, and still have no integral curves with positive
holonomy on (R x Q). We now inductively attach A to € - the important point here is
that we can attach so that Q will always be a disk, and that A N ) consists of at most two
(consecutive) edges of A, viewed as a 2-cell above. These attachments still satisfy Criteria
(i) and (ii) of the additivity lemma (the argument is similar), and thus D? cannot have a
curve with positive holonomy.

Case 2: (There exists a circular component § of K, coming from a twisted index 1 orbit.)
Let D2 C D? be the disk with the circular boundary, and Q; C D% C €, be slightly smaller
and larger disks in D?, respectively. Assume that the circle is the innermost on D?. Then,
from the above considerations, (R x ;) does not have any curve of positive holonomy.

Claim: 9(R x ;) for a perturbed vector field X’ cannot have a curve of positive holonomy.

Proof of Claim: Essentially, this is because the flow cylinders (R x ;) and 9(R x §2;) are
close at the positive end. Notice that a twisted index 1 orbit 4 has a 1-component unstable
manifold W,(v) = {z € M which flow towards v as t - —oo}, instead of a 2-component one
for the regular index 1 orbit. Hence there exist C'*-close curves 3; € N(W,(y))NI(R x £,),
on opposite sides of W, (), by picking 9Q; C*-close to . Thus, we may perturb the vector
field X so that the flow cylinder (R x €3) for X’ switches from the flow cylinder d(R x Q)
for X to (R x ;) for X after some zo > 0. Since (R x ;) for X did not have any curve
of positive holonomy, neither does d(R x §3) for X'. O

The lemma allows us to continue our induction. This proves the necessity of condition

(ii).

The necessity of condition (i) follows easily from the above discussion. Let S? be the trans-
verse sphere which does not link an attracting or repelling orbit. Intersect S* with UW, and
UW, (union over the index 1 orbits) to get K, and K,. Take a closed curve § in S? which
cuts through every closed leaf of Ky and K, - such a curve always exists. Then the closure
D? of one of the components of S? — § has flow cylinder with positive or zero holonomy,
which is impossible because K, N D? and K, N D? are arcs, and because of the discussion
above. O
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3 Construction of transverse confoliations

3.1 Confoliated 7/-bundles

Let [ = [0,1] and N a compact manifold with boundary. Then (N x I,§) is a foliated I-
bundle if £ is a codimension-1 foliation on N X [ transverse to the I-fibers, and N x {0, 1} are
leaves of £. Similarly, (N x 1, £) is a positive confoliated I-bundle if £ is a positive confoliation
on N x [ transverse to the [-fibers, and N x {0, 1} are leaves of .

Suppose that N = ¥, a Riemann surface with boundary, 9% = S!, and F is a foliated
I-bundle on 9% x I. If F is of class C'', then prescribing F is equivalent to giving a C'-
diffeomorphism ¢ of I which fixes endpoints. Then we have the following:

Proposition 1 There exists a positive confoliation & on ¥ x I with (0¥ x I)NE& = F which
makes (X x [,€) into a confoliated [-bundle, if

1. ¥ = D? and ¢ is nonincreasing (i.e., ¢(z) < z for all z € 1), or
2. X # D? and ¢(z) < z near z =0 and z = 1.

Proof: (1) Take the coordinates on D? x I to be (r,0,z), and let 9D?* be given by r = 1.
Then without loss of generality F on S* x I can be given by dz — (6, 2)df where g(6,2) < 0,
9(0,0) = ¢(0,1) = 0. Simply extend to the confoliated 1-form

a(r,0,z) =dz— g(r,0,2)d0,

satisfying % <0, 9(0,0,z) =0, and §(1,60,z) = g(0, 2).

(2) This assertion essentially amounts to the following statement, which we prove in the
next paragraphs: Let D = Homeo™ (I) be the orientation-preserving homeomorphisms of I.
Then there exist ¢1, ¢g € D such that

P(z) < o', ¢7'1(2) = dy' 0 d ! 0 g 0y (2), (1)

for all z € I. Note that if ¥ # D?, then ¥ =Y’ — D? where Y/ is a closed Riemann surface
of genus g > 1. If we cut along 2¢ suitable simple closed curves ;, then ¥ — U7, 5; is an
annulus with boundary 9% — (v3,'v3,"1 -+ 72 '71 '9271). Then we can extend (9X x I,£) to
a confoliated 7-bundle on ¥ x [ if there exist ¢; € D corresponding to v;, 1 =1,---,2g, such
that

¢(2) < [da, s by -+ 6705 67 1(2)-
For I-bundles it suffices to set ¢3 = - -- o, = id, and show Equation 1. (See the discussion
in Section 4 for a similar discussion in the context of Sl—bundles.) The condition that

¢(z) < z near the endpoints is a technical one which allows us to extend the foliated I-
bundle (9% x I,£) to a confoliated I-bundle on ¥ x [ in a C'-differentiable manner. O
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%///K\K .

Figure 4: Laddering via commutators of diffeomorphisms of R

Laddering procedure: Consider a = (--+,a_1,a9,a1,az,---), b =(---,b_1,bg,by,--+) such
that a; < b; < a;41 for all ¢ € Z. Denote by Fix(n), wheren = (---,n_y,ng,ny,---) and n; <
nit+1, the space of orientation-preserving homeomorphisms ¢ : R — R satisfying &(n;) = n;
for all © € Z, ¢(z) > z for noy < z < naokg1, kK € Z, and ¢(z) < z for ny1 < 2z < ng,
k € Z. We consider commutators [¢;",¢7'] = ¢3' 0 ¢7' 0 ¢y 0 ¢1, where ¢; € Fix(a) and
¢, € Fix(b). Refer to Figure 4.

From the diagram we see that, given ag +¢ > z > ag and a3 > y > a; — ¢ (¢ as small
as we want), there exist ¢; € Fix(a) and ¢, € Fix(b) such that v = [¢3', ¢7'] satisfies
by —e < ¥(z) < by and by — e < (y) < by. That is, by making the slopes steeper, we can
‘ladder up’ from very close to ag to very close to b,.

Next, given ¢ € Homeo'(R), we explain how to pick a, b, so that ¢, and ¢, satisfy
(67", 67'1(2) > ¢(z) for all z € R. The condition to be satisfied is byx > é(agz). Pick in
order ag, by > P(ag), az > bg, by > é(az), and so on. Also pick b_y < ag, a_y < ¢~ (b_y),
b_4 < a_y, and so on. Finally fill in with aszq and bypyq. If we choose ¢y, ¢o with ‘large
slopes’, we obtain the desired result.

The same procedure works for ¢ € Homeo®(I), the only drawback being that the ¢
constructed may not be C''-differentiable at the endpoints. In order to make the proof work
for C'-functions ¢, we need to assume ¢(z) < z near z = 0 and z = 1, i.e., allow a ‘buffering
region’ where we can perturb our continuous ¢; into C''-functions. First take germs of C''-
functions ¢y, ¢ near z = 0,1, so that [¢;", ¢7'](2) > ¢(2) away from z = 0,1, ¢y, ¢, are
increasing near z = 0, and ¢;, ¢, are decreasing near z = 1. For example, near z = 0,
d(z) = 22z, #(2) = z + 2* will do. Pick 0 < ag < ¢ small enough so that by = ¢;(ag) and
b2(bo) < &, and assume ¢, is already defined on [0, 7" o ¢a(bo)] D [0, ag], and ¢, is already
defined on [0, bo]. Take ¢ > a1 > ¢2(by) and & > by > ay. Similarly pick ay, as, by, b3 in an
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Figure 5: Reeb foliation

Figure 6: Saddle

g-neighborhood of z = 1. As long as ¢ is small enough, we can extend ¢, and ¢, to all of 1
so that they satisfy Equation 1, by making the ‘slopes steep enough’.

3.2 Proof of sufficiency of Theorem 3

We will now prove the converse, namely, if conditions (i) and (ii) of Theorem 3 are satisfied,
then there exists a confoliation ¢ transverse to X.

What follows is essentially Sue Goodman’s construction, supplemented by an argument
for the contact part. This involves decomposing M into round handles (=S' x D?), construct-
ing a foliation on each handle, and extending the foliation to a confoliation when attaching
the round Morse handles.

Step 1: (Index 0) We foliate each S x D? by a Reeb component (see Figure 5).

Step 2: (Index 1) We foliate by stacking saddles (see Figure 6).

The resulting characteristic foliation on 9(S' x D?) will look like Figure 7, when S* x D?
is viewed as I x D? with ends identified (I = [0,1]). Note that D? is best thought of as
an octagon inside R?. Four sides a,c, e, ¢ are parallel to the z-axis or the y-axis and X is
transverse to the faces I x a, etc. We can turbularize the stacked saddles along these faces,
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Figure 7: Characteristic foliation

and obtain a foliation on I x D? with leaves I x a, I X ¢, and so on. On the other hand, the
other four faces (e.g. I x b) are foliated I-bundles [ x [ (where the second [ = b, and so on)
with leaves I x {0} and [ x {1}.

Now, if St x D? is standard, then I x D? has two faces on which X is an outward normal.
On the other hand, a twisted handle is obtained by gluing via a rotation by =, and there is
only one face on which X is an outward normal. These are the faces along which we glue
our 1-handles onto the solid tori in Step 1.

Step 3: Attaching index 1 handles. This is where we will require contact structures in
certain situations. We will prove this by induction, using the fact that 0M;_; will always be
a union of tori.

Lemma 3 dM; is a union of tori.

Proof: We use the fact that 7, x(N;) = 0, if V; are the components of dM;, and the
nonsingular vector field X is transverse to dM;. If not all N; are tori, then some N; = S2.
Such an S? violates condition (i) of Theorem 3. O

Assume the confoliation has already been constructed on M;_;, and the toral components
of OM;_, are closed leaves of the confoliation. We glue a 1-handle S* x D? onto 9 M;_; either
along one or two annuli A, depending on whether the 1-handle is standard or twisted.

Let us attach along the first annulus. What we have is an extension problem: Find a
confoliation on (7% — A) x I so that (7% — A)x {0, 1} are leaves of a foliation and 9(T?—A) x [
agrees with dA x I, which are the foliated I-bundles coming from the faces b, d, f, h above.
Our essential distinction is whether the annulus is homotopically essential on the 0-handle
or homotopically trivial.

If the annulus is homotopically essential, then 7? — A is an annulus, and it is easy to
extend the foliation on the boundary of (7% — A) x [ to its interior.
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Figure 8: Attaching a 1-handle

On the other hand, if the annulus is not essential, then we have situations as in Figure
8. Due to holonomy, one sees that the component D? x [ of (T*— A) x I cannot be foliated,
and the contact structures make their first appearance.

The diagram to the right in Figure 8 has a component D? x [ with a characteristic
foliation of nonpositive holonomy on dD?* x I, which can be extended to a confoliation which
is contact on the interior of D* x I and has leaves D? x {0,1}, by Proposition 1. The
other component (7% — D?) x I can also be made into a positive confoliated I-bundle by
Proposition 1.

The diagram to the left, on the other hand, gives rise to a left-handed disk which does not
link an attracting or repelling periodic orbit. However, if it shadows a right-handed disk, we
can construct a confoliation on M; by slightly modifying the existing confoliation on M;_;
before extending. Since this is a bit involved, we will do this in Step 4.

Hence, we can glue a 1-handle onto 7% along an annulus A, provided the attachment is
not homotopically trivial and left-handed. If the 1-handle was twisted, we would be done.
Otherwise, we need to attach the other annulus A onto either the same 7 or another 7.
Note that the homotopically trivial attachment of both annuli is disallowed by Lemma 3.

We will now perform all the possible attachments of index 1 handles and extend the
confoliation from M;_; to M;. If we attach the two annuli onto two distinct 7'?, then each
can be glued the same way, subject to the restriction that not both are homotopically trivial.
If the annuli are glued onto the same T2, either (1) one annulus is homotopically trivial and
the other is homotopically essential, or (2) we have two parallel copies of homotopically
nontrivial annuli. In case (1), we first glue along the nontrivial annulus and perform the
extension as before. We then glue along the trivial annulus, and want to ‘cap off” the two
components of the foliated I-bundle A x I. We can extend one of the components via a
contact component D? x I as before, where D? bounds one of the components of 9A x I.
The other component S* x I looks like Figure 9, which can be turbularized away. In case (2),
glue the first annulus (and extend). If the second annulus points in the same direction as the
first one, each of the components of the foliated I-bundle A x [ will be an essential annulus
on a different toral boundary (c.f. Figure 9), which can be turbularized. If the annuli point
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Figure 9: Foliated I-bundle to be turbularized

in opposite directions, then the components of dA x [ are parallel essential annuli on the
same toral boundary, which we turbularize simultaneously.

Step 4: (Left-handed disks shadowing right-handed disks) We now attach an index 1 handle
H; for the orbit v; to dM;_;, so that one of the annuli (say A;) glues onto a component T’
of OM;_1 in the fashion depicted on the left-hand side of Figure 8. «; then has a left-handed
disk which shadows the right-handed disk for v;. We have two cases: j <1 or j > .

Case 1: (j < 1) Here, the handle H; for ~; has already been attached to dM;_q, in one of
two ways:

1. The two annuli of attachment were attached to different tori 7} and 75.

2. The two annuli were glued to the same torus 7}.

One of the annuli must have been homotopically essential because of Lemma 3. In the first
situation, assume that the homotopically essential annulus is glued onto T}; in the second,
recall that the construction above required the essential annulus be glued first onto 7Tj.

T — Ay has two components, T'— D? and D?. The foliated I-bundle 9A; x I can be easily
extended to (7' — D?) x I, but cannot be extended to D* x I. Let § = W,(v;) N T, and &,
(resp. d3) be the inner (resp. outer) component of 4. (This makes sense because they are
both null-homotopic.) Let @ C D? be a disk containing §; and avoiding ;. We can clearly
extend our foliation to (D* — Q) x I. See Figure 10.

We now take an annulus B C Q with 92 C 9B and BN 4 = (), form its flow cylinder
R x B, and dig out the portion of R x B intersecting M;_y — M;_;, i.e., the portion that
is ‘sitting above’ T7. We also replace T7 by T7 x I, with leaves T' x {0, 1}, i.e., we ‘blow air
through’. See Figure 11.

We now tuck in and turbularize as in Figure 12. Therefore, instead of the foliated I-
bundle coming from H;, we now have a foliated /-bundle coming from H;, facing the other
direction. When attaching H; along the other (essential) annulus Ay, we turbularize one of
the S x I inward and the other one outward.
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Figure 10: Extension of foliation

Figure 11: Digging a ditch and blowing air

Figure 12: Tucking and turbularizing
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Case 2: (5 > 1) This is the only situation where M, cannot be fully confoliated until we
get to M; because of the left-handed attachment. When we glue the handle H; onto M;_,
along the leaf T', confoliate all of M; except for D? x I, which we leave empty except for
leaves D? x {0,1}. When it is time to attach H; onto M;_; along a homotopically trivial
annulus A, we take an annulus B C M;_; on the outside of A, dig down as before, blow air
around T, and insert the foliated /-bundle coming from H; below that of H;. The remaining
attachments can be easily turbularized.

Step 5: (Index 2) We finally complete the construction by gluing on the 2-handles along
tori. This is identical to Step 1. This completes the proof. O

Remark: The above results should be extendable to the case of flows with hyperbolic
I-dimensional chain recurrent set, a la Goodman’s subsequent paper [10].

Question: Characterize when the contact structures constructed above are tight.

Note that since all the confoliations in our construction have Reeb components, it is
possible to insert a foliated I-bundle 7% x I in place of a toral leaf, with the right holonomy
which makes the perturbed contact structure overtwisted. This follows from the perturbation
on p.62 of [5]. A better question is therefore:

Question: When can we construct a transverse tight structure?

A necessary condition is the nonexistence of left-handed disks. Example 3.3.6 in [5]
indicates that transverse tight structures exist in certain situations; however the mechanism
is not understood at the moment.

4 Seifert fibered spaces

Let us start with the Milnor-Wood inequality both for foliations and confoliations. The
classical result for foliations is due to Milnor [15] and Wood [21], and the version for confo-
liations was first observed by Giroux and Sato-Tsuboi [19]. The case g(¥) = 0 is included
in Eliashberg-Thurston [5].

Theorem 5 Consider a circle bundle @ : M — ¥ with Fuler class e over a closed Riemann
surface ¥ of genus g(X). Then,

1. for g(¥) > 0, there exists a foliation & transverse to the circle fibers if and only if
le] <2¢(X) —2.
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2. for g(¥) > 0, there exislts a positive confoliation & (hence a positive contact structure
) transverse to the circle fibers if and only if e < 2¢g(¥) — 2.

3. for g =0, there exists a transverse foliation & if and only if e = 0.
4. for g =0, there exists a transverse positive confoliation £ if and only if e < 0.

9. for g =0, there exists a transverse positive contact structure £ if and only if e < 0.

In this section we will prove a generalization of this result to Seifert fibered spaces
m: M — ¥. The theorems are proved in much the same way, namely by reducing to con-
siderations of circle homeomorphisms or diffeomorphisms. The case g(¥) > 0 follows easily
from the analogous result of Eisenbud, Hirsch, and Neumann [2] for foliations, whereas the
case g(X) = 0 relies on subsequent papers by Jankins and Neumann [12], [13], and Naimi
[17].

Let us first introduce notation. Let m : M — ¥ be an oriented Seifert fibered space over
a closed Riemann surface ¥ with Seifert invariants (g(X);b, (a1, 51), (a2, 52),- -, (@, 5,)),
where o;, 3; € ZT, «a;, B; are relatively prime, 0 < 3;/a; < 1 (all for i = 1,...,n), and
b € Z. b, the background charge, is the Euler number when M — ¥ is a circle bundle.
Notice that some authors use the same letter b to stand for minus the background charge.
For convenience we will write (a9, 30) = (1,b). We have branch points p; € ¥, 1 = 1,...,n
sitting below the singular fibers 77*(p;) of M, as well as py € X, near which we concentrate
the background charge. Choosing disks D; C ¥, 1 = 0, ..., n, containing p;, we have a trivial
Stbundle 7YX —U%, D;) ~ (¥ —U D;)x S*, as well as an identification 7=(D;) ~ D*x S,
where the {pt} x S* are not fibers unless i = 0.

For each D;, 1 = 0,....,n, we have an identification

a(DQ X Sl) =177 — 8((2 — UDz) X Sl)i,opp =177

given by
A= ( _0‘5 g ) € SL(2,Z),

where 9(); opp refers to the component corresponding to D;, with the opposite orientation,
and v, ¢ are chosen so that det A = 1.

Now, if we have a foliation by disks D? x {pt} on D? x S, then the characteristic foliation
on d(D?* x S') becomes the foliation by lines of slope —3;/ca; on d((X — U D;) X S1); opp, and
hence the foliation by lines of slope 3;/a; on d((X —U D;) x S*);.

The following theorem includes the cases considered in Theorem 2. Recall that an n-tuple
(1, i) € (0,1)" is realizable if there exists a permutation (v1,---,v,) of (a/m,(m —
a)/m,1/m,---,1/m) with 0 < a < m and (a,m) = 1 such that p; < ~; for all i.
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Theorem 6 Let m: M — X be a Seifert fibered space with Seifert invariants (g(X);b, (o,
51): (a2752)7 Ty (anw@n))'

1. Assume g > 0. Then there exists a foliation £ transverse to the fibers if and only if
b<29—2and2—-2g <b+n.

2. Assume g > 0. Then there exists a posilive confoliation (and hence a positive contact
structure) & transverse to the fibers if and only if b < 2g — 2.

3. Assume g = 0. Then there exists a transverse foliation if and only if one of the
following holds:
(a) b< -2 and 2 <b+n.
(b)) b< =2, 1=b+n, and (1 — B1/ar,---,1 — Bn/ay) is realizable.
(¢c) b=—1,n >3, and (B1/a1, -, Bn/an) is realizable.
(d) b=—1,n=2, and B1/o1 + B2/as = 1.
(e) b=10 and n = 0.
4. Assume g = 0. Then there exists a transverse positive confoliation if and only if one
of the following holds:
(a) b < —2.
(b) b=—1,n >3, and (B1/a1, -+, Bn/an) is realizable.
(¢c) b=—1,n=2, and B1/as + Ba/as < 1.
(d) b=—1andn =0 orn=1.

(e) b =0 and n = 0 (this is the only one which cannot be deformed to a positive
contact structure.)

The proof can be reduced to considerations of circle homeomorphisms (or diffeomor-
phisms), as we will now explain. Let D = Homeo"(S') be the orientation-preserving home-
omorphisms of S' and D be its universal cover, given by orientation-preserving homeomor-
phisms of R which descend to S' = R/Z. For the most part we can think of D as the
orientation-preserving diffeomorphisms - the difference is mostly technical and very slight.
Denote by sh(y) : R — R the translation z — z 4+ . Finding a transverse foliation is

equivalent to finding a;, b; € D, i =1,...,¢9, and e; € Homeo(S') so that

[a1,b1] - - [ay,b,] = sh (@) ’ -+ sh (ﬁ) ’ , (2)

&%y} (077

where we denote ¢° = eogoe™!. To see why, refer to Figure 13. The dD; contribute sh(3;/ ),
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Figure 13: Base space X

the slits S; to the fixed point p contribute the conjugations e;, and (X —U D; —U S;) is now
a bouquet of 2¢g circles, contributing to the product of commutators on the left-hand side of
the equation. We can also see that finding a transverse positive confoliation is equivalent to

solving o\ e
[a1,b1] - - [ag,by] > sh (OL_/Z> - sh (i) , (3)

If ¢ € D, define m¢ = min(¢(z) — z) and M¢ = max(@(x) — x). Also, let |v]| be the
greatest integer < 4 and [7y] be the least integer > v. We need two lemmas from [2]. We
refer the reader to the proofs there.

Lemma 4 ¢ € D is a g-fold product of commutators in D if and only if m¢ < 29 — 1 and
mo > 1—2g.

Lemma 5 Lel ¢1, ... ¢, € D and r € R salisfying Y| m¢;| < r < [m¢i|. Then there
exist e; € Homeo(S') such that m(IT1¢;') < r < m([]¢;").

Proof of Theorem 6: (1) is presented in [2], and (3) is the combination of the efforts of
[12], [13], and [17]. The proofs of (2) and (4) are similar - we will provide a brief explanation.

g > 0: Let g > 0. We will prove (2). Suppose that there is a transverse positive confoliation.
Then taking |m] of both sides of Equation 3, we obtain

s o 2) o £ ()] -2

By Lemma 4, mT][a;, b;] < 2g — 1, so 29 — 2 > b.
Conversely, assume b < 2g — 2. Consider first the case n = 0, i.e., M is a circle bundle.
If 5> 2 — 2g, then by Lemma 4, we can write sh(b) as a g-fold product of commutators. If
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b < 2 —2g, then sh(b) will be smaller than any g-fold product of commutators. At any rate,
there exist a;, b; such that [19_;[a;, b;] > sh(b).

Now assume n > 0. Then }|8i/cai] < Y[08i/a;]|, which implies > |m(sh(5;/a;))] <
> [m(sh(Bi/ci))]. Hence, by Lemma 5, there exist e; such that m[]sh(8;/a;)* < b+ e <
2g — 1, and which, by Lemma 4, implies the existence of a; and b; satisfying Equation 3.

g = 0: For g =0, Equation 3 reduces to

id > H sh (@) (4)
i=0 @i

We will now prove (4) of Theorem 6. If Equation 4 holds, then 0 > |m [T, sh(3;/a;)%| > b.

If b =0, then n =0. If b = —2, then we can use Lemma 5 and > | [m(sh(8;/a;))] < —24¢

to get e; € D satisfying m([T%, sh(Bi/as)%) < —2+4¢, which implies that ([T, sh(Bi/a:)%)

< —1 + ¢, proving Equation 4.

g = 0, b = -1: We now have remaining the case ¢ = 0 and b = —1 (the hard part).
n =0, n =1 are automatic. For n = 2, we need (3;/a; + (2/as < 1: Taking the rotation
number rot(¢) = lim, e +(¢"(z) — z), we find rot(sh(1 — B1/a1)) > rot(sh(B2/az)?),
which evaluates to 1 — 31/a1 > 32/ as.

Assume from now on that n > 3.

Definition: Tet n € Z*, J C {1,...,n}, b € Z, and (1, -, pn) € (0,1)". We say that
(J;b; p1y ooy i) is F-realizable if there exist ¢; € D such that rot(¢;) = i, ¢; is conjugate
to sh(u;) ifi € J, and ¢, 0+ 0 ¢y = sh(=b). (J;b;u1,---,un) is C-realizable if ¢, 0--- 0
¢1 < sh(=b). If we suppress the J, we will assume J = {1,---,n} and if we suppress
the b, we will assume b = —1. For b = —1 we will extend our previous definition of
realizable and say that (J;uq,- -+, u,) is realizable if there exists a permutation (v, -+, 7,)
of (a/m,(m —a)/m,1/m,---,1/m) with 0 < a < m and (a,m) = 1 such that p; < ~; for all
1€ Jand pu; < forall e & J.

Let S, (/) be the set of realizable (J; u1,- -, u,) for a fixed index set .J. Define T5(.J) =
Ss(J), and T, (J) inductively by T, (J) = {(g1, -, pn) € (0,1)"] there exists an x for which
(g1, s pn—2,2) € Tuoa (1), (1 — &, gy, pin) € T5(J2)}, where J; = JN{l,---,n —2} and
Jy = 0 or {2} or {3} or {2,3} depending on whether JN{n —1,n} =0 or {n — 1} or {n}
or {n —1,n}.

Although we are primarily interested in J = {1,---,n}, we must deal with any J C
{1,2,3} due to the following reduction lemma, proved in [2]:

Lemma 6 S,(J) = T,(J).
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Assume for the moment that we can prove that T5(.J) = S3(.J) coincides with the set of
C-realizable triples (as well as the F-realizable triples), for all .J. Then the Lemma implies
that S, (.J) is the set of C-realizable n-tuples (or F-realizable n-tuples) as follows: it is clear
that the set of C-realizable n-tuples is a subset of 7,,(.J). On the other hand, it is shown in
[12] and [13] that:

Lemma 7 S,(J) C {C-realizable n-tuples (pr1,- -, pin)}-
We are then left to prove:

Proposition 2 S5(.J) is the set of C-realizable triples (and is also the set of F-realizable
triples).

Proof: The F-realizable case is proven by Naimi [17]. The C-realizable case is similar, and
depends on the following lemmas.
In [12] and [13] it is shown that:

Lemma 8 There exist vertices (y1,72,73) = (%, %, ﬁ) salisfying

pp' +4qq¢' =1+ pq, forp,q>1, (5)

with the property that given (p1, pra, p3) € (0,1)% — S3(J), there exists some (v1,7v2,73) with
wi > foralli € J and p; > ~; for all v & J.

In [17] it is shown that:

Lemma 9 Assume (v1,72,7s) = (B4, =2 L) satisfies Equation 5. Then (puy, pi, p3) is

p 7 q 7ptg

not C-realizable if py = v1, p1a = v2, and ps > vs. (In this case J = {1,2,3}.)

Lemma 10 Fiz (y1,792,73) € (0,1)%. If (y1,72,7) is not C-realizable for every v > ~s, then
(J; 1, pa, i) is not C-realizable for every J C {1,2,3}, and p; > ~; fori € J and p; > v
fori & J.

The proofs of the last two lemmas are virtually identical to the proof given by Naimi,
with the modification of fio fyo fs = sh(1) to fio fyo f3 < sh(1). It turns out that all the
inequalities in Naimi’s paper are still valid. Since we are not able to add to his exposition,
we will leave it to the reader to check this claim. O

We will conclude this paper with a few remarks and questions.

Remark: Let M — ¥ be a circle bundle over a compact Riemann surface ¥, possibly with
boundary. Then any £ transverse to the fibers is tight. (This follows from symplectic filling
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on the unit disk bundle of the complex line bundle over ¥, with Euler class equal to the
Euler class of the circle bundle.) The same is true for Seifert fibered spaces - we can proceed
either by proving a filling result for symplectic orbifolds (which M bounds), or by showing
directly that an overtwisted disk for M (if it exists) can be moved off the singular fibers.

Problem: Classify all tight contact structures on Seifert fibered spaces (or circle bundles).
Classify all transverse tight contact structures.

Remark: Unlike taut foliations or essential laminations, tight contact structures cannot
always be homotoped so that either all the 2-planes are tangent or all the 2-planes are
transverse to the fibers. This is due to the following theorem of Gompf [8]:

Theorem 7 Let M — ¥ be a circle bundle with Fuler number e over a closed, connected,
oriented surface ¥ of genus g. Then M admils al least | g— 5| holomorphically fillable contact
structures whose homotopy classes remain distinct after allowing orientation-preserving self-

diffeomorphisms of M.

Problem: Extend the transversality results to all flows in general, or, in particular, to flows
such as Anosov flows (Anosov flows already have tangential positive and negative contact
structures) or volume-preserving flows.

Acknowledgements: 1 would like to thank Sue Goodman for extremely helpful conversations.
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