A torus is formed by rotating a circle on the Oxz plane around the z-axis (or a circle on the Oyz plane, something).

2 things define a torus: the major radius and the minor radius.

Let E define the solid torus with major radius \(K \) and minor radius \(k \).

\[(r-K)^2 + z^2 \leq k^2 \]

where \((r, \theta)\) is the polar representation of \((x, y)\).

Then the equation for the solid torus is

We know how to parametrize this disk

\[
\begin{align*}
 r - K &= h \cos \phi \\
 z &= h \sin \phi
\end{align*}
\]

\(h \) could be 0, but that makes \(\phi \), and not the same \(\phi \) undefined. Does not matter as the Riemann integral does not care about isolated points.

So \(r = K + h \cos \phi \)

As \((r, \theta)\) is the polar expression of \((x, y)\), we have

\[
\begin{align*}
 x &= r \cos \Theta = (K + h \cos \phi) \cos \Theta \\
 y &= r \sin \Theta = (k + h \cos \phi) \sin \Theta \\
 z &= h \sin \phi
\end{align*}
\]

\(0 < h \leq k, 0 \leq \Theta < 2\pi, 0 \leq \phi < 2\pi \)

If we only want to parametrize the "surface" of the torus then this is the same as setting \(h = k \)

\[
\begin{align*}
 x &= (K + k \cos \phi) \cos \Theta \\
 y &= (k + k \sin \phi) \sin \Theta \\
 z &= k \sin \phi
\end{align*}
\]

\(0 \leq \Theta < 2\pi, 0 \leq \phi < 2\pi \)