7th discussion

Let \(A \) bounded set \(\subseteq \mathbb{R}^n. \)

\[\forall \varepsilon > 0, \text{ there is an inside simple set } F_\varepsilon \]

and outside simple set \(g, \text{ s.t. } \mathcal{V}(F_\varepsilon) - \mathcal{V}(g) \leq \varepsilon. \]

\(C \) is negligible.

\(\Rightarrow \) \(C \) is negligible.

\(\Rightarrow \) \(C \) is negligible.

An open, bounded set is Jordan measurable.

Theorem \(\text{ of } \mathcal{J} \).

Fad Center set

Surface area of closed rectangles

A "simple" set which is negligible must have

Jordan measure zero (compactness).

Some for Jordan measurable sets, (194)

"Almost simple.

Set: \(g : C \rightarrow \mathbb{R} \) is \(C^1 \), \(C \subseteq \mathbb{R}^n \) open

Then \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is negligible \(\Rightarrow \)

i.e. bounded \(\Rightarrow \) \(f^* \) is not surjective.

Proof: Will set \(n \leq 2 \) for sake of clarity

\[C = \{ C_1, C_2 \} \cup C_2. \]

\[C_1 \subseteq C. \]

\[C_2 = \{ y \in C : f^*(y) \subseteq C \} \subseteq \mathbb{R}^n \] f.\(f^*(y) \subseteq C \)

\[f(y) = f(x) + f^*(y), (y-x) = \frac{f^d(y)}{2} (y-x)^2 + \varepsilon (y-x) (y-x)^2. \]

Equidistant \(\text{ from } f^*(y) \) is negligible \(\Rightarrow \)

Consider \(C_2 \) \(\lambda \) \(\text{ or } \lambda \text{-cube length } R \).

Taylor: \(\varepsilon \), \(\epsilon \in 0 \), \(0 \leq |f(y) - f(x)| \leq \frac{1}{R} \frac{R^2}{2} |\varepsilon (y-x)|. \)

Done if \(f^*(C_2 \cap C_2) \) is negligible.

Partition \(g \) into \(n \) smaller cubes.

Only care for \(n \)-cube \(C_2 \), \(\text{ where } \lambda \text{-cube } \).

\(\varepsilon \text{ - are } \text{ smaller cubes, \(C_2 \).} \)

\(f \) were into \(\mathcal{R} \) such that \(\varepsilon \text{ - imply } (f^*(\text{small cubes})) \leq \left(\frac{R^2}{n} \left| \frac{R^2}{2} \right| \right. \)

\(\Rightarrow \)
Then \(\text{vol } y(c, M_y) \subset \mathbb{C} \text{ vol } (y \text{ manifold near } c) \)

\[z \in \left(\frac{\mathbb{D}^n}{\partial \mathbb{D}^n} \right) \cap \partial \mathbb{D}^n \]

\(z \) is arbitrary. Let \(n \to 0 \). Done.

Proof: \(\int (x, y, s) \) is negligible, \(\forall \) as same for \(L \times 0 \), \(L \times y \neq 0 \)

Done: \(\int (x, y, s) \) is negligible

Then \(\int (x, y, s) \) is negligible

In implicit function theorem

as \(\partial \) is injective in \(y \)-direction

Pick a \(c \in E \), IFT near \(a \), any \(b \) is nearby \(x \) also

\(\{ y = 0 \} \),

\(\{ z = 0 \} \) maps into horizontal line \((R)\)

Initial of working on \(U \) and \(f \), work

on flattened \(V \) and \(f' \). (Define polar everything)

As \(a \) is critical point of \(f \), \(f(a) \) is critical point of \(f' \).

To apply induction, must reduce \(f \) to \(R \to R \) function in the obvious way

Recall \(\phi(a) = (\phi(x), 0) \)

\[f'(x) = f'(x, 0) \]

Define \(\tilde{f}(x) = f(x, 0) \). So \(\tilde{f} : c \to R \text{ (right setting) } \)

Then \(\tilde{f}(x) \) is also such point of \(f_0 \)

\[\tilde{f}'(x) = 0 \]

Some: \(V \) is \(\tilde{f} \) near \(y \) like \(a \), \(\tilde{f}'(x) \) is also critical point of \(f_0 \).

Then apply \(\tilde{f} \) to \(f_0 \).

\[\int f(x, y) = e^{x^2 y^2} \text{ on } [-1, 1]^2 \]

\[\int f(x, y) \text{ d}x \text{ dy } \]

\[\int f(x, y) \text{ d}x \text{ d}y \]