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1 Introduction and statement of results

In the last few years, starting with a pioneering work [25], it has become increasingly
clear that non-selfadjoint operators in dimension two share many of the pleasant fea-
tures of selfadjoint operators in dimension one. In the semiclassical limit (h → 0), it is
frequently possible to give complete asymptotic expansions for individual eigenvalues of
such operators, in suitable domains in the complex spectral plane. Roughly speaking,
the classical Bohr-Sommerfeld rules for real curves in dimension one [9] are replaced by
Bohr-Sommerfeld rules for complex curves in dimension two. The purpose of this talk
is to describe recent results in this direction obtained in collaboration with Johannes
Sjöstrand and San Vũ Ngo.c [16], [15].

We shall be concerned with small non-selfadjoint perturbations of selfadjoint h–
pseudodifferential operators. Let us remark that various problems of mathematical
physics lead to non-selfadjoint operators of this kind—for instance, studying barrier
top resonances for semiclassical Schrödinger operators [18] leads one to consider small
complex perturbations of the quantum harmonic oscillator [32]. Also, eventually, we
expect such operators to be of significance in the study of the scattering poles for a
strictly convex analytic obstacle in R3. See [33] and references given there. Another
motivation for being interested in this class of operators comes from the study of spectra
for damped wave equations, and by way of introduction, we shall now proceed to recall
the formulation of this problem.

Example. Let M be a compact connected C∞–Riemannian manifold of dimension
≥ 2, and let ∆ be the corresponding Laplace-Beltrami operator. Consider the Cauchy
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problem for the wave equation with a damping term,

{
(∂2

t − ∆ + a(x)∂t) v = 0, (t, x) ∈ R× M,
v|t=0 = v0 ∈ H1(M), ∂tv|t=0 = v1 ∈ L2(M).

(1.1)

Here H1(M) is the standard Sobolev space on M , and the damping coefficient a is
a bounded non-negative smooth function on M , which does not vanish identically.
The study of the energy decay rates for solutions to (1.1), as t → ∞, in relation to
the geometry of the underlying manifold and the control (damping) region has a long
tradition, and has been pursued in [28], [21], [19]. See also [3].

Here we are only interested in the stationary problem, obtained by setting v(x, t) =
eiτtu(x) in (1.1): (

−∆ + ia(x)τ − τ 2
)
u = 0. (1.2)

Using (1.2), it is easy to see that the eigenfrequencies τ ∈ C, for which (1.2) has a
non-vanishing smooth solution, form a discrete set and are confined to a band along
the real axis. When studying τ such that Re τ � 1, Im τ = O(1), it is convenient to
reformulate the problem semiclassically, and write

τ =

√
z

h
, 0 < h � 1, Re z ∼ 1, Im z = O(h).

We get

(P − z) u = 0, (1.3)

where

P = −h2∆ + iha(x)
√

z.

In this case, the operator in question is therefore an O(h)–perturbation of the semi-
classical Laplacian, and we refer to [31] for the general results on the asymptotic dis-
tribution of the eigenfrequencies for (1.2), (1.3). Some further results in the case when
the geodesic flow on M is periodic have been obtained in [11].

In this talk, we shall be concerned with non-selfadjoint perturbations of selfadjoint
h–pseudodifferential operators, for which the strength ε of the perturbation is given as
an additional small parameter, ε ∈ neigh(0,R).

We now come to describe the precise assumptions on the class of operators that we
are going to consider. In what follows, we let M denote R2 or a compact connected
real analytic manifold of dimension 2. We then let M̃ stand for a complexification of
M , so that M = C2 in the Euclidean case, and in the manifold case, M̃ is a Grauert
tube of M .

When M = R2, let

Pε = P (x, hDx, ε; h) (1.4)

XXIV–2



be the h–Weyl quantization on R2 of a symbol P (x, ξ, ε; h) depending smoothly on
ε ∈ neigh (0,R) and taking values in the space of holomorphic functions of (x, ξ) in a
tubular neighborhood of R4 in C4, with

|P (x, ξ, ε; h)| ≤ O(1)m(Re (x, ξ)) (1.5)

there. Here m ∈ C∞(R4) is assumed to be an order function, in the sense that m > 0
and

m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R4, C0, N0 > 0. (1.6)

We also assume that m ≥ 1. Assume further that

P (x, ξ, ε; h) ∼
∞∑

j=0

pj,ε(x, ξ)hj, h → 0, (1.7)

in the space of such functions. We make the basic assumption of ellipticity at infinity,

|p0,ε(x, ξ)| ≥ 1

C
m(Re (x, ξ)), |(x, ξ)| ≥ C, (1.8)

for some C > 0.
When M is a compact manifold, we let Pε be a differential operator on M , such

that for every choice of local coordinates, centered at some point of M , it takes the
form

Pε =
∑

|α|≤m

aα,ε(x; h)(hDx)
α, (1.9)

where aα,ε(x; h) is a smooth function of ε ∈ neigh(0,R) with values in the space of
bounded holomorphic functions in a complex neighborhood of x = 0. We further
assume that

aα,ε(x; h) ∼
∞∑

j=0

aα,ε,j(x)hj , h → 0, (1.10)

in the space of such functions. The semiclassical principal symbol p0,ε, defined on T ∗M ,
takes the form p0,ε(x, ξ) =

∑
aα,ε,0(x)ξα, if (x, ξ) are canonical coordinates on T ∗M ,

and as in the Euclidean case, we make the ellipticity assumption

|p0,ε(x, ξ)| ≥ 1

C
〈ξ〉m, (x, ξ) ∈ T ∗M, |ξ| ≥ C, (1.11)

for some large C > 0. Here we assume that M has been equipped with some real
analytic Riemannian metric, so that |ξ| and 〈ξ〉 = (1 + |ξ|2)1/2 are well-defined.

In what follows we shall write pε for p0,ε and simply p for p0,0. Assume that

Pε=0 is formally selfadjoint. (1.12)
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In the case when M is compact, we let the underlying Hilbert space be L2(M, µ(dx))
where µ(dx) is the Riemannian volume element.

It follows from (1.8), (1.11), and (1.12) that Pε has a discrete spectrum in some
fixed neighborhood of 0 ∈ C, when h > 0, ε ≥ 0 are sufficiently small, and that the
spectrum in this region is contained in a band

|Im z| ≤ O(ε). (1.13)

We shall also assume that

p−1(0) ∩ T ∗M is connected, (1.14)

and that the energy level E = 0 is non-critical for p, so that dp 6= 0 along p−1(0)∩T ∗M .

In what follows we shall write

pε = p + iεq + O(ε2), (1.15)

near p−1(0)∩ T ∗M , and for simplicity we shall assume that the leading perturbation q
is real on the real domain. (In the general case, we should simply replace q below by
Re q.)

Our goal is to understand the asymptotic behavior of the individual eigenvalues
of Pε in the spectral band (1.13), in the semiclassical limit h → 0. As suggested by
the selfadjoint theory [20], [26], in order to do this we should make some assumptions
about the classical flow in p−1(0) ∩ T ∗M .

Let

Hp = p′ξ ·
∂

∂x
− p′x ·

∂

∂ξ

be the Hamilton field of p. The first and the simplest case to consider concerns the
situation when the Hp–flow is periodic in an energy shell p−1(I) ∩ T ∗M , where I is
a bounded neighborhood of 0 ∈ R, and a series of papers [12]—[14] by Johannes
Sjöstrand and the author has addressed this problem. The study of operators with
periodic classical flow has a long tradition in the selfadjoint theory (see [34], [5], [17]),
and proceeding in the spirit of these works, the starting point of [12]—[14] was to
obtain a reduction to a one-dimensional spectral problem, by means of an averaging
procedure.

In the first part of this talk, we shall concentrate on the case when the Hp–flow is
completely integrable. This requires that we first discuss the precise assumptions on
the geometry of the unperturbed energy surface, which we proceed to do now, follo-
wing [16], [15].

Let us assume that p−1(0) ∩ T ∗M decomposes into a disjoint union

p−1(0) ∩ T ∗M =
⋃

Λ∈J

Λ, (1.16)
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where Λ are compact connected Hp–invariant sets. As in [16], we assume that J is a
finite connected graph, with S denoting the set of vertices—the graph of a singular
Lagrangian foliation of the energy surface. (See also [7] where this point of view is
exploited.) Assume that the union of the edges J\S has a natural real analytic structure
and that every Λ ∈ J\S is an analytic Lagrangian torus depending analytically on Λ
with respect to that structure.

We identify each edge of J analytically with a real bounded interval and this de-
termines a distance on J in the natural way. Assume that we have the continuity
property

For every Λ0 ∈ J and every ε > 0, ∃ δ > 0, such that if (1.17)

Λ ∈ J, dist(Λ, Λ0) < δ, then Λ ⊂ {ρ ∈ p−1(0) ∩ T ∗M ; dist(ρ, Λ0) < ε}.

Now associated with each regular torus Λ ∈ J\S there is a rotation number ω(Λ) ∈
RP1, depending analytically on Λ. Quite explicitly, if we represent Λ as

Λ ' {ξ = 0} ⊂ T ∗T2, T2 := R2/2πZ2,

using the action-angle coordinates in a neighborhood of Λ, so that p = p(ξ), then we
define ω(Λ) = [p′ξ1(0) : p′ξ2(0)]. Assume that

ω(Λ) is not identically constant on any open edge.

Recall next that q has been introduced in (1.15). For each Λ ∈ J\S, we define the torus
average 〈q〉Λ, obtained by integrating q|Λ with respect to the natural smooth measure
on Λ, and assume that 〈q〉Λ depends analytically on Λ ∈ J\S and is not identically
constant on any open edge. Also, assume that 〈q〉Λ extends continuously to all of J .

We introduce

〈q〉T =
1

T

∫ T/2

−T/2

q ◦ exp (tHp) dt, T > 0, (1.18)

and define the compact intervals Q∞(Λ) ⊂ R, Λ ∈ J ,

Q∞(Λ) =

[
lim

T→∞
inf
Λ
〈q〉T , lim

T→∞
sup

Λ
〈q〉T

]
. (1.19)

Notice that when Λ ∈ J\S and ω(Λ) /∈ Q then the restriction of the Hp–flow to Λ
is ergodic so that Q∞(Λ) = {〈q〉Λ}. In the rational case, we write ω(Λ) = m

n
, where

m ∈ Z and n ∈ N are relatively prime, and with k(ω(Λ)) := |m| + |n|, we recall
from [16] that

Q∞(Λ) ⊂ 〈q〉Λ + O
(

1

k(ω(Λ))∞

)
[−1, 1]. (1.20)
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Using suitable phase space exponential weights corresponding to the averaging along
the Hp–flow together with the sharp G̊arding inequality, one then shows that

1

ε
Im (Spec(Pε) ∩ {z; |Re z| ≤ δ}) ⊂

[
inf

⋃

Λ∈J

Q∞(Λ) − o(1), sup
⋃

Λ∈J

Q∞(Λ) + o(1)

]
,

as ε, h, δ → 0. This establishes the first rough bound on the location of the spectrum
inside the band (1.13).

Let α > 0, d > 0. In what follows we shall say that the torus Λ ∈ J\S is (α, d)–
Diophantine if ∣∣∣∣ω(Λ) − p

q

∣∣∣∣ ≥
α

q2+d
, p ∈ Z, q ∈ N. (1.21)

Here we view ω(Λ) as an element of R.

The following result has been established in [16].

Theorem 1.1 (The Diophantine Case.) When α > 0 and d > 0, define

Gα,d =
⋃

Λ∈J

Q∞(Λ) \ Bα,d, (1.22)

where Bα,d is the following set:


 ⋃

dist(Λ,S)<α

Q∞(Λ)


 ⋃


 ⋃

Λ∈J\S, |dΛω(Λ)|<α

Q∞(Λ)


 ⋃


 ⋃

Λ∈J\S, |dΛ〈q〉Λ|<α

Q∞(Λ)




⋃

 ⋃

Λ∈J\S, Λ is not (α,d)−Diophantine

Q∞(Λ)


 .

When F0 ∈ Gα,d, write
〈q〉−1

Λ (F0) = {Λ1, . . . ΛL},
where Λj ∈ J\S, 1 ≤ j ≤ L, are (α, d)–Diophantine tori ⊂ p−1(0)∩T ∗M . Let Sj ∈ R2

be the actions and kj ∈ Z2 be the Maslov indices of the fundamental cycles αk,j in Λj,
defined by κj(αk,j) = {x ∈ T2; xk = 0}, k = 1, 2, where

κj : neigh(Λj , T
∗M) → neigh(ξ = 0, T ∗T2) (1.23)

is the canonical transformation given by the action-angle variables near Λj, 1 ≤ j ≤ L.
Assume that ε = O(hδ0), δ0 > 0, satisfies ε ≥ hK, where K � 1 is fixed. Then the

eigenvalues of Pε in

|Re z| <
εδ

O(1)
, |Im z − εF0| <

ε1+δ

O(1)
, δ > 0, (1.24)
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are given by

P
(∞)
j

(
h

(
k − kj

4

)
− Sj

2π
, ε; h

)
+ O(h∞),

for k ∈ Z2, 1 ≤ j ≤ L. Here P
(∞)
j (ξ, ε; h) is smooth in ξ ∈ neigh(0,R2) and ε ∈

neigh(0,R), and real-valued for ε = 0. We have

P
(∞)
j (ξ, ε; h) ∼

∞∑

`=0

h`p
(∞)
j,` (ξ, ε), 1 ≤ j ≤ L,

and
p

(∞)
j,0 (ξ, ε) = p(ξ) + iε〈q〉(ξ) + O(ε2).

Here p and q have been expressed in terms of the action-angle coordinates near Λj,
given by κj in (1.23), and 〈q〉 is the torus average of q in these coordinates.

Remarks.

• The eigenvalues of Pε in the spectral window (1.24), for each F0 ∈ Gα,d, form a
superposition of a finite number of slightly distorted lattices, each Diophantine
torus contributing its own lattice of quasi-eigenvalues. It would be interesting to
see whether such lattices could be observed numerically.

• The measure of the “bad” set Bα,d ⊂ ∪Λ∈JQ∞(Λ) is small when α > 0 is small
enough, provided that the measure of the set

⋃

Λ∈ω−1(Q)∪S

Q∞(Λ)

is sufficiently small.

• Theorem 1.1 applies to the spectral problem (1.2), (1.3) for the damped wave
equation on an analytic strictly convex surface of revolution, say. In this case,
ε ∼ h.

Remark. Using the isoenergetic KAM theorem [2], it is possible to show that the
result of Theorem 1.1 is stable with respect to small real perturbations of the leading
symbol of Pε=0, p, destroying the complete integrability of the classical flow. We refer
to Section 7 of [16] for a detailed discussion of this important point, and just remark
here that the required smallness of the real perturbation of p depends only on the
Diophantine parameter α in (1.21), provided that d > 0 is kept fixed.

Remark. The second main result of [16] establishes that, suitably extended, Theorem
1.1 is valid also in the range

h
1

3
−δ < ε ≤ ε0 � 1, δ > 0.
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We now come to describe the second main result of this talk [15], dealing with the
contributions to the spectrum of Pε coming from the flow–invariant Lagrangian tori
that are rational.

Theorem 1.2 (The rational case.) Let Λ0 ⊂ p−1(0)∩T ∗M be an invariant Lagrangian
torus such that ω(Λ0) ∈ Q and assume that

dΛ=Λ0
ω(Λ) 6= 0.

Let F0 ∈ Q∞(Λ0) be such that

〈q〉Λ0
≥ F0 +

1

O(1)
, (1.25)

and assume that
F0 /∈

⋃

Λ/∈neigh(Λ0)

Q∞(Λ). (1.26)

Assume furthermore that ε = O(hδ0), δ0 > 0, satisfies ε � h. Then the number of
eigenvalues of Pε in the rectangle

|Re z| <
ε

O(1)
,

∣∣∣∣
Im z

ε
− F0

∣∣∣∣ <
1

O(1)
(1.27)

does not exceed

O
(

ε3/2

h2

)
. (1.28)

Remark. Let F0 ∈ Gα,d, with the latter set defined in (1.22). Then it follows from
Theorem 1.1 that the number of eigenvalues of Pε in a domain of the form

|Re z| ≤ ε

O(1)
,

∣∣∣∣
Im z

ε
− F0

∣∣∣∣ ≤
εδ

O(1)
, δ > 0,

is

∼ ε1+δ

h2
� ε3/2

h2
,

if δ > 0 is small enough. The result of Theorem 1.2 may therefore be interpreted as
saying that the contribution to the spectrum coming from a rational region in this case
is much weaker than that of the Diophantine tori. (Notice however that here the as-
sumption (1.25) is made.) When trying to go further and obtain more complete results
about the distribution of individual eigenvalues, beyond the counting estimate (1.28),
we run into pseudospectral difficulties, typical for non-selfadjoint spectral problems [8].

Remark. It would be very interesting and natural to try to understand the distribution
of eigenvalues of Pε near the energy levels (0, F0) ∈ C, where F0 ∈ ∪Λ∈JQ∞(Λ) cor-
responds to a combination of both the Diophantine and the rational tori. Effectively,
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this should require estimating and exploiting the tunnel effect between the Diophantine
and rational regions. The work in this direction is currently in progress [15].

Acknowledgment. This text was prepared when the author was visiting l’Institut
Fourier, Grenoble, in June of 2006. Its hospitality and stimulating atmosphere are
greatly appreciated. The partial support of the National Science Foundation under
grant DMS–0304970 is also gratefully acknowledged.

2 Some ideas of the proofs of Theorems 1.1 and 1.2

Referring to [16] and [15] for the complete details of the proofs, here we shall merely
indicate the main steps along the way.

The starting point of the proof of Theorem 1.1 is a formal quantum Birkhoff normal
form construction for Pε near a fixed Diophantine torus, say Λ1 ⊂ p−1(0) ∩ T ∗M .
Introducing the action-angle coordinates near Λ1 and passing to the torus model, we
may assume that the operator Pε is defined microlocally near ξ = 0 in T ∗T2 and has
the leading symbol

pε(x, ξ) = p(ξ) + iεq(x, ξ) + O(ε2), (2.1)

with p(ξ) = a · ξ +O(ξ2), and a = (a1, a2) ∈ R2 such that ω(Λ1) = [a1 : a2] satisfies the
Diophantine condition (1.21). One then constructs a holomorphic canonical transfor-
mation κε defined in a fixed complex neighborhood of the zero section of T ∗T2, such
that

pε ◦ κε = p(N)(ξ, ε) + rN+1(x, ξ, ε),

where

p(N)(ξ, ε) = p(ξ) + iε〈q〉(ξ) + O(ε2), 〈q〉(ξ) =
1

(2π)2

∫
q(x, ξ) dx (2.2)

is independent of x, and rN+1(x, ξ, ε) = O((ξ, ε)N+1). Here N ∈ N is arbitrarily large
but fixed.

On the operator level, one next gets a reduction of Pε to an operator of the form

P (N)(hDx, ε; h) + RN+1(x, hDx, ε; h), (2.3)

where the full symbol of P (N)(hDx.ε; h) is independent of x and RN+1(x, ξ, ε; h) =
O

(
(h, ξ, ε)N+1

)
. The operator in (2.3) acts on the space L2

θ(T
2) of microlocally defined

Floquet periodic functions on T2, the elements u of which satisfy

u(x − ν) = eiθ·νu(x), ν ∈ 2πZ2, θ =
S1

2πh
+

k1

4
∈ R2.

The principal symbol of P (N)(hDx, ε; h) is p(N)(ξ, ε) given by (2.2).
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Remark. The construction of the quantum Birkhoff normal form around flow–invariant
Diophantine tori and Cantor families of such tori, as well as the study of the associated
quasimodes, has a long tradition in the selfadjoint theory—see [20], [4], [27], [6].

The main part of the proof then consists of justifying the preceding formal construc-
tion and showing that in the case when F0 ∈ Gα,d, the formal quasi-eigenvalues coming
from the Birkhoff normal form construction near the Diophantine tori Λj, 1 ≤ j ≤ L,
give all of the actual eigenvalues of Pε modulo O(h∞), in a region of the form (1.24).
The crucial step is given by the proof of the following result.

Proposition 2.1 Let F0 ∈ Gα,d. There exists an IR–manifold Λ ⊂ T ∗M̃ , ε–close to
T ∗M and equal to T ∗M outside a compact set, such that away from a εδ–neighborhood
of ∪L

j=1Λj in Λ, δ > 0, we have

|Re Pε| ≥
εδ

O(1)
or |Im Pε − εF0| ≥

ε1+δ

O(1)
. (2.4)

For each j with 1 ≤ j ≤ L, there exists an elliptic Fourier integral operator

Uj = O(1) : H(Λ) → L2
θ(T

2), (2.5)

such that microlocally near Λj,

UjPε =
(
P

(N)
j (hDx, ε; h) + RN+1,j(x, hDx, ε; h)

)
Uj .

Here P
(N)
j (hDx, ε; h) + RN+1,j(x, hDx, ε; h) is defined as in (2.3) when j = 1.

Remark. The h–dependent Hilbert space H(Λ), occurring in (2.5), is naturally associ-
ated to Λ and is defined using the techniques of [29], [30], by modifying the exponential
weight on the FBI–Bargmann transform side.

It follows from Proposition 2.1 that the entire spectral problem for Pε becomes
microlocalized to a small neighborhood of the union of the Diophantine tori, where
one has a good description of the operator thanks to the Birkhoff normal form. With
Proposition 2.1 available, Theorem 1.1 follows by solving an appropriate globally well-
posed Grushin problem for Pε in the space H(Λ).

Remark. To reach sufficiently small but h–independent values of ε, the possibility of
which has been alluded to in a remark in Section 1, one needs to combine the Birkhoff
normal form construction for pε described above with the additional idea due to [25]
of working with cohomological equations of ∂–type on the standard 2–torus, thereby
liberating ourselves from Diophantine conditions. See also [32].

As the proof of Theorem 1.2 is somewhat more technical, in the remainder of this
talk, we shall only indicate briefly the main ingredients in the proof of this result.
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The starting point in the proof is a microlocal normal form construction for Pε near
Λ0 ' T2. As opposed to the Diophantine case, in the present situation one relies upon
secular perturbation theory [22], and carries out successive averagings of the lower
order symbols of Pε along the family of closed Hp–orbits comprising the rational torus
Λ0. In the simplest case, a local model for the leading symbol of Pε near ξ = 0 in
T ∗T2, after the secular reduction, is given by

pε(x, ξ) = ξ2 + ξ2
1 + O(ε) + O((ε, ξ1)

∞), (2.6)

where the O(ε)–term in (2.6) is independent of x2. Using the assumptions (1.25) and
(1.26), it is then possible to show that, roughly speaking, only the phase space region

ξ1 = O(ε1/2), ξ2 = O(ε) (2.7)

can contribute to the spectrum of Pε in the domain (1.27). To handle the region in (2.7),
one constructs a trace class operator K (acting on a suitable h–dependent Hilbert space
associated to an appropriate IR–deformation of T ∗M), of trace class norm O(ε3/2)h−2,
such that the operator Pε + iεK−z becomes invertible for z in the domain (1.27), with
an O(ε−1)–control on the norm of the inverse. One then gets the result of Theorem
1.2 by working with perturbation determinant estimates, in the spirit of the classical
theory of non-selfadjoint operators as described in [10], [23].

We would finally like to mention that the trace class operator K above is constructed
as a Toeplitz operator on the FBI–Bargmann transform side, and when estimating its
trace class norm, we use the following general estimate, which may be perhaps of some
independent interest.

Proposition 2.2 Let Φ0(x) be a real strictly plurisubharmonic quadratic form on Cn,
and let Φ ∈ C∞(Cn) be strictly plurisubharmonic and such that Φ − Φ0 is bounded
and sup

∣∣∂Φ
∂x

− ∂Φ0

∂x

∣∣ small enough. Assume also that ∇kΦ ∈ L∞(Cn) for each k ≥ 2.

When L2
Φ := L2(Cn; e−

2Φ

h L(dx)), where L(dx) is the Lebesgue measure on Cn, we let
HΦ stand for the holomorphic subspace, and introduce the orthogonal projection

ΠΦ : L2
Φ → HΦ.

Let p ∈ C∞
0 (Cn). Then the Toeplitz operator

Top(p) = ΠΦpΠΦ = O(1) : HΦ → HΦ

is of trace class and we have

||Top(p) ||tr ≤
O(1)

hn
. (2.8)

Proposition 2.2 is a simple consequence of the asymptotic description of the Berg-
man projector ΠΦ, established in [24], in the spirit of [1].
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